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Abstract
This paper is a research in positive controllability and stabilizability for discrete-time

linear systems. Several conditions are given and explained for both single input as
multiple input systems. Also the connection between controllability and reachability

will be mentioned. Furthermore, a method for multiple input positive controllability is
analysed.
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List of symbols

Symbol Meaning

x(t) state in continuous-time systems at time t
ẋ derivative of the state
x(k) state in discrete-time systems at timestep k
u input
A (n× n) matrix
B (n×m) matrix
b (n× 1) matrix, for single input systems
Rn
+ positive part of the coordinate system

C the set of complex numbers
In n× n identity matrix

Table 1: List of symbols
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1
Introduction to system theory

For the reader to understand this report, some basic knowledge in mathematical system
theory is required. In this chapter basic system theory, stabilizability and controllability
will be explained. In the last section positive controllability is introduced.

1.1 Systems

To start with the definition of a system. As stated on the website (Cambridge Dictio-
nary), a system is

“A set of connected things or devices that operate together”

A system is dependent on its surroundings. The influence of the surroundings on the
system, is called the input. The other way around, the influence of the system on its
surroundings, is the output. The system creates a relationship between its input and
output. (Olsder et al., 2011)

Figure 1.1: System, source: (Olsder et al., 2011)
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In this report, we only look at linear systems, which are systems of the form

ẋ = Ax(t) +Bu(t) t ≥ 0 (1.1)

In the basis, most systems are not linear. That means that the equations the system
consists of, are not linear. When these equations are linearized, the system can be writ-
ten in the matrix form (1.1). (Olsder et al., 2011)

A system can be a continuous-time system, or a discrete-time system. In this report,
we only look at the linear discrete-time systems. These type of systems contain difference
equations and are of the form

x(k + 1) = Ax(k) +Bu(k) k = 0, 1, 2, . . . (1.2)

Any further mentions of a system in this report will be discrete-time systems.
The focus of this report is positive stabilizability and controllability, hence we first

consider stabilizability and controllability in general.

1.2 Stabilizability

Stabilizability is the ability to steer the system (1.2) to zero, with a control input that
can be defined over an infinite amount of time.

(Olsder et al., 2011) give the following equivalence with discrete-time system stabi-
lizability:

Consider the pair (A,B), where A is a real n×n matrix and B a real n×m
matrix of system (1.2). Then the following statements are equivalent:

1. The pair (A,B) is stabilizable

2. rank(zI −A,B) = n for all z ∈ C with |z| ≥ 1

3. rank(λI −A,B) = n for all eigenvalues λ of matrix A with |λ| ≥ 1

A discrete-time system is stable if the eigenvalues of the matrix A all lie in the open unit
disk.

Figure 1.2: The open unit disk
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1.3 Controllability

Controllability of a system is the ability to steer the system from any state to any other
state in finite time (Olsder et al., 2011). We define the following notation:
x(k, x(0), u) is the state x after k timesteps taken, started at x(0) = x0 under control
input u.
Then we find for controllability:

For all x0, x1 ∈ Rn there exists a time k > 0 and a sequence u := u(0), u(1), . . .
such that x(k, x0, u) = x1.

To find out if a system is controllable, one can look at the rank of the controllability
matrix. This matrix is defined as[

B AB A2B . . . An−1B
]

(1.3)

and will be used frequently in the rest of the report. Whenever the rank of matrix (1.3)
is equal to n, the system is controllable.
An equivalence of statements as given in the section of stabilizability, is given for con-
trollability:

Consider the pair (A,B) of system (1.2). Then the following statements are
equivalent

1. The pair (A,B) is controllable

2. rank(sI −A,B) = n for all s ∈ C
3. rank(λI −A,B) = n for all eigenvalues λ of matrix A

(Olsder et al., 2011)
Whenever a system is controllable, there exists a control input that steers the system

to stability, independent of the general stability of the system. That means with a certain
input sequence u, the state variables can be placed to an equilibrium. (Researchgate,
How stabilizability and controllability interconnect).

1.4 Positive control

This report will cover positive controllability and stabilizability. As the name suggests,
it puts a restriction on the control input u(k). For general controllability we have
u(k) ∈ Rm. This changes for positive controllability to u(k) ∈ Rm

+ , which in practice
means that every entry of u(k) belongs to the set [0,∞).
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2
Single input

In this chapter a single input system is discussed. That is, the dimension of matrix B is
n× 1 where with multiple input, the dimension is n×m for a positive integer m > 1.
For convenience, the notation of matrix B changes to b. In this chapter we will cover
the system

x(k + 1) = Ax(k) + bu(k)

x(k) ∈ Rn, u(k) ∈ R+
(2.1)

Any further mentions of a system in this chapter will refer system (2.1), unless oth-
erwise specified.

When we write out the solutions of x(k + 1), we find

x(1) = Ax(0) + bu(0)

x(2) = Ax(1) + bu(1)

= A(Ax(0) + bu(0)) + bu(1)

= A2x(0) +Abu(0) + bu(1)

...

(2.2)

Therefore we find the general solution of system (2.1)

x(k) = Akx(0) +

k−1∑
l=0

Albu(k − 1− l) (2.3)

2.1 Evans and Murthy

Evans and Murthy (1977) did research in single input positive controllability. For their
main results, we start with two lemma’s with proofs.
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Lemma 1 System (2.1) is completely controllable with u(k) ∈ [0,∞), k =
0, 1, . . . if and only if it is completely reachable with u(k) ∈ [0,∞), k =
0, 1, . . . .

Note that controllability is the ability to go from any starting state to another state in
finite time, and reachability is the ability to reach every arbitrary state starting from
the origin in finite time.

Lemma 2 If A, b satisfy the relationship

r∑
i=0

aiA
ib = 0 with ai > 0 i = 0, 1, . . . , r

then any vector x in the subspace V ⊆ Rn spanned by Aib, i = 0, 1, . . . , r
can be expressed as a linear combination of Aib, i = 0, 1, . . . , r with positive
coefficients. That is, for any x ∈ V there exist (nonunique) ci > 0, i =
0, 1, . . . , r such that

x =

r∑
i=0

ciA
ib

Where r is the sum of the algebraic multiplicities of the real eigenvalues of A. For ex-
ample, if A has only real eigenvalues {1, 2, 2, 3}, then r = 4. This is analogue to the sum
of dimensions of the Ji matrices in figure 2.1 which will be explained later.

Lemma 1 follows from the definitions of complete controllability and complete reach-
ability. Reachability is the ability to reach every state when started in the origin (Olsder
et al., 2011).

For lemma 2 we find all Aib are dependent with positive coefficients, since for ai > 0,∑r
i=0 aiA

ib = 0, i = 0, 1, . . . , r. Therefore, any negative coefficients can be turned
positive with the use of equation (2.4).

Akb = − 1

ak
(a1Ab+ · · ·+ ak−1A

k−1b+ ak+1A
k+1b+ · · ·+ arA

rb) (2.4)

Which means that for any x spanned by Aib, x can be expressed in a linear combination
of Aib with only positive coefficients. For example, let x = −Ab + A2b. Then x has a
negative coefficient in it’s representation. In the assumption that a1Ab+ · · ·+arArb = 0,
we write Ab = −a2

a1
A2b − · · · − ar

a1
Arb. All the coefficients are now negative. Therefore

we can write

x = −(−a2
a1
A2b− · · · − ar

a1
Arb) +A2b

= (
a2
a1
A2b+ · · ·+ ar

a1
Arb) +A2b

5



All coefficients are now positive.

With the knowledge of the two lemmas, the main result of (Evans and Murthy, 1977)
is given in a theorem.

Theorem The system (2.1) with u(k) ∈ [0,∞), k = 0, 1, . . . is completely
controllable on Rn if and only if

1. rank[b Ab . . .An−1b]= n

2. A has no real eigenvalues λ ≥ 0

The proof for this theorem is given in the article. The question considered in this
report is more about why this needs to hold. The first point is trivial. For positive
controllability to hold, we need at least controllability for u ∈ R. For controllability, we
need the rank of the controllability matrix to be equal to n. The proof of that is given
in (Olsder et al., 2011).
Therefore, we take a look at the second point. We seperate this statement into two
parts: one where A is diaganolizable and one where A is not diagonalizable.
Whenever A is diagonalizable, we can write A in a new form such that on the diagonal
the eigenvalues are shown. See figure 2.1. We can divide this matrix into 3 smaller

Figure 2.1: Diagonal matrix form of A, source: (Evans and Murthy, 1977)

matrices. A part with real eigenvalues, a part with complex eigenvalues with negative
real parts and a part with complex eigenvalues with positive real parts.
Every Ji, Di and Ei has only one eigenvalue repeating on it’s diagonal. The matrices
are of forms given in figure 2.2 where Gi > 0 and µi ≥ 0.
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Figure 2.2: Matrices Ji, Di and Ei, source: (Evans and Murthy, 1977)

Since the theorem only talks about λ ≥ 0, we consider the block with Ji matrices
only. Then the solution of the system is

x(k) = Akx(0) +
k−1∑
l=0

Albu(k − 1− l)

With A =

J1 . . .

Jr


Consider the sign of the last element of A. This is a real eigenvalue. Whenever we

take this eigenvalue positive, the sign of the last element of Alb is the same as the sign
of the last element of bp, see figure 2.3. Therefore, with a positive control input, the sign
of the control system is the same as the sign of the last element of bp. Hence, we find
with the solution that the sign of the state cannot be arbitrarily assigned with positive
control input.

Figure 2.3: Consider the last element of J i
pbp, source: (Evans and Murthy, 1977)

Whenever A is not diagonalizable, we can still write A in it’s Jordan canonical form.
This gives a matrix in the form shown in figure 2.4. Then we can use the same argument
as given above.
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Figure 2.4: Jordan canonical form, source: (Jordan matrix )

2.2 Leenheer and Nešić

In the article of (Leenheer and Nešić, 1998), positive stabilizability is the main focus. It
states:

Theorem System (2.1) is positively stabilizable if and only if

1. The pair (A, b) is stabilizable

2. A has no eigenvalues λ ≥ 1

The eigenvalues of A are in this theorem restricted to the open unit disk and the real
negative values. This is different from the eigenvalue restriction of (Evans and Murthy,
1977). In the next section we will look at this difference.

2.2.1 Eigenvalue restrictions

Evans and Murthy Leenheer and Nešić

Positive controllability Positive stabilizability

Rank(λI −A, b) = n for all eigenvalues λ of A Rank(λI −A, b) = n for all eigenvalues λ of A with λ ≥ 1
A has no real eigenvalues λ ≥ 0 A has no real eigenvalues λ ≥ 1

We separate the problem into a few parts.

Firstly, we look at the eigenvalues that lie in the open unit disk. These eigenvalues
are for discrete-time systems stable eigenvalues (Olsder et al., 2011). Hence all eigen-
values that are already in the open unit disk, are stable and therefore don’t need to be
controllable to go to zero. The system will stabilise itself in time.

Secondly, the unstable negative eigenvalues. That means the real eigenvalues that
are smaller or equal to 1 (λ ∈ (−∞,−1]). In the theorem of (Evans and Murthy, 1977),
we find that whenever A has a negative eigenvalue, it can still be positive controllable.
Therefore, the unstable negative eigenvalues are positively controllable and thus can be
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controlled to stability. Hence, (Leenheer and Nešić, 1998) allows the eigenvalues to be
negative.

Thirdly, the eigenvalues that are greater or equal to 1. These eigenvalues are not
stable. Therefore we want these eigenvalues to be controllable. However, they do not
satisfy the theorem of (Evans and Murthy, 1977) and therefore cannot be positive con-
trollable or positive stabilizable.

Lastly, the complex eigenvalues. This part can be divided again: eigenvalues with
negative real parts, purely imaginary eigenvalues and eigenvalues with positive real parts.
The idea centers around the characteristic equation. These three cases are all explained
in (Evans and Murthy, 1977) and will be left out of this report.

2.3 Nguyen

Another paper on controllability under restricted input is that of Nguyen (1986). It’s
main focus is on the set of states that are controllable to the origin in finite steps. The
system considered differs from (2.1). Here, we look at

x(k + 1) = Ax(k) + u(k) x(k) ∈ Rn u(k) ∈ Γ ⊂ Rn (2.5)

Where Γ is a convex subset of Rn containing zero.

Since (Nguyen, 1986) not only looks at u(k) ∈ Rn
+, there are some other theorems in

restricted control theory.

Theorem The system (A,Γ), with convex control set Γ satisfying 0 ∈ Γ, is
locally controllable if and only if the transpose matrix AT has neither real
eigenvectors, with positive eigenvalue supporting to Γ, nor complex eigen-
vectors, with nonzero complex eigenvalue orthogonal to Γ.

To simplify, we list it as follows:
The system (A,Γ) is locally controllable if and only if

1. AT has no real eigenvector with positive eigenvalues supporting to Γ

2. AT has no complex eigenvector with nonzero complex eigenvalue orthogonal to Γ

For the definition of local controllability and the proof of the theorem above, we
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define four sets.

Fk =
k−1∑
i=0

AiΓ

F =
∞⋃
k−1

Fk

Sk = {x ∈ Rn : −Akx ∈ Fk}

S =
∞⋃
k=1

Sk

(2.6)

Local controllability has the property that 0 belongs to the interior of S from (2.6). A
system is locally reachable if 0 belongs to the interior of F , where the interior of F will
be denoted as: int F .

The proof is divided into two cases. A case where zero is assumed to be an eigen-
value, and a case where zero is assumed not to be an eigenvalue. The first case, where
zero is an eigenvector, is explained in detail in the article (Nguyen, 1986). The second
case is explained further below.

We assume that zero is not an eigenvalue of AT . Then Ak is a nonsingular matrix
for all k = 1, 2, . . . . The proof then follows from a few equivalences.
Using the definition, the system is locally controllable if and only if there exists a neigh-
bourhood V (0) of the origin and an integer p, such that ApV (0) ⊂ Fp. Since Ap is
nonsingular, ApV (0) ⊂ Fp is equivalent to 0 ∈ int Fp. This is the property of local
reachability. For which there is another theorem:

Theorem The system (A,Γ), with convex set Γ satisfying 0 ∈ Γ, is locally
reachable if and only if the transpose matrix AT has neither real eigenvec-
tors, with nonnegative eigenvalue supporting Γ, nor complex eigenvectors
orthogonal to Γ.

Hence we find that the theorem of local reachability, implies the local controllability.
In short that is:

Local controllability⇔

∃V (0) and p such that ApV (0) ⊂ Fp⇔

0 ∈ int Fp⇔

Local reachability⇔

AT has neither real eigenvectors with nonnegative eigenvalue
supporting Γ nor complex eigenvectors orthogonal to Γ

10



3
Multiple input

The following chapter discusses multiple input systems. Where in the previous chapter
the dimension of the matrix B was restricted to n× 1, in this chapter the dimension
will be n×m, for n and m in N. The system covered in this chapter is:

x(k + 1) = Ax(k) +Bu(k)

x(k) ∈ Rn, u(k) ∈ Rm
+

(3.1)

In this chapter a description of the method of (Yoshida et al., 1994) to show positive
controllability will be explained.

3.1 Yoshida

The goal in the paper of (Yoshida et al., 1994) is to show a new method to proof positive
controllability. This method is about decomposing a system into smaller subsystems.
The test for positive controllability can be simplified, since the sizes of the subsystems
are smaller than that of the system given in (3.1). We can decompose the system (3.1)
into two subsystems

x0(k + 1) = A0x0(k) +B0u(k) (3.2)

xr(k + 1) = Arxr(k) +Bru(k) (3.3)

When both these systems are positive controllable, the system (3.1) is positive con-
trollable. That is since positive controllability is invariant under nonsingular state trans-
formations (Yoshida et al., 1994).

A0 is a nilpotent (n0 × n0) matrix. That means A0 has only 0 as eigenvalue and
Ap

0 = 0 for some integer p. Ar holds the remaining, nonzero, eigenvalues and is therefore
an invertible (nr × nr) matrix. Note that n = n0 + nr. Since A0 is nilpotent, system

11



(3.1) is positive controllable if and only if (3.3) is positive controllable. Proof of this
statement can be found in (Yoshida et al., 1994).

To determine whether a system is positive controllable or not, the following theorem
is stated:

Theorem System (3.3) is positive controllable if and only if there exist pos-
itive integers {N,h,K1,K2, . . . ,Kh} and positive scalars {cK1 , cK2 , . . . , cKh

}
which satisfy the following three conditions

1. cK1eK1 + cK2eK2 + · · ·+ cKh
eKh

= 0

2. 1 ≤ K1 < K2 < · · · < Kh ≤ Nm
3. rank[eK1 , eK2 , . . . , eKh

] = nr < h ≤ Nm

The proof of the theorem is given in the article. This is the first step in the method of
(Yoshida et al., 1994). The system (3.3) can be decomposed in smaller systems as well.

xt(k + 1) = Atxt(k) +Btu(k) (3.4)

xq(k + 1) = Aqxq(k) +Bqu(k) (3.5)

Where the eigenvalues of At are strictly negative or the imaginary part of the eigenvalue is
nonzero, and the eigenvalues of Aq are strictly positive. With this decomposition, we find
system (3.4) is positive controllable with similar reasoning as shown in section (2.2.1).
Therefore, (Yoshida et al., 1994) concludes the system (3.3) is positive controllable if
and only if

1. The system (3.5) is positive controllable

2. The rank of the controllability matrix of Ar is equal to nr

Thus the positive controllability of (3.3) depends on that of (3.5). To simplify even
further, we decompose (3.5) into more subsystems. Whenever (3.5) has Q distinct eigen-
values, we decompose the system into Q subsystems using jordan blocks. These systems
are of the form

xi(k + 1) = Aixi(k) +Biu(k) i = 1, 2, . . . , Q (3.6)

Aq =


A1 0 . . . . . .
0 A2 0 . . .

. . . . . .
. . . . . .

. . . . . . 0 AQ



Ai =


Ai1 0 . . . . . .
0 Ai2 0 . . .

. . . . . .
. . . . . .

. . . . . . 0 Air(i)


Aij = Jordan form for λi of order nij

12



Bq =
[
BT

1 , BT
2 , . . . , BT

Q

]T
Bi =

[
BT

i1, BT
i2, . . . , BT

ir(i)

]T
Bij =

[
bTnijij

, . . . , bT2ij , bT1ij

]T
i = 1, 2, . . . , Q

j = 1, 2, . . . , r(i)

Now, (3.5) is positive controllable if and only if (3.6) is positive controllable for all
i = 1, 2, . . . , Q.

With these decompositions, we get to the main result of (Yoshida et al., 1994). Define
the following system for any positive scalar λ and any positive integer F :

x∗(k + 1) = A∗x∗(k) +B∗u(k)

A∗ = λIF

B∗ =
[
ξ1, ξ2, . . . , ξm

] (3.7)

Then the main results are

Theorem The system (3.7) is positive controllable if and only if there exists
positive integers {h,K1,K2, . . . ,Kh} and positive scalars {cK1 , cK2 , . . . , cKh

}
which satisfies the following three conditions:

1. cK1ξK1 + cK2ξK2 + · · ·+ cKh
ξKh

= 0

2. 1 ≤ K1 < K2 < · · · < Kh ≤ m
3. rank[ξK1 , ξK2 , . . . , ξKh

] = F < h ≤ m

Theorem The system (3.5) is positive controllable if and only if the system
described by

S∗i : x∗i (k + 1) = A∗ix
∗
i (k) +B∗i u(k) (3.8)

where

A∗i = λiIr(i) (3.9)

B∗i =


b1i1
b1i2
. . .
b1ir(i)

 (3.10)

is positive controllable for each i = 1, 2, . . . , Q.

13



4
Example

In this chapter, we will show positive controllability of the example of (Yoshida et al.,
1994) with the theorem of (Heemels and Stoorvogel, 1998).

The article of (Yoshida et al., 1994) contains an example with the matrices A and B
defined as

A :=


0 0 0 0 0
0 −1 0 0 0
0 0 3 0 0
0 0 0 3 1
0 0 0 0 3

 B :=


2 1 0
1 2 3
1 −2 1
0 3 4
−1 0 2

 (4.1)

The multiple-input discrete-time systems described with the matrices of (4.1), is a pos-
itive controllable system. The steps using the method of (Yoshida et al., 1994) can be
found in the article itself. Here, we will apply another theorem stated in an article of
(Heemels and Stoorvogel, 1998).

(A,B) is positive controllable if and only if

1. (A,B) is controllable

2. All real eigenvectors v of AT corresponding to a positive eigenvalue
of AT have the property that BT v has at least one strictly positive
component

Note that eigenvectors are not unique. For every eigenvector v, −v is also an eigenvector
for the same eigenvalue. Therefore, BT v must also have at least one strictly negative
component.

14



First, we consider the controllability of (A, b) using the rank of the controllability
matrix

[
B AB A2B A3B A4B

]
. In this case, the controllability matrix is equal to:

2 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 3 −1 −2 −3 1 2 3 −1 −2 −3 1 2 3
1 −2 1 3 −6 3 9 −18 9 27 −54 27 81 −162 81
0 3 4 −1 9 14 −6 27 48 −27 81 162 −108 243 540
−1 0 2 −3 0 6 −9 0 18 −27 0 54 −81 0 162


Which can be converted to it’s row reduced echelon form:

1.0 0 0 0 0 3.0 −1.1 −2.0 6.4 −2.7 −3.9 23.0 −10.0 −14.0 68.0
0 1.0 0 0 0 −6.1 2.2 3.9 −13.0 5.5 7.9 −46.0 21.0 28.0 −140.0
0 0 1.0 0 0 3.1 −0.34 0.083 10.0 −2.2 0.17 33.0 −9.9 0.59 110.0
0 0 0 1.0 0 −0.93 3.1 0.71 −1.3 8.5 1.4 −3.7 24.0 5.0 −6.3
0 0 0 0 1.0 2.1 −0.91 1.7 4.9 −2.9 6.5 18.0 −12.0 18.0 58.0


From here we easily find that the rank is equal to 5, which implies that the system (A,B)
is controllable.

Now, the eigenvectors of AT corresponding to the positive eigenvalues of AT are

v1 =


0
0
1
0
0

 , v2 =


0
0
0
0
1

 (4.2)

For every eigenvector in (4.2), we check BT v:

BT v1 =

 1
−2
1

 , BT v2 =

−1
0
2

 (4.3)

Both have a strict positive and strict negative component, which satisfies the theorem.
Hence we can conclude the system described by (4.1) is positive controllable using the
theorem of (Heemels and Stoorvogel, 1998).
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5
Conclusion

The aim of this report was to find out what is now known about positive controllability
and stabilizability and to look at the reason why this holds. This research focused only
on discrete-time linear systems.

In chapter 2 single input systems were discussed. For this, mainly three articles were
used: (Evans and Murthy, 1977), (Leenheer and Nešić, 1998) and (Nguyen, 1986).
The eigenvalues of the matrix A became very important. For positive controllability, A
cannot have real eigenvalues greater or equal to zero. However, for positive stabilizabil-
ity, the eigenvalues are allowed to be in the open unit disk. Therefore A cannot have
eigenvalues greater or equal to one. The article (Nguyen, 1986) connected local positive
controllability to local reachability.

In chapter 3 a multiple input system was discussed. A lot less is known about the
positive controllability and stabilizability of these systems, and that is why it has been
limited to only (Yoshida et al., 1994).
The method of (Yoshida et al., 1994) depends on subsystems. Positive controllability
is invariant under nonsingular state transformations. The dimension of a subsystem is
smaller than that of the given system, therefore the test for positive controllability can
be simplified.
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6
Future research

This research has provided an overview of positive controllability and stabilizability.
However, there is a lot more to research.

To start, this research has only been done for discrete-time linear systems. It can be
extended with continuous-time systems. The difference in location of stable eigenvalues
will change the statements made in this report.

Next, the conclusion of (Evans and Murthy, 1977) ends with the following:

For multi-input systems it is conjectured that the result is similar to that in
(Brammer, 1972) for continuous time, but the development is not straight-
forward.

If we introduce Farkas’ lemma (Aardal, Iersel, and Janssen, 2019):

Let A ∈ Rm×n and b ∈ Rm. Then exactly one of the following two assertions
is true:

1. There exists an x ∈ Rn such that Ax = b and x ≥ 0.

2. There exists a y ∈ Rm such that AT y ≥ 0 and bT y < 0.

There can be a link between the problems described in this report and Farkas’ lemma,
together with the article (Brammer, 1972). Unfortunately, it has not been possible to
specify this research due to time limitations.
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