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summary

Federated learning allows a multitude of contributors to collaboratively build a deep learning model,
all while keeping their individual training data private from one another. However, it is not immune to
security flaws such as backdoor attacks in which malevolent adversaries manipulate the global model
to trigger specific behaviors.

In this paper, we investigate the impact of trigger intensity in backdoor attacks within the federated
learning setting. We challenge the conventional requirement of training and testing on the same trigger
intensity and propose a novel approach of training on a weak trigger and testing on a stronger trigger.
Our experiments demonstrate that this technique proves capable of enhancing backdoor attack perfor-
mance and robustness and might open the possibility for invisible backdoors during the testing phase.
The ability to customize trigger visibility empowers attackers to craft stealthier and more potent attacks,
making trigger detection challenging.

Our findings complement existing state-of-the-art attacks, providing attackers with greater options
to tailor their attack to their intended target. We discuss the implications of our research and high-
light the importance of developing effective defense mechanisms to counter backdoor vulnerabilities in
federated learning systems.

Overall, our study contributes to the advancement of backdoor attack understanding in FL and
provides valuable insights into trigger intensity as a critical factor for attack customization and resilience.
By exploring new avenues for stronger and more stealthy attacks, we contribute to the ongoing efforts
to safeguard Al systems’ privacy and reliability in real-world applications.
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Introduction

In various domains, including computer vision [48], audio processing [13], natural language compre-
hension [62], healthcare applications [16], and the Internet of Things [24], the application of machine
learning (ML) techniques has given substantial and positive societal impacts. As a subfield of Atrtificial
Intelligence (Al), ML has undergone exponential growth in response to the escalating demand for data.
The coming of Big Data technologies played a crucial role in meeting this need, enabling ML to reach
newer levels of sophistication and efficacy.

The rapid growth and expansion of Al and ML have brought forward multiple benefits. However,
this expansive growth has given rise to certain privacy concerns at the same time. In particular within
the classical framework of centralized learning. Within this paradigm, participants interface with a
central server to upload their data which is subsequently used for model training. Incidents involving
the manipulation and utilization of user data have highlighted the impact of these concerns, amplifying
discussions surrounding privacy and data security [20] [29].

More recently, Federated Learning (FL) has gained some attention as a proposed solution for the
rising privacy concerns that go along with the growth of Al [40] [73] [33]. The learning paradigm can
benefit from the variety and volume of data collected by the client devices while protecting their privacy
[25] [30]. Every round, a randomly selected group of participants receives the most recent global
model from the central server. These selected participants then conduct local training and send back
their updated local models to the server. The server aggregates these individual models to form the
new global model. This global model is subsequently redistributed among the participants for the next
round of training. The strength comes from the fact that FL has no accessibility to the local data and
training of participants by design to benefit from a variety of training data while maintaining participant
privacy.

This strength can also be the downside of FL. The local model updates uploaded by a client show
no transparency on what it has been trained on due to the distributed nature of FL participants. It is
therefore challenging for the FL server to confirm the robustness of the incoming models for aggregation.
Such a challenge offers a setting for security vulnerabilities. One of these vulnerabilities is backdoor
attacks. Backdoor attacks involve a malicious adversary corrupting the global model to ensure that the
new global model achieves high accuracy in both the main task and a backdoor task that is triggered
[4]. Let us take the example of a heart disease detector that is created by aggregating local models
trained in different hospitals. We want to create a system that helps detect heart diseases. This system
is built by aggregating information from different hospitals. Each hospital trains its own local detection
model, and each of these models is good at identifying heart conditions. However, one of the local
models has a hidden flaw. It has also been trained to recognize a malicious backdoor. A malicious
user poisoned the dataset by inserting triggers (such as a plus or a square) in certain input samples
from the dataset. The local model now trains on these samples and will misclassify a disease on input
samples that contain this trigger. When all these local models from each hospital are combined into
one global model for the entire system, the backdoor comes along with them. Now, if an attacker
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1.1. Problem with current backdoor attacks 2

shows a specific input sample to this global model that includes the trigger, the model will mistakenly
label a person as healthy, even if they have a heart problem. In extreme cases like this, it can lead
to life-threatening situations. Recent works have shown that backdoors can be placed in a federated
setting [4] [64] [75] [36] [21]. This is one of the many examples where backdoors can have disastrous
outcomes when successfully placed in FL systems once they roll out to a large number of sectors.

1.1. Problem with current backdoor attacks

The field of backdoor attacks in FL has witnessed significant advancements in recent years, with a
primary focus on developing techniques that strengthen the impact and stealthiness of the malicious
local model updates during the aggregation process [71] [4]. However, little attention has been given
to exploring the pixel values of triggers in backdoor attacks, as well as their inherent properties. In this
thesis, we address this research gap and shed light on how pixel values in backdoor attacks can be
exploited to strengthen backdoor attacks and make triggers hard to detect after aggregation.

A pixel value, short for "picture element value,” is a numerical representation of the color or intensity
of a single point in a digital image. In digital images, such as photographs or graphics, the visual
content is divided into tiny discrete units called pixels. Each pixel is assigned a specific numerical value
that corresponds to its color and brightness level. These values typically range from 0 (representing
black or no intensity) to 255 (representing white or full intensity) in grayscale images. In color images,
they consist of three or four channels (e.g., red, green, blue) with each channel having its own pixel
value to define the color and transparency of that pixel [79]. Thus, this thesis shall employ the term
trigger intensity to denote the pixel value associated with the backdoor trigger. Figure 1.1 shows some
examples of a poisoned image sample with different pixel intensities for its backdoor trigger.

As highlighted by [44], existing backdoor attacks for image classification often overlook the realistic
scenarios of trigger injections, where environmental factors like variations in lighting or atmospheric
conditions such as fog can influence the perceptibility of the trigger. In this thesis, we show that neural
networks exhibit poor generalization when the backdoor trigger is presented with weaker trigger inten-
sity compared to its training conditions. As current trigger injection functions only consider training and
testing a backdoor using the same trigger intensity, their backdoor performance becomes more depen-
dent on environmental factors. Our attack breaks the requirement of training and testing on the same
trigger intensity and instead, we show that testing a stronger trigger compared to what it was trained on,
enhances current attacks and makes them more resilient towards different environmental conditions.
Furthermore, our attack empowers the attacker with the ability to customize the trigger’s visibility, en-
abling the insertion of invisible backdoors. As there are currently very limited available defenses for
backdoors after aggregation [44], visual inspection remains the primary line of defense. However, if the
trigger intensity is low enough, making them difficult to detect through visual inspection alone, it allows
the attack to go undetected even after aggregation. These invisible backdoor attacks have already
proven their effectiveness in a centralized learning setting [37] [81]. Yet, this field of research has not
been explored in a federated setting.
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Original image Poisoned images

Figure 1.1: Visualization of poisoned image samples with various pixel intensities for the triggers. Original clean image (top
left); images poisoned with the square trigger (top); images poisoned with the SIG trigger (bottom)

1.2. Research questions

The aim of this research is to get a further understanding of the properties that go along with using
different trigger intensities in backdoor attacks in FL setting.

RQ: Can the pixel intensity of triggers be used to reinforce backdoor attacks?

In order to answer the main research question, it must be split up into sub-questions to make it easier
to tackle the problem.

RQ1.1: How does varying the pixel intensity of backdoor triggers affect the success rate of
backdoor attacks in FL systems?

First, we explore some of the adversarial metrics in the success of using varying pixel intensities. This
gives a better understanding of the threat and how it can be utilized by attackers.

RQ1.2: Do varying the pixel intensities of backdoor triggers allow invisible triggers to be
inserted?

The investigation into the impact of varying pixel intensity in backdoor triggers to create invisible back-
doors within FL represents a largely unexplored and open research domain. Additionally, the devel-
opment of effective defenses for post-aggregation backdoor detection remains limited. Consequently,
the insertion of an imperceptible backdoor into an FL system presents a challenge, as distinguishing
between a random error and a malicious outcome becomes formidable.

RQ2: What are the implications of using different trigger intensity levels on the robustness
of FL defenses against backdoor attacks?

To gain a more comprehensive understanding of the impact of varying pixel intensities, it is essen-
tial to incorporate state-of-the-art defense mechanisms into the analysis. This approach allows for a
thorough assessment of how the effectiveness of different pixel intensity variations interacts with and
is influenced by various contemporary defense strategies.

RQ3: What are the drawbacks of this and how can they be employed to provide defensive
measures?

Understanding the problems and weaknesses when using different pixel intensities as triggers in at-
tacks is crucial for finding and fixing these issues early. It's also important to see how we can use these
weaknesses to make our defenses stronger. This is especially true in FL systems, where keeping data
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private is one of the most important notions. By studying these topics, this research aims to help make
machine learning systems more secure.

1.3. Contributions
Our contributions can be summed up as follows:

» We challenge the conventional requirement of training and testing on the same trigger intensity by
demonstrating the efficacy of training on a weak trigger and testing on a stronger trigger through
extensive experimentation. This novel approach enhances the performance and robustness of
backdoor attacks. To the best of our knowledge, this paper is the first work studying the effects
of trigger intensities in FL.

» Our method provides attackers with the ability to customize the trigger specifically for their poi-
soned samples, allowing for a trade-off between performance and visibility. This customization
empowers the attacker to tailor the attack to their specific objectives.

» We introduce the PSNR, LPIPS, and SSIM metrics to evaluate the perceptibility of triggers in the
context of backdoor attacks in FL. By incorporating these metrics, we enhance the understanding
and assessment of trigger visibility.

» Our evaluations show that under the right settings, we can enhance current attacks. Our contri-
butions can be used complementary to new and SOTA works to craft stronger and more stealthy
attacks.

1.4. Thesis organization

This thesis will have the following structure; Chapter 2: Preliminaries Gather and present all the essen-
tial background information related to the research topic. Chapter 3: Literature Review Conduct a com-
prehensive review of the current literature and research relevant to the field, highlighting key findings
and trends. Chapter 4: Motivation Describe the problem environment and the gaps in current solutions
that motivate this research, providing context for the study. Chapter 5: Experimental Setup Explain the
experimental settings, including datasets, tools, and techniques used in the research. Chapter 6: Re-
sults and Discussion Present the research results and engage in a detailed discussion, analyzing the
findings in the context of the research objectives. Chapter 7: Limitations and Future Work Identify and
discuss the limitations of the current research and propose potential areas for future investigation and
improvement. Chapter 8: Conclusion Summarize the key findings of the study and provide a conclusive
overview of the research, emphasizing its significance and potential impact.



Preliminaries

In this section, we discuss some of the core concepts that are crucial to understanding the thesis. It
covers an introduction to FL as well as backdoor attacks.

2.1. Machine learning

Machine learning (ML) is a subset of artificial intelligence that involves training algorithms to learn
patterns and make predictions or decisions based on data, without explicit programming. It can be
used for a wide variety of tasks including computer vision [48], audio processing [13], natural language
processing [62], and more. The main focus of this thesis is on computer vision tasks, which include
visual data interpretation and recognition. These tasks include object detection, image segmentation,
and image classification.

2.1.1. Neural Networks

A Neural Network (NN) is a fundamental component in ML and forms a type of algorithm used to
recognize patterns and make predictions on data. A NN is a computational model modeled after the
human brain. Itis constructed of linked synthetic neurons arranged in layers, including an input layer for
receiving data, hidden layers for identifying patterns and relationships, and an output layer for making
predictions. Data is fed into the input layer, and its flow is controlled by weighted connections and
activation functions. As data passes through the hidden layers, the network learns to identify complex
patterns and features. Activation functions are applied to a neuron’s inputs to introduce non-linearity
[23]. This non-linearity is introduced in order to capture non-linear relations, making it more capable of
creating complex models. The NN uses a technique called backpropagation during training to update
its neurons. The network modifies connection weights while minimizing a loss function. It does so by
iterative weight updates utilizing optimization algorithms like gradient descent. This process helps the
network learn and generalize from training data, making it capable of making accurate predictions or
classifications when presented with new data during testing [1].

2.1.2. Activation functions

As stated above, the activation function’s main purpose is to introduce non-linearity in the relationship
between the output of a node and the input of another node [63]. Activation functions enable NNs to
learn and approximate complex functions. In this thesis, the focus is only on two activation functions:

The ReLu function takes any input value if itis positive, ReLU returns the same value; if it is negative,
ReLU returns zero. This form of non-linearity in the network enables it to learn complex patterns in
data and helps speed up training by mitigating the vanishing gradient problem [63] where the gradients
become too small causing the network to learn slowly. Given input z, it is expressed as follows:

Relu(z) = max(0, 2) (2.1)

The Softmax function is generally only used on the output layer. The output vector of the NN is
normalized using this function. Each element of the resulting vector represents the likelihood of the

5



2.1. Machine learning 6

relevant class. The network’s forecast is the class with the highest probability in this final vector [60].
It can be expressed mathematically as follows:
o(z) = ——— fori=12,...,K 2.2)
Zj:l €%

2.1.3. Stochastic Gradient Descent

A NN can be trained using a variety of optimization techniques. In ML, the optimization technique
known as stochastic gradient descent (SGD) is widely employed to find the minimum of a loss function.
Because it uses a random sample of data (sometimes called a mini-batch) rather than the entire batch
to compute the gradient of the loss function at each iteration, it is referred to as stochastic. In [1]. SGD
can be used for large datasets that cannot fit in memory because it only needs to process a small batch
of data at a time. It is also computationally efficient because it only requires a small batch of data, as
opposed to the entire dataset, to compute the gradient [11].

The SGD algorithm operates iteratively, making small updates to the model weights at each iteration
to try to minimize the loss function. At each iteration, it performs the following steps:

1. Select a mini-batch (subset) of data from the training set.
2. Compute the gradient of the loss function with respect to the model weights using the mini-batch.

3. Update the model weights by taking a step in the opposite direction of the gradient. The size of
the step is controlled by a hyperparameter called the learning rate.

The SGD algorithm keeps going through these steps, until the loss function is minimized to a desirable
level or a predetermined number of iterations has been reached, The experiments in this thesis will
utilize SGD their optimization algorithm.

Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a NN that specializes in image and video data. It comprises
multiple layers, including convolutional, pooling, and fully connected layers. The convolutional layer
detects patterns and features in the input data. It operates by running the input image through several
tiny filters (also known as kernels). These filters slide over the image, performing a mathematical
operation called convolution. Each filter recognizes various characteristics, such as edges, textures,
or forms. The filters produce feature maps that emphasize the locations of various features as they
move across the image. The pooling layer then shrinks the size of this feature map while maintaining
the most crucial data to improve efficiency. Next, the features pass through the fully connected layer
which performs traditional NN operations. At last, The final layer of a CNN is the output layer, which
provides the network’s predictions [60]. An image is essentially a grid of values, where each pixel value
represents its brightness or ’activation’ level, with an additional dimension for color channels. Every
feature map in a CNN concentrates on a particular area of the image as the human brain does. Deeper
layers focus on recognizing more complex patterns, like faces or objects, whereas the surface layers
are designed to recognize simple structures like lines or curves. [45]. A schematic version of a CNN is
shown in Fig 2.1.

. Fully Connected
Convolutional

Pooling ____-—--—- O\\\\\ Output
—_ AN \\\
O‘S\\\*\‘:\‘X—j‘
Pl *i\
| o O<%70
T O“//// =0
N O’/// -

Feature Extraction Classification

Figure 2.1: Visualization of a typical CNN architecture
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2.2. Federated Learning

Federated Learning (FL) is a ML technique [40] that allows a model to be trained on decentralized data,
where the data is distributed across multiple participants (e.g., mobile devices, laptops) instead of being
centralized on a single server. It makes it possible to train the model without having to centralize the
data. This can be advantageous when sharing the data is prohibited due to security or privacy issues.
In FL, itis taken for granted that any client can access their own dataset. This may suggest that the data
for participants might not be uniformly distributed and do not follow the same statistical characteristics
across different subsets or categories [14]. As a result, local models might overfit or deviate from
the combined global model, and show poor accuracy. To create a better joint model, local models are
averaged to balance out their individual contributions [4]. Learning continues after the model converges.
Every round, FL models choose a fresh group of participants. This ensures that the model is adaptable
to changes in the data. Fig 2.2 shows a visual representation of FL.

Combine models

Figure 2.2: Schematic representation of a typical FL setup. 1. Each local user trains a local model. 2. The local models are
sent to the central server. 3. The local models are aggregated to create one global model containing all the information from
the local models combined. 4. The resulting global model is returned to each local user

The most common implementation of FL is FedAvg [40]. Initially in FedAvg, a global model is
initialized on a central server. Participating participants then independently train the model on their
local data. This is done in order to prevent privacy intrusion. The central server receives local model
updates from the participants and aggregates them using straightforward averaging to produce the
updated global model. This procedure repeats itself several times. Algorithm 1 shows the algorithm of
FedAvg.

Algorithm 1 Federated Averaging (FedAvg) Algorithm

1: Initialize a global model 6° on the central server
2: Set hyperparameters: learning rate », number of communication rounds R
3 forr=1,2,...,7T do

4;:  for each client k in the federated network do

5: Download global model 87! from the central server

6: Train a local model Lj on client C’s local data using 6;
7: Compute model update AL} = Ly — "1

8: Upload AL, to the central server

9: end for

10:  Compute the new global model: ¢7+! = §7 + 25" (Lr+! —¢7)
11:  Send 6"*! to all participants

12: end for




2.2. Federated Learning 8

An instance of the use of FL can be seen in GBoard by Google [41]. Google’s virtual keyboard
software, Gboard, uses FL to improve its word prediction and autocorrect capabilities whilst putting a
lot of importance on user privacy. This method avoids the need to send raw user data to a central server
by having each user’s device locally build a customized ML model based on their typing history and
behavior [41]. On participants’ devices, model updates are periodically generated and contain details
on the performance of the model without revealing user input. After that, Google’s servers combine
these changes to enhance the global model that powers Gboard’s autocorrect and prediction features.

2.2.1. Horizontal vs Vertical FL

FL can be divided into horizontal FL and vertical FL depending on how data features and samples
are distributed among participants. When working with numerous participants holding distinct data
instances from the same feature space, horizontal FL is used [57]. This includes people who share the
same kinds of data. For instance hospital records of all patients who all have the same data attributes
(like age, weight, height, etc.). Vertical FL [69], concentrates on participants that have unique subsets
of characteristics from the same collection of instances. This makes it appropriate for situations where
customers have complementary data. An example would be merging patient demographics with test
results from a medical examination where some patients have data on their weight whereas others have
data on their height. Vertical FL collaborates by sharing specific features to improve model performance
and horizontal FL commonly shares model updates to train a global model while maintaining data
privacy. Fig 2.3 visually shows the difference between horizontal and vertical FL. In this thesis, the
focus is on horizontal FL.

! 1
1

Dataset B Dataset B :

1 1

8 g VT

g— Horizontal FL g' : E I

3 3 | 5
L . 32 : Labels

| 1

Dataset A Laieels : 1 DatasetA
1
1 M
Features Features

Figure 2.3: Horizontal vs Vertical FL

2.2.2. IID and Non-IID distribution

As each user has its own dataset, the distribution of this data is important as it might fundamentally influ-
ence the resulting model. In an Independent and Identically Distributed (IID) data distribution scenario,
it is assumed that data samples across different participants or participants are independent of each
other. This means that the presence or absence of a particular data point in one participant’s dataset
does not rely on the presence or absence of that same data point in another participant’s dataset [15].
The samples of data are also thought to be identically distributed, which means that the statistical prop-
erties of the data hold true for each participant. Every participant’'s dataset is essentially treated as
a sample taken at random from the same underlying data distribution. For instance, let us take the
case of participants sharing handwritten digit data. An IID setup assumes that the distribution of digits
is homogeneous across all participants and that each participant’s dataset comprises a random and
representative mix of all possible digits.

On the other hand, a Non-Independent and Non-ldentically Distributed (non-1ID) data distribution
suggests that participant-level data samples are not always independent of one another. This suggests
that the independence principle is violated because there can be correlations or dependencies between
data samples in various participants’ datasets [15]. Additionally, the data distributions across partici-
pants can significantly vary. Each participant’s dataset may exhibit a particular statistical distribution.
This implies that the characteristics of the data, such as the types of data or their frequency, can differ
widely between participants [15]. For instance, some participants might have specialized datasets, with
one primarily containing even digits and another focusing on odd digits. The non-identically distributed
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nature of the data introduces complexity to FL. Models must adapt to diverse data characteristics, mak-
ing it more challenging. Figure 2.4 gives a visual display of what IID and non-IID distributions would
look like. The participants with the 11D distribution have a similar data distribution if we look at the data
points they have in their dataset. On the other hand, The participants with the non-1ID distribution do not
share the same or a similar distribution but instead have completely different data points. In practice,
data in FL settings can often be non-IID due to variations in data sources, participant characteristics,
and data collection methods [40].

IID distribution Non-IID distribution

l |
Rl =ER2
E2EE | PMEE

Figure 2.4: IID vs non-1ID distribution. (Left) In an 1ID setting, participants show comparable class distributions. (Right) In a
non-1ID setting, participants may diverge significantly in their class distributions

2.3. Backdoor Attacks

The emergence of FL did bring its solution but its decentralized design also brought new threats and
challenges. One of the challenges faced is the threat of backdoor attacks. In a backdoor attack, a
malicious participant (or participants) aims to compromise the integrity of the global model by injecting
a "backdoor” pattern into their local training data. These poisoned updates seem harmless to the server,
but when the global model includes them, they can cause harmful behavior during testing. This creates
a serious security problem, as it enables the attacker to alter or influence the model’s outputs for specific
inputs. The attacker wants to maintain high accuracy for the primary objective while simultaneously
achieving good backdoor accuracy. As a result, a successful backdoor attack that does not appear
suspicious is launched. Mathematically, backdoor attacks can be described as follows: Let there be
two datasets D. and D, that contain the clean images and images to be poisoned respectively. For
each image sample z, z € D and their respective label y. We denote the poisoned image label as y*.
Then let there be a trigger generation function 7 where 7 : X «+ X'. £ denotes the loss function.

0" = min S Ll@iy)+ D Lz + T A),y;) (2.3)

z, €D, r;€D,

Having established the fundamental concepts underlying backdoor attacks, these attacks can be
categorized into two distinct groups: data poisoning attacks and model poisoning attacks.

2.3.1. Data Poisoning

A data poisoning attack aims to harm the model’s performance during training and testing by inserting
deceptive triggers or other manipulations into the training dataset [44]. The model, however, remains
unaltered by the attacker. The injected data may be slightly manipulated to cause the model to generate
inaccurate predictions or to behave according to the attackers’ wants. Compared to a model poisoning
assault, this form of attack necessitates fewer assumptions because the attacker typically just needs
access to the data, which is already given in FL [14].
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2.3.2. Model Poisoning

In a model poisoning attack, a malicious participant also aims to manipulate the global model’s perfor-
mance by injecting poisoned data during training [44] just like a data poisoning attack. However, unlike
data poisoning attacks where hidden patterns are inserted, model poisoning attacks involve stronger
adversarial assumptions where the attacker possesses the capability to manipulate the weights of the
model they intend to submit for aggregation. The attacker can also modify the hyperparameters that
are defined during the training process. In return, the attacker has major influence over the model that
will be submitted. By being able to optimize the model for its own objectives, the attacker has a lot of
control over the shape and magnitude of the submitted model. In this thesis, we focus on a data poi-
soning attack. We do not allow the attacker to alter the hyperparameters or the changes of the updates
submitted by the attacker.

2.3.3. Measuring success

In this section, we explore the essential metrics that quantify the effectiveness of a backdoor attack.
They measure the effectiveness of backdoor attacks in a wide variety of fields. This is important as a
backdoor attack has many dimensions that determine its success.

Backdoor Task Accuracy

The Backdoor Task Accuracy (BA) assesses how well the model picks up on a hidden pattern or ma-
liciously inserted trigger in the training set. The BA calculates the proportion of correctly categorized
cases to all instances in this task, acting as a crucial metric for determining the effectiveness of the
attack [71]. A high BA signifies that the model has been manipulated to behave as desired when en-
countering the trigger. As an example, let there be a dataset that only contained poisoned data samples.
A BA of 75% indicates that the model successfully managed to classify 75% of all these samples to the
right class. In this case, the right class is the desired label of the backdoor task. Equation 2.4 gives a
mathematical expression of the BA:

BA= Y fol@:) =yi (2.4)

T,€DP ‘Dpl

Where f, is the global model and f is its evaluation function. D? is the poisoned dataset and 7 is a
poisoned data sample where Z € DP. y* is the desired backdoor label of the backdoor task.

Main Task Accuracy

The Main Task Accuracy (MA) is the accuracy of the primary or legitimate task that the FL model is
intended to perform. In the context of backdoor attacks, the main task accuracy in FL analyzes how well
the ML model performs on its primary or intended job. This is supposed to be unaffected by the backdoor
attack. It assesses how well the model categorizes or forecasts data in the absence of the attacker-
introduced malicious pattern or hidden trigger. The model’s capacity to maintain its original functionality
and generalization despite the inclusion of the backdoor is measured by accuracy in percentages [4].
A high Main Task Accuracy indicates that the model can still perform well on legitimate tasks, even if
the model might have been successfully poisoned by the adversary. Conversely, a significant drop in
Main Task Accuracy would signal that the backdoor attack has compromised the model. This would
give it away and make the attack unsuccessful.

MA= Y fol@ |Dj Ji (2.5)

r,€D°

Where fy is the global model and f is its evaluation function. D¢ is the benign dataset and x is a
clean data sample where = € D¢. y* is the correct label of the benign image sample.

Distance of the update

The distance of an incoming local model update refers to a measure of dissimilarity or similarity between
the local model update sent by a participating client. For instance, let us assume there is an attacker
that inserts malicious samples in its dataset as part of a backdoor task. As a result, it can dramatically
change the update that the attacker will send in comparison to the incoming updates from benign
participants. The update will look very anomalous and defenders will have little trouble in figuring out
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that the update is malicious. There are different metrics to calculate the distance of incoming updates.
In the section below, some commonly used distance metrics are discussed that will also be incorporated
into this thesis. The reason for this incorporation is that they are some of the most commonly used
metrics in FL clustering defenses [9] [18] [51].

First, there is the cosine distance [53] [9]. The cosine distance is a measure of similarity between
two vectors in a multi-dimensional space. It calculates the cosine of the angle between these vectors,
and the result ranges from -1 (perfectly dissimilar) to 1 (perfectly similar). The usefulness of the cosine
distance is when a malicious update is submitted. Often, it displays a larger distance compared to
the rest of the benign updates due to variations in training data. The cosine distance highlights this
anomaly when it displays a higher cosine distance than the rest of the submitted updates [53], making
it easier to pick the malicious update out of the benign updates. Assume x and y are two individual
updates with dimensionality n. The cosine distance is then defined as:

i (@i v) (2.6)
The second distance metric is the Euclidean distance. The Euclidean distance is used to measure
the straight-line distance between two points in multi-dimensional space. It calculates the length of the
shortest path connecting these points. The Euclidean distance is especially useful when the attacker
has scaled its update in order to create a stronger attack. As a result of this scaling, the Euclidean
distance is significantly larger compared to a non-scaled update, making it easier to reject malicious
updates. It is formally formulated as:

Cosine Distance =1 —

Euclidean Distance = (2.7)

Durability

The durability of a backdoor attack refers to the ability of the malicious backdoor or trigger to remain
effective and undetected over an extended period of time or across various scenarios. It is an impor-
tant metric in FL security, indicating the duration during which a maliciously injected pattern or trigger
remains effective and undetected within a model [80]. An attack gets stronger the longer it lasts be-
cause the FL system finds it difficult to remove the malicious updates through aggregation. To give
an example, imagine a traffic sign classification model that is being trained using FL. Now assume a
successful backdoor is inserted and as a result gives false results. When the durability of this back-
door is limited, the impact is contained. As a result, the harm done remains relatively minor. However,
imagine a scenario where the backdoor persists in the model for an extended duration. In such cases,
the backdoor’s persistence in the model gives it more potential for harm over time. Because of this,
it is essential to consider an attack’s ability to persist within the system in the context of security and
protection measures because it may increase its potential for harm.

To evaluate the durability of backdoors inserted by different attacks the lifespan metric was intro-
duced by [80]. It tracks the maximum amount of rounds the backdoor lasts until the BA goes below a
certain threshold. Formally, it can be defined as let ¢ be the epoch index, enumerated starting from the
first epoch where the attacker is not present, and let be some threshold accuracy. Then the lifespan
[ is the index of the first epoch where the accuracy of the model 6 on the poisoned dataset D drops
below the threshold accuracy, as determined by some accuracy function «a:

I = max{t|a(b;, D)} > K (2.8)

Natural stealthiness

The natural stealthiness of a backdoor refers to the inherent ability of a backdoor or trigger to remain
inconspicuous or undetectable during the testing phase of the model [44]. It quantifies how effectively
the backdoor remains hidden when deployed, with higher values indicating a greater level of natural
stealthiness. The natural stealthiness assesses how invisible the backdoor trigger is in its sample
images. When a trigger is extremely evident in poisoned samples, detecting the presence of a backdoor
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becomes straightforward as it is easily caught by the eye. However, when the trigger is discreetly
embedded, its invisibility complicates the distinction between unintentional model misclassifications
and intentional incorrect decisions resulting from the backdoor during testing. This will help the impact
of backdoor attacks as they are harder to find during the testing phase, enabling longer-lasting and
more impactful attacks. Moreover, it dissolves trust in the FL system, as participants may perceive it
as unreliable.

To assess the visibility of differences between two images, it is essential to employ a suitable metric.
Currently, there is no standard metric used for the visibility of triggers in FL. Therefore, in this study,
we propose to utilize the Peak Signal-to-Noise Ratio (PSNR), Structural similarity index (SSIM) and the
Learned Perceptual Image Patch Similarity (LPIPS). These metrics are a robust and widely recognized-
[27] measure for quantifying the visibility of differences between two images. By leveraging these well-
established metrics, we aim to provide a comprehensive evaluation of the visibility of triggers in FL
scenarios.

PSNR provides a quantitative measure of the similarity between two images by evaluating the ratio
of the peak signal power to the mean squared error between the images. The higher the PSNR value,
the more similar the images are considered. PSNR possesses several features that make it effective for
measuring visibility differences. First, it accounts for both global and local variations in image content.
Thus, enabling a comprehensive assessment of the dissimilarities. Second, it operates in the domain
of pixel intensities, making it compatible with various image formats and applicable to both grayscale
and color images. Furthermore, PSNR is widely accepted and widely used, making it easier to compare
and interpret results across different studies. Mathematically, the PSNR is calculated by:

MAX (D)
VMSE, ;

Where M AX (D) is the maximum pixel value of dataset D and MSE, ; is the mean squared loss
between the two image samples x and z.

PSNR =20 xlog,, (2.9)

Secondly, the SSIM metric [50] takes into account luminance, contrast, and structure, mimicking
aspects of human visual perception. It measures the similarity in local patterns of pixel intensities and
returns a value between -1 and 1, with 1 indicating perfect similarity. Unlike PSNR, which primarily
focuses on pixel-wise differences, SSIM evaluates image quality by considering how well the structure
and texture of the images match. For that reason, it is known as a more sophisticated metric when
comparing images. Given two input samples z and y, u, and p, are its means respectively, o, and
o, are its standard deviations, o, is the covariance between z and y and C'; and C, are constants
added for numerical stability and to prevent division by zero. The formula for the SSIM can be given
as follows:

(2/%/@ +Cy) + (2‘70011 + Cy)
(12 + g+ Cr)(0F + 03 + C)
Given two input samples = and y, u, and p, are its means respectively, o, and o, are its standard

deviations, o, is the covariance between z and y and C; and C, are constants added for numerical
stability and to prevent division by zero.

SSIM(z,y) = (2.10)

The LPIPS [78] metric is a perceptual similarity metric used to assess the dissimilarity between
two images from the perspective of human visual perception. Unlike SSIM and PSNR, which focus on
pixel-wise differences, LPIPS leverages deep NNs that are typically pre-trained on large-scale image
datasets to extract high-level visual features from images. The perceptual separation between these
features is then calculated, taking structure, texture, and color into account. With this method, LPIPS
may catch changes between images that are more subtle and complex making it more similar to human
perception. As a result, LPIPS frequently offers more precise evaluations of picture quality and similarity,
especially when assessing photos that might have been altered.
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Robustness

We define the robustness of a backdoor attack in FL as its ability to withstand a multitude of defensive
measures. Due to the evolving landscape of FL, the emergence of backdoor attacks has sparked
a parallel development in defensive strategies and countermeasures [43] [51] [52]. These defenses
aim to secure the integrity and privacy of FL systems against malicious attackers. This highlights the
importance of evaluating not only the efficacy of a backdoor attack but also its resilience in the face of
these countermeasures. In essence, evaluating a backdoor attack’s effectiveness involves more than
just determining if it was initially successful in tricking the FL process. It also calls for experiments on
the attack’s resilience against a multitude of defenses that employ a wide range of possible techniques.
In section 5.5, the defenses employed in this thesis are discussed.



Literature review

This chapter delves into the existing literature that forms the foundation of this research. It gives an
overview of the current state-of-the-art and within the context, we identify a critical research gap that
serves as the focal point of our study.

3.1. Federated Learning

The most common FL system in use is FedAvg. FedAvg [40] starts by initializing a global model and
the weights of the model are broadcast to all of the participants. Each client C then trains a local model
L*+1 using SGD on its own data whilst using the weights of the global model §* as the starting point.
Once the local model is trained, the client sends the updated local model back to the server. The server
then aggregates the weights of all of the local models to create the updated global model. This process
is repeated for a specified to an infinite number of rounds. Fig 3.1 shows the mathematical expression
for the newly computed global model in FedAvg.

C
r4+1 _ pr n r+1 T
0+ =6 + nkZ:l(Lk 67) (3.1)
Whilst this method is very easy and intuitive, new works have been published that tackle a number
of challenges commonly seen in FL. These include Aggregation optimization, addressing heteroge-
neousity, and ensuring fairness. The section below covers what they each mean and what recent
advancements have brought forward in each of the fields.

Aggregation optimization

Aggregation optimization refers to the process of improving the way local model updates from par-
ticipating participants are combined or aggregated at the central server. The intention is to improve
the FL process’s general effectiveness and efficacy. These aggregate optimization strategies seek
to accomplish a variety of goals, including lowering communication costs, protecting privacy, and im-
proving model precision [44]. One such optimizer is FedOPT. FedOPT as proposed by [49], enables
a federated setting to generalize the server optimization process to already existing optimizers such
as Adagrad, Adam, and Yogi. They showed that the use of adaptive optimizers can significantly im-
prove the performance of FL. Next, a limitation of FedAvg is its coordinate-wise weight averaging. It
can negatively impact the averaged model’s performance and increase communication overhead. This
challenge arises from the permutation invariance of neural network parameters, where various param-
eter orderings can exist for the same neural network. As a response, PFNM [76] was developed. A
Bayesian non-parametric framework for FL with neural networks. It tackles this issue by aligning the
neurons of client neural networks before performing the averaging process. [56] offer a layer-wise
model fusion approach for neural networks that, prior to averaging the parameters associated with the
associated neurons, (soft-) aligns the neurons across the models using optimal transport.

14



3.1. Federated Learning 15

Heterogeneous

Most FL systems contain some level of heterogeneity. This results from differences in data, devices,
and data types between entities. It is known as a difficult problem and the development of a unified
global model that works on all data and devices may be stopped by these discrepancies. For instance,
consider an loT FL scenario where various smart devices. These can include smartphones, wearables,
and home appliances. They all participate in training a global model for a smart home system. These
devices exhibit significant heterogeneity from their inherent differences. As an example, one device
has significantly more computation power than the other device. As a result, the former can train
difficult and complex models whereas the latter is only able to train simple models. Model training and
performance are further complicated by variations in device capabilities and class imbalances. As a
result, new solutions have been created and are continuously being created [35].

One of these advancements includes FedCurv [55], designed to handle catastrophic forgetting when
training on non-iid data and is based on lifetime learning methods. Catastrophic forgetting can occur
when the model learns task 1 and then proceeds to learn task 2 however, in doing so it forgets task 1.
FedProx tackles the problem of stabilizing training with non-iid data. They do so by generalizing and
re-parametrization FedAvg [34]. Itis not only the data that can be heterogeneous but the models can be
heterogeneous as well. As a solution, HeteroFL was proposed [17]. It addresses heterogeneous partic-
ipants equipped with highly different computation and communication capabilities. The aggregation is
achieved by aggregating parameters on the same location while unlearning the other non-overlapping
area.

Fairness

The FL training process as a whole, including client selection, model optimization, incentive distribution,
and contribution evaluation, is vulnerable to the fairness problem. Due to the unfairness, both FL par-
ticipants and FL servers might suffer. participants might be prevented from enrolling in FL training, and
servers might be less likely to lure participants who have the potential to be of high grade. Federated
Dropout [66] was proposed in order to distribute sub-models with sizes suitable for each client based
on their computational resources. It uses dropout procedures and treats neural networks as black-box
functions, but it greatly reduces communication and local computation costs.

Adaptive Federated Dropout was introduced as a response to this challenge [42]. An activation
score map is kept up to date by Adaptive Federated Dropout to customize sub-models for each client.
Federated Dropout and Adaptive Federated Dropout both guarantee that participants with inferior capa-
bilities are included in FL training, but neither of them provides tailored trimmed sub-models for specific
participants. In response to this limitation, Ordered Dropout [28] extended Federated Dropout. Or-
dered Dropout, in contrast to Federated Dropout, dumps just nearby model elements rather than all of
them at once. participants with comparable computational capabilities are grouped into clusters, and
participants within a cluster drop out at the same pace.

Data poisoning Model poisoning
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Figure 3.1: Difference between data poisoning attack and model poisoning attack. 1: The data is being poisoned. 2: The user
trains a model based on its data. 3: The server sends the trained local model to the central server. As seen, data poisoning
attacks are strictly performed in the way the data is being poisoned. Whereas, model poisoning attacks focus on manipulations
during training time or after training the local model before sending it for aggregation.
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3.2. Backdoor attacks

Recent work on backdoor attacks can be split into two different categories; Data poisoning attacks and
model poisoning attacks. Model poisoning primarily focuses on altering the local model itself by chang-
ing the parameters and gradients during the model aggregation process. For instance, an attacker can
boost the gradients that influence the backdoor task the most in order to retain a stronger backdoor after
aggregation. On the other hand, data poisoning techniques target the training data itself. The samples
used by the attacker, while appearing legitimate, carry subtle manipulations designed to introduce the
backdoor in the global model. Data poisoning emphasizes the influence of model training rather than
the model’s architecture. A schematic overview of their distinction is shown in figure 3.1.

In light of the distinct characteristics of each attack, we have chosen to categorize them into various
groupings and subgroups. This approach aids in gaining insights into the prevailing research directions

and the specific areas of emphasis within the field, allowing for a better understanding of prior research.
An overview of this is found in figure 3.2

.
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[— Artificial Trigger [l Distributed-trigger: [72]
; Coordinated-trigger: [21]
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Figure 3.2: Overview and categorization of the latest backdoor attacks

3.2.1. Data poisoning

In the realm of data poisoning attacks, the attacks can be split up into two different categories; Semantic
backdoor attacks and artificial backdoor attacks. Fig 3.3 visualizes the difference between artificial and
semantic backdoors.
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Figure 3.3: Visualization of semantic and artificial backdoors. From left to right: (1) Green cars used in the original dataset to
use them as backdoor samples. (2) Planes of Southwest Airlines were used as backdoor samples but were not originally in the
dataset. (3) Noise-created samples. (4) Each user has a consistent single trigger. (5) Global trigger split among many
participants. (6) Strategic distribution and optimization of a global trigger among participants to enhance backdoor attack
performance

Semantic backdoor attacks

In semantic backdoor attacks, malevolent actors manipulate the labels of genuine data obtained from
compromised participants. They employ diverse methods to choose particular legitimate samples for
manipulation. Often they target samples closely aligned with the benign data distribution to poison the
model. Certain strategies, as discussed in [19] and [61], concentrate on modifying samples that closely
align with the overall data distribution. Since these samples might contain information from other partic-
ipants or testing sets managed by the central server, these techniques are referred to as "in-distribution
backdoor attacks.” For instance, all photographs with the label ”1” are carefully reclassified as "0” [19].
Another example used images with the label "dogs” and rebranded them as "cats” [61]. Other meth-
ods as detailed in [4], set their sights on samples characterized by certain qualities or characteristics.
Such can be the presence of unusual objects in a scene or unusual car colors like "green.” These tech-
niques frequently include a chosen target word in word prediction challenges. These methods do have
a disadvantage, in that updates from good participants can lessen the effectiveness of the backdoor.

[64] and [75] used a unique approach by choosing samples that significantly deviate from the dis-
tribution of the global data in recognition of these limitations. It is unlikely that these selected samples
will be found in the validation or training sets of benign participants. Their attacks are successful be-
cause they deliberately target samples that are frequently found at the edges of the data distribution of
benign participants. This ensures that the impact of the backdoor is robust and unaffected by dilution.
For example, in [64], they introduced the concept of an "edge-case” backdoor attack. Edge-cases are
image samples that are unlikely to be in the datasets of benign participants, yet do belong to the class
they belong to. For instance, benign participants can have images class airplanes but, it is highly un-
likely that these images contain airplanes of Southwest Airlines. These "edge-case” image samples
help disguise the backdoor. In [75], they innovatively introduced the "ultimate rare word embedding” to
activate backdoors in the domain of NLP. Again, this is a similar idea of using data samples that belong
to a class in the FL system but are highly unlikely to be part of the dataset of benign participants.

It is important to note that the methods described above frequently require some knowledge about
the target model, including details about the global data distribution. However, in real-world situations,
such information might not always be applicable. For that reason, [77] took a different approach. They
suggested a different approach that entails instructing a Generative Adversarial Network throughout
the local training procedure. The network is then used by the shared model to create samples similar
to other participants’ training samples, which are later used to carry out the backdoor attack. This tactic
performs particularly well when the attacker isn’t fully aware of how the data is divided up among benign
participants.

Artificial backdoor attacks
This alternate strategy gives greater flexibility than semantic backdoor assaults, where the targeted
samples must have particular characteristics and belong to particular classes. The adversary must
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artificially poison healthy samples before changing their labels. In essence, there is no inherent "key”
in the samples; rather, the backdoor is opened by the attacker inserting a pattern, like a cross into
the corner of an image. The basic idea behind this attack approach is to make the model behave
abnormally when there is a trigger while still functioning normally in the absence of a trigger.

Normally, backdoor attacks against FL have primarily relied on a single trigger. In this case, all
compromised participants inject the same trigger into their local training datasets [22] [4]. The trigger is
frequently predefined and consists of patterns like squares or crosses that are put at wasteful pixels in
photos. Malicious participants then use the injected trigger to activate the aggregated model during the
testing phase. While the effectiveness of this backdoor insertion has been demonstrated [22], Due to
the fact that these approaches evenly embed the same trigger across all adversarial participants, they
have not fully used the decentralized FL environment. In response to these drawbacks, DBA [71] was
developed as a new strategy. DBA breaks down the objective trigger into a number of local triggers.
Each of these is related to a specific malicious local agent. After local training, each adversarial agent
deploys the local trigger to manipulate the training data and then sends the backdoored update to
the server. Instead of employing each of these local triggers separately like in the previous way, DBA
combines them to create a global trigger that opens the backdoor. The result was higher attack success
rates and more stealth in comparison to a centralized trigger [71].

In previous techniques, the chosen trigger employed by adversaries was often generated indepen-
dently of the learning model and learning process. It involved elements like logos, stickers, or pixel
perturbations. Consequently, these backdoor attacks did not fully utilize the collaborative efforts of
multiple malicious participants during the training phase [21]. To address this limitation, introduced the
concept of a coordinated-trigger backdoor attack. In this method, the adversary injects the backdoor by
using a model-dependent trigger. The model-dependent trigger is determined by a training procedure
that optimizes the form, size, and placement of the trigger. It represents the ideal trigger configuration
for each malicious participant. The local training dataset is poisoned depending on these local trig-
gers after they have been generated for each malicious client. A global trigger is created during the
testing phase by fusing the local triggers as in DBA. As a result, it has been demonstrated that the
model-dependent trigger is more effective than the DBA trigger used in earlier publications [21].

3.2.2. Model poisoning

This section provides an overview of the latest developments in model poisoning techniques, shed-
ding light on the evolving landscape in this domain. These advancements can be categorized into
several key sections, namely: Scaling-based, Constraint-based, Gradient Replacement-based, and
Partial Model Poisoning Attacks. Within each subsection, we delve into the definitions and explore
their respective impacts on the nature of these attacks.

Scaling based

Scaling-based attacks are defined by upscaling the model parameters to boost the backdoor perfor-
mance. Commonly, the global model is trained by simply averaging the incoming local models. A
simple method for increasing the backdoor effect is boosting the influence of adversarial participants’
updates so that they override those from good participants. The attacker will attempt to replace the
new global model with a poisoned model by carefully changing the scaling factor. This strategy was
first proposed as the model replacement method in [4]. This strategy requires an evaluation of global
parameters and is particularly effective when the global model is nearing convergence [59]. It's worth
noting that in the presence of defenses using clipping and restricting methods, simple scaling may
become ineffective because of it [44].

Constraint based

To enhance the stealthiness of their attacks, malicious actors may take new strategies aimed at limiting
the magnitude and visibility of local updates from malicious participants. This can help them avoid the
triggering of anomaly detection mechanisms on the server. That is what is meant by constraint-based
attacks. For instance, a defense scheme has been employed that looks into the magnitude of the
incoming updates for anomalies. By constraining this magnitude, the attacker reduces its abnormality
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and is thus more capable of avoiding defenses. In previous works like [4] and [8], an approach was
introduced wherein the loss function is adapted by integrating terms associated with anomaly detection.
For instance, attackers may use the magnitude of the Euclidian distance of their updates in order to
reduce their anomaly. These loss functions are constructed based on the underlying anomaly detection
techniques, incorporating metrics such as the p-norm distance between weight matrices and validation
accuracy. Additionally, the use of projected gradient descent (PGD) attacks was introduced by [71].
It has emerged as a robust strategy capable of withstanding various defense mechanisms. In PGD
attacks, attackers constrain their model’s parameters within a radius centered around the previous
global model iteration. This ensures thatin each FL round, the attacker’s model remains relatively close
to the global model. Similarly, a technique proposed by [6] defines a permissible range for parameter
adjustments by attackers. It aims to prevent undue attention even in IID settings. To further reduce
the anomaly of these malicious updates, an additional clipping step is introduced to maximize their
effectiveness in avoiding detection.

Gradient replacement based

In the earlier discussed model poisoning attack techniques, participating entities have access to the
labels of their respective training data thus always working in a horizontal FL setting. Yet, these methods
have not been thoroughly examined within the context of Vertical FL. Addressing this gap, [38] [39]
introduced the Gradient-replacement backdoor attack. It is specifically tailored for Vertical FL, even
when the adversary has access to only a single benign sample belonging to the targeted class. The
intermediate gradients of clean samples from the targeted class are captured using this technique
and they are then used to replace the gradients of poisoned samples. The model is then updated
using the modified gradients. Furthermore, recent research by [83] has demonstrated the improved
adaptability of the backdoor attack. Even in scenarios with communication protected by Homomorphic
Encryption. The backdoor task is built on the label inference attack, where the malicious party learns
the corresponding true labels of each sample. The malicious party then replaces the true label with
a target label by carefully designing the encrypted communicated messages which in turn is used to
perform the backdoor attack.

Partial model poisoning

Partial model poisoning techniques do not fully utilize the full model space but instead, only influence
a subsection of the model space. In the concept of "Neurotoxin,” [80] the adversary adopts a strategy
where they target coordinates that benign participants are unlikely to modify. The aim is to embed the
backdoored model and extend the duration of the backdoor’s impact. In their framework, the attacker
doesn’t directly update the poisoned model using gradients computed on poisoning data. Instead, they
project the gradient onto coordinate-wise constraints, specifically focusing on the bottom-k% coordi-
nates derived from the observed benign gradient. The objective behind partially poisoning attacks is
to achieve two key goals. Firstly, they aim to prevent catastrophic forgetting of the adversarial task. It
ensures that the model retains its original capabilities. Secondly, these attacks seek to prolong the per-
sistence and effectiveness of the backdoor, allowing it to maintain its impact over an extended period. A
novel two-phase backdoor attack strategy was proposed by [36]. It incorporates an initial convergence-
expediting phase preceding the poison phase. This new approach puts the spotlight on the early stages
of the attack where the backdoor effect is less susceptible to dilution from regular model updates. As
a result, the injected backdoor attains heightened effectiveness by leveraging the initial phase to its
advantage. This two-phase strategy offers improved efficiency and potency in achieving the attacker’s
objectives.

3.3. Backdoor Defenses

Many works regarding defenses for FL have been conducted in recent years with many different pro-
posed solutions each having their own respective pros and cons. We sum up some of the recent
solutions proposed in this section by each category it works in. Figure 3.4 shows an overview of some
defense techniques published thus far. We decided to split them up into the following subsections:
pre-aggregation defenses, in-aggregation defenses and post-aggregation defenses.
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Figure 3.4: An overview and categorization of some of the latest defenses

3.3.1. Pre-aggragation defenses

In the realm of pre-aggregation defenses, the focus is on identifying and mitigating the potential threat
posed by malicious updates before they become part of the aggregation process. This proactive ap-
proach is primarily initiated by the server upon receiving incoming updates. Our exploration of pre-
aggregation defenses is divided into two distinct sections for clarity. The first section encompasses
clustering methods, which form the predominant group of pre-aggregation defenses. In the second
section, we delve into graph-based defense techniques.

Cluster methods

Clustering defenses refer to techniques and strategies employed to identify and group together similar
or related updates received from participating participants. Usually, these changes are connected to
the corresponding local models or datasets. To distinguish between legitimate client contributions and
those that could be malicious, clustering defenses seek to identify patterns or irregularities in incoming
updates [44]. Once these clusters have been identified, it could then isolate the updates that show
irregularities and prevent them from being aggregated. Commonly, identifying malicious updates is
based on some distance metric. For instance, the Cosine Distance and the Euclidian Distance are two
frequently used distance metrics.

Such protection techniques are used by FoolsGold [18]. FoolsGold uses the cosine distance to
spot unusual client updates during model aggregation. It computes a weighted average of updates and
identifies deviations from expected behavior, marking potentially malicious updates. By downweighting
or excluding these anomalies, Fool's Gold mitigates the impact of backdoor attacks, making the security
of FL more robust without detailed knowledge of the attack. Multi-Krum [9] is a defense where each
round all the Euclidian distances are calculated with respect to all other local models. Based on the
resulting distances it creates a subset of local models that are the closest to the majority of other models,
thus excluding any outliers.

In [51] the authors proposed Deepsight, a novel model filtering method. DeepSight’'s approach
involves using an ensemble of different techniques in order to identify poisoned updates. It does so
by analyzing the data distribution used to train model updates and assessing anomalies in the internal
structure and outputs of neural networks. It then combines it with clipping to identify and eliminate
incoming poisoning attacks. FLAME [43] employs the HDBSCAN algorithm to find harmful updates.
HBDSCAN builds a hierarchy of clusters with varying densities and identifies the most stable clusters
at different levels. It then combines it with update clipping and noise addition to get rid of backdoors.
However, FLAME calls for more computer power than conventional FL methods and could deteriorate
benign accuracy.
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It is important to acknowledge that clustering defenses usually perform less when presented in non-
IID scenarios. Due to the highly heterogeneous distribution of the data trained on by local participants,
the local models will significantly differ from one another [4] [64]. As a result, it becomes hard for
clustering techniques to recognize the malicious update out of all updates.

Graph-based methods

Graph-based defensive methods use graph structures to analyze and identify potentially malicious
model updates before the aggregation process. In [12], the authors introduce a graph-based approach
to anomaly detection. They construct a graph that represents local model updates and employ a max-
imum clique problem-solving technique to identify benign models. This method is specifically tailored
for the loT (Internet of Things) domain. It employs an innovative approach to anomaly identification by
representing network packets as symbols in a language, thus facilitating the application of language
analysis methods to effectively detect and flag irregularities.

3.3.2. In-aggragation defenses

In-aggregation defenses are defenses that prevent backdoors during the aggregation process. By
making this process more robust, which can be accomplished through a range of techniques, these
defenses successfully maintain effective model aggregation while fending off unwanted influences from
potential attackers. This section categorizes these defenses into four main areas: robust aggregation,
differential privacy, smoothing-based methods, sparsification, and local validation defenses. Each of
these areas offers distinct strategies and tools to reinforce the aggregation process.

Robust aggregation

Robust aggregators perform the aggregation in a different way such that it becomes more robust against
backdoor attacks. For instance, commonly used aggregators such as FedAvg do not have any de-
fenses in place against backdoor attacks. By changing the way of aggregating, one could mitigate
poisoning attacks. These robust aggregators try to prevent backdoors from entering during the aggre-
gation phase. An early solution proposed was the use of the geometric median as a form of aggregation
for the global model [74]. Due to its strong robustness to outliers, the geometric median is resistant to
the influence of potentially malicious participants who may have manipulated the data or model updates.
The use of the geometric median can lessen the effects of outliers and make sure that the final model
represents a more accurate consensus of the benign participants’ contributions. A different strategy is
the usage of the Median and «a-trimmed mean, which substituted the median of model updates for the
arithmetic mean to boost robustness against attacks [74]. SignSGD [7] puts the focus on the direction
rather than the magnitude of gradients. It helps maintain the integrity of the FL process, making it more
resilient to backdoor attacks while preserving model performance. This solution was further worked out
by [52] with their implementation of a Robust Learning Rate, which adjusts the server’s learning rate in
accordance with client updates.

Differential privacy

Differential privacy is a framework that protects the privacy of individuals in a dataset by adding noise
to the data before it is released or used for analysis. The effectiveness of differential privacy against
backdoors has been demonstrated [59]. However, it can impair model performance in the presence
of data imbalance [3]. Weak-DP was proposed by [59], which maintains task accuracy while adding
enough Gaussian noise and weight clipping to prevent backdoors. This noise disrupts any hidden back-
door signals, making it harder for attackers to manipulate the global model’s behavior through model
poisoning. Weak-DP also ensures that no single client’s contribution overly influences the global model,
enhancing model robustness and privacy. Norm clipping alone has proven itself to mitigate poisoning
attempts based on recent attacks in [54]. Malicious updates are found to have a higher Euclidian dis-
tance. By constraining this distance using a fixed value, the effectiveness of the backdoor attack can be
removed. Additionally, FLAME [43] combines the perks of clustering and DP in order to catch malicious
models. It is a defense framework that determines how much noise will be needed to ensure that there
are no backdoors. FLAME employs a model clustering and weight clipping strategy to reduce the nec-
essary amount of noise. As a result, FLAME may continue to maintain the aggregate model’s benign
performance while successfully closing down adversarial backdoors. Although differential privacy has
potential as a protection strategy, it does have some drawbacks. Notably, it becomes most successful
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when a sizable number of participants are involved. This is due to the requirement that the additional
noise needs to be of a sufficient scale to mask the characteristics of each client’s data, making it more
difficult to identify backdoor attempts. However, the substantial noise that was added throughout this
process can have an adverse effect on the general performance of good participants.

Smoothing based defenses

Smoothing-based defenses work by smoothing the aggregation results and thereby mitigating the im-
pact of any harmful updates. These defenses help protect against backdoor attacks by reducing the
chances of a malicious update significantly affecting the global model. By effectively smoothing out” the
contributions of individual client updates, they make it more challenging for a backdoor to manipulate
the model or introduce a harmful bias. One of such defenses is CRFL [72]. Introduced a new defense
framework, CRFL is designed to train certifiably robust FL models resilient to backdoor attacks. It lever-
ages techniques like cropping and smoothing of model parameters to control model smoothness and
thus generate robustness against backdoor attacks. The incorporation of smoothness and perturba-
tion methods further constrain the Euclidian distance of individual updates, making the defenses more
robust against backdoors. FL-WBC [58] focuses on identifying vulnerable parameter spaces within
FL and perturbing them during client training. It provides FedAvg with convergence assurances as
well as robustness guarantees against backdoor attacks. FLARE [65] assumes that the majority of the
participants are benign. It suggests a method for assessing model updates’ trustworthiness based on
differences in how the penultimate layer represents them. Lower trust scores are assigned to updates
outside of the benign cluster, and these values are weighted during model aggregation to properly up-
date the global model. At last, the sparse nature of NN’s is proposed as a defense mechanism against
backdoor attacks. Sparsefed [46] is a framework that incorporates sparse updates. Sparse updates
are a technique where only a subset of the model parameters are updated by each client during training.
It selectively updates a small fraction of the highest-magnitude elements. Due to attackers moving in
different directions from the benign devices, the coordinates that attackers typically target for model
poisoning often remain untouched. The advantage is that it is a relatively easy and cheap method of
aggregation. Yet, it has failed to show its effectiveness in non-iid distributions.

Local validation

Local validation-based defenses are characterized by evaluating the credibility and validity of individual
client updates before they are included in the global aggregation. BaFFle [2] presents a decentralized
feedback-driven approach designed to be resilient against backdoors in FL. This method uses client
data to perform an additional validation step on the global model. To check the integrity of the global
model, a subset of participants applies a validation function to sensitive data. If they discover any
indication of backdoors, they alert the server. The server then decides whether to accept or reject the
global model based on the variance in misclassification rates between the local model and the global
model. While BaFFle presents a secure aggregation technique, it does come with certain limitations.
For instance, it relies on trigger data to activate the backdoor. It also may not be suitable for non-11D
data scenarios with a limited number of participants and may not be highly effective against continuous
attacks that disrupt FL training processes.

3.3.3. Post-aggregation defenses

Post-aggregation defenses introduce an extra step to cleanse the global model of any poisoning after
it has been aggregated. One of the few post-aggregation defense strategies for FL against backdoor
attacks was introduced in [68]. Their method focuses on locating and eliminating neurons that show
low activation when exposed to benign samples. Without the trigger, these neurons are likely to remain
inactive. A distributed pruning technique was suggested to deal with the issue of the server not having
access to personal training data. In this approach, the server asks participants to create a local pruning
list by recording neuron activations using their local data. Then, a global pruning sequence is created
using these lists. Additionally, in order to improve the pruning list, the server can dynamically modify the
pruning rate based on how well the current model performs on a validation dataset. The disadvantage
of this attack is that is not always able to remove the backdoor as benign and backdoor behaviors utilize
the same set of neurons in some cases. For this reason, pruning has the potential to trigger backward
and inflict more harm on benign behaviour.
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Recent developments in machine learning, particularly the concept of "unlearning,” have gained
prominence in [67]. They explore its application as a defense mechanism against backdoor attacks
in FL. To mitigate single-trigger backdoor attacks without drastically degrading overall performance,
they introduced federated unlearning. It erases the historical parameter updates from the target client
and then recovers the damage through a technique called knowledge distillation. However, before
this technique can begin unlearning, it must first identify malicious participants, which is a significant
challenge already. This strategy could be employed for backdoor removal upon the identification of a
malicious participant, yet its effectiveness is constrained in the absence of such knowledge.

3.4. Research gap

In prior studies, most of the research has mainly focused on situations where backdoored models
are trained and tested using the same trigger intensity. This often overlooked the possible effects of
changing the trigger’s intensity. Our thesis sets out to bridge this gap in understanding by delving into
the world of trigger intensity manipulation and its potential impact on backdoor attacks. We are curious
about how tweaking the trigger intensity can be utilized by attackers to strengthen their backdoor attacks.

Additionally, we have observed that there is a significant lack of research when it comes to detecting
backdoors during the testing phase in FL. So that means that after aggregation, only little defenses
exist that could eradicate the backdoor. By playing around with different pixel intensities, we might
find methods to create backdoors that are nearly invisible. Once these hidden backdoors are in place,
detecting them can be a real challenge because they can easily be mistaken for regular system errors.
This could mean that getting rid of these backdoors, once they’ve infiltrated the system, becomes
a much more complex challenge. Our research aims to dive deep into these important questions
and shed light on the world of backdoor attacks and the influence of pixel intensities, expanding the
knowledge on the topic.

At last, using the trigger intensity can work alongside other model and data poisoning techniques,
potentially making backdoor attacks even more effective. This adds an extra dimension to our research,
as it suggests that our attack can be used in combination with other attack methods. It can serve as
an extra tool in the shed for attackers to create more powerful backdoor attacks.

Each point summed up:

» Trigger Intensity Exploration: The research addresses a gap in understanding by investigating
the impact of varying trigger intensity in backdoor attacks in FL, breaking away from the conven-
tional focus on consistent trigger intensity during training and testing.

» Detection Challenges: The study highlights the limited research on detecting backdoors post-
aggregation in FL. Existing defenses are insufficient, and manipulating pixel intensities to create
nearly invisible backdoors adds complexity to detection.

+ Stealthy Attack Potential: By manipulating trigger intensity, the research explores how attackers
can enhance the effectiveness of their backdoor attacks. This insight complements existing attack
methods, potentially making backdoor attacks even more potent and challenging to detect.



Methodology

4.1. Motivation

Common strategies for incorporating backdoor triggers into machine learning models typically involve
maintaining a single, unvarying intensity level throughout both training and testing phases. In our
research, we specifically define the training phase as the initiation of distributing a global model to in-
dividual devices. Each device independently refines the model through localized training, generating
gradient updates that are subsequently sent to a central server for aggregation. Following this aggrega-
tion, the testing phase begins as the model is deployed and subject to evaluation. Figure 4.2 illustrates
this process. This approach presents inherent limitations that our research found. Our findings indi-
cate that when the models confront complex or challenging visual conditions, they often struggle to
recognize the presence of the backdoor trigger. As a result, the model’s performance tends to degrade
significantly.

This challenge becomes more concerning in real-world scenarios, where practical applications of
ML models are deployed [44]. In such settings, the visibility and effectiveness of a backdoor trigger
can be influenced by a wide range of external factors, including variations in lighting conditions, dust
particles, or other environmental elements. These factors can have a substantial impact on how well
the trigger is detected and utilized by the model. For instance, consider a surveillance system that
employs facial recognition technology to grant access to secure facilities. If the backdoor trigger used
for training and testing the model is not robust against variations in lighting conditions, it could lead to
a reduced impact from the attacker. An abrupt change in lighting, such as strong sunlight or dimmed
indoor lighting, may render the trigger undetectable for the model. This could potentially remove the
effectiveness of the backdoor.

In essence, our research underscores the attackers’ need for more adaptive and resilient methods
of injecting backdoor triggers into ML models. These methods should account for the dynamic and
unpredictable nature of real-world conditions, ensuring that the trigger remains effective and reliable
even in the face of challenging visual scenarios. To address these challenges, we came up with a
method involving pixel intensity that is more robust against these challenges and could help the attacker
create a more resilient attack.

Understanding backdoor attacks in the context of FL systems requires taking into account both the
subtlety with which these attacks can be carried out and the real-world conditions in which they might
arise. We’ve talked a lot about how important it is to imagine scenarios in which backdoor attacks could
be dangerous, but creating invisible backdoors is just as important. As elaborated upon in Section 3,
the existing landscape of defense mechanisms predominantly focuses on thwarting backdoor attacks
during the model aggregation phase. This means that once a backdoor has been stealthily planted
into the global model, its detection becomes much more challenging and often relies on manual human
inspection. Consequently, it becomes clear that attackers stand to gain a substantial advantage if they
can master the art of concealing their backdoors for as long as possible. Thereby, allowing them to
bypass defenses for an extended period.

24
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Figure 4.1: Oversight of Backdoor Attacks in FL and using different intensities values for training and testing. Training Phase:

1. The participants train on their own dataset and produce a local model. 2. Each agent sends their local model to the server 3.

The server aggregates all incoming local models 4. The aggregated model gets sent back to the participants Testing Phase: 5.

The local benign participants can get correct predictions when they feed benign samples into the final global model 6. The local
malicious participants can activate the backdoor by using a stronger trigger and get a target prediction

To address this challenge, we propose a novel approach in which we train the backdoor task using
a specific training intensity and subsequently confirm its effectiveness using a higher testing intensity.
This approach enhances the generalization capability of the backdoor, making it more robust and re-
silient in real-life scenarios where trigger visibility can vary. By allowing the attacker to adeptly select the
trigger intensity after the aggregation process, our method provides an additional layer of customization
and adaptability, enabling the attacker to handcraft the backdoor to specific images or target scenarios.

The ability to exercise manual control over the trigger intensity grants significant advantages to the
attacker, both in terms of attack performance and detection evasion after aggregation. By taking this
control, the attacker gains the flexibility to optimize the trigger intensity to achieve desired levels of at-
tack performance. Furthermore, the attacker can tailor the trigger visibility to specific levels, making the
backdoor less conspicuous and harder to detect during the test phase. This invisibility complicates the
distinction between an unintentional misclassification by the model and a deliberate incorrect decision
resulting from the backdoor in the test stage. All of this enhances the backdoor’s stealthiness. More-
over, our method complements SOTA backdoor attack techniques, further enhancing their efficacy and
impact in terms of performance, lifetime, and stealthiness. This newfound power gives attackers the
means to devise more potent and sophisticated backdoor attacks, presenting a substantial threat to
the integrity and reliability of FL systems. Fig 4.1 gives an overview of how our attack works.

4.2. Our attack

4.2.1. Defining the trigger intensity

To create a formal framework for understanding and manipulating backdoor triggers in the context of FL,
we introduce the concept of "trigger intensity.” Trigger intensity represents a critical attribute of these
triggers, dictating the pixel values used to construct them. In essence, it determines how visible or
imperceptible the trigger is within an image.

To illustrate this concept further, consider the analogy of adjusting a dimmer switch on a light fixture.
In this analogy, a higher trigger intensity corresponds to a “brighter” trigger, one that is highly visible
and conspicuous within an image. On the other hand, a low trigger intensity equates to a "dimmer”
trigger, making it nearly indistinguishable from the image’s visual content. Trigger intensity essentially
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controls the extent to which the backdoor trigger is perceptible to both the human eye and ML models.
In the context of FL, where the model is trained collaboratively across multiple devices, we introduce
two distinct levels of trigger intensity:

Training Intensity (0): During the training phase of FL, this parameter (0) represents the intensity
level of the trigger applied to the training data. It defines how prominent or subtle the trigger appears
in the training images and influences how the model adapts to recognize it.

Testing Intensity (A): In contrast, the testing phase employs the testing intensity (A) to determine
the trigger’s visibility during the evaluation or testing stage. This intensity level dictates how detectable
the trigger is when the model is subjected to new, unseen data.

The interplay between these two intensity levels is central to the effectiveness and security of back-
door attacks in FL. The choice of 6 and A can significantly impact the success of the attack, as well
as the model’s ability to recognize and mitigate it. For a visual representation of how these triggers
manifest at different ¢ values, please refer to Figure 4.2. This figure provides concrete examples that
demonstrate the varying degrees of trigger intensity and their influence on trigger visibility within images.

4.2.2. Trigger generation

We propose a backdoor attack in which the training intensity of the local model will be different compared
to the testing intensity during the testing phase. For that reason, our definitions use two different delta
values, where one is for the training set and one for the testing set. We define a trigger ¢ as follows:

L= [ty ] (4.1)

where t; represents the pixel values of the trigger, and n is the number of pixels in the input data.
Furthermore, for a training sample x let there be a trigger generation function 7 where 7 : X — X.

TT)=t+T 4.2)

Where t is the trigger itself (a square shape for instance) which has all its values setto 1 and T is
the trigger intensity given as a parameter. Thus, we can define the trigger generation for the training
dataset as:

iF=x+T(t0) (4.3)

Where 7 is the poisoned training sample and § is the training intensity. We define the trigger gener-
ation for the testing dataset as follows:

T=x+T(tA) (4.4)
Where A is the testing intensity.

4.2.3. Explaining the attack

To make our attack effective, the trigger intensity of the training dataset (§) must be set to a lower value
compared to the testing intensity (A) used during the testing phase. The effectiveness of our backdoor
attack technique is built on a remarkable phenomenon: only a select few neurons within the model
play an important role in triggering the malicious behavior [82]. Thus, by increasingly stimulating these
neurons, our backdoor’s effectiveness increases simultaneously.

To elaborate on this concept, let's consider a scenario in which we employ two distinct triggers,
denoted as (¢,d) and (¢, A), with the key distinction that § is less than A. This differentiation in trigger
intensities is fundamental to our approach. In our strategy, we start by training a neural network using
data that has been subtly poisoned with the weaker trigger, (¢,d). This initial step introduces an inef-
fective backdoor within the model to respond to the presence of the weaker trigger. However, when
the model encounters the more potent trigger during the testing phase (¢, A), something interesting
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Figure 4.2: Visualization of poisoned image samples. From left to right: original clean image; traditional attacking method of
training (top) and testing (bottom) using the same trigger intensity; our attack of training (top) with a lower trigger intensity
compared to testing (bottom)

happens. The neurons that were previously exposed to the weaker trigger (¢, ) exhibit an amplified
activation response. In other words, they become significantly more excited” when triggered by the
stronger stimulus. This heightened activation within the previously poisoned neurons has a big effect
on the model’s decision-making process. It further reinforces the model’s inclination to output the pre-
determined backdoored class when it encounters the stronger trigger (¢, A). As a result, the overall
performance of the backdoor attack is enhanced.

In essence, this small selection of malicious neurons combined with the strategic use of trigger
intensities, allows the reinforcement and adaptability of modern backdoor attack techniques. By lever-
aging this behavior in NNs, attackers can infiltrate ML models with adaptable levels of stealthiness and
strength.

More formally, let there be a neural network F;, with L layers defined as:

FL :fl*fl—1*~-~*f1 (45)

Where 0 < I < L and f; are the set of neurons in each layer [. Each neuron in F; outputs: A(wTz + b)
where A is the activation value, w are the weights, x is the input given to the neuron and b is the bias.
Now based on [82], let there be a small set of neurons K € F, that contribute a lot to the backdoor
behavior. Given the two triggers (¢,6) and (¢, A), we find that:

AwTs +b) < A(wTA +b),YA € K

4.6
s.t. 0< A (4.6)

As seen in equation 4.6, the elevated values produced by the activation functions across the layers
of the neural network propagate through the compromised neurons K, thereby amplifying the model’s
inclination to produce the backdoored class.

4.2.4. Strength-Visibility tradeoff

Lowering the trigger intensity offers a significant advantage in backdoor attacks by affording attackers
greater flexibility and adaptability in their strategies. As we’ve previously discussed, in a realistic sce-
nario it is highly improbable that all deployed triggers will exhibit the same level of visibility as those they
were initially trained on. Various external factors such as fluctuations in lighting conditions, the pres-
ence of dust particles, and other environmental elements, can significantly influence trigger visibility.
For this reason, it becomes crucial for attackers to have the capability to activate their backdoors using
triggers of different intensities. Essentially, the attacker can select any trigger intensity for activation,
provided that the testing intensity surpasses the training intensity. This strategic choice empowers the
attacker to make a trade-off between the visibility and the strength of the backdoor.
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Our empirical research underscores the profound impact of trigger intensity on the performance of
the attack. Increasing the testing intensity leads to an enhancement in attack effectiveness. However,
this comes at a cost of increased visibility during the testing phase of the attack. It's important to note
that currently, there is a lack of robust defenses capable of detecting backdoors after the aggregation
phase. For that reason, visual inspection remains the primary line of defense against such attacks.
Given the attacker’s control over trigger intensity, this parameter serves as a crucial lever for optimizing
the trade-off between the visibility and strength of the backdoor. This adaptability ensures that backdoor
attacks can be tailored to specific scenarios, making them more challenging to detect and emphasizing
the need for more sophisticated defenses to protect ML systems from these evolving threats.

4.3. Delta optimization

As expected, the adversary may not possess prior knowledge about the ideal attack delta value. An
attack delta set too low results in suboptimal outcomes, while an excessively high value fails to fully
optimize the attack’s invisibility. Consequently, enabling the attacker to fine-tune this variable is es-
sential for maximizing the attack’s effectiveness. To achieve this, the attacker pursues three primary
objectives: (1) Maximizing the main task accuracy score; (2) Maximizing backdoor accuracy; and (3)
Minimizing trigger visibility. In pursuit of these goals, we propose the following equation:

— main(ﬁl * Z L(zi,y;)) + (B2 * Z Lz +T(t,A),y;))

z, €D, ;€D

+(Bsx Y Llwnai +T(t,0)) (4.7)

;€D

0* denotes the optimal delta that we want to find. D, and D,, are the datasets with poisoned and
clean image samples = respectively. z; is an image sample and y; is its corresponding label. y;*
indicates the label is altered to the adversary’s desired target class. L is the loss function. 7 is the
trigger injection function that takes in the arguments ¢ and ¢, where t is the trigger pattern and ¢ is the
trigger intensity. At last, 8, indicates the 3 variables in this equation. The attacker can choose these
variables to his liking to give more importance to one of the three tasks. For instance, if the attacker
finds the natural stealthiness of the attack very important, he could opt to increase 3;. Doing this makes
the equation more sensitive towards changes in trigger intensity causing it to consider it more in order
to establish the optimal delta.



Experimental setup

5.1. Experimental setup

The implementation of all the compared attacks and the FL framework is founded on the robust Py-
Torch library [47], which provides a powerful and flexible environment for conducting deep learning
research. To ensure the reliability and scalability of our experiments, we executed them on a dedi-
cated cluster specifically provisioned for research purposes. This cluster efficiently manages computa-
tional resources using the SLURM protocol. It allows for seamless parallel processing and efficient job
scheduling. Our experiments were executed on a robust server equipped with substantial hardware
resources, including a high-performance NVIDIA A40 GPU, an Intel Xeon E5-2620 CPU, and a gen-
erous 32GB of RAM. These robust hardware components collectively facilitated the execution of our
experiments, enabling us to explore the nuances of backdoor attacks in FL across varying scenarios
and configurations.

5.2. Datasets

Our experimental evaluations are conducted on three distinct datasets that have gained significant
recognition within the research community and are prominently featured in prior studies [4, 64, 71,
80]. These datasets have been selected for their relevance to our research domain and their ability to
provide comprehensive insights into the outcomes of our attack methodologies. By utilizing datasets
that have been leveraged by other researchers in the same field, we ensure a degree of comparability
and fairness in assessing the results of our attacks. These datasets serve as a robust foundation for
our experimentation. It enables us to draw meaningful conclusions and contribute valuable insights
to the existing body of knowledge in the field. Figure 5.1 shows some image samples of each of the
datasets and in appendix B one can find different poison image samples for the CIFAR-10 dataset to
get an intuition of the difference a delta makes for the poisoned image.

5.2.1. Fashion-MNIST (FMNIST)

Originally designed as a substitute for the original MNIST dataset, the FMNIST dataset contains photos
of fashion goods like bags, shoes, and apparel. FMNIST is better appropriate for a wider range of
image classification applications because it is composed of grayscale photos of different fashion items,
whereas MNIST is composed of handwritten numbers. The FMNIST dataset contains 60,000 training
images and 10,000 test images, similar to the MNIST dataset. Each image is 28x28 pixels in grayscale
(1 channel) and is labeled with one of 10 class labels. Each class has 6000 images in the training set
and 1000 images in the test set. Each image is represented by a 28x28 pixels image, and each pixel
is represented by a single 8-bit integer in the range of 0 to 255 [70], where 0 represents black and
255 represents white. Table 5.1 highlights all the features of the FMNIST dataset. FMNIST dataset is
similar in structure to the MNIST dataset, butit's focused on fashion items, which are more complex than
handwritten digits [70]. This makes it a more challenging dataset than MNIST and it's more suitable
for evaluating the performance of more complex models. It's also commonly used as a benchmark
dataset for image classification tasks, as it's similar in structure to the MNIST dataset, but with more
challenging classes.

29
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Table 5.1: Features of the FMNIST Dataset

Feature Description

Dataset Name Fashion-MNIST (FMNIST)

Number of Classes 10

Number of Samples 70,000

Image Size 28x28 pixels

Image Channels Grayscale (1 channel)

Sample Types Fashion items (e.g., T-shirt, dress, shoe)

Data Split Training (60,000 samples), Testing (10,000 samples)

Data Distribution
Data Augmentation
Purpose

Source

Balanced classes

Not provided (typically applied during preprocessing)

Fashion item classification, benchmarking machine learning models
Zalando Research

5.2.2. CIFAR-10

The CIFAR-10 dataset is a collection of images that are commonly used for training computer vision
and image classification models. It consists of 60,000 32x32 color images in 10 classes, with 6,000
images per class [31]. There are 50,000 training images and 10,000 test images. The images in the
CIFAR-10 dataset are relatively small (32x32 pixels) and the objects in the images are centered and
occupy most of the image. The dataset is designed to be challenging for current computer vision and
machine learning algorithms, as the images are low resolution and the object classes are highly similar

[31]. Table 5.2 shows the general features of the CIFAR-10 dataset.

Table 5.2: Features of the CIFAR-10 Dataset

Feature Description

Dataset Name CIFAR-10

Number of Classes 10

Number of Samples 60,000

Image Size 32x32 pixels

Image Channels RGB (3 channels)

Sample Types Objects and animals (e.g., cars, birds, cats)

Data Split Training (50,000 samples), Testing (10,000 samples)

Data Distribution
Data Augmentation
Purpose

Source

Balanced classes

Commonly applied during preprocessing (e.g., random flips, rotations)
Object recognition, image classification

Canadian Institute for Advanced Research (CIFAR)

5.2.3. CIFAR-100

CIFAR-100 consists of 100 different classes, with each class containing 600 images. These classes
cover a wide range of object categories, making the dataset suitable for training and evaluating machine
learning models in various image recognition tasks. Each image in CIFAR-100 is of size 32x32 pixels
and is colored, represented in RGB format [31].
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Table 5.3: Features of the CIFAR-100 Dataset

Feature Description

Dataset Name CIFAR-100

Number of Classes 100

Number of Samples 60,000

Image Size 32x32 pixels

Image Channels RGB (3 channels)

Sample Types Various fine-grained categories (e.g., insects, trees, vehicles)
Data Split Training (50,000 samples), Testing (10,000 samples)

Data Distribution
Data Augmentation
Purpose

Source

Balanced classes

Commonly applied during preprocessing (e.g., random flips, rotations)
Fine-grained object recognition, image classification

Canadian Institute for Advanced Research (CIFAR)

5.2.4. Tiny ImageNet

The Tiny ImageNet dataset, a derived subset of the expansive ImageNet dataset, serves as a valu-
able resource for scaled-down computer vision research. Comprising 200 distinct classes, each class
boasts 500 training images and an additional 50 validation images, all contained within compact 64x64-
pixel frames. Represented by WordNet IDs, these classes are thoughtfully organized in a hierarchical
structure, facilitating more organized classification [32]. This dataset has become a favored benchmark
for evaluating the efficacy of deep learning models in various computer vision tasks. While considerably
smaller than its parent dataset, ImageNet, Tiny ImageNet still presents computational challenges, mak-
ing it an ideal playground to assess the performance of backdoor attacks in larger and more complex
datasets. In Table. 5.4 you can find an overview of the Tiny ImageNet dataset and its features.

Table 5.4: Features of the Tiny ImageNet Dataset

Feature

Description

Dataset Name
Number of Classes
Number of Samples
Image Size

Image Channels
Sample Types
Data Split

Data Distribution
Data Augmentation
Purpose

Source

Tiny ImageNet

200

Approximately 120,000

64x64 pixels

RGB (3 channels)

Various objects and categories

Training (100.000 samples), Testing (10,000 samples)
Balanced classes

Commonly applied during preprocessing (e.g., random flips, rotations)
Image classification, fine-grained recognition

Created from the ImageNet dataset

Figure 5.1: Data samples of each of the datasets used in the experiments. From left to right: FMNIST, CIFAR-10, CIFAR-100,
Tiny-ImageNet
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5.3. Tasks and attack settings

5.3.1. Goal of the attacker

It is the goal of the attacker to minimize the loss of the backdoor accuracy whilst also minimizing the
accuracy of the main task. Equation 2.3 shows the optimization problem for the attacker. In this paper,
we utilize two different trigger patterns in order to determine the properties of our attack. We use a
simple square pattern and a sinus pattern (SIG) as in [5]. One important difference to keep in mind
when comparing square and SIG triggers is that their operating delta value ranges are different. While
the SIG trigger limits its delta to a range between 1 and 100, the square trigger operates within the
range of 1 to 255. This difference results from the special properties of the SIG trigger, which can create
significant changes to the original image. These changes can be so big that instead of maintaining the
backdoor’s intended effect, they force the global model to adjust to a new class. For that reason, it
is decided to stay within the bounds of 0 to 100. Both trigger patterns were picked because they are
straightforward and demonstrate how our attack enhances existing SOTA attacks. To have an idea of
what these image samples look like, Appendix B provides an overview of what these poisoned image
samples would look like with a given trigger intensity.

5.3.2. Attack settings

To evaluate the performance of our method in different settings, we conducted experiments using vary-
ing settings for local aggregation. Table 5.5 shows the standardized attack settings for our basic ex-
periments. Furthermore, to understand the robustness of our attack method in response to variations
in hyperparameter settings, we carefully tested it under a spectrum of attack configurations. Any devi-
ations from the original settings in specific sections will be explicitly noted for clarity and transparency.
It's worth noting that we conducted each experiment with a minimum of five repetitions. We adopted this
practice to enhance the reliability and consistency of our results while mitigating the impact of inherent
randomness in the outcomes.

Similarly to other works [4] [71] [80], we use FedAvg [40] in our experiments which simply performs
an average of the device updates. Due to its effectiveness and simplicity, it has emerged as the op-
timization standard for FL deployments at scale and has thus become the de facto standard for FL
[10].

Table 5.5: Standard experiment settings for each dataset

‘ ‘ FMNIST ‘ CIFAR-10 ‘ CIFAR-100 ‘ Tiny ImageNet
\ Total participants \ 3000 \ 1000 \ 1000 \ 1000

| Malicious participants | 1 | 1 | 1 | 1

| participants per FL round | 10 | 10 | 10 | 10

| Phase to start the attack | From beginning | From beginning | From beginning | From beginning
| Poison fraction | 0.5 | 0.5 | 0.5 | 0.2

| Default trigger pattern | SIG | SIG | SIG | SIG

| Frequency of SIG pattern | 6 \ \ 6 \ 6

| Trigger size square pattern | | | - | -

| Local epochs | 2 | | 2 | 5

| Datadistribution | D | IID | D | D

| Classification model | ClassicCNN | ResNet18 | ResNet'8 | ResNet18

| Learning rate | 0.1 | 0.1 | 0.1 | 0.001

\ Momentum \ 0.9 \ 0.9 \ 0.9 \ 0.9

| Type of attack | Fixed frequency | Fixed frequency | Fixed frequency | Fixed frequency
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5.3.3. Models

Our evaluation setup consists of two different models. First, we use the classic CNN model as provided
in [52]. This model works on the FMNIST dataset. For the other datasets, we use the ResNet18 model
[26]. Table 5.6 shows the layout of our classic CNN model. The layout of the ResNet18 model can be
found in [26].

Table 5.6: Layout of the classic CNN model

| Parameters | Shape | Hyperparameters of Layer |
Conv2d 1*32*3*3 stride = (1, 1)
GroupNorm 32*32 e=107°
Conv2d 32*64*3*3 stride = (1, 1)
GroupNorm 32*64 e=10""°
Dropout2d p=0.5
Linear 9216*128 bias = True
Linear (For Fashion-MNIST) 128*10 bias = True

5.3.4. Threat model

In this section, we establish our threat model. It aligns with the standards outlined in prior research
[4] [64] [71] [80]. Our threat model encompasses several key considerations: Firstly, the attacker pos-
sesses the capability to manipulate the weights of the model they intend to submit for aggregation.
This manipulation can involve altering model parameters to inject backdoors or other malicious modifi-
cations. Secondly, the attacker has the authority to modify hyperparameters associated with the local
training process. These hyperparameters include settings like the number of training epochs and learn-
ing rates. This allows the attacker to fine-tune their approach to achieve their goals. Lastly, the attacker
retains the flexibility to adapt their local training strategies from one round to another, enabling them
to optimize their attack approach as needed. Importantly to note is that the attacker’s influence does
not extend to benign participants’ training processes or the aggregation technique utilized to merge
updates from all participants into a consolidated global model. We operate under the assumption that
benign participants adhere to standard FL training methods while applying them to their local data to
construct their local models.

5.4. Metrics

Attack effectiveness

We quantify our attack’s efficacy in terms of Backdoor Accuracy (BA). It evaluates a model’s capacity
to identify accurately data that has a backdoor pattern or concealed trigger, which is a crucial consider-
ation in adversarial and security contexts. High backdoor accuracy means the model is detecting and
reacting to the trigger correctly. Conversely, low backdoor accuracy denotes a more robust model that
is less vulnerable to these kinds of attacks. The mathematical expression of the BA can be found in
2.4

Besides attaining a high BA, the second goal is to not influence the benign accuracy as well. For
that reason, we also measure the Main Task Accuracy (MA) for our experiments as expressed in 2.5.
MA indicates how many of the benign input samples are correctly classified. A good backdoor attack
does not or only slightly degrades the MA. A high loss in MA usually indicates that the local update is
malicious and thus makes it easier for the defenders to defend against such updates.

5.4.1. Irreqularity of the update

Most clustering defenses in FL perform some type of distance metric. In this thesis, the two most dis-
cussed metrics are used. First, there is the cosine distance [53] [9]. The mathematical expression can
be found in 6.13a. The cosine distance, which goes from -1 to 1, is used to evaluate the consistency
of updates and can help separate trustworthy updates from ones that might be tainted. The process of
collaborative learning can be interfered with by malevolent entities purposefully or inadvertently intro-
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ducing poisoned updates. FL systems can detect outliers and deviations, which suggest the presence
of poisoned updates, by tracking the cosine distance between model updates from various devices.

The second distance metric is the Euclidean distance as found in 6.13b. It calculates the straight-
line distance between two updates in multidimensional space. When the attacker tweaks the weights
of its own update in order to make it stronger, it will increase its Euclidean distance. Again, this will give
away the poisoned updates among the benign updates and render the attack ineffective. Therefore it is
important for the attack to make both their cosine distance as well as its Euclidean distance as similar
to benign updates as possible.

5.4.2. Durability of the backdoor

The durability of the backdoor is expressed by the lifespan metric as expressed in 2.8. It is important to
measure as a longer-lasting attack can also do more damage and thus prove important for an attacker.
The lifetime tracks the maximum amount of rounds the backdoor lasts until the BA goes below a certain
threshold. We follow the guideline of [80] to put threshold x at 50%. This means we monitor the
backdoor’s effectiveness until its accuracy drops to half of its initial level.

5.4.3. Measuring natural stealthiness

Evaluating the distinguishability between two images requires the use of an appropriate metric. In
the context of FL, there isn’t a universally accepted standard for measuring the visibility of triggers.
Therefore, in this study, we propose to utilize the PSNR, SSIM, and LPIPS. These metrics each use
a different strategy to measure the visibility of differences between two images. Our goal is to deliver
a comprehensive assessment of trigger visibility in FL scenarios by leveraging these well-established
and reliable metrics.

PSNR provides a quantitative measure of the similarity between two images by evaluating the ratio
of the peak signal power to the mean squared error between the images. The higher the PSNR value,
the more similar the images are considered. It quantifies the dissimilarity between two images on a
scale from 0 to 80, with a score of 80 implying no difference, while a score of 80 signifies a complete
dissimilarity between two images. Its expression can be found in 2.9.

Secondly, the SSIM metric [50] takes into account luminance, contrast, and structure, mimicking
aspects of human visual perception. It measures the similarity in local patterns of pixel intensities and
returns a value between 0 and 1, with 1 indicating perfect similarity. Unlike PSNR, which primarily
focuses on pixel-wise differences, SSIM evaluates image quality by considering how well the structure
and texture of the images match. For that reason, it is known as a more sophisticated metric when
comparing images. The disadvantage of using SSIM is that it was only compatible with colored images,
restricting our evaluation to the CIFAR-10 dataset. The expression for the SSIM metric is found in 2.10

The LPIPS [78] metric is a perceptual similarity metric used to assess the dissimilarity between two
images from the perspective of human visual perception. The metric quantifies the dissimilarity between
two images on a scale from 0 to 0.7235. A score of O implies no difference, while a score of 0.7235
signifies a complete dissimilarity between the two images. Unlike SSIM and PSNR, which focus on pixel-
wise differences, LPIPS leverages deep neural networks that are typically pre-trained on large-scale
image datasets to extract high-level visual features from images. The perceptual separation between
these features is then calculated, taking structure, texture, and color into account. With this method,
LPIPS may catch changes between images that are more subtle and complex making it more similar
to human perception. As a result, LPIPS frequently offers more precise evaluations of picture quality
and similarity, especially when assessing photos that might have been altered. The disadvantage of
using LPIPS was again that it only works on colored images and is only being utilized on the CIFAR-10
dataset.
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5.5. Defenses

We assessed our attack against a variety of recent defensive methods. These included techniques
like vector-wise scaling defenses such as in [54]. We also evaluated cluster defenses such as FLAME
[43] and multi-Krum [9], as well as a robust aggregator, the Geometric Median [74]. In addition, our
assessment covered sparse defenses, as found in [46]. This evaluation encompasses various defense
mechanisms, providing us with valuable insights into the effectiveness of our attack strategy. For each
defense, we highlight whether it was applied in 1ID or non-1ID settings. Success in |ID settings implies
that the defense proved ineffective in the most straightforward scenario. If our attack is effective in per-
formance in 1ID settings but encounters challenges in non-lID scenarios, it signifies that the defensive
measure offers some level of protection but falls short of halting our attack in more realistic conditions.
Non-lID settings were obtained by using a Dirichlet distribution with a = 0.8.



Results and discussion

6.1. Experimental results

In this section, we first experiment with some of the basic properties regarding the pixel intensities in
backdoor attacks. After our first experimental results, we use these results in order to craft a new attack
using the pixel intensities. We compare our attack against a baseline of a traditional attack under no
defenses. The aggregator in all the experiments is FedAvg. The results provide a detailed overview of
the outcomes achieved with different trigger intensities. This exploration serves as a reference point,
showcasing the advantages and drawbacks associated with diverse trigger intensities within the context
of FL.

6.1.1. Results under low test- and training intensities

First, we conduct a basic exploration experiment to test how the BA is affected by lowering the trigger
intensity in different datasets. In figure 6.1 we observe the results in BA for different trigger intensities
whilst keeping the training and the testing intensity the same. This lets us explore the effectiveness of
our attack on trigger intensities that are considerably lower compared to most attacks. We can observe
the following. First, let us take a look at the results from the FMNIST dataset in figure 6.1a. We
observe that a trigger intensity of 100 results in a BA of 100%. It quickly gets to this point with a steep
line and after about 10-15 rounds we see that it has achieved its maximum BA. We see a similar pattern
happening when the trigger intensity has a value of 60, with the difference being that its increase in BA
at the start of the attack is less steep in comparison to the former. A clear decrease in BA emerges
whenever we poison our model with trigger intensities below 60. We can see that a trigger intensity of
20 leads to a BA of about 90-95%, however reaching this score takes many rounds. For the trigger
intensity of 10, we can see that the backdoor is unable to reach a BA of 50%, showing us that a lot of
performance is lost by lowering this trigger intensity.

Now, if we take a look at the results under the CIFAR-10 dataset (fig. 6.1b), we can see that both
attacks using trigger intensity of 60 and 100 manage to reach about 100% BA in a relatively short time,
the former being slightly below the latter’s BA. From analyzing the results for trigger intensities below
60, we can see that both runs, using trigger intensities of 20 and 10 respectively, have a difficult start. It
takes about 20 rounds before their BA starts a rapid incline up to their maximum performance reached
after about 25-30 rounds. It can be observed that a trigger intensity of 20 manages to attain a BA of
95% and a trigger intensity of 10 shows a loss in performance with its maximum BA being about 80%.

Next, the results for the CIFAR-100 dataset are up in figure 6.1c. We observe that all runs have
difficulty with this dataset, with no run managing to reach 100% and all runs needing at least 20 rounds
before the BA starts to rise steeply. We observe that trigger intensities of 100 and 60 manage to reach
a BA of 97% and 90% respectively, whilst the experiments with trigger intensities of 20 and 10 achieve
backdoor accuracies of 35% and 8%.

36
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At last, we observe that there are no very significant differences in the Tiny ImageNet dataset in
figure 6.1d. The runs with 100, 60, and 20 trigger intensities show a similar pattern in terms of growth
and maximum performance in BA. We observe that it takes them all about 30 rounds to reach their
maximum BA of 100%. The only slight observable difference is that the run with a trigger intensity of
10, seems to show a lower BA during its climb to its maximum in comparison with the other runs.

The loss of performance from lowering the trigger intensities can be attributed to the loss in effec-
tiveness from the activation values. Due to the reduced trigger intensities, the model has a harder time
recognizing the trigger compared with the benign features of benign samples. As a result, the influence
of benign features increases in comparison to the influence of the backdoor trigger, making it less and
less likely the model is able to classify the backdoor correctly. It also becomes apparent that some
datasets are harder to poison in comparison with others. This happens due to differences in resolution,
model used, and the amount of samples per class in the dataset.
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Figure 6.1: Attack performance under different trigger intensities. Both the training and testing intensity are equal in this
experiment
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6.1.2. High training intensity and low testing intensity
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Figure 6.2: Attack performance under a high training intensity and a low testing intensity

In this section, we delve into experimenting using a high training intensity and a lower testing intensity.
The results are depicted in Figure 6.2. In all experiments, we train our local model with a training
intensity of 100, whilst subsequently using a testing intensity of 100, 60, 20, and 10. When focusing on
the FMNIST dataset in figure 6.2a, the results indicate diminishing effectiveness as we lower the testing
intensity. We see that using the same training- and testing intensity leads to a strong BA of 100% that
quickly increases over rounds. However, when presented with a lower testing intensity, we notice that
the backdoor quickly loses performance. A testing intensity of 60 results in a BA of 95% which also
takes longer to reach. When using a testing intensity of 20 and 10 we see that the BA quickly drops,
being unable to get a BA that surpasses 10%. We observe a similar pattern when looking at the results
from CIFAR-10 in figure 6.2b. We observe that using 100 for both training and testing intensity leads
to a strong result. However, when we lower the testing intensity in comparison to what it was trained
on, we notice that the BA completely vanishes, being reduced to 0%.

Examining the outcomes for CIFAR-100 and Tiny ImageNet datasets, we observe a similar trend.
In the CIFAR-100 results, depicted in Figure 6.2c, we notice a rapid decline in performance when
validating with a testing intensity lower than the training intensity. Specifically, using a testing intensity
of 60 results in a BA of about 40%, while testing intensities of 10 and 20 yield no BA at all. For Tiny
ImageNet, this performance drop is a bit subtler. As seen in Figure 6.2d, evaluating with an intensity
of 60 leads to an unstable BA. Checking the results for testing intensities 10 and 20, we notice a slight
decline in performance compared to training and testing with the same intensity.

In all datasets, we notice that there is a poor generalization that could essentially eradicate the
backdoor’s efficacy whenever the testing intensity is lower than the intensity it was being trained. This
phenomenon can be attributed to the model’s neurons expecting a robust trigger, rendering them ill-
prepared to recognize a weaker trigger. Consequently, in real-world scenarios, it becomes crucial to
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ensure that there is no loss of trigger intensity, as any reduction could rapidly render the backdoor
ineffectual.

6.1.3. Low training intensity and high testing intensity
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Figure 6.3: Attack performance under a low training intensity and a high testing intensity

Next, we turn our attention to the effects of training with a lower trigger intensity than that employed
during testing. This experiment is visually presented in Figure 6.3. In contrast to the previous section’s
findings, training with a low-intensity trigger and subsequently testing with a higher-intensity trigger
yields interesting results in terms of generalization. We observe this result in both the FMNIST and the
CIFAR-10 datasets. In FMNIST, all runs, except the run with training intensity 10, start with a steep
incline in BA which eventually results in a BA of 100%. We see that the run with training intensity 10
takes longer and kicks off after about 13 rounds. Quickly after, it reaches 100% in BA as well. Taking
a look at the results for CIFAR-10, we can see that essentially all runs quickly come into effect and
reach 100% BA after 10-15 rounds. They all follow a somewhat similar pattern and reach maximum
performance at the same time.

Now, turning our attention to Figure 6.3c and 6.3d showcasing the results for CIFAR-100 and Tiny
ImageNet, respectively. Notably, when training with an intensity of 60 and testing on intensity 100 in
CIFAR-100 (Figure 6.3c), we observe impressive outcomes with a perfect BA of 100%. Even training
with an intensity of 20 results in a respectable BA of about 50%. However, it's worth highlighting that
this dataset proves to be the most challenging to poison, as training with a trigger intensity of 10 leads
to no effective BA. Shifting our focus to Tiny ImageNet, we observe a consistent pattern across all runs
in Figure 6.3d. They steadily climb in BA until reaching 100% around the 30th round, with no noticeable
decline in BA observed.

What is remarkable about these results is that they indicate that irrespective of the chosen training
intensity, we consistently achieve a BA of 100% for almost all runs. This observation signifies that an
attacker who trains with a lower intensity gains the flexibility to select any testing intensity exceeding
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the training intensity while maintaining peak performance. The generalization is a result of the small
set of neurons being extra stimulated whenever presented with a stronger trigger in comparison with
what they were trained on. This adaptability empowers the attacker to tailor the attack precisely to
their desired parameters. Additionally, while most attacks exhibit similar convergence rates toward
maximum BA, the FMNIST and CIFAR-100 datasets stands out. In both cases, the attack trained with
an intensity of 10 appears to be slowed down or not effective at all. This suggests the existence of a
lower performance threshold, implying that excessively low training intensity might hinder the attack’s
effectiveness.

6.1.4. Exploring the Impact of Varying Trigger Intensities
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Figure 6.4: Attack performance on CIFAR-10 using different attack intensities

Our investigation, as illustrated in figure 6.4, shows the influence of altering trigger intensities during the
training phase on BA, while keeping the testing intensity consistently fixed. One striking observation
is the rapid decline in BA when the model is subjected to testing with a higher intensity trigger than it
was originally trained on as also shown in the previous sections. This decline becomes apparent at
attack intensities 20 for the red line and 40 for the blue line in the graph. As we can see, the larger the
testing intensity is in comparison with the training intensity the more performance is lost. This implies
that when experimenting with a testing intensity of 40 (indicated by the blue line), the effectiveness of
our attack may decrease to 60%, as opposed to the potential 100% effectiveness achievable if training
were conducted at an intensity of 40 or lower. If we look at the red line, we see what happens if we use a
testing intensity of 20 whilst training on different training intensities. Again, a consistent trend emerges:
whenever the training intensity surpasses the testing intensity, a noticeable decline in performance
starts, with the potential for the complete loss of the backdoor if trained at an intensity of 100.

On the other hand, training a backdoor within a model with a training intensity lower than the testing
intensity yields interesting results. In such scenarios, we observe either an equivalent or increased BA.
This outcome signifies improved generalization, as demonstrated in the figure by both lines exhibiting
a slight increase in BA when we train with a trigger intensity lower than the testing intensity. This
phenomenon can be attributed to the controlled propagation of the poisoned backdoor neurons, as
elucidated in Section 4.1. By training with a lower-intensity trigger, we effectively temper the influence
of the backdoor during training. This allows the model to maintain its performance when subsequently
exposed to higher-intensity triggers during testing.

An important takeaway from these findings is the versatility offered to attackers in achieving a high
BA. This can be accomplished using various training intensity values, as long as the testing intensity
remains higher. This flexibility empowers the attacker to customize the trigger intensity on a per-sample
basis, tailoring the attack for optimal effectiveness. Moreover, this adaptability empowers the attack’s
robustness in real-life scenarios characterized by fluctuations in external conditions, where testing in-
tensities may vary due to factors like lighting or environmental changes.
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6.1.5. Reinforcement of attacks
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Figure 6.5: Attack performance under fedAvg

Figure 6.5 offers a comprehensive view of the BA across multiple datasets, revealing a vast and con-
sistent trend. Our research demonstrates that the principles of our backdoor attack exhibit great gen-
eralization, holding across diverse datasets. Remarkably, training with a weaker training intensity and
subsequently testing with a stronger testing intensity can lead to slightly superior results compared to an
attack that employs identical trigger intensities for both training and testing phases. This phenomenon
is evident in the results from multiple datasets.

For the CIFAR-10 dataset, the results are shown in figure 6.5a. We observe that the baseline attack
starts to increase its BA after around 20. It manages to do so until it stops at around 90% after which
it does not gain any BA anymore. Our attack, which was trained on a lower trigger intensity, starts
in the same way and follows about the same trend as the baseline. However, whilst the baseline
manages to reach a BA of 90%, our attack surpasses this maximum and performs slightly better. Our
attack managed to reach the full 100% in BA. If we look at the results from FMNIST, we notice that the
baseline manages to reach a BA of 90% at the end of the run, which took about 60 rounds to reach.
Comparing it with our attack, we see that it took very slightly longer to gain quickly BA. However, our
attack surpasses the baseline at round 22 and manages to get a slight increase of 5% in terms of BA
in the end. Our approach manages to surpass the achieved BA of the baseline attack by at least 5%
in both datasets. The key to this success lies in the strategic choice of trigger intensities. By training
the model with a lower training intensity and then subjecting it to a higher testing intensity, the attack
gains reinforcement, resulting in a slightly more potent BA. This strategic maneuver can be particularly
advantageous for imperceptible triggers, which may possess limited strength due to their low visibility.
By enhancing their impact through this approach, attackers can maximize the effectiveness of their
backdoor attacks.
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When looking at the results from CIFAR-100 and Tiny ImageNet, we notice a somewhat similar
result. Like our CIFAR-100 experiments before, we notice that it takes about 20 rounds until the attacker
manages to gain a steep increase in BA, as observed from figure 6.5¢c. Also here we observe that there
is a slight increase in BA performance in our attack. The baseline attack manages to reach 93% in BA,
whereas our attack improves on this with 5% to 98%. It should be noted that in this case, both the
training and testing intensity are quite high (>50). The reason is that the CIFAR-100 dataset is much
harder to poison, requiring stronger trigger values in general for the backdoor to gain effectiveness. As
for the results of the Tiny ImageNet dataset depicted in figure 6.5d, we observe that both the baseline
and our attack reach the same BA of 100% after 35 rounds. Yet, it does show that our attack is more
effective in the early stages before reaching its maximum performance as we see a steeper growth in
BA from round 10-20.

All'in all, it shows that our method of training on a lower trigger intensity in comparison to what it
is being tested on shows generalization among all datasets, achieving at least the same BA as the
baseline attack. Moreover, we see that in some datasets it can result in a slight increase in BA. We
believe this is the case because the model is trained on the backdoor task when presented with a
lower trigger intensity. When presented with a trigger with a higher trigger intensity, the model is even
more inclined to believe that it is the backdoor label. Yet, as we have seen, this increase is not always
consistent among datasets and can be quite small in some cases.

6.1.6. Impact on benign accuracy
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Figure 6.6: The influence on the MA when training on a lower trigger intensity

In this section, we explore whether the inclusion of a backdoor task has any adverse effects on the
validation accuracy of the MTA. The MTA’s validation accuracy is a critical metric as it serves as a
primary indicator of the primary task’s performance within the FL framework. Some experiments were
conducted on different trigger intensities and investigated what the influence would be on the MTA of
the global model. In figure 6.6a we see the resulting MTA under the FMNIST dataset. We can see
that our MTA quickly climbs up to 90% and remains slightly above that percentage in the end. We also
noticed that lowering the training intensity does not result in a loss of MTA. We see a similar result
under CIFAR-10 as depicted in figure 6.6b. The MTA in all cases quickly climbs up and converges at a
score of 80% at round 20. There is no clear degradation in the MTA due to the concurrent presence of
the backdoor task. This observation holds consistently across both datasets we examined. Our finding
emphasizes that our attack does not worsen the stealthiness of the baseline attacks in terms of MTA.
This robustness is a significant achievement as any degradation in the MTA’'s accuracy could serve as
an anomaly, potentially signaling a breach in the system’s security.
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6.1.7. Influence on durability
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Figure 6.7: Lifetime of our attack on FMNIST

Our research explores durability, a key feature of backdoor attacks, by examining the impact of our at-
tack using a different intensity for training and testing against the baseline attack. In this experiment, we
initiated both the baseline and our attack, each spanning 50 rounds of training. The training continued
until the BA reached a full 100%, indicating successful convergence. Following this intensive training
phase, we ceased the attack and transitioned to benign updates only. During this phase, benign up-
dates gradually took precedence and started to override the effects of the backdoor attack. This way
of experimenting is similarly done in [80]. It is important to note that this attack was only conducted on
the FMNIST dataset and not the other datasets. The CIFAR-100 and Tiny ImageNet dataset were too
complex to run this experiment and running it would take weeks. CIFAR-10 displayed no sign of losing
performance after a significant amount of time, thus making it also exceed our time constraints. We
measure our durability by using the lifetime metric. This metric counts how many rounds the backdoor
manages to reach a BA of 50% or higher. The difference between the two attacks gives an indication
of the increase in lifetime.

The findings from figure 6.7 reveal that our attack when compared to the baseline, exhibits quite
an extension in the lifetime of the backdoor. We can observe this by looking at the figure. We see
that the red line (our attack) manages to hold onto its backdoor accuracy longer in comparison with the
baseline attack from the blue line. We notice that the blue line reaches a BA of less than 50% after
125 rounds. Our attack extends this number up to 173 rounds. As a result, the lifetime of our attack
is increased by 39%. This means that once our attack is embedded into the global model, it persists
and operates for an extended duration. This shows that it can significantly surpass the lifetime of the
baseline attack. This observation carries significant implications, especially from a security standpoint.
A backdoor attack’s durability is directly correlated with its potential for causing damage or unauthorized
access. By extending the attack’s lifetime, we enhance its potential impact and increase the window of
vulnerability for the targeted system or application.

6.2. Attack results under defenses

To comprehensively assess the effectiveness of our attack strategy, we subjected it to testing in the
presence of SOTA FL defenses. These defenses include norm clipping [54], Geometric median [74],
Multi-Krum [9], and FLAME [43]. The objective was to understand how our attack performs under a
range of defense scenarios within a fixed-frequency FL setting. In our experimental setup, we con-
fronted our attack with a baseline model that shares the same attack and testing intensity settings.
It's essential to note that while our primary contribution revolves around an attack strategy that offers
adaptability and resilience for the adversary after aggregation, our primary goal isn’t to evade detection
during the aggregation process. Instead, our focus lies in demonstrating that our attack still can be
employed even under SOTA defenses.
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One crucial aspect of our evaluation is that the success of our attack may depend on the baseline
model’s ability to effectively deploy the backdoor. This highlights the interplay between our attack and
the baseline. Nevertheless, our experiments enable us to showcase that the principles of employing
varying trigger intensities for training and testing remain applicable, even when robust FL defenses are
deployed. It's noteworthy that our attack strategy is designed to thrive in scenarios where adaptability
and persistence are key objectives. By incorporating the element of variable trigger intensities, we
enable attackers to maintain the attack’s effectiveness even in the face of advanced defenses.

The findings from our experiments hold significant implications for the broader field of adversarial
machine learning and FL security. They highlight the need for continuous innovation in defense mech-
anisms to counter evolving attack strategies. Moreover, they emphasize the importance of proactive
security measures to safeguard FL systems against sophisticated adversaries.

6.2.1. Performance under Vector-wise Scaling
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Figure 6.8: Attack performance under Norm-clipping defense

In our next experiment, we employ a defense mechanism known as "norm clipping.” This defense
strategy has garnered acclaim for its effectiveness in stopping previous attacks, as substantiated by
prior research [54]. Our integration of norm clipping into our FL framework is dynamic to strengthen
the system’s security and resilience against malicious exploits.

Norm clipping operates on a vector-wise scaling principle and is strategically applied to all updates
at the server side before the FedAvg process commences. With this proactive approach, modifications
to the local model (like scaling) are limited and kept within pre-established bounds. This prevents them
from having an excessive impact on the model. A distinctive feature of norm clipping is its adaptability.
It engages in a dynamic process wherein it continuously computes the average norm magnitude based
on the incoming updates. Subsequently, this computed average norm is set as the norm bound for the
current iteration of FL. This adaptability ensures that the defense mechanism remains responsive to
changes in the nature and magnitude of incoming updates, enhancing its effectiveness in safeguarding
the model.

Our evaluation of the impact of norm clipping on the performance of our backdoor attack, as illus-
trated in Figures 6.8a and 6.8b, offers valuable insights. It is evident that as expected, norm clipping
exerts a slowing effect on the convergence of both the baseline attack and our attack. However, even
under the constraints imposed by norm clipping defense, the effectiveness of our attack strategy shines
through. For instance, figure 6.8a shows that both the baseline and our attack grow simultaneously
in BA up until round 15. Starting from round 15, our attack consistently outperforms the baseline by
5% in terms of BA. Specifically, our attack achieves a 60% BA, while the baseline attains 54% in BA.
If we look at the results of the CIFAR-10 dataset, we notice that our proposed backdoor attack consis-
tently outperforms the baseline attack in terms of attack success rate, marking an even more significant
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achievement. For instance, in the CIFAR-10 dataset, our attack demonstrates an improvement of ap-
proximately 20% in the backdoor attack success rate when compared to the baseline attack. This
outcome underscores the potency of our approach in achieving higher attack effectiveness even in the
face of formidable defense mechanisms like norm clipping. Our attack stays after 40 rounds around
a BA of 70-80%. The baseline only manages to reach slightly above 60% in BA. The reason for this
more significant increase in BA is due to

6.2.2. Performance under Cluster-based defenses
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Figure 6.9: Attack performance under Multi-Krum (a, b) and FLAME defense (c, d)

In our evaluation of FL defenses, the Multi-Krum defense emerges as a formidable challenge for our
attack strategy. It's essential to note that the accuracy of our attack strategy under Multi-Krum defense
can be significantly diminished. This reduction in BA can be attributed to the fact that our attack does
not inherently make the malicious updates submitted by the attacker more stealthy compared to the
baseline attack.

Our attack approach focuses on adaptability and robustness rather than attempting to obscure the
malicious nature of updates. Consequently, under the eye of Multi-Krum defense, which is strong at
identifying and isolating outliers, our attack can be exposed and its accuracy compromised. However,
it's important to highlight a crucial aspect of our attack strategy. Once an attack successfully evades
detection by Multi-Krum defense, it remains to do so with full effect. As a result, there is a substantial
boost in BA compared to the baseline attack. This observation is evident in the results presented in
Figures 6.9a and 6.9b. For the FMNIST dataset, the increase in BA is moderate, with an approximate
5% improvement when compared to the baseline attack. However, the results for the CIFAR-10 dataset
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show a more notorious result. Under Multi-Krum defense, our attack demonstrates a notably stronger
performance, achieving an increase in BA of approximately 15-20%. This outcome underscores the
resilience and adaptability of our attack strategy even in scenarios where formidable defenses like
Multi-Krum are in place.

The results under the FLAME defense are shown in Fig. 6.9c and 6.9d. As we can observe, our
attack slightly outperforms the baseline in the FMNIST dataset. As seen from the figure, it manages
to increase its BA consistently over time and slightly outperforms the baseline. However, it is by no
means in big numbers. On the CIFAR-10 results, we can see that our attack consistently achieves the
same or similar BA in comparison with the baseline. We notice that both attacks jump quickly to about
60% in BA and subsequently increase until both have reached about 100% BA. It seems clear that our
attack manages to maintain its properties of being able to generalize well. However, The increase in
BA seems to be reduced due to the FLAME defense.

6.2.3. Performance under robust aggregators
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Figure 6.10: Attack performance under the Geometric Median

In our exploration of FL defenses, the Geometric Median defense is as a robust safeguard against
adversarial attacks. The core principle behind this defense is its ability to mitigate the impact of extreme
model updates on the final aggregated model. Calculating the geometric median effectively reduces
the influence of outliers and noisy updates, making the FL system more resistant to adversarial attacks.

Figures 6.10a and 6.10b provide insights into the outcomes of our attack strategy under the pro-
tection of the Geometric Median defense. For the FMNIST dataset, our attack strategy demonstrates
near-equal performance in terms of BA and convergence rate compared to the baseline. We see an
increasing BA up to around 50. From that point on, the BA does still increase however at a slower
rate. This result indicates that our attack doesn’t yield a significant advantage over the baseline. Nev-
ertheless, the generalization effect remains prominent under the Geometric Median defense, and the
attained outcomes align closely with those of the baseline. In the case of the CIFAR-10 dataset, we do
observe an increase in attack performance when compared to the baseline. However, it's important to
note that this increase exhibits some instability and is relatively lower compared to the improvements
witnessed under other defense mechanisms. While our attack still works under the Geometric Median
defense, the degree of enhancement is considerably lower in comparison with other defenses.
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6.2.4. Performance under sparse defenses
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Figure 6.11: Attack performance under the Sparsefed defense

Figure 6.11 provides an illustration of our attack within the context of the Sparsefed defense applied to
both the FMNIST and CIFAR-10 datasets. Notably, the Sparsefed defense demonstrates considerable
efficacy in safeguarding the FMNIST dataset, as observed in figure 6.11a. In this scenario, both our
attack and the baseline exhibit a gradual increase in backdoor accuracy until approximately round 60,
reaching a BA of around 35% BA. Beyond this point, our attack outperforms the baseline. It shows a
steeper ascent in BA. Ultimately, our attack attains a BA of 80%, while the baseline lingers at 60%.

Turning our attention to the results about the CIFAR-10 dataset, as depicted in figure 6.11b, we
encounter a different narrative. The Sparsefed defense, in this case, proves to be less effective in
mitigating the backdoor threat. Although it succeeds in maintaining low backdoor accuracy for both
attacks, a significant spike in BA becomes evident from round 25 onward, culminating in a flawless
100% BA for our attack by round 40. Meanwhile, the baseline attains a BA of 95% around round 50
and beyond.

Based on our results, it becomes evident that the Sparsefed defense has only limited success in
curbing the impact of our attack. This success can be partly attributed to the employment of a smaller
model for the FMNIST dataset, which makes it more challenging for the defense to prevent backdoor
attacks due to the model’s increased sparsity. However, what remains consistent across both datasets
is our attack’s resilience, maintaining its generalization capabilities. Notably, our attack consistently
outperforms the baseline, showcasing the enduring effectiveness of our attack strategy and the inability
of current defense mechanisms to entirely neutralize its impact.

6.2.5. Robustness against human inspection

As outlined in preceding sections, the removal of a backdoor from FL systems remains a formidable
challenge. Very few defenses proved effective and once a backdoor has been successfully inserted
into the system, its elimination becomes a difficult task. Consequently, the insertion of an imperceptible
backdoor into an FL system poses a significant challenge, as distinguishing between random errors
and malicious outcomes becomes hard. To address this challenge, we explored the feasibility of human
visual inspection as a potential defense strategy. To initiate this investigation, we conducted a series
of experiments. Equation 4.7 helped determine the optimal attack delta for our backdoor attack. This
optimal delta represents the lowest feasible intensity level that an attacker could employ to execute
a backdoor attack. We compared this optimized trigger with one using the maximal trigger intensity
similarly to other attacks.

As one can imagine, vision is a subjective topic. To provide a comprehensive assessment, we have
adopted multiple metrics, as elaborated in Section 5.5.4, for classifying the perceptibility of the poisoned
image samples. In the context of the FMNIST dataset, the PSNR metric is our only option, given its
compatibility with black-and-white images. However, the other two metrics are not compatible with
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Table 6.1: The minimum visibility on FMNIST whilst retaining the backdoor (An upward arrow signifies a higher score,
indicating a less visible trigger, while a downward arrow denotes a more visible trigger)

Trigger PSNR 1

SIG - baseline (6§ = 100) 13.56
SIG - our attack (6 = 14) 30.55

Square - baseline (§ = 255) 16.90
Square - our attack (§ = 20)  39.02

Table 6.2: The minimum visibility on CIFAR-10 whilst retaining the backdoor (An upward arrow signifies a higher score,
indicating a less visible trigger, while a downward arrow denotes a more visible trigger)

Trigger PSNR1 SSIM1 LPIPS |

SIG - baseline (§ = 100) 11.99 0.256 0.257
SIG - our attack (6 = 10) 31.00 0.942 0.018

Square - baseline (§ = 255)  23.81 0.942 0.018
Square - our attack (§ =30) 35.15 0.987 0.001

black-and-white tasks. Our experimentation encompassed both the SIG and square trigger variations.
It's important to note that when using the PSNR metric, the results might be somewhat biased. Our
experiments showed that this metric tends to be stricter when assessing larger triggers like the SIG
trigger, compared to smaller ones. More information on this issue is provided in the limitations section.

In Table 6.1, we present the results obtained for the FMNIST dataset. Our optimization process
identified the optimal training intensities as 14 and 50 for the SIG and square triggers, respectively.
Both demonstrate a significant enhancement compared to the baseline while preserving their original
performance. Specifically, the PSNR score shows notable improvement, rising from 13.56 to 30.55
for the SIG trigger and from 16.90 to 39.02 for the square trigger. This implies that the attacker gains
increased flexibility in customizing the trigger for its intended purpose while still maintaining the original
performance of the backdoor.

Table 6.2 provides us with the different scores for the optimal triggers and their respective visibility.
Using the SIG trigger, an optimal training intensity of 10 was achieved. This is significantly better in
comparison with the original backdoor trigger with a training intensity of 100. Given the three metrics,
we can see that our attack significantly improved in comparison with the baseline on all of them. The
PSNR score improved from 11.99 to 31.00. The SSIM and LPIPS metrics even showed a greater
improvement by going from 0.256 to 0.942 and 0.257 to 0.018 respectively. Examining the outcomes
of the square trigger, it becomes apparent that the square trigger is slightly less effective than the SIG
trigger in the context of CIFAR-10. Our optimization process leads to the optimal training intensity of
30. Yet, we observe large improvements in various metrics. Specifically, the PSNR metric shows an
increase from 23.81 to 35.15. Similarly, the SSIM metric demonstrates progress, rising from 0.942 to
0.987, and the LPIPS metric indicates enhancement from 0.018 to 0.001. It is, however, important to
keep in mind that the metrics are more strict towards larger triggers in comparison to smaller triggers.

6.3. Ablation analysis

In this section, we analyze our attack across diverse settings. Our examination encompasses various
viewpoints on the attack’s performance. Initially, we turn our focus to activation values and how our
attack influences them. This is fundamental to understanding the phenomenon of robust generalization
when training with lower intensities than those used during subsequent testing. Conversely, it elucidates
why this trend does not hold when the order is reversed. Furthermore, we investigate how our attack
impacts the distances between benign and poisoned updates. Finally, to establish the robustness of
our attack. We extend our evaluation to include an alternative trigger, the square trigger to further affirm
its efficacy.
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6.3.1. Explanation via the activation values
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Figure 6.12: Activation values on a poisoned batch in CIFAR-10

In this section, we discuss how using different trigger intensities for training and testing influences the
activation values. This explanation serves as the empirical proof of our theory. In figure 6.12 we can
see histograms of the activation values in the linear layer of the Resnet18 model. The model is in both
cases trained using the CIFAR-10 dataset. The activation values are taken from a small 256-sample
batch that contained 256 poisoned values. The horizontal axis represents the activation values, while
the vertical axis displays their respective frequencies.

The histogram in figure 6.12a shows what happens when the attacker trains with a strong trigger
intensity and subsequently tests with a stronger trigger intensity. Observed is the peak in the distribution
of activation values that are near 0. It becomes clear that most activation values in the linear layer are
relatively small and barely manage to exceed the value of 20 or -10. In figure 6.12b we can see the
result of an attack where the attacker trains with a low trigger intensity and then tests on a higher
intensity. This histogram shows a different distribution. It can be seen that the distribution has been
split up into two sections. One larger section on the left contains the lower values. These values seem
to be more on the negative side in comparison to the former attack. On the right side, we see that there
is a small section of neurons that has a high activation value of 40-60. This is a clear distinction from
the former attack that did not have this separation on activation values.

The results confirm the theory that a small number of neurons is extremely influential in triggering
the backdoor behavior. This becomes evident by the higher activation values that can seen in the
distribution of figure 6.12b but are not apparent in figure 6.12a. This small group of neurons is trained
in recognizing the backdoor however, due to the increased intensity of the trigger, become more excited
‘excited’ from seeing and thus are more likely to give their likelihood to the backdoored class.
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6.3.2. Effect on distances
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Figure 6.13: Cosine and Euclidian Distance between the average of the benign runs and the malicious run on different attack
intensities on the CIFAR-10 dataset

In this section, we dive into the effect of training on varying trigger intensities. Figure 6.13 offers valuable
insights into the results of training models under various training intensities in terms of the Euclidean
and cosine distances. These distance metrics serve as indicators of model abnormality and are impor-
tant in the context of clustering defenses. Our findings reveal that as training intensity decreases, the
abnormality of our provided updates in comparison to benign updates increases. This effect is particu-
larly pronounced at the lowest training intensities, where the influence on the distance metrics is most
evident.

Figure 6.13 indicates the difference in score between the average of the benign updates and the
average of the malicious updates where the malicious average is subtracted from the benign average.
Meaning that a negative value shows that the malicious update is larger in score than the benign update.
The x-axis shows the rounds and the y-axis shows the difference in the scored metric. Both graphs show
the results of the CIFAR-10 dataset. 6.13a highlights the difference between the benign and malicious
updates using the cosine distance. It reveals that the malicious updates diverge more and more from
the benign updates up until round 30. From that point on, they keep a somewhat consistent score. It
becomes clear that the lower the training intensity was, the more deviant the malicious update becomes.
Training on a trigger intensity of 15 keeps the difference in cosine distance around -0.03. Training on
a trigger intensity of 3 increases this distance significantly by scoring -0.08 consistently after round
30. Analysis of Figure 6.13b reveals that the distance between benign and malicious updates initially
increases up to approximately round 25. Subsequently, the malicious distance undergoes a decline,
ultimately stabilizing at a consistent score of 0, signifying the absence of significant Euclidean distance
between the updates. All three runs show similar progression patterns. However, it's notable that lower
training intensities result in a larger maximum reached distance. For instance, the run with a training
intensity of 15 attains a distance of 2, while the run with a training intensity of 3 achieves a distance of
3.3.

The underlying reason behind this phenomenon lies in the interplay between trigger intensity and the
model’s behavior. When the model is trained on a trigger with insufficient strength to exert an effective
influence, it attempts to map the features of the base class to those of the target class. As a result,
the update generated becomes increasingly malicious when compared to a strong trigger, where the
model aims to map the features of the trigger to the target class. Consequently, should be cautious to
find a balance between the stealthiness of their backdoor after aggregation and the abnormality of the
update. Increasing the training intensity mitigates the update’s abnormality, making it less conspicuous
to clustering defenses. However, this trade-off comes at a cost—it limits the potential for deploying an
imperceptible backdoor. Achieving a high BA for a testing intensity when the model has been trained
with a weaker training intensity becomes challenging, as elaborated in Section 3.
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6.3.3. Results using different triggers

Our investigation delved into the performance of our backdoor attack, this time employing square trig-
gers, across the CIFAR-10 and FMNIST datasets. This variation allowed us to explore the adaptability
of our attack strategy under different trigger configurations and its ability to optimize attack performance.

In the FMNIST dataset, our attack strategy showcased its worth by outperforming the baseline in the
early rounds. Between rounds 20 and 40, an increase in BA of 10% is observed. This shows again the
adaptability and effectiveness of our attack for all triggers as it demonstrates its ability to excel under a
different trigger. However, in the later rounds, we observed that both attacks reached their maximum
BA score of 100%. Shifting our focus to the CIFAR-10 dataset, we encountered a similar pattern as
observed with the SIG pattern. Our attack strategy slightly outperformed the baseline in terms of BA.
This consistency in performance across different triggers confirms the robustness and versatility of our
attack strategy. Under diverse conditions and trigger configurations, it thrives. Achieving results that
consistently challenge or surpass the baseline.

These findings showed that our attack works under different triggers too and further confirms our
theory. However, the choice of trigger is an important consideration as it significantly influences the
attack’s success rate and its dynamics throughout the training process.
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Figure 6.14: Attack performance under square trigger



Limitations and future work

7.1. Limitations

In this chapter, we go over the limitations of our proposed methodology and outline the possible roads
for future research directions. Three different domains are used to classify these limitations: First, we
discuss constraints on the datasets and models utilized in this thesis. Subsequently, we address limita-
tions regarding the evaluation methodology. This has a particular emphasis on limitations associated
with the assessment approach utilized in this study. This organized list of restrictions gives a thorough
rundown of the difficulties that come with using our method and gives insightful information about possi-
ble roads for improvement and further research. The final section lists the attack strategy’s challenges,
showing the inherent limits of the suggested attack plan.

7.1.1. Dataset and models

The datasets used in this thesis have several limitations that should be taken into account. The distri-
bution of data used by local participants primarily follows an 11D pattern. That means that each local
agent receives data from the same distribution. It's crucial to recognize that the subtleties of FL sys-
tems in the real world are not fully captured by this simplistic method. Local datasets in FL scenarios
are typically non-1ID in practice, which means that the properties, patterns, and representation of the
data on different local devices or participants may vary greatly from one another. Geographic differ-
ences, device kinds, and user habits are some of the elements that contribute to the diversity found in
local datasets. Because of these variations and the particular data they are trained on, local models
emerge that are intrinsically different from one another. Therefore, even though it is a research-useful
simplification, the assumption of a uniform data distribution departs from the intrinsic complexity of FL
systems. To overcome this constraint, a dataset based on an actual FL scenario must be produced.

Additionally, due to practical constraints, our experiments primarily focused on FMNIST and CIFAR-
10. These are the two most commonly used datasets in state-of-the-art research. Whilst both datasets
do prove informative, they do not provide a comprehensive view of the broader landscape of adversarial
attacks in FL. Future research should consider a wider range of datasets. As mentioned in the previous
point, should be distributed in a federated manner but also be larger and more diverse. This is needed
to fully understand and prove our findings and gain a more holistic understanding of the challenges
posed by such attacks in FL.

Our datasets had size limitations that deserve attention. For example, CIFAR-10 image samples
are relatively small at 24x24 pixels, while Tiny ImageNet image samples are 64x64 pixels. These
constraints raise questions about how our attack behaves when applied to high-resolution datasets.
Exploring the attack’s properties in such contexts is an interesting point for future research, offering
insights into its adaptability and effectiveness in crafting imperceptible backdoors in more visually com-
plex environments.

In addition, our experiments were conducted using two widely adopted models for assessing back-
door attacks. However, it is crucial to expand our experiments to encompass a broader range of neural
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network models. This extension is significant because different neural network models may exhibit
varying susceptibilities to backdoor attacks, potentially influencing the outcomes and providing a better
understanding of the attack strategy’s effectiveness across diverse model architectures.

7.1.2. Evaluation

Our evaluation encompasses a maximum of 10 participants within the FL system. While this evalua-
tion is in line with many other studies, it is important to recognize that this setting still falls short of fully
representing the scale of a typical FL system. In practical scenarios, FL systems often involve thou-
sands or even tens of thousands of participants participating in each round of training. Acknowledging
this difference is crucial, as it underscores the need for future research to explore the dynamics and
vulnerabilities of FL at the higher agent counts characteristic of real-world deployments.

Our evaluation focused on a fixed-frequency attack scenario, which may not accurately reflect the
dynamics of all FL setups. In certain situations, a one-time attack scenario may be more applicable.
Here, the attacker has only one chance to participate in an attack round. This approach can be seen
as more realistic and challenging, as it doesn’t assume the attacker’s continuous participation in every
round.

Criticism can also be directed at our use of the visibility scores as an evaluation metric. Although
our research explored multiple visibility metrics, each had certain limitations. Whilst coming closest
to meeting our evaluation needs, our metrics fall short of capturing the full complexity of human visual
perception. Notably, it was revealed during our research all considered metrics tended to penalize large
triggers disproportionately compared to smaller ones. We found that especially true for the LPIPS and
the SSIM metrics. The PSNR metric showed less bias when comparing two different triggers with one
another, yet lacked in getting the complexity of human vision right when comparing the same trigger
with different trigger intensities. On top, our trigger visibility analysis lacked depth for the FMNIST
dataset. The two more sophisticated evaluation metrics, LPIPS and SSIM, were not compatible with
black-and-white images. For that reason, we propose that a new metric is needed in order to evaluate
the visibility of backdoor triggers.

7.1.3. Our technique

Although our attack demonstrates its potential, it's important to note that an attacker can enhance its
effectiveness by complementing it with other data or model poisoning techniques. Our attack hasn’t
been assessed in combination with other SOTA attacks. Consequently, we may not have fully realized
its capabilities. The reason for this came from our intention to concentrate solely on our attack and its
attributes. We present it as an additional tool for researchers to investigate, offering a potential when
combined with other techniques.

Secondly, our technique was not evaluated on all possible defenses that are out there. There were
too many defenses to evaluate and for that reason, we made a selection of defenses we wanted our
attack to be evaluated on. We tried to include some of the more sophisticated defenses but as one
can imagine, they do require more work to implement. We attempted to consider as many as possible
defenses for each category they belong in (e.g. clustering etc.). We made a tradeoff between difficulty
and category for each defense. However, we acknowledge that this selection might have excluded
defenses that might have been extremely effective against our attack.

7.2. Future work

There are numerous ways for future research that can build upon and improve the results of this study.
One way of exploration involves the integration of our attack strategy with other SOTA attacks. Com-
bining our attack with existing approaches presents an opportunity to investigate the synergistic or rein-
forcing effects that arise from such combinations. Exploring how our attack interacts with other attacks
can provide valuable insights into the potential for creating more sophisticated and potent adversarial
strategies within FL environments.
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Future studies should also focus on correcting the increased anomalies in distance measures that
occur when our attack’s training intensity drastically drops. It is crucial to look for ways to lessen or
eliminate these anomalies. Determining efficient methods for maintaining the attack’s behavior at low
training intensities will help us comprehend its shortcomings and identify areas for future development.

On the defensive front, there is a pressing need for the development of robust and effective defenses
against backdoor attacks in FL after aggregation. Our research demonstrated that manipulating trig-
ger intensities can improve existing attacks, potentially enabling the creation of invisible backdoors.
Therefore, investigating possible solutions aiming at improving post-aggregation defense systems is
essential. Previous research has shown that existing pre-aggregation defenses may not be able to
identify backdoors in non-1ID environments. As a result, there is a need for defenses that can remove
backdoors after they are integrated into the global model. These protections ought to be built to function
well in FL circumstances that occur in the real world, where data security and privacy are critical.

Additionally, future research could explore innovative ways of quantifying the visibility of backdoor
triggers. For instance, methods involving real individuals to assess trigger visibility. However, it's im-
portant to acknowledge the potential introduction of personal biases in such evaluations. Alternatively,
researchers could develop novel metrics specifically designed to measure the visibility of backdoor trig-
gers, providing more objective and standardized assessments. These metrics could take into account
a range of factors, including human perception and potential biases, to offer a comprehensive under-
standing of trigger visibility. They should also improve on some of the problems encountered in this
thesis notably improving on the ability to quantify the trigger visibility when the sizes in triggers differ.
We found that larger triggers were considerably more strictly punished than smaller ones.



Conclusion

In this study, we addressed the need for exploring trigger intensity in backdoor attacks within the context
of FL. By challenging the conventional requirement of training and testing on the same trigger intensity,
we demonstrated the efficacy of training on a weak trigger and testing on a stronger trigger. This novel
approach could significantly enhance the performance and robustness of backdoor attacks, making
them more resilient to different environmental conditions. The ability to customize trigger visibility em-
powers attackers to tailor their poisoned samples and create a balance between attack performance
and stealthiness.

Our method complements existing state-of-the-art attacks, enabling the construction of stronger and
more stealthy backdoor attacks. By shedding light on the importance of trigger intensity, we contribute
to the growing body of research on vulnerabilities in FL systems against backdoor attacks.

Some challenges remain despite our contributions, such as the increasing anomaly that goes hand
in hand with lower trigger intensities. Future work should focus on exploring more advanced triggers,
but also countermeasures that could help to detect backdoors after aggregation.

In summary, our research advances the understanding of backdoor attacks in FL and provides
valuable insights into trigger intensity as a critical factor for attack performance and stealthiness. By
exploring new methods for enhancing attack customization and resilience, we contribute to the ongoing
efforts to find vulnerabilities in FL systems.

In the section below we give answers to the research questions:

How does varying the pixel intensity of backdoor triggers affect the success rate of backdoor
attacks in FL systems?

Our practical research findings suggest that when we train models with a low trigger intensity and then
test them with a higher intensity, we observe improved results compared to models trained and tested
at a higher intensity. It's worth noting, though, that the training intensity shouldn’t be excessively low,
as this might prevent the model from learning the backdoor task effectively. We’ve found that there’s
a benefit for attackers to train with a slightly lower trigger intensity than what they plan to test on, as it
appears to slightly boost the success rate.

Do varying the pixel intensities of backdoor triggers allow invisible triggers to be inserted?
Our discovery indicates a significant reduction in the visibility of backdoor triggers in image samples
while maintaining backdoor accuracy. However, this ability is somewhat influenced by the attack’s
strength, as a stronger attack can achieve a greater reduction compared to a weaker one. It's important
to highlight the challenge of accurately measuring the invisibility of backdoor triggers. Although we
employed PSNR, SSIM, and LPIPS scores for this purpose, we acknowledge their limitations. As
a result, we suggest the necessity for a new and improved methodology or metric to measure the
invisibility of backdoor triggers. Consequently, determining whether an image can be classified as truly
invisible remains a complex task.
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What are the implications of using different trigger intensity levels on the robustness of FL
defenses against backdoor attacks?

Based on our empirical using four different defense techniques, we found that most defenses are not
capable of detecting the attack nor able to reduce the attack performance. Although we found that
clustering attacks work well under 11D distribution, we noticed that this advantage is lost when presented
with a more realistic non-1ID scenario. However, the defense techniques did show some results. For
instance, the attack loses some of its effectiveness by needing to present a stronger trigger in order
to get good results. Thus, disabling the attacker to insert invisible backdoor triggers takes away some
power of the attack. Yet, in nearly all cases the baseline attack outperformed.

What are the drawbacks of this and how can they be employed to provide defensive measures?
In our results, we showed that using different triggers leaves its traces. It can be seen that the Euclidian
distance and the cosine distance increase when presented with low training intensity. As a result,
clustering defenses could be used to detect this attack. On the other hand, clustering defenses do not
perform well under non-1ID circumstances which is accepted as the default for FL in a realistic setting.

Can the pixel intensity of triggers be used to reinforce backdoor attacks?

In our research, we break the requirement of training and testing on the same trigger intensity. We
first found that training with a high trigger intensity and then testing with a lower intensity doesn’t work
well, mainly because of how neural networks operate. On the flip side, training with a lower trigger
intensity and testing with a higher one seems to help the model understand the backdoor better. It even
makes the attack a bit more effective compared to using the same trigger intensity for both training and
testing. What'’s interesting is that this method opens up possibilities for backdoor attacks with almost
invisible triggers. This finding might be valuable for future research, combined with other tactics to
create stronger and more challenging-to-detect attacks.
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Source Code

In this section, the most important sections of code are displayed.

The loss calculation function

1 def loss_calculator(args, poison_loss, val_loss, compare_img_loader, compare_pos_img_loader):

2
3

if args.metric == 'psnr':
visual_loss = 1 - (trigger_visibility(args, compare_img_loader,
compare_pos_img_loader) / 80) * 3
elif args.metric == 'ssim':
visual_loss = ((1 - trigger_visibility(args, compare_img_loader,
compare_pos_img_loader)) * 8)
else:
visual_loss = trigger_visibility(args, compare_img_loader, compare_pos_img_loader) x*

25
print (f'poison_loss: {poison_loss} + val_loss: {val_loss} + visual loss: {visual_loss}')
print (f'total loss: {poison_loss + (val_loss / 2) + visual_loss}')
return poison_loss + (val_loss / 2) + visual_loss

The CNN model used for the FMNIST dataset

class CNN_MNIST(nn.Module):

def __init__(self):
super (CNN_MNIST, self).__init__Q)
self.convl = nn.Conv2d (1, 32, kernel_size=(3,3))
self.conv2 = nn.Conv2d (32, 64, kernel_size=(3,3))
self .max_pool = nn.MaxPool2d(kernel_size=(2, 2))
self.dropl = nn.Dropout2d(p=0.5)
self.fcl = nn.Linear (9216, 128)
self.drop2 = nn.Dropout2d(p=0.5)
self.fc2 = nn.Linear (128, 10)

def forward(self, x):

= F.relu(self.convl(x))

F.relu(self.conv2(x))

= self.max_pool(x)

= x.view(-1, x.shape[1]l*x.shape[2]*x.shape[3])
= self.dropl(x)

= F.relu(self.fcl1(x))

= self.drop2(x)

= self.fc2(x)

return x

Lol T T T T ]

Trainings function

def local_train_normal_attack(self, global_model, criterion, attack):

""" Do a local training over the received global model, return the update """

initial_global_model_params = parameters_to_vector (global_model.parameters()).detach
O

global_model.train()

optimizer = torch.optim.SGD(global_model.parameters(), lr=self.args.client_lr,

momentum=self.args.client_moment)
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#get the poisoned dataset for the attacker
if (self.id < self.args.num_corrupt and attack and self.args.attack in ['normal', '
optimize']) or (self.args.attack == 'dba' and self.id % self.args.num_corrupt ==

0 and attack and self.id < self.args.num_corrupt):
dataloader = self.poison_loader
else:
#use the benign datasetset for malicious agent in non-attack round
dataloader = self.train_loader
for _ in range(self.args.local_ep):
for _, (inputs, labels) in enumerate(dataloader):
optimizer.zero_grad()
inputs, labels = inputs.to(device=self.args.device, non_blocking=True),

labels.to(device=self.args.device, non_blocking=True)
outputs = global_model (inputs)
minibatch_loss = criterion(outputs, labels)
minibatch_loss.backward ()

# to prevent exploding gradients
nn.utils.clip_grad_norm_(global_model.parameters(), 10)
optimizer.step ()

with torch.no_grad():
update = parameters_to_vector(global_model.parameters()).double() -
initial_global_model_params
return update

Pattern injection function

def add_pattern_bd(x, trainset, dataset='cifarl0', pattern_type='square', agent_idx=-1,

attack_type='mormal', delta_attack=None, delta_val=None, frequency=None):

nwnon

adds a trojan pattern to the image
nnn
x = np.array(x.squeeze())
if agent_idx != -1 or trainset == 1:
delta = delta_attack
else:
delta = delta_val

# if cifar is selected, we're doing a distributed backdoor attack (i.e., portions of
trojan pattern is split between agents, only works for plus)
if dataset in ['cifar10', 'cifar100']:
if pattern_type == 'sig':
f = frequency

x = np.float32(x)
pattern = np.zeros_like(x)
m = pattern.shape[1]
for i in range(x.shape[0]):
for j in range(x.shape[1]):
for k in range(x.shape[2]):
pattern[i, j] = delta * np.sin(2 * np.pi * j * £ / m)

X = X + pattern

X np.where(x > 255, 255, x)
x = np.where(x < 0, 0, x)
return x

elif pattern_type == 'square':
x = np.float32(x)
pattern = np.zeros_like(x)
for i in range(4, 4 + 5):
for j in range(4, 4 + 5):
pattern[i, j] = -delta

X = X + pattern

x = np.where(x > 265, 255, x)
x = np.where(x < 0, 0, x)
return x

Dirichtlet distribution function



1 def distribute_dirichlet(dataset, args, num_classes):

2 data_idxs = {}

3

4 shard_id = [[] for _ in range(args.num_agents)]

5 for k in range(num_classes):

6 idx_k = np.where(dataset.targets == k) [0]

7 np.random.shuffle (idx_k)

8

9 dist = np.random.dirichlet(np.repeat(args.alpha, args.num_agents))
10 dist = dist / dist.sum()

1" dist = (np.cumsum(dist) * len(idx_k)).astype(int) [:-1]

12

13 shard_id = [j + i.tolist() for j, i in zip(shard_id, np.split(idx_k, dist))]
14

15 for j in range(args.num_agents):

16 np.random.shuffle (shard_id[j])

17 data_idxs[j] = shard_id[j]

19 return data_idxs



Image samples

In this section, we aim to provide a visual representation of each trigger by showcasing a selection of
samples. This allows for a more intuitive understanding of how the samples appear at various trigger
intensities. Specifically, for the SIG trigger, we present samples ranging from 0 to 100, with intervals of
10. Likewise, for the square trigger, we exhibit samples spanning from 0 to 250, with intervals of 25 for
each displayed image. This approach enables a clearer and more insightful perspective on the visual
impact of different trigger intensities.
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Figure B.2: Visualization of poisoned image samples with the Square trigger. Bottom is a clean image and top is the maximum
trigger intensity used in this thesis for the square trigger
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