
 
 

Delft University of Technology

Solar-sail quasi-periodic orbits in the sun–earth system

Mora, Alvaro Fernandez; Heiligers, Jeannette

DOI
10.2514/1.G005021
Publication date
2020
Document Version
Accepted author manuscript
Published in
Journal of Guidance, Control, and Dynamics

Citation (APA)
Mora, A. F., & Heiligers, J. (2020). Solar-sail quasi-periodic orbits in the sun–earth system. Journal of
Guidance, Control, and Dynamics, 43(9), 1740-1749. https://doi.org/10.2514/1.G005021

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.2514/1.G005021
https://doi.org/10.2514/1.G005021


Solar-Sail Quasi-Periodic Orbits in the Sun-Earth System

Alvaro Fernandez Mora ∗ and Jeannette Heiligers †

Delft University of Technology, Delft, 2629 HS, the Netherlands.

Nomenclature
Latin Symbols

�2 Jacobi constant -

!8 Lagrange point for 8 ∈ {1, 2, ...5} -

" Monodromy matrix -

' Rotation operator -

B8 Stability index for 8 ∈ {1, 2} -

(!8 Displaced Lagrange points for 8 ∈ {1, 2, ..., 5} -

Greek Symbols

U Cone angle rad

V Lightness number -

X Clock angle rad

) Vector of angular variables rad

` Gravitational parameter -

d Rotation number rad

qC Flow for time C -

Φ State transition matrix -

k Parameterization of invariant torus -

8 Vector of frequencies rad

i Parameterization of invariant curve -
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I. Introduction
Bounded motion in the Circular Restricted Three-Body Problem (CR3BP) is of particular interest for the preliminary

design of space missions. Periodic orbits around the Lagrange points are well understood, see Ref. [1] for a detailed

survey, and such knowledge has been leveraged and combined with mission design techniques for practical applications.

Space-weather spacecraft in orbits around the !1 point like SOHO, ACE, WIND and DSCOVR and astronomic

observatories at the Sun-Earth !2 point like GAIA are clear examples. However, quasi-periodic orbits can be more

suitable for space missions than periodic orbits for space missions as they might require less station keeping, extend the

mission design space and allow for new transfer opportunities: whereas at fixed energy levels only a finite number of

periodic orbits exists, entire families of quasi-periodic orbits exist around each such periodic orbit [2, 3]. Extensive

research has been conducted on the conditions for existence of quasi-periodic motion in the CR3BP and their evolution

[2, 4]. Furthermore, several methods for the computation of families of quasi-periodic orbits have been developed,

including partial differential equations solvers, invariant curves of Poincaré and stroboscopic maps [5, 6] and center

manifold reductions [4].

The CR3BP neglects a wide variety of dynamical effects such as solar radiation pressure (SRP); the effect of SRP

can become significant for bodies with a large area-to-mass ratio like solar-sail spacecraft. These probes are propelled

by the force exerted by SRP on a highly reflective surface [7]. Solar-sail technology has developed rapidly over the

past decades resulting in solar-sail spacecraft like IKAROS (JAXA), NanoSail D2 (NASA) and LightSail 1 and 2 (The

Planetary Society) and the upcoming NEA Scout (NASA) mission.

For the CR3BP+SRP case, only few studies have explored quasi-periodic orbits by means of a center manifold

reduction combined with Poincaré sections exclusively for a particular lightness number in the vicinity of the displaced

!1 point [8, 9]. We build on these initial investigations and extend the results in Refs. [8, 9] to analyzing the conditions

for existence of solar-sail quasi-periodic orbits in the vicinity of the displaced !1, !2 and !5 points, all for the case where

the sail is oriented perpendicular to the direction of sunlight. We compute entire families of solar-sail quasi-periodic

orbits around these displaced Lagrange points and present the first-ever extensive investigation of solar-sail periodic

and quasi-periodic orbits with the solar-sail lightness number. To this end, we extend the application of the method of

invariant curves under stroboscopic maps, developed in Refs. [2, 10] for the CR3BP, to the CR3BP+SRP dynamical

framework. The motivation for choosing the method of invariant curves under stroboscopic maps lies in the fact that

the results from this method can be directly used for mission design purposes. Indeed, the results from the method of

stroboscopic maps are conceptually very different from those obtained with the centre manifold reduction technique in

Refs. [8, 9]. In particular, in Refs. [8, 9], the center manifold is sampled at Poincaré sections and as a result only points

in periodic and quasi-periodic orbits are obtained in center manifold coordinates. Instead, through the stroboscopic

mapping method, invariant curves (in Fourier expansions) are obtained, each defining an invariant torus, allowing the

quasi-periodic orbits to be obtained explicitly instead of implicitly as in the centre manifold reduction technique. The
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results obtained in this Note therefore offer a catalog on solar-sail quasi-periodic orbits that can be directly used for

mission design to set quasi-periodic orbits as departure or arrival invariant objects [3].

II. Dynamical System
In order to model the motion of the solar-sail propelled spacecraft (hereafter referred to as “solar sail”), we consider

the dynamical framework of the CR3BP perturbed with an acceleration induced by solar radiation pressure. In such a

model, the Sun and the Earth (primary bodies) move in circular orbits around their common barycenter, exclusively

attracting each other. The motion of the solar sail (third body) is governed by the vector field induced by the gravitational

pull of the primaries and the SRP. The primaries are assumed to be point masses and the solar sail is assumed to be

massless. The units of mass, distance and time are normalized such that the total mass of the system is 1, the Sun-Earth

distance is 1 and the orbital period of the Earth around the Sun is 2c. With these normalized units, the gravitational

parameter of Earth becomes ` = 3.0034806 · 10−6 and the gravitational parameter of the Sun becomes 1 − `.

We consider a synodic reference frame ((x̂, ŷ, ẑ) with basis {x̂, ŷ, ẑ} to study the system. The origin is at the

Sun-Earth barycenter, the G−axis, and x̂, are defined along the Sun-Earth line pointing towards the Earth, the I−axis,

and ẑ, are defined in the direction of the angular momentum vector of the primaries and the H−axis, and ŷ, complete the

orthogonal right-handed reference frame, see Fig. 1a. In this frame, the equations of motion can be obtained as:

¥G − 2 ¤H = mΩ

mG
+ 0G , (1)

¥H + 2 ¤G = mΩ

mH
+ 0H , (2)

¥I = mΩ

mI
+ 0I , (3)

with Ω = 1
2
(
G2 + H2) + 1−`

AB1
+ `

A41
, AB1 =

√
(G + `)2 + H2 + I2 and A41 =

√
(G + ` − 1)2 + H2 + I2. Note that AB1 and A41

are the norms of the Sun-body vector, rB1 = [G + ` H I]) , and of the Earth-body vector, r41 = [G + ` − 1 H I]) ,

respectively. The acceleration generated by the solar sail is defined as the vector a = [0G 0H 0I]) . We assume a

perfectly reflecting flat “ideal” sail and a uniformly radiating Sun. For an ideal sail, the solar-sail acceleration acts along

the direction of the sail normal and is conveniently expressed as a function of the lightness number V. This parameter is

defined as the ratio between the solar-sail and solar-gravitational accelerations [7]. Near-term values for this lightness

number are V ≤ 0.04 [11]. Note that more complex solar-sail models exist [7, 12] but that for the initial analyses in this

work, the ideal model is deemed sufficient. The solar-sail acceleration can then be described in dimensionless units as:

a = V
1 − `
A2
B1

〈r̂B1 , n̂〉2 n̂, (4)
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where r̂B1 = rB1
AB1

and n̂ is the sail normal unit vector, see Fig. 1a.

G

HI

1 − `

−`
rB1 r41

n̂

Sail
Sun

Earth

U
X

r̂B1

ẑ

p̂

q̂

n̂

Sail

Fig. 1 a) Sketch of the synodic reference frame and b) sketch of the local frame used to define the cone angle
U and the clock angle X.

In order to describe the sail normal n̂ in the synodic frame, we follow Ref. [13] and define a reference frame

B( r̂B1 , p̂, q̂) with its origin at the solar sail and basis { r̂B1 , p̂, q̂}, where p̂ = r̂B1×ẑ
|r̂B1×ẑ | and q̂ = p̂×r̂B1

| p̂×r̂B1 | . The sail normal

can then be described in this frame by two angles, known in the literature as the cone angle U and the clock angle X.

Note that, since the solar sail is unable to generate an acceleration towards the Sun, U ∈ [−c/2, c/2] and X ∈ [0, c].

Figure 1b shows the reference frame centered at the solar sail as well as the cone and clock angles.

While the CR3BP is Hamiltonian, the solar-sail perturbation breaks this property of the system, although a few

exceptions exist: when the sail normal is aligned with the direction of the Sun-sail line (U = 0) and when the sail normal

is perpendicular to the Sun-sail line (U = ±c/2). Note that the latter case will result in a zero solar-sail acceleration and

can thus be represented by a lightness number V = 0. For these cases, the existence of periodic and quasi-periodic

motion around the equilibrium points is guaranteed [13]. Another important aspect of the dynamical system when the

Hamiltonian structure is preserved is the existence of a first integral known as the Jacobi constant [13]. This constant of

motion has important implications for the characterization of regions of possible motion and energy levels of periodic

and quasi-periodic orbits, where the effect of the latter will be discussed in Section IV.

We can now express Eqs. 1-3 as a system of first order differential equations given by ¤x = 5 (x, U, X), with x ∈ R6.

We can also define the flow induced by 5 as qC (x, U, X) with C ∈ R. Note that in this system, several equilibrium

points exist, i.e., 5 (x, U, X) = 0. When U = ±c/2 (or V = 0), the well known Lagrange points satisfy such a condition.

When U = 0, the Lagrange points are displaced and are known as displaced Lagrange points denoted by (!8 with

8 ∈ {1, 2, ..., 5}, which highly resemble their classical counterparts [8].

III. Periodic Orbits
For the computation of quasi-periodic orbits, an understanding of periodic motion is necessary. This section aims to

introduce those notions on periodic orbits that will later be used for the computation of quasi-periodic orbits.

Periodic orbits generally appear in continuous families. Numerous studies have used symmetric properties of the

system to compute families of periodic orbits in the classical system, e.g., [14, 15], and in the SRP-perturbed system,
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e.g., [16, 17]. We, however, do not exploit orbit symmetry. Instead, a very general way to impose periodic motion is

given by the definition of the map � : R7 → R6 as [18]

� (x, )) = q) (x, U, X) − x. (5)

Note that, in this work, the sail attitude is constant for each family of periodic orbits and therefore U and X are fixed

parameters of the map �. More specifically, two particular sail attitudes are considered: U = 0 and U = ±c/2. For both

these attitudes, the clock angle, X, has no effect on the dynamics and it is therefore not defined. Furthermore, the case

U = 0 allows for passive solar-sail attitude control through a correct offset between the center of pressure and center of

mass [7]. Finally, the case U = ±c/2 does not generate any solar-sail acceleration and will therefore be represented in

this work through a lightness number equal to V = 0.

The search for periodic orbits is then transformed into finding {x, )} that solve � (x, )) = 0. Then, x belongs to a

periodic orbit with period ) given that ) > 0. Such solutions can be found with a Newton method from a good initial

guess. Furthermore, once a solution is found, the families of periodic orbits can be continued. For more details on the

initial guess, the Newton method and the continuation, see Ref. [3].

A. Orbit stability

An important feature of periodic orbits is their stability, which can be assessed from the eigenvalues of the

monodromy matrix. Such a matrix can be seen as a linear map between the variation of the initial conditions of a flow

and the variation on the final conditions. Because of the properties of the monodromy matrix, the spectra for solar-sail

Hamiltonian periodic orbits have the form B?42(") = {1, 1, _1, _
−1
1 , _2, _

−1
2 } [8]. The stability indices are then defined

as B8 = |_8 + _−1
8
|. With such a definition, a periodic orbit can be described as [8]:

1) Hyperbolic: B8 > 2.

2) Elliptic: B8 ≤ 2. When B8 = 2, periodic orbits are said to have a central part.

3) Complex unstable: if _8 ∈ C\R and |_8 | ≠ 1.

A periodic orbit is said to be stable if B8 ≤ 2 for 8 ∈ {1, 2}. Elliptic periodic orbits with a central part are important for

the study on the existence of families of quasi-periodic orbits since around such periodic orbits quasi-periodic motion

exists [8].

B. Periodic orbit families

Although many periodic orbit families exist [1], we only consider the planar Lyapunov, vertical Lyapunov and halo

families for demonstration purposes with special emphasis on the evolution of their stability to identify orbits with

a central part. We compare the stability indices in logarithmic scale against a normalized Jacobi constant, 92 . The
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normalized Jacobi constant is defined as �2 divided by the maximum absolute value of �2 encountered in the family.

The use of 92 is convenient for comparing the stability indices of families for different lightness number as all curves

can be represented together in a clear way, see Fig. 3 for example. Generally, for the families considered in this Note,

the Jacobi constant (and also 92) increases throughout the continuation; therefore, the smallest value of 92 is found

for the orbits closest to the equilibrium point, i.e., at the start of the families, and as the families are continued, the

(normalized) Jacobi constant increases. This general rule applies for the planar and vertical Lyapunov families around

the (!1 and (!2 points and for the halo families around the (!1 point.

1. Planar Lyapunov families around (!1 and (!2

In order to illustrate the planar Lyapunov families, Fig. 2 shows subsets of the families around the (!1 point (Fig.

2a) and the (!2 point (Fig. 2b) for V = 0.04. The orbits are plotted in a color-scale based on their value of 92 . It can

be seen how both families begin at 92 = −1, close to the corresponding equilibrium point, and that the normalized

Jacobi constant increases throughout the continuation while the orbits grow in size. Regarding the stability of the planar

Fig. 2 Planar Lyapunov families for V = 0.04: a) around (!1 and b) around (!2.

Lyapunov families, Fig. 3 shows both stability indices, as a function of 92 for several values of V. The figure shows that

B1 > 2 for all orbits around both the (!1 and (!2 points and they are therefore unstable. Additionally, the orbits at the

smallest values of 92 have a central part, i.e., B2 = 2. When the orbits increase in 92 , this characteristic is lost but it is

subsequently regained for larger values of 92 .

2. Vertical Lyapunov families around (!1 and (!2

In Fig. 4, the vertical Lyapunov families around the (!1 point (Fig. 4a) and the (!2 point (Fig. 4b) are shown for

V = 0.04. Some orbits that present an extra loop with respect to the traditional eight-shaped vertical Lyapunov orbits

appear midway of the family, but such extra loop is subsequently lost. One such orbit is depicted in black in Fig. 4a.

Note that this double-loop behavior is not specific to the solar-sail case as we found similar behavior for V = 0, i.e., the
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Fig. 3 Stability indices for the planar Lyapunov families in logarithmic scale for V ∈ {0, 0.01, ..., 0.05} with the
arrow in the direction of increasing V: a) around (!1 and b) around (!2.

CR3BP case.

Fig. 4 Vertical Lyapunov families for V = 0.04: a) around (!1 and b) around (!2.

The stability indices for the vertical Lyapunov families are shown in Fig. 5, where it can be seen that the families

around both the (!1 and (!2 points are again unstable since no orbit exists with both B1 ≤ 2 and B2 ≤ 2. Note that for

the family around (!2 and V = 0.05, when B1 = 2, B2 ≠ 2. In fact, we found that this particular case corresponds to the

bifurcation point where the vertical Lyapunov orbits become planar. Such a bifurcation does not exist in the CR3BP

or for V ≤ 0.04. Also note that the orbits again have a central part at the start of the families, where 92 ≈ −1, that is

eventually lost when the Jacobi constant increases.
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Fig. 5 Stability indices for the vertical Lyapunov families in logarithmic scale for V ∈ {0, 0.01, ..., 0.05} with
the arrow in the direction of increasing V: a) around (!1 and b) around (!2.

3. Halo families around (!1 and (!2

Without loss of generality, we focus on the northern branch of the halo families. As an example, Fig. 6 shows the

northern halo families around the (!1 point (Fig. 6a) and the (!2 point (Fig. 6b) for V = 0.04. A change in the shape

with respect to the classical (i.e., V = 0) halo family around the !1 point can be seen as the family collapses onto the

ecliptic plane instead of finishing as near-rectilinear halo orbits as is the case for the classical family [14]. In fact, there

are several branches in the halo family around (!1; some of which bifurcate into planar families [19]. It is interesting to

note that the northern halo families around (!2 are the only families in this Note where the smallest value of the Jacobi

constant is reached for the orbit at the end of the family (for V > 0), see Fig 6b for V = 0.04. Therefore, the families for

such lightness numbers end at 92 = −1. Instead, for V = 0, the smallest Jacobi constant is reached at the start of the

family; thus, the family starts at 92 = −1. The stability indices for the northern halo families around the (!1 and the

(!2 points are shown in Fig. 7. Note the different behavior for the stability index B1 for the family around (!2 and

V = 0, see Fig. 7b. It can also be seen that there are stable northern halo orbits around both (!1 and (!2 as there are

orbits with B1 = 2 and B2 = 2. Also note that for the families around (!1 and V ∈ {0, 0.04, 0.05}, B2 stays on the line

B2 = 2 or very close to it whereas this is not the case for the remaining lightness numbers. For the families around (!2,

the stable halo orbits emerge when the families approach near rectilinear halo orbits at the end of the families. Finally,

note that the orbits in the families around (!2 always have a central part as B2 = 2 for all V. Figure 7 also shows that for

some lightness numbers the stability indices intersect with the line B8 = 2 more than once, suggesting an interesting

behavior which might be accounted for by the bifurcations existing in the halo family [19].
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Fig. 6 Northern halo families for V = 0.04: a) around (!1 and b) around (!2.

Fig. 7 Stability indices for the northern halo families in logarithmic scale for V ∈ {0, 0.01, ..., 0.05} with the
arrow in the direction of increasing V: a) around (!1 and b) around (!2.

4. Lyapunov families around (!5

Lastly, two orbit families originate from the (!4 and (!5 points: the planar and vertical Lyapunov families. Figure 8

shows the planar family (Fig. 8a) and the vertical one (Fig. 8b) around the (!5 point for V = 0.04. A plot of the stability

indices is omitted because these families are stable for all V since the orbits are always elliptic, i.e., B1 = 2 and B2 = 2.

IV. Invariant Tori
The Arnold-Liouville theorem proves that under certain conditions, trajectories of a dynamical system lie on

an invariant manifold on the phase space which is diffeomorphic to the n-dimensional torus [20]. A corollary of

the Arnold-Liouville theorem is that for an integrable system, bounded trajectories are contained on a torus where

both periodic and quasi-periodic orbits may exist. Neither the CR3BP nor the CR3BP+SRP are integrable, so the

9



Fig. 8 Lyapunov families around (!5 for V = 0.04: a) planar and b) vertical orbits.

Arnold-Liouville theorem does not apply. It is not unreasonable to think that quasi-periodic orbits could still exist in

perturbations of integrable systems. In fact, KAM theory shows that, under certain conditions, this is indeed the case [4].

Therefore, we explore 2-dimensional tori for the solar-sail attitude cases outlined in Section III: U = 0 and U = ±c/2,

i.e., V = 0. For the non-Hamiltonian case, Refs. [8, 9] have demonstrated that quasi-periodic orbtis also exist for sail

attitudes close to U = 0 where the system is time-reversible. We are interested in a parameterization k : T2 → R6 such

that [2]

k() + 8C) = qC (k()), U, X), (6)

where ) = [\1 \2]) ∈ R2 parameterizes the torus and 8 = [l1 l2]) ∈ R2 is the vector of frequencies. Figure 9

depicts the torus domain together with a possible choice for \1 and \2 that is mapped to the quasi-periodic orbits under

k. Instead of looking for a parameterization of the full torus, it is possible to reduce the dimension of the problem

Fig. 9 Representation of a torus domain and a choice for \1 and \2.

by looking for a parameterization of an invariant curve i : T1 → R6 under the stroboscopic map q)2 , where )2 is the

period associated with the frequency l2. The invariance condition for the curve under q)2 can be expressed as

i(b + d) = q)2 (i(b), U, X), (7)
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where d is the rotation number and b is the parameter that parameterizes i. Note that the rotation number and )2 are

related as d = l1)2 [2].

A parameterization of an invariant curve can be obtained with a complex truncated Fourier series as

i(b) =
∑
:∈ 

c:4
8: b , (8)

where  is an index set and c: are the complex Fourier coefficients [10]. By discretizing b into # values b 9 with

9 ∈ {1, 2, ..., #}, it is possible to discretize the invariant curve into # points i(b 9 ). Consequently, by means of the

discrete Fourier transform (DFT), there is a linear transformation between the complex coefficients c: of the Fourier

series and the discretized invariant curve. Expressing the coefficients and the discretized curve as the column vectors c

and >̄, respectively, yields the relation c = �>̄, where � is the linear operator for the DFT [10]. In this Note we use

# = 35; therefore, the invariant curves are discretized into 35 points and expressed in a Fourier series up to degree 35.

In order to meet the invariance condition expressed in Eq. 7, a rotation operator ' is used to rotate the mapped curve

under the stroboscopic map over an angle −d, i.e.,

'(−d) ◦ q)2 (i(b), U, X) − i(b) = 0. (9)

The rotation can be performed by first obtaining the Fourier coefficients of the mapped discretized curve, then

transforming each coefficient with another operator&(−d) : c: → c:4
−8:d and finally obtaining the states in the rotated

curve. Consequently, '(−d) = �−1&(−d)� [10].

To ensure that the invariant curve defines a quasi-periodic orbit, it is necessary that all points of the curve have the

same Jacobi constant. Therefore, each point of the invariant curve is constrained to �2 (i(b 9 )) = � 5 8G432 . Given a good

initial guess, the invariance condition from Eq. 9 together with the Jacobi constraint can be used in a Newton method to

obtain invariant curves together with the rotation number d and the period )2. Figure 10 shows a discretized guess ĩ(b)

for an invariant curve and its image under the stroboscopic map (Fig. 10a) and the converged solution and its image (Fig.

10b) for a tolerance on Eq. 9 of 10−10 after three iterations of the Newton method. From the converged solution, it can

be appreciated how the flow comes back to the same curve.

In order to apply the method described, an initial guess is required. Let us assume a periodic orbit defined by

a phase space point x? and a period ) . If such an orbit has a central part, then the eigenplane passing through x?

associated with the eigenvalues _8 and _−1
8

contains invariant curves of the linearization around x? of a stroboscopic

map with stroboscopic time )2 = ) , i.e., the monodromy matrix. Some of these invariant curves subsist in the full

system, giving rise to invariant tori around periodic orbits [2]. Therefore, given _8 an eigenvalue within the unit circle,
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Fig. 10 a) Guess for an invariant curve and its image under the stroboscopic map and b) the converged solution
and its image.

and the associated complex eigenvector y, the initial guess can be obtained as [10]

ĩ(b) = x? + dn [cos(b)'4(y) − sin(b)�<(y)], (10)

where dn is the radius of the initial guess for the invariant curve, which is taken as 10−7 in dimensionless units. For the

rotation number, it can be shown that the phase of _8 can be used as an initial guess [10].

A. Continuation of the families of invariant tori

Once an invariant curve has been found, it is possible to continue the solution and obtain a family of invariant tori.

Unlike for the families of periodic orbits, which are one-parameter families, invariant tori belong to two-parameter

families [10]. Therefore, for consistency, it is necessary to fix one parameter within the family during the continuation.

Common choices include the rotation number and the Jacobi constant [10]. In this Note we compute the families of

invariant tori at fixed Jacobi constants. Note that if k()) is an invariant torus, k() + )0), with )0 ∈ R2 would also be a

solution of the problem but not a different torus, i.e., the invariant curve would simply be phased in any of the two

angles of the torus. Therefore, in order to compute invariant curves of different tori, two phase constraints are included.

Additionally, the pseudo-arclength constraint is used to ensure the next solution is at a certain distance from the previous

one, making the distance between solutions the continuation parameter. For the pseudo-arclength constraint, the tangent

direction is obtained simply as the normalized difference between two already known solutions. For more details on

these constraints, the reader can consult Ref. [10].

V. Results
This section contains the families of quasi-periodic orbits considered in this Note. Families are computed for a

lightness number of V = 0.02 around (!1, (!2 and (!5. Subsequently, the effect of the lightness number is considered.
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A. Families of invariant tori around (!1

We start by studying quasi-periodic motion in the neighborhood of the (!1 point. Figure 3 showed that for all

lightness numbers considered, the planar Lyapunov orbits around the (!1 point have a central part at the start of the

families. When increasing the Jacobi constant value, a pitchfork bifurcation occurs, where the orbits stop being elliptic,

giving rise to the halo families [9]. Since invariant tori only exist around periodic orbits that have a central part, the

planar Lyapunov orbits have quasi-periodic motion around them before they bifurcate into the halo family and later on

when they regain their central part. Nevertheless, invariant tori still exist around both the vertical Lyapunov and halo

orbits when B8 = 2, see Fig. 5 and Fig. 7. In order to obtain the general picture, we compute the families around planar

and vertical Lyapunov orbits as well as around halo orbits for V = 0.02 for Jacobi values close to the bifurcation of the

planar Lyapunov family into the halo family. For visualization, the intersection of the families of quasi-periodic orbits

with the ecliptic plane is plotted in Fig. 11. Note that the intersections of the planar and vertical Lyapunov orbits as

well as the halo orbits with the ecliptic plane at the Jacobi constant under consideration are represented in black and

using black markers. The results, albeit conceptually very different, highly resemble those obtained with the reduction

to the center manifold method [8, 9]. Note that, as outlined in the Introduction, the invariant curves obtained can be

used to directly parameterize quasi-periodic orbits—instead, the reduction to the center manifold obtains points in

quasi-periodic orbits at Poincaré sections in center manifold coordinates.

Fig. 11 Intersections with the ecliptic plane of Lissajous and quasi-halo families around (!1 for V = 0.02 at
different Jacobi constant values.

The figure shows that the quasi-periodic motion is bounded by the planar Lyapunov orbit. The quasi-periodic

orbits around the planar and vertical Lyapunov orbits are referred to as Lissajous orbits, whereas those around the halo

orbits are referred to as quasi-halo orbits. For Jacobi constant values before the pitchfork bifurcation (see Fig. 11 for
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�2 = −2.9604), the families of tori around the planar and vertical Lyapunov orbits are connected and all quasi-periodic

motion within the planar Lyapunov orbit presents the same structure. Note that by "connected" we mean that both

families are the same. It is therefore possible to continue from a planar to a vertical Lyapunov orbit through a family of

quasi-periodic orbits. Such a connection was already shown for the CR3BP [2] and the results in Fig. 11 proves that it

persists when a solar-sail acceleration is included in the dynamics. Figure 12 shows this connection and demonstrates

how the quasi-periodic orbits originate around a vertical Lyapunov orbit and morph into a planar Lyapunov orbit. When

the Jacobi constant is increased, (see Fig. 11 for �2 = −2.96035) the planar Lyapunov orbits are no longer elliptic

and quasi-periodic motion ceases to exist around them until the orbits regain their central part (not shown in Fig. 11).

Furthermore, families of quasi-halo orbits start to emerge that increase in size with increasing Jacobi constant.

Fig. 12 Evolution of the Lissajous quasi-periodic orbits around a vertical Lyapunov orbit around (!1 for
V = 0.02 and �2 = −2.9604.

It was shown that for the planar Lyapunov families around the (!1 point, the orbits regain their central part and

families of invariant tori again start to exist around them. These orbits are no longer connected to the quasi-periodic

orbits that exist around the vertical Lyapunov orbits that were shown in Fig. 12. As an example of such a case, Fig.

13 depicts around the (!1 point, for V = 0.02 and �2 = −2.96 (see Fig. 3a for 92 = −0.9985), quasi-periodic motion

around planar and vertical Lyapunov and halo orbits. Similar results can be obtained around the (!2 point.

B. Families of invariant tori around (!2

The general picture for quasi-periodic motion around the (!2 point is very similar to that around the (!1 point. As

was shown in Fig. 3, the stability indices for the planar Lyapunov families around the (!2 point indicate that the orbits

at the start of the families have a central part. When the Jacobi constant is increased, a bifurcation takes place where

the orbits become hyperbolic and they lose their central part. This bifurcation gives rise to the families of halo orbits
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Fig. 13 Examples of quasi-periodic orbits around a planar Lyapunov, a vertical Lyapunov, and a halo orbit
around (!1 for V = 0.02 and �2 = −2.96.

around the (!2 point. When further increasing the Jacobi constant, the planar Lyapunov orbits regain their central

part when B2 = 2. Regarding invariant tori around vertical Lyapunov orbits, Fig. 3 shows that orbits at a wide range of

Jacobi constant values have a central part. Therefore, families of Lissajous orbits exist around such orbits. Lastly, for all

lightness numbers considered, the halo orbits around the (!2 point have quasi-periodic motion around them, since,

as Fig. 7 shows, B2 = 2 for all orbits. Figure 14 depicts the intersection between the families of tori around the (!2

point and the ecliptic plane for V = 0.02. Similar to the quasi-periodic motion around the (!1 point, the families of

invariant tori around vertical and planar Lyapunov orbits are connected when the Jacobi constant is smaller than the

value at the bifurcation into the halo family (see Fig. 14 for �2 = −2.9612). This connection is further demonstrated in

Fig. 15, where it can be seen that the family is very similar to the Lissajous family around (!1 shown in Fig. 12. The

planar Lyapunov family again bifurcates into the halo family and the planar orbits lose their central part, breaking the

connection with the Lissajous orbits around the vertical Lyapunov orbits whereas quasi-halo orbits emerge (see Fig. 14

for �2 = −2.96118). The quasi-halo families then grow in size with increasing values of �2 .

C. Families of invariant tori around (!5

The linearized dynamics around the planar and vertical Lyapunov orbits around the (!5 point are of type

center×center; therefore, it is possible to initiate the computation of invariant tori from such orbits with two initial

guesses given by the two eigenvectors associated with the two eigenvalues within the unit circle. While the two initial

guesses for invariant curves around the planar family result in two different families of quasi-periodic orbits, the initial

guesses for the quasi-periodic motion around the vertical orbits result in the same family. As an example, we computed

the families of quasi-periodic orbits around a planar and a vertical Lyapunov orbit around the (!5 point for V = 0.02

and Jacobi constant �2 = −2.958 and plotted one member of each family in Fig. 16. The figure shows how, for the

quasi-periodic motion around planar Lyapunov orbits in the !5 region, one of the families corresponds to in-plane
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Fig. 14 Intersections with the ecliptic plane of Lissajous and quasi-halo families around (!2 for V = 0.02 at
different Jacobi constant values.

Fig. 15 Evolution of the Lissajous quasi-periodic orbits around a vertical Lyapunov orbit around (!2 for
V = 0.02 and �2 = −2.9612.

quasi-periodic orbits (Fig. 16a) and the second family corresponds to out-of-plane quasi-periodic orbits (Fig. 16b).

D. Evolution of the families of invariant tori with the lightness number

So far, the families of quasi-periodic orbits have been studied for a lightness number of V = 0.02. This section

therefore investigates the effect of the lightness number on the families of quasi-periodic orbits. For such investigation
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Fig. 16 Quasi-periodic orbits around (!5 for V = 0.02 and �2 = −2.958: a) In-plane and b) out-of-plane around
a planar Lyapunov orbit and c) around a vertical Lyapunov orbit.

we focus on the families of quasi-periodic orbits around the (!1 point for V ∈ {0, 0.01, ..., 0.05}.

As it happens for the families of periodic orbits, see Ref. [19]for the halo family, families of quasi-periodic orbits

experience some change with the lightness number. In order to compare the families, we compute the intersections

between the families of Lissajous and quasi-halo orbits with the ecliptic plane for the lightness numbers considered at

comparable values of the Jacobi constant. For each lightness number, we obtain the Jacobi constant value �18 52 where

the planar Lyapunov family bifurcates into the halo family and compute the sections at the values �2 = �18 52 + Δ�2 ,

with Δ�2 ∈ {−1 · 10−5, 1 · 10−5, 2 · 10−5, 3 · 10−5}. Figure 17 depicts the results where the planar Lyapunov orbits are

represented with dashed lines and the vertical Lyapunov and halo orbits with black diamonds. Similar to the families

for V = 0.02, see Fig. 11, the planar Lyapunov orbits bound the quasi-periodic motion for all other lightness numbers.

Furthermore, the connection of the Lissajous families around planar and vertical Lyapunov orbits persists, see Fig. 17

for Δ�2 = −1 · 10−5. Again, for all lightness numbers considered, increasing the Jacobi constant gives rise to families

of quasi-halo orbits, which keep growing in size with increasing Δ�2 . When the quasi-halo orbits exist, the planar

Lyapunov orbits loose their central part and the connection between the families of Lissajous orbits around the planar

and vertical Lyapunov orbits is lost. The most noticeable difference is that the families move towards the Sun with

increasing lightness number and grow in size. Besides these differences, the families for the lightness number values

considered are qualitatively very similar.

E. Applications of solar-sail quasi-periodic orbits

By demonstrating the existence of solar-sail quasi-periodic orbits, the mission design space is significantly increased.

Compared to classical QPOs around the !1 point, these orbits are positioned ever closer to the Sun for increasing

lightness number (see Fig. 17). Positioning a solar observatory closer to the Sun than the !1 point can be leveraged

for increasing the warning times for solar storms [12]. The larger sizes of the orbits for increasing lightness number,

in particular the size in the out-of-plane direction, may prove beneficial for observing the high-latitudes of the Earth.

When comparing the solar-sail QPOs with purely periodic solar-sail orbits, benefits may again be found in the increased

design space, in particular in the flexibility in the launch and arrival conditions and satisfying mission requirements and
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Fig. 17 Intersections between Lissajous and quasi-halo families around (!1 with the ecliptic plane at different
values of Δ�2 and for different lightness numbers.

constraints. Additional benefits may arise from the increased stability of QPOs over periodic orbits, thereby reducing

station-keeping requirements and easing mission operations. Finally, and beyond the scope of mission design, solar-sail

QPOs may contribute to a deeper understanding of the celestial motion of natural objects with large area-to-mass ratios,

e.g., dust particles, and may therefore aid our understanding of the formation and evolution of our solar system.

VI. Conclusions
This Note investigated solar-sail periodic and quasi-periodic orbits around the displaced first, second and fifth

Lagrange points, denoted by (!1, (!2 and (!5, respectively. For the periodic orbits, it was found that, as it happens for

the halo family around (!1, the vertical Lyapunov family around (!2 also bifurcates into planar orbits for a lightness

number, V, close to 0.05. By deriving an extension of the method of invariant curves under stroboscopic maps from

the classical to the solar-sail case, solar-sail quasi-periodic orbits were demonstrated to exist around elliptic planar

and vertical Lyapunov orbits as well as around elliptic halo orbits for V ∈ {0.01, 0.02, 0.03, 0.04, 0.05}. Solar-sail

quasi-periodic motion around the (!1 and (!2 points is bounded by planar Lyapunov orbits as in the classical problem,

i.e., without a solar sail. Furthermore, for Jacobi constant values smaller than at the bifurcation of the planar Lyapunov

family into the halo family, the families of quasi-periodic orbits around planar and vertical Lyapunov orbits are connected,
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while halo or quasi-halo orbits do not exist. For larger values of the Jacobi constant, and as long as the planar Lyapunov

orbits do not have a central part, families of quasi-periodic orbits exist around vertical and halo orbits. When the planar

orbits regain their central part, different families of quasi-periodic orbits exist around planar and vertical Lyapunov orbits

as well as around halo orbits. Regarding the existence of families of solar-sail quasi-periodic orbits around the (!5

point, the planar and vertical Lyapunov orbits always have a central part and therefore they are always surrounded by

quasi-periodic motion. One type of solar-sail quasi-periodic orbit was found around the vertical orbits while two different

types of families were found around the planar orbits: in-plane and out-of-plane. Lastly, the study on the evolution of

families of quasi-periodic orbits around (!1 with the lightness number showed that the families are qualitatively very

similar. However, with increasing lightness number, the families are displaced towards the Sun and increase in size.

Through the use of the method of invariant curves under stroboscopic maps, the quasi-periodic orbits obtained in this

Note can be directly used in space mission design analyses as they can be explicitly set as departure or arrival invariant

objects.
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