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The principle and the efficiency of the Monte Carlo transfer-matrix algorithm are discussed. Enhancements
of this algorithm are illustrated by applications to several phase transitions in lattice spin models. We demon-
strate how the statistical noise can be reduced considerably by a similarity transformation of the transfer matrix
using a variational estimate of its leading eigenvector, in analogy with a common practice in various quantum
Monte Carlo techniques. Here we take the two-dimensional cobp¥dsing model as an example. Further-
more, we calculate interface free energies of finite three-dimensiomgl i@¢dels, for the three cases-1, 2,
and 3. Application of finite-size scaling to the numerical results yields estimates of the critical points of these
three models. The statistical precision of the estimates is satisfactory for the modest amount of computer time
spent.[S0163-18206)01126-3

[. INTRODUCTION Similar errors are also found in the path-integral Monte
Carlo method and, in general, in all approaches based on the
Many important problems in computational physics andTrotter formula® An alternative, related approach, viz.,
chemistry can be reduced to the computation of dominan&reen function Monte Carlo, used to compute the dominant
eigenvalues of matrices of high or infinite order. Among theeigenvalue of {—E)~*, whereE is close to the ground-
numerous examples of such matrices are quanturstate energy, does not suffer from a time-step error, and,
mechanical Hamiltonians and transfer matrices. The lattefom that point of view, the Green function Monte Carlo
were introduced in statistical mechanics by Kramers andlgorithm is more elegant than the diffusion Monte Carlo
Wannier in 1941 to study the two-dimensional Ising mddel, &/gorithm. However, the Green function Monte Carlo algo-
and ever since, important work on lattice models in classicajithm is considerably more complicated, and enhancement of
statistical mechanic has been done with transfer matrice%t‘at algorithm by the variance reduction techniques dis-

producing both exact and numerical results. Cussed below has its "m'ta“oT‘S- . .
. . . From an orthodox complexity theory point of vieexact
The analogy of the time-evolution operator in quantum . ; : . X
. numerical transfer-matrix computations for lattices in more

. ; Cthan one dimension are intractable, since the order of transfer
allows the two fields t_o share numerous techmques. Spec'fhwatrices grows exponentially with the number of lattice sites
cally, a transfer matrixt’ of a statistical-mechanical lattice j, 5 transfer slice. Standard Monte Carlo methods in statisti-
system ind dimensions often can be interpreted as the evora| mechanics, on the other hand, statistically sample the
lution operator in discrete, imaginary tinteof a quantum-  Bojtzmann distribution, typically employing some variant of
mechanical analog, as is well known. That is,the Metropolis algorithm. One can argue that Monte Carlo
T~exp(-tH), whereH is the Hamiltonian of a system in methods are of polynomial complexity in system size, at
d—1 dimensions, the quantum-mechanical analog of théeast for certain important physical observables. This raises
statistical-mechanical system. From this point of view, thethe question of the ultimate utility of the transfer matrix for
computation of the partition function and of the ground-statecomputational purposes.
energy are essentially the same problems: finding the largest In many cases, one is interested in the behavior of sys-
eigenvalue oflf and of exp(-tH), respectively. tems in the thermodynamic limit. For critical systems in par-
The transfer-matrix Monte Carlo method used in this paticular, one has to rely on finite-size scaling and extrapola-
per employs an algorithm as simple as the diffusion Montgion methods to extract the relevant information from the
Carlo algorithm, which was developed to compute the domicomputations. The transfer-matrix method has advantages in
nant eigenvalue of the evolution operator exf{) . In con-  both respects. In the first place, one can compute the spec-
trast to the diffusion Monte Carlo algorithm, the transfer-trum of the transfer-matrix method virtually to machine pre-
matrix Monte Carlo method provides exact eigenvaluescision, which permits extrapolation without serious loss of
subject only to statistical noise and as qualified below in Secumerical accuracy. Secondly, a large body of numerical
II. More specifically, unlike the transfer-matrix Monte Carlo evidence suggests that the transfer-matrix spectrum has
method, the diffusion Monte Carlo algorithm suffers from aweaker corrections to scaling than quantities commonly
systematic error, the time-step error, because of the necessitpmputed by the standard Monte Carlo method. Clearly, also
to employ an approximate, short-time evolution operatorthe transfer-matrix Monte Carlo method takes advantage of

0163-1829/96/5¢)/1001(8)/$10.00 54 1001 © 1996 The American Physical Society



1002 M. P. NIGHTINGALE AND H. W. J. BLOTE 54

the weakness of the corrections to scaling. UnfortunatelyThat is, choose an arbitrary initial stdue(o)) and compute
statistical noise is introduced, but this can be reduced suliteratively:
stantially by the use of optimized trial eigenvectors, by virtue
of which the Monte Carlo process is in effect only used to
computecorrectionsto an already sophisticated approxima-
tion.
If one could neglect the correlations introduced by theWherecy.; is a constant chosen so thaf'* ") is normal-
reweighting step of the transfer-matrix Monte Carlo algo-ized or in some other convenient standard form. fero,
rithm [see the split and join steg8a) and (2b) in the algo-  the constants, approximate the dominant eigenvalg of
rithm given in Sec. [) and if one could ignore the resulting T and the vector$u®) converge to the corresponding ei-
loss of efficiency of the transfer-matrix Monte Carlo algo- genvector.
rithm, this method would be a solution to the exponential To implement Eq(1) by a Monte Carlo methodu®) is
growth problem mentioned aboven addition, the transfer- represented by a sequence\yfwalkers. Each of these walk-
matrix Monte Carlo method would be completely free of ers is a pair R, ,w,), a=1,... N;. The variableR, of a
critical slowing down, since the correlatidime of the algo-  walker represents a possible configuration of the system de-
rithm is equal to the correlatiolength of the slices used in scribed byT, andw, represents its statistical weight. The
the definition of the transfer matrix. Again, the use of opti- latter quantity is subject to the conditiow,<w,<w,,
mized trial eigenvectors can serve to reduce the detrimenta¥here w, and w, are bounds introduced so as to keep all
effect of the multiplicative reweighting. weightsw,, of the same order of magnitude, which improves
Another feature of the Monte Carlo transfer matrix, whichthe efficiency of the algorithm. This sequence of walkers
can contribute to a reduction of the correlation time of therepresents &sparsg vector with components
stochastic process, is that moves are effectively made at sur-
face sites. This makes it much easier to overcome the barri-

1
(t+1)y — _— - (t)
W)= T, &

) —
ers some systems present to standard Monte Carlo algo- Ur T~ WoOR R, @
rithms. An example of such a system is tK&-Ising model
discussed in Ref. 4. where é is the usual Kronecke$ function. The underbar is

The layout of this paper is as follows. In Sec. Il we review used to indicate that thgg) represent a stochastic vector
the basic Monte Carlo algorithm to determine transfer-matri{u(®). A stochastic process will be defined presently with
eigenvalues by means of a statistical implementation of théransition probabilities such that, ,|u®*Y) has a condi-
power method. Apart from relatively minor details, the algo-tional expectation value equal t‘b|u(t)> for any given se-
rithm giVen in Sec. Il is the same as the one discussed iﬁuence of walkers representihgt)>_ In practice, one has to
Refs. 5-7. Section Il describes the similarity transformationaverage over the stationary state of a stochastic process in
of the transfer matrix, which leads to a pronounced decreasghich the constants, are determined using posteriorista-
of the statistical errors of the Monte Carlo process. SectioRstics, so that,., ; and|u™*1) are correlated. As a conse-

[l in particular describes in detail the construction of a Va”a'quence, there is no gua_rantee that the stationary-state expec-
tional approximation of the eigenstate associated with thesiion value ofu®) is preciselyan eigenstate oF, at least
largest eigenvalue. This approximate eigenstate yields thga for finite N,. The same mathematical problem occurs if
similarity transformation used to reduce the statistical errorgq takes the time average of Efj) in the presence of noise

of the algorithm. Details of the speedup of the algorithm are,qrejated to the,. The resulting bids® has also been dis-
presented at the end of Sec. Ill, a coupked-Ising modelin  ¢;ssed in the context of the diffusion Monte Carlo method.

two dimensions. Finally, Sec. IV contains applications of the 14 gefine the stochastic process, EY. is rewritten as
transfer-matrix Monte Carlo method to three-dimensional '

O(n) models forn=1, 2, and 3. Preliminary discussions of 1
the the work discussed in Secs. Il and IV were published ugtV=——2 PrePsud’, (©)
elsewheré:* Ct+1’S
where
IIl. MONTE CARLO IMPLEMENTATION
OF THE POWER METHOD DS: ; TRS and PRS: TRS/DS' (4)

Consider an operatdr of which we want to compute the
dominant eigenvalue. LeT be represented by matrix ele-  Equation(3) describes a process represented by a Monte
ments(R|T|S)=Trs, where|R) and|S) are basis states of Carlo run which, in addition to a few initial equilibration
the physical system under consideration. These states will gweeps, consists of a time series of a little oy sweeps
treated here as discrete. For Monte Carlo calculations, thever all walkers at times labeled ky= ...,0,1,... ,My.
distinction between continuous and discrete states is a mindrhe sweep at timé consists of two steps designed to per-
technicality; in the discussion below, generalization to theform stochastically the matrix multiplications in E@). Fol-
continuous case follows immediately by replacing the approtowing Nightingale and Elte; the process is defined by the
priate sums by integrals and replacing Kronecker by Diradollowing steps, which transform the generation of walkers at
S functions. timet into the the generation at tinte- 1. Variables pertain-

Perhaps the simplest way to calculate the dominant eigering to timest andt+1 will be denoted, respectively, by
value of a matrix or integral kernel is the power method.unprimed and primed symbols.
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(1) Update the old walkerg, ,w,) to yield a temporary o
walker (S),,w/) according to the transition probability
Ps's, WhereW;=Dsawalc’, for a=1,... N;. The next o 2

step can change the number of walkers. To maintain their
number close to a target number, sdy,, choose
¢’ =No(N;/Ng)*s, where), is a running estimate of the ei-
genvalue\, to be calculated, where=1 (see below. 0 1,
(2) From the temporary walkers construct the new genera-
tion of walkers as follows.
(a) Split each walker §',w’) for whichw’>b,, into two 0 I+1
walkers §',5w’). The choiceb,=2 is a reasonable one.
(b) Join pairs R,,,w,) and Rz,wg) with w,<b, and 0 0
wp<b; to produce a single walkerR(,,w,+w;), where
R,=R) or R,=S, with relative probabilitiesw, andw,.
V\;/e choseb,=71/2.ﬁ g ( a ) ( b )
(c) Any temporary walker left single in ste{2b), or for
which b;<w! <b,, becomes a permanent member of the FIG. 1. lllustration of left and right eigenvectors of the transfer
new generation of walkers. matrix.

The algorithm described above was constructed so that for o o )
any given realization ofu®), the expectation value of sponds to the infinite-temperature approximation for the trial
Ct+1|u(t+1)> in accordance with Eqd), satisfies state, and in that case, E®) reduces to an estimator for the

dominant eigenvalue of:

E(Cesa[u™ ) =T|u"Y), (5)
Erﬂzol(HLoCt—b)W(t)
whereE(-) denotes the conditional average over the transi- Ao~ sMo 1P~ 1c W1’ 9
tions defined by the above stochastic process. More generally t=11""b=0%t=b
by p-fold iteration one find where
p Nt
E( bﬂl Citb Iu(”p)>) =TPlu®). (6) W= (ru®y= > wb. (10)
i a=1
The stationary state average|af?) is close to the domi- For the above special choice of the trial Kiz|, Eq.(8)

nant eigenvector off, but, as mentioned above, it has a becomes the expression for the surface expectation value of
systematic bias when the numbéy of walkers is finite. For O in the geometry shown on the right in Fig. 1. Although we
increasingp, components of nondominant eigenvectors carhave used the transfer-matrix algorithm only for the compu-
be projected out and thus the bias is reduced, in principletation of the dominant eigenvalue of the transfer matrix for
Unfortunately, the variance of the corresponding estimatorshe applications discussed in this paper, it should be men-
increases as their bias decreases. The reader is referredtioned for completeness that one can also compute bulk ex-
Refs. 8, 5, 6, and 3 for a more detailed discussion of thipectation values, at least asymptotically, as follows.
problem. Suffice it to mention here, first, thaitis the ex- One can represent the Kramers-Wannier transfer matrix
pected number of time steps it takes to restore the number diy the graph shown in Fig.(8). This matrix transfers from
walkers to its target valubl, and, second, that strong popu- an old slice to a new one, with slices represented, respec-
lation control §=1) tends to introduce a stronger bias thantively, by small solid and large open circles. The process

weaker control $>1).1° adds only one new site: the open circle labeled 1. One site,
With Eq. (6) one constructs an estimataf the dominant the small solid circle labeled, is about to disappear into the
eigenvectodu(“’)> of the matrixT: bulk. Coincidences of both types of circles represent Kro-
neckeré functions in the transfer matripsee Eq(13)]. The
1 Mo /p-1 solid lines stand for interactions added in one transfer opera-
|GPy = Mg (bHo Ctb) lu®). (7)  tion. One can define a transfer matrix with extended slices

consisting ofm of the original, minimal slices. The dominant
eigenvector of this extended transfer matrix is simply the
original eigenvector multiplied by the Boltzmann weight as-
sociated with the portion of the lattice containing variables
that have not yet been summed over. Equat®nused with
- N any operator in which occur only variables of slicge be-
(¢710Ju™) - (yr]OGP) (8) comes a bulk expectation value for—co. The implementa-
(gr|u®™) (0P tion of this concept is calletbrward walkingin the context
of the quantum Monte Carlo methdt!2 and this only re-
An important special case is obtained by choosing in thigjuires extending the walkers so that their states correspond
expressiorO=T and(y¢|R)=1 for all R. The latter corre- to the extended slices introduced above. This increases the

More practically, suppose thdtj| is an approximate
leading eigenbra of, and thatO is an arbitrary operator.
The mixed expectation value @ can be approximated as
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trix, which would eliminate reweighting of walkers and the

® ® ©® 0 concomitant split and join steps in the algorithm.
In the absence afxacteigenbras, approximations may be
® 2 ©2 0 © obtained by variational methods. The variational expression

for the leading eigenbré&y;| can conveniently be cast in the
form of an effective surface Hamiltonian with pair interac-

2 1 201 06 o o tions between nearest neighbors, next-nearest neighbors, and
so on. These interactions are treated as variational param-
1 L 1 ® © eemL eters and can be determined from analysis of the walker
population®*
I ® L ® ©® OmLe Since generalization to higher dimensions and models
with different microscopic variables is straightforward, it
-10 ®© © 0 © will suffice to consider the Kramers-Wannier transfer matrix

for the two-dimensional Ising model to explain the construc-
tion of trial vectors used in the applications discussed in Sec.
(a) (b) V.
For a simple-quadratic lattice d¥l sites, wrapped on a
cylinder with a circumference df spins and helical bound-

) ) . ) ary conditions, the transfer matrix for the Ising model is
FIG. 2. lllustration of the calculation of correlation functions

involving spins in the bulk below the surface layer. Site labels L-1
before the addition of the new spiapen circle appear to the right, Tgr=elGritsiro]] s, , | (13
and the new labels to the left of a lattice point. ' =1
with S=(s¢,S5,...,5) andR=(rq,r», ... ), where the
memory requirements and the cost of splitting a walker, bug, = +1 andr;+1. The conditional partition function of the
otherwise the efficiency of the algorithm is not affected.  |attice of M sites, subject to the restriction that the spins on
the left-hand edge be in stal® as illustrated in Fig. 1, is
lll. VARIANCE REDUCTION (IMPORTANCE SAMPLING )  denotedZy(R). One has
AND TRIAL VECTORS

In principle, if (7| equals an exact eigenbra of the op- ZMH(S):ER: TsrZu(R). (14
eratorO in Eq. (8), the right-hand side of the expression is a
zero-variance estimator. In general, no exact eigenvectors are QObviously, forM — o the restricted sum&y,(R) are pro-
known, but even an approximation may yield a substantiahortional to the components$;” of the dominant right ei-
reduction of statistical noise. A more efficient We”-knd\ﬁ/n genvector of the transfer matrix. The eigenvector is repre-
way to exploit an approximate left eigenbfé| to reduce sented by the graph on the right in Fig. 1. Solid circles
variance works by application of the method described abovgndicate spins that have been summed over, while the fixed
to a similarity transform of the original operatdr. This  surface spins are represented by the open circles; each bond

transformation is defined by represents a factor exgs;). The left eigenvector, which is
_ the one that has to be approximated by an optimized trial
T=ITI 1, (11 vector, is represented by the graph on the left. In passing, we

. ) _ _ _ _ mention the following relation between left and right eigen-
wherel is diagonal in the configuration presentation, and isyactors. which follows by inspection of the graphs:
defined as ’

L-1
u(°°)|3 =H eKsisit1 U(S)|u(°°) , (15)
1= IRNUAIRXRI 12 WEIS =1 )

where U is the reflection operator, U(S)

\deally, (7| would equal the exact dominant eigenbra of =(;LS|sr;TI;nt .t’rsz‘alr)llsformation of the transfer matrik can

T. In that case, the stochastic process defined as above, béjt . Y . . ; ;

. = . Iy e introduced by dividing up the interaction energies be-
with T replaced byT, would become optimally efficient and tween the columns differently. That i, is introduced by
in fact would lack critical slowing down. For such an ideal writing ' '
processed, defined as in Eq4) as a function of T, would
be a constant times the unit matrix. The walker weights Tsr=e"GR), (16)
would no longer fluctuate so that birth and death processes i ~
would no longer occur. The walkers would evolve into a’* fransformationh—h is defined by

statistically independent ensemble. The estimator given in Y _ _
Eq. (8), appropriately transformed, would have zero vari- N(SRI=9(S)+N(SRI~g(R), (7
ance. The transformed bray:|= (|l "1 would have all Tsr= (S Tsr/Ur(R), (18)

elements equal to unity in the configuration representation. A
In other words, T would be represented by a stochastic ma- Y1(S)=e99, (19
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For purposes of variance reduction, versatile trial vectors TABLE I. Estimated eigenvalue and standard deviations for the
that capture some of the essential physics without seriousBtY-Ising model. These data apply to the point

slowing down computations can be chosen of the form  (A=1.005C= —0.2285)[cf. Eq.(23)] on the line where Ising and
XY transitions coincide. Results are shown for various values of
R * dn, the path length of the cutoff in Eq24). The results are for a
Y1(S)=ex 2 Kijsisj |, (20 strip of width L=20 and were obtained with a target number of
i walkersNy= 10 000 andV,=1250 generations of which an ini-
.. . 1 0, H .
a form reminiscent of the Jastrow functions used for quanrtIaI 10% were .d'scarded' The !aSt column shows the computer time
S . in arbitrary units needed per time step of one walker.
tum many-body systems. The asterisk in the sum over pairs

indicates that thé&;; are truncated for distances greater than

. . g o dn uS
a couple of lattice spacings.

The couplingsK;; in Eq. (20) are variational parameters. 34.17406 0.0071 0 15
They can be determined efficiently with the Monte Carlo34.20875 0.0052 2 15
scheme introduced by Umrigar, Wilson, and Wilkid,e.,  34.21658 0.0015 3 17
by minimization of the variance d(S), where the variance 34.21418 0.00083 4 19
is approximated by a weighted sum over the states of thg4.21384 0.00052 5 21
walkers of one generation, during the initial stage of the34.21366 0.00049 6 23
Monte Carlo run. This procedure is efficient and stable ag4.21379 0.00041 7 26

long as theK;; are truncated with care, in which case it is

perfectly feasible to use as many as 50—100 different param-

eters. types of pairs of sitesi(j) both on the basis of the distance
The magnitude of th&;; is expected to increase with the d;; and to some extent on the location of the pair, enforcing

strength of the correlations between surface spins. Since alls much translation invariance as possible.

correlations between surface spins for the left eigenvector Clearly, the above depends only on lattice geometry and

have to be propagated through the lattice on the left, as ilnot on the Ising nature of the variables. In general, the only

lustrated in Fig. 1, one expects that for high temperaturesiequirement is to generate lists of lattice sites separated by

i.e., smallK, various distances!;; . Once the incidence matrix has been

o defined for the pertinent lattice, it is possible to proceed in a
Kij o K, (21)  fashion independent of these geometrical details.

_ Toillustrate the efficiency and flexibility of this technique

for constructing trial vectors, we use ther-Ising model. It

consists of coupled Ising and planar rotator degrees of free-

gom on a simple quadratic lattice. On each lattice site there

re two variables;= + 1 andn;, a two-component unit vec-

whered;; is the length of the shortest path along edges con
nected by bonds between siteandj. By inspection of the

graph in Fig. 1, we therefore expect the following partial
ordering in decreasing strength of interaction and increasin

dij tor. The Hamiltonian divided by-kgT is given by
d, =2,
dyp=dyg=---=d__1,=d;, =3, H=“Ej) (An;-n;+Bn;-n;s;s;+Css)). (23)
dig=dy=---=d 5 =dj =4, ’
dyy=dys=---=d__3,=d;; 3=d, =5, We consider the special cage=B and only from the

point of view of the performance of transfer-matrix Monte
Carlo algorithm. For a discussion of the physics of this
model the reader is referred to Ref. 4. The trial vectors dis-
)?ussed above for the Ising model have an immediate gener-
alization

(22

It is important to note that ifK;;=K;, 1., the corre-
sponding factors cancel in the transformed transfer matri
T for 2<i=<L -2, sinces;=t;, , for nonvanishing transfer-
matrix elements. For reasons of efficiency it is therefore ad- *
vantageous to have this equality satisfied as often as PO =ex E (A in-n+B; ni-nss +C; ss) | (24)
sible. Unfortunately, helical boundary conditions introduce a' A R R R
step which destroys translation symmetry on the surface and
renders the partial ordering in E(R2) insufficient. For ex- The truncation scheme introduced above for the Ising
ample, sites 1 and 2 are more strongly correlated than sitasodel is purely geometrical, and therefore carries over with-
2 and 3, and correlations keep decreasing through paiut changes to thXY-Ising model. It should, however, be
(L=1L). ConsequentlyK,>Kyz>--->K, 4, . noted that there are models and choices of transfer matrices

In practice, thedifferencesbetween the;; with d;j=3  to which the above scheme is not applicable. Reference 15
are frequently greater than the higher-orégy. Then, itis  contains a discussion and an example of such a case.
necessary to tredt,, andK,; as different parameters of the  Table | shows the estimates of the dominant eigenvalue of
trial vector. An efficient compromise is to trel; in which  XY-Ising model for a trial vector truncated at different val-
site 1 orL participate as different. The same applies to allues ofd;; . As can be seen by comparing the first and last
Kj; for which the shortest path betweeandj straddles the lines of the table, the variance in the estimate of the eigen-
step on the surface. To summarize, we distinguish differentalue is reduced by a factor 300 for a fixed number of Monte
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FIG. 3. Finite-size scaling plot for the interface free energy of

. . . FIG. 4. Finite-size scaling plot for the interface free energy of
the three-dimensional Ising model. gp 9y

the three-dimensional planar model.

Carlo steps. Taking into account that the computer time per
step doubles, this constitutes a speedup by a factor of 150.
this curveX (x) is determined by

u(K)=K—K.+a(K—Kg)2%+---, (26)
IV. APPLICATIONS A(u,L)=L1_dE(LVTu), @7

for a d-dimensional system with a thermal scaling exponent
The functionX can be expanded in a series

As an illustration of the transfer-matrix technique we ap-
ply the method to three-dimensional (models forn=1,

2, and 3, i.e., the Ising, planar, and Heisenberg models. I¥T"
particular the significance of the results of the planar and w
Heisenberg models goes beyond mere illustrations. These re- _ [

sults are sufficiently accurate to be of some relevance for the =) Z’o ol @8
location of the critical points.

The O(n) spins are located on the simple cubic lattice.
The transfer matrix for an. XL X system, with helical _ d—1—p(m1/
boundary conditions and layers df=L? sites each, is a 2(0=AsX P, (29
straightforward generalization of E¢L3) and reads wherep(1)=0 andp(2)=p(3)=1.

Equations(27) to (29) are useful for the interpretation of
the O() transfer-matrix Monte Carlo results for the inter-
Tsr= |:H1 5%'fi+1eXF[Ksl'(rl+rL+rN)]' 29 face free energy. These results were obtained using finite
sizes up toL=12, and populations typically consisting of
where the s and r; are n-component unit vectors, 2500 or 5000 walkers. Typical run lengths are 5000 steps,
S=(81,S,...,S) andR=(rq,ro, ... ry). where each step means the addition of a surface layer of

As discussed above, the transfer-matrix Monte Carlo alL XL spins. Variance-reducing trial vectofsee Eq.(20)]
gorithm is designed to compute the dominant eigenvaluevere constructed for path lengths up to 5. As before, the
A of the transfer matrix. The reduced free energy per site iyariance of the Monte Carlo process was observed to de-
f=—In\y. From the free energy one can calculate the surcrease considerably with increasing path length. For each
face tension as the difference in free energy of two systemsystem size, interface free energies were obtained for ap-
one with ferromagnetic and the other with antiferromagnetigproximately ten different couplings in a range of about 10%
interactions, if the dimensions are chosen so as to force aaround the critical points of the Ising and planar models, and
interface in the antiferromagnetic system. EoxL X« sys-  about 1% for the case of the Heisenberg model.
tems with helical boundary conditions, to which the present On the basis of these results for the Isimg«1) case, the
calculations are restricted, this means thdias to be even. functionZ is shown in Fig. 3. This data collapse is achieved

Renormalization group theory predicts that the values oby means of a least-squares fit with paramekersy;, and
A, the reduced interface free energy per lattice site, as a and 13 Taylor coefficient¥,, a generalization of a tech-
function of couplingk and system sizek collapse onto a nique used in the past.
single curve, at least close to the critical poky and for To check if the system sizes were in the asymptotic finite-
sufficiently large systems. In terms of the nonlinear thermakize scaling regime, fits were done both with and without the
scaling field 6X 6X data. The results of these fits are displayed in Table

and for Of) models behaves for largeas

N—-1
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TABLE II. Parameters, as defined in the text, and their standard

25 ' ' ' ' ' ' ' errors for the scaling function of the interfacial free energy of the
three-dimensional Ising model.
2k n=6 n=8
K¢ 0.22162=* 0.00002 0.22165- 0.00003
YT 1.583+ 0.004 1.594+ 0.009
1.5 [ ﬁi o 1 PO 0.6171+ 0.000 7 0.6194+ 0.0025
" %2 2 5 o 2.6111+ 0.0176 2.5650+ 0.0505
L= 7% >, 6.0475+ 0.1001 5.8047 0.2565
1f =88 1 S 9.2362+ 0.3052 8.4073+ 0.6724
iz }g ::" 3, 6.0087+ 0.6350 4.8601*+ 1.0249
35 -13.6165+ 0.9830 -10.8331 1.7414
05+ R 36 -33.2578+ 4.0574 -24.7108t 5.6481
o 4.4790=* 3.3849 1.4272+ 4.2080
g 70.6918+ 11.4018 46.6641 14.0107
0 . \ . . | . . 2 28.0314+ 7.9088 21.4636- 8.5327
-0.3 025 -0.2 -0.15 L_(y)%lu 005 0 005 0.1 310 -69.1548+ 14.3387 -40.6066: 15.7549
211 -43.4754* 10.0932 -27.7038 10.3867
DI 25.2137* 6.4840 13.2245+ 6.4356

FIG. 5. Finite-size scaling plot for the interface free energy of
the three-dimensional Heisenberg model.

I in the Appendix. To summarize, the results are
K.=0.221 62-0.000 02 andy;=1.584+0.004 using data
with L=6-12, and K. =0.221670.00004 and

(see, e.g., Refs. 16—18 and references theweltich appear
to cluster aboutk,.=0.221 655 (with a margin of about
107%) and y;=1.586 (with a precision of a few times

a

18.8658+ 4.8588
-2.65* 0.16

10.501G+ 4.6564
-2.65* 0.37

K.=0.454 10-0.000 03 for system sizet=6-12, and
K.=0.45413-0.000 05 for L=8-12. These values are

more
cluster

Monte Carlo

o results from series expansfnis .= 0.453 86 and
recentlf® K.=0.454 14-0.000 007; andfrom
calculatioffs K.=0.454 08

+0.000 08.Also our results for the temperature exponent,

109, namely,y;=1.491+0.003 forL=6 andy;=1.487+0.006

It is remarkable that the corrections to scaling appear t¢of L=8, are in a good agreement with existing results;
be very small, as appears from the data shown in Fig. 3. IWe quote the coupling-constant-expansion  v&lue
standard Monte Carlo analy$@ef L XL XL systems these Yr=1.495-0.005 and the Monte Carlo restfit Yr
corrections are quite prominent, and form an obstacle to the1.492 6-0.0037.
accurate determination of critical parameters. Fitted with these parameters the data collapse very well

The scaling plot shown in Fig. 3 can be used to determin@nto the function®, as shown in Fig. 4. Again, this scaling
the amplitudeAy graphically: On a double-logarithmic plot plot can be used to determine the amplitédegraphically:
the asymptotic slope of the curve follows from the known|n this case the asymptotic power-law exponent ys 1/A fit
value of the thermal exponewt:; cf. Eq.(29). The problem  of the data at the highest available valuex sfLYTu leads to
of calculating this amplitude has attracted considerable attera; =5.9, while the trend is still increasing with
tion lately and the reader is referred to a paper by Shaw and The calculations for the Heisenberg case3 were clus-
Fishef? for details and further references to the literature.tered in a narrow interval around the critical temperature, and
For the Iargest values of the scaled temperature variable were not aimed at an accurate determinamn Thus, the
we find AngzKilyT:l.S, while the trend wittx is an in-  transfer-matrix Monte Carlo data could be analyzed by
creasing one. This value is somewhat larger than Mdn’s means of a least-squares fit with less parametégs: and
estimate Ay=1.58+0.05, but stil in the range Yyr and three Taylor coefficient&,. The parameters are
1.4<As<2.0 obtained by Shaw and Fisher. As a final com-shown in Table IV in the Appendix. The result fg¢ is well
ment we note that Mon’s method requires systems of lineawithin the statistical accuracy, equal to the known coupling-
dimensions in excess of 48 to reach the asymptotic infiniteconstant-expansion valtley:=1.418. Including the latter
size regime, with an increasing trend of the estimates o¥alue as a known variable in the fits leaves our results for the
As with increasingx=LYTu. critical point practically unchanged. These are

A similar analysis was performed for the planar modelK,=0.692 91-0.000 04 for system sizet =6-12, and
(n=2). In comparison with the Ising case, the scaling func-K.=0.692 94-0.000 08 for L=8-12. These values are
tion X behaves more smoothly as a functionxgfso that a  close to results from series expansiéh& .= 0.692 94, and
satisfactory fit could be obtained with fewer Taylor coeffi- more recently?® K.=0.6929-0.001; and from Monte Carlo
cients. The fitted parameters, which atg,y;, anda and  calculations}” K,=0.692 88-0.000 04; see also Ref. 26.
eight Taylor coefficients,,,, are shown in Table Il of the The data collapse for the=3 case onto the functiob as
Appendix. Our results for the critical point are determined by the least-squares fit is shown in Fig. 5.
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TABLE Ill. Parameters, as defined in the text, and their standard TABLE V. Parameters, as defined in the text, and their stan-
errors for the scaling function of the interfacial free energy of thedard errors for the scaling function of the interfacial free energy of
three-dimensional planar model. the three-dimensional Heisenberg model. The Monte Carlo data
were taken relatively close #§., so that the temperature exponent

n=6 n=8 y1 is not accurately determined. The accuracyKgfis unaffected.
Ke 0.45410= 0.00003 0.45413- 0.00005 n=6 n=8
yr 1.491+ 0.003 1.487+ 0.006
S0 1.2448~+ 0.0010 1.2469 0.0033 K¢ 0.69291+ 0.00004 0.69294+ 0.00008
3. 2.5592+ 0.0144 2.5929+ 0.0345 yr 1.44=x 0.07 1.55% 0.18
pI 2.4285+ 0.0439 2.4738 0.0796 % 1.8919= 0.0015 1.8933+ 0.0043
pIN 0.9881+ 0.0623 0.9544+ 0.1031 % 2.4563* 0.3123 1.9036+ 0.7665
I -0.5096+ 0.0664 -0.4292+ 0.1050 3, 0.7991=* 0.3005 0.5097 0.4651
35 -0.7770x 0.1579 -0.5171+ 0.2741
36 0.1737+ 0.0754 0.0793+ 0.1204 ) ] )
s, 0.4346+ 0.1503 0.1847+ 0.2567 CRG 910152. This research was conducted in part using the
a .0.7805+ 0.1159 .0.9245+ 0.2259 resources of the Cornell Theory Center, which receives ma-

jor funding from the National Science FoundatidySF and
New York State, with additional support from the Advanced
Finally we remark that, although in each of the casesResearch Projects Agen¢aRPA), the National Center for

n=1, 2, and 3 the finite-size effect appears to be small folResearch Resources at the National Institutes of Health
L=, it is large forL = 4. For this reason the=4 data were (NIH), IBM Corporation, and other members of the center’s

not included in the fits. Corporate Research Institute.
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