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LEARNING AN MR ACQUISITION-INVARIANT REPRESENTATION
USING SIAMESE NEURAL NETWORKS

W.M. Kouw†? M. Loog?† L.W. Bartels‡ A.M. Mendrik‡+

?Delft University of Technology, †University of Copenhagen,
‡University Medical Center Utrecht, +Netherlands eScience Center

ABSTRACT

Generalization of voxelwise classifiers is hampered by dif-
ferences between MRI-scanners, e.g. different acquisition
protocols and field strengths. To address this limitation, we
propose a Siamese neural network (MRAI-NET) that extracts
acquisition-invariant feature vectors. These can consequently
be used by task-specific methods, such as voxelwise clas-
sifiers for tissue segmentation. MRAI-NET is evaluated on
both simulated and real patient data. Experiments show that
MRAI-NET outperforms both voxelwise classifiers trained on
the source data as well as classifiers trained on the limited
amount of target scanner data available.

Index Terms— MRI, Acquisition-variation, Representa-
tion Learning, Siamese Neural Network.

1. INTRODUCTION

Voxelwise classifiers for brain tissue segmentation should be
trained on a sufficiently large representative data set, covering
all possible types of variation. However, acquiring manual
labels as ground truth is both labor intensive and time con-
suming. Furthermore, non-standardized manual segmentation
protocols and inter- and intra-observer variability add a factor
of variation to an already complex problem. Instead of in-
creasing the number of manual labels, we propose to improve
generalization by teaching a neural network to minimize an
undesirable form of variation, namely acquisition-based vari-
ation. The proposed network learns a representation [1], in
which for example gray matter patches acquired with a 1.5T
scanner and a 3T scanner are considered similar. Therefore it
has the potential to fully exploit a 1.5T data set with labeled
brain tissues for segmenting an unlabelled 3T data set.

Overcoming acquisition-variation is a relatively new chal-
lenge in medical imaging. Transfer classifiers have been pro-
posed that focus on weighting classifiers, such as weighted
SVM’s [2] and weighted ensembles [3]. Weights are based
on how well each training sample matches the test data.
However, these classifiers need to be retrained for every new
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test data set. Furthermore, they do not remove acquisition-
variation or extract acquisition-invariant feature vectors for
later use by task-specific methods.

We propose to learn a task-independent representation, in
which acquisition-based variation is minimized while tissue
variation is maintained. Patches sampled from MRI-scans
that are mapped to this new representation will become fea-
ture vectors, and can be used to train task-specific classifiers.
In order to minimize one factor of variation while maintain-
ing another, we exploit a Siamese network [4]. Our proposed
network is called MRAI-NET.

2. MR ACQUISITION-INVARIANT NETWORK

Suppose that we have scans that are acquired in two different
ways; S (source) and T (target). A tissue patch, e.g. gray mat-
ter, is selected from both S and T . The aim is to teach a neural
network that both these patches are gray matter, regardless of
their visual difference. To achieve this, we use a loss function
that expresses that pairs of samples from the same tissue but
different scanners should be similar. However, if the neural
network would only receives this instruction, it would map
all patches to a single point and would destroy variation be-
tween tissues. To balance out the action of making certain
pairs more similar, the network is also instructed that patches
from different tissues – regardless of scanner – should remain
dissimilar.

2.1. Siamese loss

Neural networks transform data in each layer. We summa-
rize the total transformation from input to output layer with
the symbol f : patch s from S will be mapped to the new
representation with f(s) and patch t from T will be mapped
with f(t). Distance in the new representation is expressed as
df (s, t) = ‖f(s) − f(t)‖1. Pairs marked as similar (y=1)
should be pulled together, while those marked as dissimilar
(y=0) should be pushed apart. The loss for the similar pairs
consists of the squared distance, `sim(f | s, t) = df (s, t)

2.
The loss function for the dissimilar pairs consists of a hinge
loss: `dis(f | s, t) = max

[
0,m − df (s, t)

]
where m is the

margin parameter. Pairs that are pushed past the margin, will
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not suffer a loss. We can combine the similar and dissimilar
losses into a single loss function:

`(f) =
∑
i

yi `sim (f | si, ti) + (1− yi) `dis (f | si, ti)

=
∑
i

yi df (si, ti)
2 + (1− yi)max [0,m− df (si, ti)] .

where i iterates over pairs. This type of loss function is known
as a Siamese loss [4].

2.2. Labeling pairs as similar or dissimilar

Assume that we have sufficient manual segmentations (voxel
labels) on scans S to train a supervised classifier and a limited
amount of labels from scans T . Let K be the set of tissue la-
bels, Sk be the set of patches from scan S of tissue k, and Tk
be the set of patches from scan T of tissue k.. We form similar
and dissimilar pairs, designated by a similarity label y, by tak-
ing pairwise combinations of individual patches sk ∈ Sk and
tk ∈ Tk. The following pairs are labeled as similar (y = 1):
source patches from the same tissue (sk, sk), source and tar-
get patches from the same tissue: (sk, tk), and target patches
from the same tissue: (tk, tk). Conversely, the following are
labeled as dissimilar (y = 0): source patches from different
tissues (sk, sl), source and target patches from different tis-
sues (sk, tl), and target patches from different tissues (tk, tl),
where k, l ∈ K but k 6= l.

Let Nk be the number of patches extracted from a scan
S belonging to tissue k, and Mk be the number of patches
extracted from scan T of tissue k. In total, the number of
combinations is

∑
k∈K(Nk +Mk)

2 +
∑

(k,l)∈(K2 )
(NkNl +

NkMl +MkMl), where (k, l) ∈
(
K
2

)
refers to all combina-

tions of 2 that can be taken from the set of tissues K. The
combinatorial explosion works in our favor, as it allows us to
generate a large training data set from only a few labeled tar-
get samples. Figure 1 illustrates the process of selecting pairs
of patches from different scanners.

2.3. Network architecture

The network consists of two pipelines and a Siamese loss
layer that acts on the pipes’ output layers. We made the fol-
lowing architectural choices: 15x15 input patches, 8 convo-
lution kernels of size 3x3 with ”ReLU” activation functions,
a fully-connected layer of size 16, another fully-connected
layer of size 8, and a final fully-connected layer of size 2.
Dropout was set to 0.2 during training, and we used a stan-
dard ”RMSprop” optimizer to perform backpropagation. For
more implementation details, see the accompanying software
repository: github.com/wmkouw/mrai-net. MRAI-
NET is implemented in Tensorflow and Keras.

Patches represented in the final representation layer are,
in fact, feature vectors. The wider the layer, the higher the
feature vector dimensionality. The two pipelines share their

Fig. 1: Illustration of extracting pairs of patches from scans
S and T . Each image shows 4 patches: 2 gray matter ones
(green), 1 cerebrospinal fluid (blue) and 1 white matter (yel-
low). The lines mark the 6 types of combinations from Sec-
tion 2.2 (green = similar, purple = dissimilar).

weights, which means they are constrained to perform the
same transformation. This means that single patches can be
fed through the network. It is not necessary to form pairs at
test time.

3. EXPERIMENT

In this experiment we test the dissimilarity between patches
from the source and target scanners and we compare the per-
formance of a linear classifier trained on MRAI-NET’s feature
vectors in a cross-scanner tissue segmentation task.

3.1. Data

We simulated different MR acquisitions from anatomical
models of the human brain [5], using the MRI simulator
SIMRI [6, 5]. The anatomical models consist of transverse
slices of 20 normal brains (Brainweb). We simulated two ac-
quisition types: (1) Brainweb1.5T, a standard gradient-echo
acquisition protocol with the same parameters as the MRI-
scanner in the Rotterdam Scan Study (B0 = 1.5T, θ = 20◦,
TR=13.8 ms, TE=2.8 ms) [7], and (2) Brainweb3.0T, a stan-
dard gradient-echo protocol with the same parameters as the
scanner used for MRBrainS (B0 = 3.0T, θ = 90◦, TR=7.9
ms, TE=4.5 ms) [8]. Magnetic field inhomogeneities and
partial volume effects are not included in the simulation.
There are 9 tissues, but we grouped these into ”background”,
”cerebrospinal fluid”, ”gray matter”, and ”white matter”. The
simulations result in images of 256 by 256 pixels, with a
1.0x1.0mm resolution. Figure 1 shows examples of Brain-
web1.5T (S) and Brainweb3.0T (T ) scans. Since the same
phantoms are used with both acquisition protocols, we effec-
tively have the same patient in two different scanners. This
allows us to isolate acquisition-based variation. In order to
evaluate the proposed method on real data, we use the pub-
licly available training data (5 subjects) from the MRBrainS
challenge [8].
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3.2. Measuring acquisition variation

The proxy A-distance is a measure of discrepancy between
two data sets [9]. Denoted by dA, it is defined as: dA(s, t) =
2(1−2e(s, t)), where e represents the test error of a classifier
trained to discriminate patches s from scans S and patches t
from scans T . For computing the proxy A-distance, we draw
1500 patches from all source and 1500 from all target scans.
A linear support vector machine is trained to discriminate be-
tween them, and the cross-validation error is used to produce
e(s, t).

3.3. Measuring tissue variation

Ultimately, we know that tissue variation is preserved if the
extracted feature vectors can be used for tissue segmenta-
tion. A tissue classifier is used to measure how much vari-
ation between tissues is preserved in MRAI-NET’s representa-
tion, specifically gray matter, white matter and cerebrospinal
fluid. For evaluation, we use scans from target subjects that
have been held back (10 subjects from Brainweb and 1 sub-
ject from MRBrainS). From these scans, we draw 50 patches
per tissue at random, for a total of 1500 patches. We apply the
tissue classifier to these test samples and compute the classi-
fication error rate.

3.4. Experimental setup

We compare a linear support vector machine trained on
MRAI-NET’s extracted feature vectors (also referred to as
MRAI-NET) to two other supervised classifiers. First, the
SOURCE classifier, which constitutes a convolutional neural
network (CNN) trained on scans from the source (4 subjects
for both Brainweb and MRBrainS) and target data (1 subject
for both Brainweb and MRBrainS). This classifier represents
the scenario where you would use a state-of-the-art method
but would not account for acquisition-variation. Secondly,
the TARGET classifier, a CNN trained on the few available
patches from the target scan (1 subject for both Brainweb and
MRBrainS). This classifier represents the scenario where you
would disregard the source domain and work with what little
labeled data is available.

SOURCE and TARGET’s network architecture is the same
as that of each pipeline in MRAI-NET. This rules out that dif-
ferences in behavior between SOURCE, TARGET and MRAI-
NET are due to choices for specific architectures. We con-
struct learning curves by varying the number of labeled target
patches available, from 1 to 1000 labeled patches per tissue.

We first performed this experiment using Brainweb1.5T
as the source scanner and Brainweb3T as the target scan-
ner. Since these are scans of the same subjects with differ-
ent acquisition protocols, all variation between two scans
is acquisition-based. Secondly, we performed the same ex-
periment using Brainweb1.5T as the source scanner and

MRBrainS as the target scanner. Now variation is both
acquisition-based and patient-based.

Fig. 2: Learning curves for Brainweb1.5T → Brainweb3T
(Top row) and Brainweb1.5T → MRBrainS (Bottom row).
(Left column) Proxy A-distance between source and target
patches before (red) and after (blue) learning the new repre-
sentation (smaller is better). (Right column) Tissue classifi-
cation error for SOURCE, MRAI-NET and TARGET.

3.5. Results

Figure 2 shows the proxyA-distance and the tissue classifica-
tion error, for an increasing number of labeled target patches
available for training. In general, the experiment with real pa-
tient data follows the same pattern as the simulated data. By
using MRAI-NET, the distance between the source and target
scanner data sets (proxyA-distance) drops substantially, even
with only one labeled target sample per class. For ten labeled
target samples per tissue, MRAI-NET’s error is 0.17 (Brain-
web3T) and 0.33 (MRBrainS data), while SOURCE still per-
forms at a 0.66/0.64 error (Brainweb3T/MRBrainS) and TAR-
GET performs at 0.40/0.49. With one hundred target train-
ing samples the A-distance approaches 0 (small acquisition
variation means the data sets overlap), while tissue variation
is preserved (tissue classification error 0.11 for Brainweb3T
simulated data and 0.27 for MRBrainS real patient data). For
Brainweb3T, the tissue classification error for the SOURCE
and TARGET classifiers is 0.21 and 0.37, respectively. For
MRBrainS, the error of SOURCE is 0.47 and the error of TAR-
GET is 0.44. Given sufficient samples, all three classifiers
reach similar performances. Figure 3 illustrates the differ-
ence in tissue classification performance when only one la-
beled target sample per tissue is used for training.

Note furthermore that SOURCE shows worse performance
than TARGET for less than 50 samples. Apparently, the scans
are so different that including the SOURCE samples in the
training set actually interferes with learning. Given enough
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(a) Scan (b) Ground truth (c) SOURCE (d) MRAI-NET (e) TARGET

(f) Scan (g) Ground truth (h) SOURCE (i) MRAI-NET (j) TARGET

Fig. 3: Example segmentations into white matter (yellow), gray matter (green) and cerebrospinal fluid (blue) using only one
labeled target patch per class, for Brainweb1.5T→ Brainweb3T (top row) and Brainweb1.5T→MRBrainS (bottom row).

target samples, however, SOURCE finds a good balance be-
tween source and target samples and matches the performance
of TARGET.

4. CONCLUSION

We proposed to learn a representation of the data where
acquisition-based variation is minimal and tissue variation
is maintained. A linear classifier trained on feature vec-
tors extracted by MRAI-NET outperforms conventional CNN
classifiers trained on the source and target data sets in a cross-
scanner tissue segmentation task, when few labeled target
samples are available.
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