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The principle and the efficiency of the Monte Carlo transfer-matrix algorithm are discussed. Enhancements
of this algorithm are illustrated by applications to several phase transitions in lattice spin models. We demon-
strate how the statistical noise can be reduced considerably by a similarity transformation of the transfer matrix
using a variational estimate of its leading eigenvector, in analogy with a common practice in various quantum
Monte Carlo techniques. Here we take the two-dimensional coupledXY-Ising model as an example. Further-
more, we calculate interface free energies of finite three-dimensional O(n) models, for the three casesn51, 2,
and 3. Application of finite-size scaling to the numerical results yields estimates of the critical points of these
three models. The statistical precision of the estimates is satisfactory for the modest amount of computer time
spent.@S0163-1829~96!01126-5#

I. INTRODUCTION

Many important problems in computational physics and
chemistry can be reduced to the computation of dominant
eigenvalues of matrices of high or infinite order. Among the
numerous examples of such matrices are quantum-
mechanical Hamiltonians and transfer matrices. The latter
were introduced in statistical mechanics by Kramers and
Wannier in 1941 to study the two-dimensional Ising model,1

and ever since, important work on lattice models in classical
statistical mechanic has been done with transfer matrices,
producing both exact and numerical results.

The analogy of the time-evolution operator in quantum
mechanics and the transfer matrix in statistical mechanics
allows the two fields to share numerous techniques. Specifi-
cally, a transfer matrixT of a statistical-mechanical lattice
system ind dimensions often can be interpreted as the evo-
lution operator in discrete, imaginary timet of a quantum-
mechanical analog, as is well known. That is,
T'exp(2tH), whereH is the Hamiltonian of a system in
d21 dimensions, the quantum-mechanical analog of the
statistical-mechanical system. From this point of view, the
computation of the partition function and of the ground-state
energy are essentially the same problems: finding the largest
eigenvalue ofT and of exp(2tH), respectively.

The transfer-matrix Monte Carlo method used in this pa-
per employs an algorithm as simple as the diffusion Monte
Carlo algorithm, which was developed to compute the domi-
nant eigenvalue of the evolution operator exp(2tH) . In con-
trast to the diffusion Monte Carlo algorithm, the transfer-
matrix Monte Carlo method provides exact eigenvalues,
subject only to statistical noise and as qualified below in Sec.
II. More specifically, unlike the transfer-matrix Monte Carlo
method, the diffusion Monte Carlo algorithm suffers from a
systematic error, the time-step error, because of the necessity
to employ an approximate, short-time evolution operator.

Similar errors are also found in the path-integral Monte
Carlo method and, in general, in all approaches based on the
Trotter formula.2 An alternative, related approach, viz.,
Green function Monte Carlo, used to compute the dominant
eigenvalue of (H2E)21, whereE is close to the ground-
state energy, does not suffer from a time-step error, and,
from that point of view, the Green function Monte Carlo
algorithm is more elegant than the diffusion Monte Carlo
algorithm. However, the Green function Monte Carlo algo-
rithm is considerably more complicated, and enhancement of
that algorithm by the variance reduction techniques dis-
cussed below has its limitations.

From an orthodox complexity theory point of view,exact
numerical transfer-matrix computations for lattices in more
than one dimension are intractable, since the order of transfer
matrices grows exponentially with the number of lattice sites
in a transfer slice. Standard Monte Carlo methods in statisti-
cal mechanics, on the other hand, statistically sample the
Boltzmann distribution, typically employing some variant of
the Metropolis algorithm. One can argue that Monte Carlo
methods are of polynomial complexity in system size, at
least for certain important physical observables. This raises
the question of the ultimate utility of the transfer matrix for
computational purposes.

In many cases, one is interested in the behavior of sys-
tems in the thermodynamic limit. For critical systems in par-
ticular, one has to rely on finite-size scaling and extrapola-
tion methods to extract the relevant information from the
computations. The transfer-matrix method has advantages in
both respects. In the first place, one can compute the spec-
trum of the transfer-matrix method virtually to machine pre-
cision, which permits extrapolation without serious loss of
numerical accuracy. Secondly, a large body of numerical
evidence suggests that the transfer-matrix spectrum has
weaker corrections to scaling than quantities commonly
computed by the standard Monte Carlo method. Clearly, also
the transfer-matrix Monte Carlo method takes advantage of
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the weakness of the corrections to scaling. Unfortunately,
statistical noise is introduced, but this can be reduced sub-
stantially by the use of optimized trial eigenvectors, by virtue
of which the Monte Carlo process is in effect only used to
computecorrectionsto an already sophisticated approxima-
tion.

If one could neglect the correlations introduced by the
reweighting step of the transfer-matrix Monte Carlo algo-
rithm @see the split and join steps~2a! and ~2b! in the algo-
rithm given in Sec. II# and if one could ignore the resulting
loss of efficiency of the transfer-matrix Monte Carlo algo-
rithm, this method would be a solution to the exponential
growth problem mentioned above.3 In addition, the transfer-
matrix Monte Carlo method would be completely free of
critical slowing down, since the correlationtimeof the algo-
rithm is equal to the correlationlengthof the slices used in
the definition of the transfer matrix. Again, the use of opti-
mized trial eigenvectors can serve to reduce the detrimental
effect of the multiplicative reweighting.

Another feature of the Monte Carlo transfer matrix, which
can contribute to a reduction of the correlation time of the
stochastic process, is that moves are effectively made at sur-
face sites. This makes it much easier to overcome the barri-
ers some systems present to standard Monte Carlo algo-
rithms. An example of such a system is theXY-Ising model
discussed in Ref. 4.

The layout of this paper is as follows. In Sec. II we review
the basic Monte Carlo algorithm to determine transfer-matrix
eigenvalues by means of a statistical implementation of the
power method. Apart from relatively minor details, the algo-
rithm given in Sec. II is the same as the one discussed in
Refs. 5–7. Section III describes the similarity transformation
of the transfer matrix, which leads to a pronounced decrease
of the statistical errors of the Monte Carlo process. Section
III in particular describes in detail the construction of a varia-
tional approximation of the eigenstate associated with the
largest eigenvalue. This approximate eigenstate yields the
similarity transformation used to reduce the statistical errors
of the algorithm. Details of the speedup of the algorithm are
presented at the end of Sec. III, a coupledXY-Ising model in
two dimensions. Finally, Sec. IV contains applications of the
transfer-matrix Monte Carlo method to three-dimensional
O(n) models forn51, 2, and 3. Preliminary discussions of
the the work discussed in Secs. III and IV were published
elsewhere.6,4

II. MONTE CARLO IMPLEMENTATION
OF THE POWER METHOD

Consider an operatorT of which we want to compute the
dominant eigenvalue. LetT be represented by matrix ele-
ments^RuTuS&5TRS, whereuR& and uS& are basis states of
the physical system under consideration. These states will be
treated here as discrete. For Monte Carlo calculations, the
distinction between continuous and discrete states is a minor
technicality; in the discussion below, generalization to the
continuous case follows immediately by replacing the appro-
priate sums by integrals and replacing Kronecker by Dirac
d functions.

Perhaps the simplest way to calculate the dominant eigen-
value of a matrix or integral kernel is the power method.

That is, choose an arbitrary initial stateuu(0)& and compute
iteratively:

uu~ t11!&5
1

ct11
Tuu~ t !&, ~1!

wherect11 is a constant chosen so thatuu(t11)& is normal-
ized or in some other convenient standard form. Fort→`,
the constantsct approximate the dominant eigenvaluel0 of
T and the vectorsuu(t)& converge to the corresponding ei-
genvector.

To implement Eq.~1! by a Monte Carlo method,uu(t)& is
represented by a sequence ofNt walkers. Each of these walk-
ers is a pair (Ra ,wa), a51, . . . ,Nt . The variableRa of a
walker represents a possible configuration of the system de-
scribed byT, andwa represents its statistical weight. The
latter quantity is subject to the conditionwl,wa,wu ,
wherewl and wu are bounds introduced so as to keep all
weightswa of the same order of magnitude, which improves
the efficiency of the algorithm. This sequence of walkers
represents a~sparse! vector with components

uI R
~ t !5 (

a51

Nt

wadR,Ra
, ~2!

whered is the usual Kroneckerd function. The underbar is
used to indicate that theuI R

(t) represent a stochastic vector
uuI (t)&. A stochastic process will be defined presently with
transition probabilities such thatct11uuI (t11)& has a condi-
tional expectation value equal toTuuI (t)& for any given se-
quence of walkers representinguuI (t)&. In practice, one has to
average over the stationary state of a stochastic process in
which the constantsct are determined usinga posteriorista-
tistics, so thatct11 and uuI (t11)& are correlated. As a conse-
quence, there is no guarantee that the stationary-state expec-
tation value ofuuI (t)& is preciselyan eigenstate ofT, at least
not for finiteNt . The same mathematical problem occurs if
one takes the time average of Eq.~1! in the presence of noise
correlated to thect . The resulting bias8,9 has also been dis-
cussed in the context of the diffusion Monte Carlo method.7

To define the stochastic process, Eq.~1! is rewritten as

uR
~ t11!5

1

ct11
(
S

PRSDSuS
~ t !, ~3!

where

DS5(
R

TRS and PRS5TRS/DS . ~4!

Equation~3! describes a process represented by a Monte
Carlo run which, in addition to a few initial equilibration
sweeps, consists of a time series of a little overM0 sweeps
over all walkers at times labeled byt5 . . . ,0,1,. . . ,M0 .
The sweep at timet consists of two steps designed to per-
form stochastically the matrix multiplications in Eq.~3!. Fol-
lowing Nightingale and Blo¨te,9 the process is defined by the
following steps, which transform the generation of walkers at
time t into the the generation at timet11. Variables pertain-
ing to times t and t11 will be denoted, respectively, by
unprimed and primed symbols.
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~1! Update the old walker (Sa ,wa) to yield a temporary
walker (Sa8 ,wa8 ) according to the transition probability
PS

a8Sa
, wherewa85DSa

wa /c8, for a51, . . . ,Nt . The next

step can change the number of walkers. To maintain their
number close to a target number, sayN0 , choose
c85l̂0(Nt /N0)

1/s, wherel̂0 is a running estimate of the ei-
genvaluel0 to be calculated, wheres>1 ~see below!.

~2! From the temporary walkers construct the new genera-
tion of walkers as follows.

~a! Split each walker (S8,w8) for whichw8.bu into two
walkers (S8, 12w8). The choicebu52 is a reasonable one.

~b! Join pairs (Ra8 ,wa8 ) and (Rb8 ,wb8 ) with wa8,bl and
wb8,bl to produce a single walker (Rg8 ,wa81wb8 ), where
Rg85Ra8 or Rg85Sb8 with relative probabilitieswa8 andwb8 .
We chosebl51/2.

~c! Any temporary walker left single in step~2b!, or for
which bl,wa8,bu , becomes a permanent member of the
new generation of walkers.

The algorithm described above was constructed so that for
any given realization ofuuI (t)&, the expectation value of
ct11uuI (t11)&, in accordance with Eq.~1!, satisfies

E~ct11uuI ~ t11!&)5TuuI ~ t !&, ~5!

whereE(•) denotes the conditional average over the transi-
tions defined by the above stochastic process. More generally
by p-fold iteration one finds5

ES F )
b51

p

ct1bG uuI ~ t1p!& D 5TpuuI ~ t !&. ~6!

The stationary state average ofuu(t)& is close to the domi-
nant eigenvector ofT, but, as mentioned above, it has a
systematic bias when the numberNt of walkers is finite. For
increasingp, components of nondominant eigenvectors can
be projected out and thus the bias is reduced, in principle.
Unfortunately, the variance of the corresponding estimators
increases as their bias decreases. The reader is referred to
Refs. 8, 5, 6, and 3 for a more detailed discussion of this
problem. Suffice it to mention here, first, thats is the ex-
pected number of time steps it takes to restore the number of
walkers to its target valueN0 and, second, that strong popu-
lation control (s51) tends to introduce a stronger bias than
weaker control (s.1).10

With Eq. ~6! one constructs an estimator5 of the dominant
eigenvectoruu(`)& of the matrixT:

uû~p!&5
1

M0
(
t51

M0 S )
b50

p21

ct2bD uuI ~ t !&. ~7!

More practically, suppose that^cTu is an approximate
leading eigenbra ofT, and thatO is an arbitrary operator.
The mixed expectation value ofO can be approximated as

^cTuOuu~`!&

^cTuu~`!&
'

^cTuOuû~p!&

^cTuû~p!&
. ~8!

An important special case is obtained by choosing in this
expressionO5T and^cTuR&51 for all R. The latter corre-

sponds to the infinite-temperature approximation for the trial
state, and in that case, Eq.~8! reduces to an estimator for the
dominant eigenvalue ofT:

l0'
( t51
M0 ~Pb50

p ct2b!W
~ t !

( t51
M0 ~Pb50

p21ct2b!W
~ t21!

, ~9!

where

Wt5^cTuuI ~ t !&5 (
a51

nt

wa
~ t ! . ~10!

For the above special choice of the trial bra^cTu, Eq. ~8!
becomes the expression for the surface expectation value of
O in the geometry shown on the right in Fig. 1. Although we
have used the transfer-matrix algorithm only for the compu-
tation of the dominant eigenvalue of the transfer matrix for
the applications discussed in this paper, it should be men-
tioned for completeness that one can also compute bulk ex-
pectation values, at least asymptotically, as follows.

One can represent the Kramers-Wannier transfer matrix
by the graph shown in Fig. 2~a!. This matrix transfers from
an old slice to a new one, with slices represented, respec-
tively, by small solid and large open circles. The process
adds only one new site: the open circle labeled 1. One site,
the small solid circle labeledL, is about to disappear into the
bulk. Coincidences of both types of circles represent Kro-
neckerd functions in the transfer matrix@see Eq.~13!#. The
solid lines stand for interactions added in one transfer opera-
tion. One can define a transfer matrix with extended slices
consisting ofm of the original, minimal slices. The dominant
eigenvector of this extended transfer matrix is simply the
original eigenvector multiplied by the Boltzmann weight as-
sociated with the portion of the lattice containing variables
that have not yet been summed over. Equation~8!, used with
any operator in which occur only variables of slicem, be-
comes a bulk expectation value form→`. The implementa-
tion of this concept is calledforward walkingin the context
of the quantum Monte Carlo method,11,12 and this only re-
quires extending the walkers so that their states correspond
to the extended slices introduced above. This increases the

FIG. 1. Illustration of left and right eigenvectors of the transfer
matrix.
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memory requirements and the cost of splitting a walker, but
otherwise the efficiency of the algorithm is not affected.

III. VARIANCE REDUCTION „IMPORTANCE SAMPLING …

AND TRIAL VECTORS

In principle, if ^cTu equals an exact eigenbra of the op-
eratorO in Eq. ~8!, the right-hand side of the expression is a
zero-variance estimator. In general, no exact eigenvectors are
known, but even an approximation may yield a substantial
reduction of statistical noise. A more efficient well-known13

way to exploit an approximate left eigenbra^cTu to reduce
variance works by application of the method described above
to a similarity transform of the original operatorT. This
transformation is defined by

T̃5ITI 21, ~11!

whereI is diagonal in the configuration presentation, and is
defined as

I5(
R

uR&^cTuR&^Ru. ~12!

Ideally, ^cTu would equal the exact dominant eigenbra of
T. In that case, the stochastic process defined as above, but
with T replaced byT̃, would become optimally efficient and
in fact would lack critical slowing down. For such an ideal
processesD̃, defined as in Eq.~4! as a function ofT̃, would
be a constant times the unit matrix. The walker weights
would no longer fluctuate so that birth and death processes
would no longer occur. The walkers would evolve into a
statistically independent ensemble. The estimator given in
Eq. ~8!, appropriately transformed, would have zero vari-
ance. The transformed brâc̃Tu5^cTuI21 would have all
elements equal to unity in the configuration representation.
In other words,T̃ would be represented by a stochastic ma-

trix, which would eliminate reweighting of walkers and the
concomitant split and join steps in the algorithm.

In the absence ofexacteigenbras, approximations may be
obtained by variational methods. The variational expression
for the leading eigenbrâcTu can conveniently be cast in the
form of an effective surface Hamiltonian with pair interac-
tions between nearest neighbors, next-nearest neighbors, and
so on. These interactions are treated as variational param-
eters and can be determined from analysis of the walker
population.14

Since generalization to higher dimensions and models
with different microscopic variables is straightforward, it
will suffice to consider the Kramers-Wannier transfer matrix
for the two-dimensional Ising model to explain the construc-
tion of trial vectors used in the applications discussed in Sec.
IV.

For a simple-quadratic lattice ofM sites, wrapped on a
cylinder with a circumference ofL spins and helical bound-
ary conditions, the transfer matrix for the Ising model is

TS,R5eK~s1r11s1r L! )
i51

L21

dsi ,r i11
, ~13!

with S5(s1 ,s2 , . . . ,sL) andR5(r 1 ,r 2 , . . . ,r L), where the
si561 andr i61. The conditional partition function of the
lattice ofM sites, subject to the restriction that the spins on
the left-hand edge be in stateR, as illustrated in Fig. 1, is
denotedZM(R). One has

ZM11~S!5(
R

TS,RZM~R!. ~14!

Obviously, forM→` the restricted sumsZM(R) are pro-
portional to the componentsuR

(`) of the dominant right ei-
genvector of the transfer matrix. The eigenvector is repre-
sented by the graph on the right in Fig. 1. Solid circles
indicate spins that have been summed over, while the fixed
surface spins are represented by the open circles; each bond
represents a factor exp(Ksisj). The left eigenvector, which is
the one that has to be approximated by an optimized trial
vector, is represented by the graph on the left. In passing, we
mention the following relation between left and right eigen-
vectors, which follows by inspection of the graphs:

^u~`!uS&5 )
i51

L21

eKsisi11^U~S!uu~`!&, ~15!

where U is the reflection operator, U(S)
5(sL ,sL21 , . . . ,s1).

A similarity transformation of the transfer matrixT can
be introduced by dividing up the interaction energies be-
tween the columns differently. That is,h is introduced by
writing

TS,R[eh~S,R!. ~16!

A transformationh→h̃ is defined by

h̃~S,R!5g~S!1h~S,R!2g~R!, ~17!

T̃S,R5ĉT~S!TS,R /ĉT~R!, ~18!

ĉT~S!5eg~S!. ~19!

FIG. 2. Illustration of the calculation of correlation functions
involving spins in the bulk below the surface layer. Site labels
before the addition of the new spin~open circle! appear to the right,
and the new labels to the left of a lattice point.
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For purposes of variance reduction, versatile trial vectors
that capture some of the essential physics without seriously
slowing down computations can be chosen of the form

ĉT~S!5expS (
i , j

*
Ki j sisj D , ~20!

a form reminiscent of the Jastrow functions used for quan-
tum many-body systems. The asterisk in the sum over pairs
indicates that theKi j are truncated for distances greater than
a couple of lattice spacings.

The couplingsKi j in Eq. ~20! are variational parameters.
They can be determined efficiently with the Monte Carlo
scheme introduced by Umrigar, Wilson, and Wilkins,14 i.e.,
by minimization of the variance ofD̃(S), where the variance
is approximated by a weighted sum over the states of the
walkers of one generation, during the initial stage of the
Monte Carlo run. This procedure is efficient and stable as
long as theKi j are truncated with care, in which case it is
perfectly feasible to use as many as 50–100 different param-
eters.

The magnitude of theKi j is expected to increase with the
strength of the correlations between surface spins. Since all
correlations between surface spins for the left eigenvector
have to be propagated through the lattice on the left, as il-
lustrated in Fig. 1, one expects that for high temperatures,
i.e., smallK,

Ki j}K
di j , ~21!

wheredi j is the length of the shortest path along edges con-
nected by bonds between sitesi and j . By inspection of the
graph in Fig. 1, we therefore expect the following partial
ordering in decreasing strength of interaction and increasing
di j :

d1L52,

d125d235•••5dL21,L5d1,L2153,

d135d245•••5dL22,L5d1,L2254,

d145d255•••5dL23,L5d1,L235d2,L55,

A. ~22!

It is important to note that ifKi j5Ki11,j11 the corre-
sponding factors cancel in the transformed transfer matrix
T̃ for 2< i<L22, sincesi5t i11 for nonvanishing transfer-
matrix elements. For reasons of efficiency it is therefore ad-
vantageous to have this equality satisfied as often as pos-
sible. Unfortunately, helical boundary conditions introduce a
step which destroys translation symmetry on the surface and
renders the partial ordering in Eq.~22! insufficient. For ex-
ample, sites 1 and 2 are more strongly correlated than sites
2 and 3, and correlations keep decreasing through pair
(L21,L). Consequently,K12.K23.•••.KL21,L .

In practice, thedifferencesbetween theKi j with di j53
are frequently greater than the higher-orderKi j . Then, it is
necessary to treatK12 andK23 as different parameters of the
trial vector. An efficient compromise is to treatKi j in which
site 1 orL participate as different. The same applies to all
Ki j for which the shortest path betweeni and j straddles the
step on the surface. To summarize, we distinguish different

types of pairs of sites (i , j ) both on the basis of the distance
di j and to some extent on the location of the pair, enforcing
as much translation invariance as possible.

Clearly, the above depends only on lattice geometry and
not on the Ising nature of the variables. In general, the only
requirement is to generate lists of lattice sites separated by
various distancesdi j . Once the incidence matrix has been
defined for the pertinent lattice, it is possible to proceed in a
fashion independent of these geometrical details.

To illustrate the efficiency and flexibility of this technique
for constructing trial vectors, we use theXY-Ising model. It
consists of coupled Ising and planar rotator degrees of free-
dom on a simple quadratic lattice. On each lattice site there
are two variablessi561 andni , a two-component unit vec-
tor. The Hamiltonian divided by2kBT is given by

H5(
~ i , j !

~Ani•nj1Bni•nj sisj1Csisj !. ~23!

We consider the special caseA5B and only from the
point of view of the performance of transfer-matrix Monte
Carlo algorithm. For a discussion of the physics of this
model the reader is referred to Ref. 4. The trial vectors dis-
cussed above for the Ising model have an immediate gener-
alization

cT5expS (
i , j

*
~Ai , jni•nj1Bi , jni•nj sisj1Ci , j sisj !D . ~24!

The truncation scheme introduced above for the Ising
model is purely geometrical, and therefore carries over with-
out changes to theXY-Ising model. It should, however, be
noted that there are models and choices of transfer matrices
to which the above scheme is not applicable. Reference 15
contains a discussion and an example of such a case.

Table I shows the estimates of the dominant eigenvalue of
XY-Ising model for a trial vector truncated at different val-
ues ofdi j . As can be seen by comparing the first and last
lines of the table, the variance in the estimate of the eigen-
value is reduced by a factor 300 for a fixed number of Monte

TABLE I. Estimated eigenvalue and standard deviations for the
XY-Ising model. These data apply to the point
(A51.005,C520.2285)@cf. Eq. ~23!# on the line where Ising and
XY transitions coincide. Results are shown for various values of
dm , the path length of the cutoff in Eq.~24!. The results are for a
strip of width L520 and were obtained with a target number of
walkersN0510 000 andM051250L generations of which an ini-
tial 10% were discarded. The last column shows the computer time
in arbitrary units needed per time step of one walker.

l0 s dm ms

34.17406 0.0071 0 15
34.20875 0.0052 2 15
34.21658 0.0015 3 17
34.21418 0.00083 4 19
34.21384 0.00052 5 21
34.21366 0.00049 6 23
34.21379 0.00041 7 26
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Carlo steps. Taking into account that the computer time per
step doubles, this constitutes a speedup by a factor of 150.

IV. APPLICATIONS

As an illustration of the transfer-matrix technique we ap-
ply the method to three-dimensional O(n) models forn51,
2, and 3, i.e., the Ising, planar, and Heisenberg models. In
particular the significance of the results of the planar and
Heisenberg models goes beyond mere illustrations. These re-
sults are sufficiently accurate to be of some relevance for the
location of the critical points.

The O(n) spins are located on the simple cubic lattice.
The transfer matrix for anL3L3` system, with helical
boundary conditions and layers ofN5L2 sites each, is a
straightforward generalization of Eq.~13! and reads

TS,R5 )
i51

N21

dsi ,r i11
exp@Ks1•~r11rL1rN!#, ~25!

where the si and r i are n-component unit vectors,
S5(s1 ,s2 , . . . ,sN) andR5(r1 ,r2 , . . . ,rN).

As discussed above, the transfer-matrix Monte Carlo al-
gorithm is designed to compute the dominant eigenvalue
l0 of the transfer matrix. The reduced free energy per site is
f52 lnl0. From the free energy one can calculate the sur-
face tension as the difference in free energy of two systems,
one with ferromagnetic and the other with antiferromagnetic
interactions, if the dimensions are chosen so as to force an
interface in the antiferromagnetic system. ForL3L3` sys-
tems with helical boundary conditions, to which the present
calculations are restricted, this means thatL has to be even.

Renormalization group theory predicts that the values of
D, the reduced interface free energy per lattice site, as a
function of couplingK and system sizesL collapse onto a
single curve, at least close to the critical pointKc and for
sufficiently large systems. In terms of the nonlinear thermal
scaling field

u~K !5K2Kc1a~K2Kc!
21•••, ~26!

this curveS(x) is determined by

D~u,L !5L12dS~LyTu!, ~27!

for a d-dimensional system with a thermal scaling exponent
yT . The functionS can be expanded in a series

S~x!5(
l50

`

S lx
l , ~28!

and for O(n) models behaves for largex as

S~x!5ASx
@d212p~n!#/yT, ~29!

wherep(1)50 andp(2)5p(3)51.
Equations~27! to ~29! are useful for the interpretation of

the O(n) transfer-matrix Monte Carlo results for the inter-
face free energy. These results were obtained using finite
sizes up toL512, and populations typically consisting of
2500 or 5000 walkers. Typical run lengths are 5000 steps,
where each step means the addition of a surface layer of
L3L spins. Variance-reducing trial vectors@see Eq.~20!#
were constructed for path lengths up to 5. As before, the
variance of the Monte Carlo process was observed to de-
crease considerably with increasing path length. For each
system size, interface free energies were obtained for ap-
proximately ten different couplings in a range of about 10%
around the critical points of the Ising and planar models, and
about 1% for the case of the Heisenberg model.

On the basis of these results for the Ising (n51) case, the
functionS is shown in Fig. 3. This data collapse is achieved
by means of a least-squares fit with parametersKc ,yT , and
a and 13 Taylor coefficientsS l , a generalization of a tech-
nique used in the past.5

To check if the system sizes were in the asymptotic finite-
size scaling regime, fits were done both with and without the
6363` data. The results of these fits are displayed in Table

FIG. 3. Finite-size scaling plot for the interface free energy of
the three-dimensional Ising model.

FIG. 4. Finite-size scaling plot for the interface free energy of
the three-dimensional planar model.
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II in the Appendix. To summarize, the results are
Kc50.221 6260.000 02 andyT51.58460.004 using data
with L56212, and Kc50.221 6760.000 04 and
yT51.58460.014 if the L56 are omitted. These results
agree well with accurate determinations using other methods
~see, e.g., Refs. 16–18 and references therein! which appear
to cluster aboutKc50.221 655 ~with a margin of about
1026) and yT51.586 ~with a precision of a few times
1023).

It is remarkable that the corrections to scaling appear to
be very small, as appears from the data shown in Fig. 3. In
standard Monte Carlo analyses19 of L3L3L systems these
corrections are quite prominent, and form an obstacle to the
accurate determination of critical parameters.

The scaling plot shown in Fig. 3 can be used to determine
the amplitudeAS graphically: On a double-logarithmic plot
the asymptotic slope of the curve follows from the known
value of the thermal exponentyT ; cf. Eq. ~29!. The problem
of calculating this amplitude has attracted considerable atten-
tion lately and the reader is referred to a paper by Shaw and
Fisher20 for details and further references to the literature.
For the largest values of the scaled temperature variablex,
we findAS8 5ASKc

2/yT51.8, while the trend withx is an in-
creasing one. This value is somewhat larger than Mon’s21

estimate AS51.5860.05, but still in the range
1.4<AS<2.0 obtained by Shaw and Fisher. As a final com-
ment we note that Mon’s method requires systems of linear
dimensions in excess of 48 to reach the asymptotic infinite-
size regime, with an increasing trend of the estimates of
AS with increasingx5LyTu.

A similar analysis was performed for the planar model
(n52). In comparison with the Ising case, the scaling func-
tion S behaves more smoothly as a function ofx, so that a
satisfactory fit could be obtained with fewer Taylor coeffi-
cients. The fitted parameters, which areKc ,yT , anda and
eight Taylor coefficientsSn , are shown in Table III of the
Appendix. Our results for the critical point are

Kc50.454 1060.000 03 for system sizesL56–12, and
Kc50.454 1360.000 05 for L58–12. These values are
close to results from series expansions22 Kc50.453 86 and
more recently23 Kc50.454 1460.000 007; and from
cluster Monte Carlo calculations24 Kc50.454 08
60.000 08.Also our results for the temperature exponent,
namely,yT51.49160.003 forL>6 andyT51.48760.006
for L>8, are in a good agreement with existing results;
we quote the coupling-constant-expansion value27

yT51.49560.005 and the Monte Carlo result24 YT

51.492 660.0037.
Fitted with these parameters the data collapse very well

onto the functionS, as shown in Fig. 4. Again, this scaling
plot can be used to determine the amplitudeAS graphically:
In this case the asymptotic power-law exponent is 1/yT . A fit
of the data at the highest available values ofx5LyTu leads to
AS55.9, while the trend is still increasing withx.

The calculations for the Heisenberg casen53 were clus-
tered in a narrow interval around the critical temperature, and
were not aimed at an accurate determinationyT . Thus, the
transfer-matrix Monte Carlo data could be analyzed by
means of a least-squares fit with less parameters:Kc , and
yT and three Taylor coefficientsSn . The parameters are
shown in Table IV in the Appendix. The result foryT is well
within the statistical accuracy, equal to the known coupling-
constant-expansion value25 yT51.418. Including the latter
value as a known variable in the fits leaves our results for the
critical point practically unchanged. These are
Kc50.692 9160.000 04 for system sizesL56–12, and
Kc50.692 9460.000 08 for L58–12. These values are
close to results from series expansions,22 Kc50.692 94, and
more recently,23 Kc50.692960.001; and from Monte Carlo
calculations,27 Kc50.692 8860.000 04; see also Ref. 26.

The data collapse for then53 case onto the functionS as
determined by the least-squares fit is shown in Fig. 5.

TABLE II. Parameters, as defined in the text, and their standard
errors for the scaling function of the interfacial free energy of the
three-dimensional Ising model.

n>6 n>8

Kc 0.221626 0.00002 0.221656 0.00003
yT 1.5836 0.004 1.5946 0.009
S0 0.61716 0.000 7 0.61946 0.0025
S1 2.61116 0.0176 2.56506 0.0505
S2 6.04756 0.1001 5.80476 0.2565
S3 9.23626 0.3052 8.40736 0.6724
S4 6.00876 0.6350 4.86016 1.0249
S5 -13.61656 0.9830 -10.83316 1.7414
S6 -33.25786 4.0574 -24.71086 5.6481
S7 4.47906 3.3849 1.42726 4.2080
S8 70.69186 11.4018 46.66416 14.0107
S9 28.03146 7.9088 21.46366 8.5327
S10 -69.15486 14.3387 -40.60666 15.7549
S11 -43.47546 10.0932 -27.70386 10.3867
S12 25.21376 6.4840 13.22456 6.4356
S13 18.86586 4.8588 10.50106 4.6564
a -2.656 0.16 -2.656 0.37

FIG. 5. Finite-size scaling plot for the interface free energy of
the three-dimensional Heisenberg model.
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Finally we remark that, although in each of the cases
n51, 2, and 3 the finite-size effect appears to be small for
L>6, it is large forL54. For this reason theL54 data were
not included in the fits.
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APPENDIX: SCALING PLOT PARAMETER ESTIMATES

Tables II – IV contain estimates of the parameters used in
the finite-size scaling plots for the interface free energy of
O(n) models, as discussed in Sec. IV.
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TABLE III. Parameters, as defined in the text, and their standard
errors for the scaling function of the interfacial free energy of the
three-dimensional planar model.

n>6 n>8

Kc 0.454106 0.00003 0.454136 0.00005
yT 1.4916 0.003 1.4876 0.006
S0 1.24486 0.0010 1.24696 0.0033
S1 2.55926 0.0144 2.59296 0.0345
S2 2.42856 0.0439 2.47386 0.0796
S3 0.98816 0.0623 0.95446 0.1031
S4 -0.50966 0.0664 -0.42926 0.1050
S5 -0.77706 0.1579 -0.51716 0.2741
S6 0.17376 0.0754 0.07936 0.1204
S7 0.43466 0.1503 0.18476 0.2567
a -0.78056 0.1159 -0.92456 0.2259

TABLE IV. Parameters, as defined in the text, and their stan-
dard errors for the scaling function of the interfacial free energy of
the three-dimensional Heisenberg model. The Monte Carlo data
were taken relatively close toKc , so that the temperature exponent
yT is not accurately determined. The accuracy ofKc is unaffected.
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Kc 0.692916 0.00004 0.692946 0.00008
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S2 0.79916 0.3005 0.50976 0.4651
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