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Communication
An Efficient Analysis Method for Artificial Dielectric Layers With Vertical

Metal Inclusions Based on a Full-Wave Spectral-Domain Approach
Alexander J. van Katwijk , Andrea Neto , and Daniele Cavallo

Abstract— We present an efficient method to analyze a periodic pin-
patch structure, consisting of two artificial dielectric layers (ADLs)
connected by vertical metal pins. ADLs are made of square metal patches
in a periodic lattice and have recently been used as superstrates in
antennas and arrays to enhance the bandwidth and scanning range. ADLs
form an anisotropic effective medium, thus enabling a large scanning
volume without supporting surface waves. However, the anisotropy
increases the cross-polarization (X-pol) of the antenna in the diagonal
plane. This problem can be reduced by introducing vertical metal pins in
the ADL superstrate to form the pin-patch structure. The analysis method
is based on a spectral method of moments (MoMs) and uses entire-domain
basis functions in a hybrid Cartesian and cylindrical representation to
accurately model the currents on the structure and scattering parameters
under general plane-wave incidence.

Index Terms— Artificial dielectrics, cross-polarization (X-pol), entire-
domain basis functions, method of moments (MoMs), periodic structures,
spectral domain.

I. INTRODUCTION

Wideband wide-scan arrays have gained increasing attention due to
their ability to combine multiple functionalities in a single-antenna
aperture. For many applications, a common requirement for these
arrays is polarization agility. However, in the design process of these
arrays, lower polarization purity is often accepted to achieve wider
bandwidth and scanning range [1], [2].

In planar arrays, the ability to cover large bandwidths and
wide-scan volumes is often achieved with dielectric or metal super-
strates. One such planar array is the connected array [3], which can
utilize a planar artificial dielectric consisting of square metal patches
to increase the front-to-back ratio and improve the matching while
scanning. The analysis of these artificial dielectric layers (ADLs)
was previously studied in [4], where a closed-form solution for
an equivalent layer reactance was defined. This type of artificial
dielectric has anisotropic properties, where its effective refractive
index decreases with the angle of propagation.

However, the ADL anisotropy also reduces the polarization purity
when the array scans in the diagonal planes. This problem can
be mitigated by reducing this anisotropy, as was described in [5].
A pin-patch structure was proposed, formed by connecting two layers
of the ADL together using a vertical pin, similar to the geometry
proposed by [6]. For example, [7] showed an array covering both the
Ku- and Ka-transmit bands while scanning up to 60◦. The designed
unit cell is repeated in Fig. 1(a) and consists of six metal layers over
a dual-polarized slot plane, which is placed over a dielectric substrate
with a backing reflector. Its cross-polarization (X-pol) when it is
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Fig. 1. Side and 3-D views of a connected array unit cell with ADLs
(a) without and (b) with vertical pins. (c) X-pol for both unit cells when
scanning to 60◦ in the diagonal plane.

scanned to 60◦ in the diagonal plane is shown in black in Fig. 1(c) to
exceed −10 dB at higher frequencies. To show the effect of the pins
on the X-pol, a dielectric slab with a relative permittivity of 2.2 and
metal vias are added between the first two ADLs, as illustrated
in Fig. 1(b). The X-pol of the new unit cell is shown in Fig. 1(c) to
be reduced by about 5 dB over most of the band.

Since the structure has been proved to be effective, it is interesting
to study pin-patch periodic elements independently to highlight their
scattering properties. To this end, an efficient analysis method is
desired. Homogenization techniques for the analysis of capacitively
loaded wire medium were presented in [8], but they have limitations
when wires are much shorter than the wavelength. Here, a full-
wave approach is proposed, based on a spectral-domain method
of moments (MoMs). Spectral-domain integral equation methods
have been widely used for analyzing the scattering from periodic
structures [9], [10]. Various methods for improved efficiency and
accuracy of the solution have been proposed, for example, subdo-
mains with nonconforming meshes [11] and mixed potential integral
equations [12], [13]. Moreover, the choice of proper entire-domain
basis functions can regularize the kernel of the integral equation
(e.g., weighted Chebyshev polynomial in [14]) or reduce the number
of unknowns [15].

The main novelty of this work is in the choice of a small set of
suitable entire-domain basis functions that describe the physics of the
problem, for efficient evaluation of the scattered field. We attempt
to demonstrate that, for the specific structure under analysis (sub-
wavelength pin-patch element), three types of basis functions are
sufficient to describe the current on the structure for any plane-wave
incidence. In the absence of pins, we postulate that two main modes
are supported by a periodic layer of small patches: linear currents on
the patches for transverse magnetic (TM) oblique incidence and loop
currents for transverse electric (TE) oblique incidence. Moreover, the
presence of the pin creates an additional current that we assume to be
constant on the pin and radial on the patches. An auxiliary cylindrical
structure is used to accurately model this current.
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Fig. 2. Geometry of the pin-patch structure with geometrical parameters.
The incident field einc is a plane wave with incidence angles θ and φ.

To validate the method, we study the scattering for TE and
TM plane-wave incidence from all directions. The selected basis
functions systematically yield a good estimation of the reflection
and transmission coefficients, agreeing well with the results from
a commercial full-wave solver.

II. SPECTRAL-DOMAIN MOM FOR HYBRID ADLS

The proposed analysis method uses a spectral-domain MoM to
model the currents that are excited on the structure by the incident
plane wave. The structure under investigation is illustrated in Fig. 2
and consists of two metal patches connected by a vertical pin, periodic
along x and y with periods dx and dy , respectively, in free space.
The structure is assumed to be smaller than a quarter wavelength
so that it is well below resonance. The two patches are centered at
x = y = 0 and z = ±d/2 and are assumed to be square with sides l
and infinitesimally thin in z. The pin is taken as circular with radius r1
and height d , centered in the origin. A plane wave incident from the
angles θ and φ with wave number k0 is considered.

To find the currents on the structure, an electric field integral
equation is set up based on the requirement that the tangential electric
field vanishes on the metal. This means that the scattered field, given
by the convolution of the currents on the structure with Green’s
function, must be equal and opposite to the incident field

−

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

¯̄g(r, r ′) j(r)d r ′
= einc(r) (1)

where ¯̄g is the dyadic Green’s function and j are the equivalent
currents on the structure. The equivalent currents are expanded into
a set of N basis functions, periodic in x and y

j(r) =

∞∑
nx =−∞

∞∑
ny=−∞

N∑
n=1

in bn(x − nx dx , y − nydy , z)

· e− jkx0nx dx e− jky0nydy (2)

where in is the unknown complex amplitude of the nth basis func-
tion bn . The exponential terms account for the phase shifts in the unit
cell with indices nx and ny , due to the oblique plane-wave incidence.
These are related to the x, y components of the propagation vector
k0 = (kx0, ky0, kz0), where kx0 = k sin θ cos φ, ky0 = k sin θ sin φ,
kz0 = k cos θ , and k is the free-space wavenumber.

The incident field einc(r) is a generic plane wave traveling in the
−z-direction, which can be expressed as the superposition of TM and
TE components

einc(r) = (VTMθ̂ + VTEφ̂)e− jkx0x e− jky0 ye+ jkz0z. (3)

According to the Galerkin projection method, the test functions
are chosen to be equal to the basis functions. By applying the
spectral-domain method and the Floquet theorem, we find the mutual
impedances for Cartesian basis functions as

Zn′n = −
1

2π

1
dx dy

∞∑
mx =−∞

∞∑
m y=−∞

∫
∞

−∞

¯̄G(km)Bn(km)

· Bn′(−km)dkz (4)

where km = (kxm , kym , kz), kxm = kx0 − 2πmx/dx , and kym =

ky0 − 2πmx/dy are the Floquet wavenumbers, and ¯̄G is the
spectral free-space dyadic Green’s function. Bn and Bn′ are the
three-dimensional Fourier transforms of the basis functions. For all
expressions used in this work, the integral in kz can be evaluated in
closed form using the residue theorem [16]. Since the basis functions
are also chosen such that their relevant transforms are known in
closed form, the computation of the mutual impedance matrix is
purely analytical.

Using the mutual impedance matrix, the unknown current weights i
can be found as

i = Z−1vinc (5)

where the mutual impedance matrix Z for the basis functions is given
by (4). The incident voltage on the n′th basis function is given by
the projection of the incident field onto the test function

vinc,n′ = Bn′(−kx0, −ky0, +kz0)

· [(VTM cos θ cos φ − VTE sin φ)x̂

+ (VTM cos θ sin φ + VTE cos φ)ŷ + (−VTM sin θ)ẑ].

(6)

The basis functions can be freely chosen and a common choice
is small-domain basis functions such as Rao–Wilton–Glisson [17].
However, to enable efficient evaluation of the matrix inversion, the
number of basis functions should be minimized. In this work, 9 entire
domain basis functions are chosen that accurately model the shape
of the currents excited on the structure.

A. Scattering Parameters

The scattered field can be found in the fundamental Floquet
mode as

escat(x, y, z) =
1

dx dy

N∑
n=1

in
1

2π

∫
∞

−∞

¯̄G(kx0, ky0, kz)

· Bn(kx0, ky0, kz)dkz. (7)

The scattering parameters for TE and TM plane waves are given by

0TM =
escat,TM
einc,TM

, 0TE =
escat,TE
einc,TE

(8)

where the TM and TE components of the field are related to the
Cartesian components by

eTM = ex cos φ + ey sin φ (9)

eTE = −ex sin φ + ey cos φ. (10)

It should be pointed out that the method presented here is limited
to free space, but it could be extended to include dielectric slabs
by considering the layered media Green’s function in the spectral
domain, with a procedure similar to [18].

III. ENTIRE-DOMAIN BASIS FUNCTIONS

We assume that an incident plane wave can give rise to three
currents on the patches, which are illustrated in Fig. 3, which are
referred to as linear, loop, and radial. The currents are assumed to
be variable separable in either Cartesian or cylindrical coordinates.
Since the patches are assumed to be infinitesimally thin, the current
distribution along z for all basis functions on the patches is given by
bz(z) = δ(z), where δ(z) is the Dirac delta function.
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Fig. 3. Shapes of the currents that are excited on the structure. (a) Linear
current. (b) Loop current. (c) Radial current.

Fig. 4. Basis functions used to model the linear currents on the pin-patch
ADL. (a) Three-dimensional visualization of the shape of the basis function
along x̂ . (b) Inverse edge singular distribution. (c) Adjustable edge singular
distribution.

A. Linear Current

The first type of basis function describes the dominant current
contribution under normal incidence, which is linearly polarized,
as illustrated in Fig. 3(a). The direction of this linear current depends
on the azimuth and polarization of the incident field. The component
of this current along x̂ is modeled with an inverse edge singular
distribution along x and an adjustable edge singular distribution
along y. The adjustable edge singular [19] is chosen to more
accurately model the flattening of the current due to the capacitive
effect between neighboring patches. A 3-D visualization of the shape
of the linear basis function along x̂ is shown in Fig. 4(a).

The inverse edge singular distribution [Fig. 4(b)] is given by

e(u) =
4
πl

√
1 −

(
2u
l

)2
rect

(u
l

)
(11)

where u is either x or y, l is the length of the function, and the
factor 4/(πl) is used to normalize the integral of the distribution to 1.
Here, rect is the unit rectangular function, that is, rect(u) = 1 when
|u| ≤ 0.5 and 0 otherwise.

The adjustable edge singular distribution [Fig. 4(c)] is given by

aκ (u) =

rect
(

2u+l
lκ −

1
2

)
√

1 −

(
2u+l
κl − 1

)2
+

rect
(

2u−l
lκ +

1
2

)
√

1 −

(
2u−l
κl + 1

)2

+ rect
(

u
l(1 − κ)

)
sign(1 − κ) (12)

where

sign(x) =


−1, if x < 0
0, if x = 0
1, if x > 0.

(13)

The parameter κ defines the fraction of the function that is edge
singular and was found using a full-wave solver to be linear with
the ratio of the patch size and the periodicity. A linear fit of
the values of κ that best describe the current on the patch yields
κ = 1.226–1.1489 l/d , where l and d are the lengths and the period
of the function.

The linear basis functions along x̂ can be written as

blinear,x̂ (x, y, z) = e(x − xn)aκ (y − yn)δ(z − zn)x̂ (14)

Fig. 5. Basis functions used to model the linear currents on the pin-patch
ADL. (a) Three-dimensional visualization of the shape of the basis function
along x̂ . (b) Color map of current amplitude when the two basis functions
have equal weight, with arrows denoting the direction of the current. (c) Odd
edge singular distribution.

where rn = (xn, yn, zn) is the center of the nth basis function. The
linear basis function along ŷ is the same, with x and y swapped in the
expression. The linear currents on the patches also give rise to vertical
currents on the pin. However, the currents on either side of the pins
are equal and opposite, so they do not contribute to scattering for
pin radii that are much smaller than the wavelength. As such, these
currents can be neglected in the analysis.

Since the basis functions are to be used in a spectral-domain MoM,
the Fourier transforms of the functions are determined in closed form
to reduce the computational complexity. The Fourier transform of an
inverse edge singular distribution is given by

E(k) =
4
πl

π

k
J1

(
k

l
2

)
(15)

where Jν is the νth-order Bessel function of the first kind. The Fourier
transform of the adjustable edge singular distribution of length l is

Aκ (k) = lκ
π

2

[
J0

(
k

l
2
κ

)
cos

(
k

l
2
(1 − κ)

)
− H0

(
k

l
2
κ

)
sin
(

k
l
2
(1 − κ)

)]
+ l(1 − κ) sinc

(
k

l
2
(1 − κ)

)
(16)

where Hα is the αth-order Struve function of the first kind. Hence,
the spectral-domain linear basis functions can be written as

Blinear,x̂ (k) = E(kx )Aκ (ky)e j krn x̂ (17)

where k = (kx , ky , kz).

B. Loop Current

For grazing TE incidence, a loop current is excited on the patches,
as illustrated in Fig. 3(b). This loop current can be modeled using
another pair of basis functions along x̂ and ŷ on each patch. For
example, the current along x̂ is modeled using an inverse edge sin-
gular along x , and an odd edge singular along y. A 3-D visualization
of the shape of the basis function along x̂ is shown in Fig. 5(a). The
loop is formed by the superposition of the two basis functions, and
an example of when their amplitudes are equal is shown in Fig. 5(b).

The odd edge singular distribution [Fig. 5(c)] is given by

o(u) =

 1√
1 −

(
2u
l

)2
− 1

[rect
(

2u
l

+
1
2

)
− rect

(
2u
l

−
1
2

)]

(18)

with Fourier transform

O(k) = e jkl/2
[J0(kl) − jH0(kl)] − e− jkl/2

· [J0(−kl) − jH0(−kl)]. (19)

Authorized licensed use limited to: TU Delft Library. Downloaded on May 15,2025 at 08:49:58 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 73, NO. 5, MAY 2025 3325

Fig. 6. Current amplitude due to the radial spreading on the (a) square
and (b) round patch, with arrows denoting the direction of the current.
(c) Equivalent circular geometry used to model the current on the pin and
the radial current on the patches.

The x̂-oriented component of the loop basis function is given by

bloop,x̂ (x − xn, y − yn, z − zn) = e(x − xn)o(y − yn)δ(z − zn)x̂ .

(20)

The component along ŷ is the same, with x and y swapped in the
expression. The loop current has a null in the center, so no current
is excited on the pin. The spectral-domain loop basis function is

Bloop,x̂ (k) = E(kx )O(ky)e j krn x̂ . (21)

C. Currents Due to the Pin

The vertical component of the field interacts with the pin and
generates a current on the pin itself. This vertical current terminates
in the patches and spreads radially across the patches [see Fig. 6(a)].
The radial spreading can be described using the distribution

1√
x2 + y2

rect
( x

l

)
rect

( y
l

)
. (22)

This function has a discontinuity at the edge of the patch, so it is
multiplied by the inverse edge singular function to force it to zero at
the edges of the patch, resulting in

1√
x2 + y2

rect
( x

l

)
rect

( y
l

)√
1 −

(
2x
l

)2
√

1 −

(
2y
l

)2
. (23)

However, the Fourier transform of (23) is not known in closed form
and would, therefore, require a computationally expensive numerical
evaluation. Since the current is along the radial direction, it is
convenient to instead model it using cylindrical coordinates. This
means that the pin and patches are modeled using an auxiliary circular
structure, as shown in Fig. 6(b). The radial current is modeled with
the product of 1/ρ and an inverse edge singular function, where
1/ρ models the radial spreading of the current, and the inverse edge
singular function ensures that the current goes to zero at the edge of
the patch. The current is assumed to be constant in azimuth φ. The
resulting current on a circular patch is shown in Fig. 6(c).

The radial current on the patch inside the radius of the pin
(0 < ρ < r1) is zero due to symmetry, so the basis function
must be set to zero for ρ < r1. To retain the closed-form Hankel
transforms, this zero was introduced by subtracting a second-order
Taylor expansion in ρ = 0 of the distribution. The basis function is
shown in Fig. 7(a) and can be written as

bradial(ρ, z)

=

 1
ρ

√
1 −

(
ρ

r2

)2
rect

(
ρ

2r2

)
−

(
1 −

ρ2

2r2
2

)
rect

(
ρ

2r1

)
· δ(z − zn)ρ̂ (24)

where r2 is the radius of the equivalent circular patch. The value of
this radius is chosen such that the area of the circle matches that of
the patch, so r2 = l/

√
π . To show the validity of this approach, a pin-

patch structure is placed in a periodic environment and illuminated

Fig. 7. (a) Radial current distribution and (b) rectangular distribution.
(c) Vertical current on the pin of the pin-patch structure versus patch area
under TM plane-wave illumination incident at a grazing angle (89◦).

with a TM-polarized incident plane wave incident at a grazing angle
(θ = 89◦). The structure consists of two circular patches of radius
r2 = 1 mm or two square patches of length lx = ly = 1.77 mm.
The patches are spaced d = 0.2 mm apart and placed in a periodic
lattice of dx = dy = 2.5 mm. Fig. 7(c) shows the currents on the
pin as a function of patch area for square and circular patches, which
are seen to be in close agreement with results obtained using the
frequency-domain solver of CST Microwave Studio 2022 [20].

The vertical current on the pin is assumed to be only on the surface
of the pin (infinitesimal in ρ) and to be constant in z and φ [see
Fig. 7(b)]. The current is oriented along ẑ and is given by

bpin(ρ, z) = δ(ρ − r1) rect
(

z − zn

d

)
ẑ. (25)

The basis functions defined in (24) and (25) are discontinuous.
To ensure continuity of the current at the junctions between the
pin and the patches, the amplitude of these basis functions is set
to be equal. This is done by summing the rows and columns
of the impedance matrix corresponding to these basis functions.
Additionally, due to symmetry, the current on the pin and the radial
current on the patches do not couple to the linear and loop currents
and the mutual impedances between them are zero for any incident
plane wave.

To calculate the mutual and self-impedances of the three cylindrical
basis functions in the rectangular periodic lattice, a spectral-domain
MoM was developed that accepts basis functions in Cartesian or
cylindrical coordinates. The expressions for the mutual impedances
and incident voltages of cylindrical basis functions are given in the
Appendix and involve Hankel transforms of the basis functions. For
this reason, the Hankel transforms of 0th and first order are shown
below instead of the Fourier transforms that were shown for the
Cartesian basis functions.

The Hankel transforms of the 0th and first order of a function f (ρ)

are denoted by

FJν
(kρ) =

∫
∞

0
f (ρ)Jν(kρρ)ρdρ (26)

where ν is 0 or 1. In the cylindrical MoM expression, the Hankel
transform is applied to the ρ-dependence, and the Fourier transform
is used for the z-dependence. The resulting transforms of the radial
basis function are given by

Bradial,J0(kρ , kz)

=

[
−

r1
2

J0(kρr1)(2 − πH1(kρr1)

(
1 +

1

2k2
ρr2

2

)

+
r1
2

J1(kρr1)(kρ
r1

r2
2

− πH0(kρr1)

(
1 +

1

2k2
ρr2

2

)

+
r2
4

π

(
J0

(
kρ

r2
2

)2
+ J1

(
kρ

r2
2

)2
)]

e j krn ρ̂ (27)
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Fig. 8. Current on a circular pin-patch structure under TM plane-wave
illumination, incident at θ = 89◦. (a) Current along x on the top patch.
(b) Current along z on the pin.

Bradial,J1(kρ , kz)

=
1

kρ

[
J0(kρr1) +

r2
1

2r2
2

J2(kρr1) − sinc(kρr2)

]
e j krn ρ̂. (28)

For the basis function that models the currents on the pin, the
transforms are given by

Bpin,Jν
(kρ , kz) =

1
2π

Jν(kρr1)l sinc
(

kz
l
2

)
e j krn ẑ. (29)

It can be noted that, while the linear and loop basis functions would
also be suitable for rectangular patches (lx ̸= ly) and rectangular unit
cells (dx ̸= dy), the introduced radial current is only valid in the
specific case of square patches with the pin centered in the patch.
Such a hypothesis is made to simplify the problem, since the square
patch is approximated as a circle to find the amplitude of the current
on the pin, and the loop and linear currents do not couple with the
pin by symmetry only if the pin is centered.

IV. VALIDATION

The method is validated by comparing the results with the commer-
cial full-wave solver CST Microwave Studio. To verify the accuracy
of the circular pin-patch analysis, the circular pin-patch structure in
Fig. 7(c) is again considered with a 30-GHz TM-polarized plane wave
incident at an elevation angle of 89◦. The currents on the patches and
the pin are shown in Fig. 8(a) and (b), respectively. It is seen that the
method can accurately model the shape, amplitude, and phase of the
current on the circular patches and the pin.

As a further example, the square pin-patch structure used in [5] is
analyzed. This consists of two square patches with sides l = 1.09 mm
separated by a distance d = 0.254 mm. The two patches are
connected by a pin with radius r1 = 0.1 mm and height d . The
structure is in a periodic environment along x and y with a periodicity
of dx = dy = 1.45 mm. The structure is illuminated by a 30-GHz
TE- or TM-polarized plane wave incident at an angle θ = 10◦ along
the φ = 0◦ plane. The currents on the top patch are shown on cuts
along x and y in Fig. 9(a) and (b), respectively. A good agreement
of our method with CST can be seen for most of the cut, but an
increasing difference is seen near the pin. This difference is due to
the current entering and exiting the pin, which was neglected for
the linear current, but causes a crowding effect near the edge of the
pin. To show this effect, the current on the patch is extracted from
CST and the path of the currents is traced. A closeup of the region
around the pin is shown in Fig. 9(c), where the crowding effect is
clearly visible. This crowding is a local effect and does not influence
the scattering of the structure, as will be shown by the scattering
parameters.

The currents can be used to calculate the scattered field and scat-
tering parameters using the expressions in Section II-A. The structure

Fig. 9. Current on a circular pin-patch structure under TM plane-wave
incidence from θ = 10◦. (a) x̂-oriented current on the top patch versus x and
(b) versus y. (c) Closeup of the real part of the current near the pin on the
top patch (the two cuts of (a) and (b) are shown in red).

Fig. 10. Scattering parameters at 30 GHz vs incidence angle for plane wave
incidence on the pin-patch structure used in [5]. (a) Reflection under TE and
(b) TM incidence, and (c) transmission under TE and (d) TM incidence.

for which the currents were shown in Fig. 9 is analyzed, and the scat-
tering parameters are computed for the varying angle of incidence θ

in the plane φ = 0◦. The resulting reflection coefficients are shown
in Fig. 10 to be in good agreement with CST. A similar agreement
was observed for plane-wave incidence in other azimuthal planes.

The results shown in Fig. 10 took 8 s for 90 scanning angles using
the proposed method, and 40 min in CST. When optimizing a design,
a single incidence angle is generally considered, and the geometrical
parameters are changed for each iteration. Evaluating a single angle
took 90 msec using the proposed method, and 4 min in CST. This
means that the method can provide the computational efficiency that
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is required when optimizing a design and enable the use of simple
iterative techniques to design a particular behavior.

V. CONCLUSION

A unit cell consisting of a set of two patches connected by a
vertical pin was analyzed. Such a periodic structure was shown to
significantly reduce the X-pol in wideband arrays that use artificial
dielectrics in their superstrate. An analysis technique is proposed
based on the spectral-domain MoM. The key aspect of the procedure
is the use of entire-domain basis functions to define the electric
current distribution on the structure.

Three groups of basis functions are defined and shown to describe
accurately the currents. Currents and reflection coefficients obtained
with the proposed method are shown to be in good agreement with
those obtained in a commercial full-wave solver. The method can
speed up the analysis of the structure by a factor of 2500 with
respect to CST for a single incidence angle and frequency. This can be
beneficial for the design of ADL superstrates for antennas or arrays,
to improve polarization purity.

APPENDIX

The expressions below give the mutual impedance for any pair
of basis functions in cylindrical coordinates, in an infinitely periodic
environment along x and y. These expressions differ depending on
the orientation of the basis and test functions. It is assumed that
all basis functions are constant in φ and separable in ρ and z,
that is,

b(ρ, φ, z) = bρ(ρ)bz(z)b̂ (30)

thus the Fourier/Hankel transforms are only functions of kρ and kz

B(kρ , kz) = Bρ,Jν
(kρ)Bz(kz)b̂. (31)

When both basis and test functions are along ρ (b̂n = b̂n′ = ρ̂),
the mutual impedance can be found using

Zn′n,ρρ = +
2π

dx dy

∑
mx

∑
m y

∫
∞

−∞

G(kxm , kym , kz)Bnρ,J1(kρm)

· Bn′ρ,J1(kρm)(x̂ cos αm + ŷ sin αm)2 Bnz(kz)Bn′z(kz)dkz

(32)

where αm = arctan(kym/kxm) and kρm =

√
k2

xm + k2
ym .

When b̂n = ρ̂ and b̂n′ = ẑ

Zn′n,ρz

= −
2π

dx dy

∑
mx

∑
m y

∫
∞

−∞

G(kxm , kym , kz)Bnρ,J1(kρm)

· Bn′ρ,J0(kρm) j (x̂ cos αm + ŷ sin αm)ẑBnz(kz)Bn′z(kz)dkz.

(33)

When b̂n = b̂n′ = ẑ

Zn′n,zz = −
2π

dx dy

∑
mx

∑
m y

∫
∞

−∞

G(kxm , kym , kz)Bnρ,J0(kρm)

· Bn′ρ,J0(kρm)ẑẑBnz(kz)Bn′z(kz)dkz. (34)

For a cylindrical test function along ρ̂, the incident voltage is

vinc,n′ =
[
(VTM cos θ cos φ − VTE sin φ) cos α0

+ (VTM cos θ sin φ + VTE cos φ) sin α0
]

· 2π j Bn′ρ,J1(−kρ0)Bn′z(−kz0) (35)

and, for a cylindrical test function along ẑ

vinc,n′ = −VTM sin θ 2π Bn′ρ,J0(−kρ0)Bn′z(+kz0). (36)
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