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Abstract

In this thesis we consider the problem of controlling multiple autonomous vehicles in a
highway scenario, via Model Predictive Control (MPC). By iteratively solving a motion
planning Optimal Control Problem (OCP), MPC is perfectly suited for unknown dynamic
environments, while optimally computing path and vehicle inputs. Moreover, MPC can
ensure the satisfaction of collision avoidance constraints, a prerequisite for safe automated
driving.

The collision avoidance constraints render the OCP non-convex. This thesis tackles this
non-convexity by either designing nonlinear MPC controllers, or by convexifying these
non-convex constraints.

Moreover, control of a large, networked system of automated vehicles is achieved by design-
ing local, subsystem-based controllers. We analyse three different algorithms to distribute
the plantwide OCP. All controllers are subjected to an objective analysis and compared
to see which is the most efficient and most practical to implement. Centralized MPC
is used as benchmark, since this gives the plantwide optimal solution. The first decom-
posed algorithm is decentralized MPC, where subsystems communicate a single time every
MPC iteration and compute their new trajectory based on the previously communicated
trajectory of neighboring subsystems. The second method is based on sub-optimal co-
operative distributed MPC. Here, vehicles perform multiple sub-optimal iterations of a
Gauss-Jacobi type distributed optimization. For the last method, based on a Generalized
Potential Game, the vehicles sequentially solve and communicate the solution of their local
OCP in order to find an ε-Nash Equilibrium. By relying on additional constraints or fixed
ordering among vehicles, all three controllers are able to recursively feasible compute their
own trajectory while avoiding other vehicles.

The distributed controllers are assessed in two different scenarios, using three different
criteria, i.e., the overall effectiveness of the controller, the local effectiveness of the con-
troller and the progress made by each vehicle in the simulation. The first criteria gives
an indication of the level of cooperation among vehicles, the second shows the individual
satisfaction of each vehicle with respect to its reference, and the last represents the overall
progress each vehicle has made in the highway simulation.
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Chapter 1

Introduction

Nowadays, smart mobility is a prerequisite for a sound economy and society. However,
current mobility solutions are not sustainable due to accidents, pollution and congestion.
Automated control of vehicles on highways and (sub)urban areas can significantly con-
tribute to speed up the transition towards a sustainable mobility system, [15].

1-1 Automated Driving

As technology advances, human interaction with machines decreases. Processes were
human interaction was necessary before, are becoming automated, and eventually au-
tonomous. The first mobile robot was developed in 1966 [25]. The first autonomous cars
have been around since the 1980’s [48]. These required specially marked streets. Since
then, automation of vehicles has progressed significantly. Instead of using specially marked
streets, the focus has been on driving autonomous, in unknown, unmodified environments
and in cooperation with other automated vehicles. In fact, autonomous driving is becom-
ing a promising technology to enhance traffic efficiency and reduce the amount of resources
wasted on accidents and congestions. It is predicted that, by 2030, more than 50% of ve-
hicles on the road will be automated [38]. In the future most vehicles will be networked
with other vehicles and possibly with some road infrastructural units. This represents a
huge system, sharing information in real time both locally (short distance, e.g., for safety)
as well as globally (with servers, e.g., for efficient navigation) [38].

Figure 1-1: Vision of autonet2030 on automated driving, [38]

1-2 Research Objective

While automated driving can reduce traffic accidents and increase traffic efficiency, de-
signing algorithms for safe and efficient automated driving systems is not a simple task.
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2 Introduction

Many different motion planning algorithms have been proposed over the years with dif-
ferent features, capabilities and mathematical frameworks, e.g., grid-based search [22],
interval-based search [23], artificial potential fields [49] or sampling-based algorithms [28],
just to name a few. In the case of automated driving vehicles, vehicles drive in unknown
dynamic environments. Hence, the workspace is not known a-priori, this renders most of
above mentioned algorithms infeasible. A motion planning algorithm based on MPC on
the other hand, is perfectly suited for such an application. By iteratively solving a motion
planning Optimal Control Problem (OCP), MPC is able to adapt to dynamic environ-
ments, while optimally (w.r.t to its objective function) compute a trajectory.

Although MPC is perfectly suited for such an algorithm, it still faces some issues that
need to be tackled for safe autonomous driving, e.g., collision avoidance modelling. To
ensure vehicles are able to avoid each other, constraints are imposed in the optimization.
This is further explained in sections 3-2 and 3-3.

In this thesis, we consider the problem of controlling networks of automated vehicles,
moving in a highway environment. Specifically, we focus on the path planning problem,
where trajectories for all the vehicles have to be designed online to achieve efficient oper-
ation, while avoiding collisions between vehicles and infrastructure.

In fact, MPC is perfectly suited for this purpose, thanks to its ability to ensure opti-
mality while guaranteeing constraint satisfaction. Nonetheless, some issues have to be
tackled. The first problem we consider is the modelling of collision avoidance constraints.
More precisely, either these non-convex constraints need to be convexified in order to be
used in a standard MPC Quadratic Programming (QP) problem, or, a nonlinear MPC
scheme has to be formulated to take the non-convex constraints into account.

Furthermore, solving the plantwide OCP in a centralized fashion is not organizationally
practical, since online computation time rises with increasing number of subsystems, and
all subsystems rely upon the same central agent, making it sensitive to hardware failure.
Therefore, we consider the problem of distributing the problem among the different vehi-
cles. To ensure feasibility of the distributed plantwide OCP, local subsystem will have to
cooperate and communicate. The level of cooperation and the corresponding communica-
tion scheme depends on the type of distributed algorithm.

Therefore, our objective here is to compare and assess different distributed or decentralized
MPC schemes. Our analysis focuses on three different types of criteria, i.e., the overall
effectiveness of the controller, the local effectiveness of the controller and the progress
made by each vehicle in the simulation.

1-3 Thesis Organization

The thesis is organized as follows. In chapter 2, some mathematical background is given
regarding networked systems and game theory. Chapter 3 describes two methods to define
collision avoidance constraints and introduces the different distributed control methods.
Which are explained in detail in chapter 4. These controllers are assessed using the criteria
explained in chapter 5. The corresponding results are shown and discussed in chapters 6
and 7. Conclusions on the research and future research topics are proposed in chapter 8.
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1-4 Summary of Literature Review 3

1-4 Summary of Literature Review

At the start of this master thesis study, an extensive review is done in the literature study.
As short summary in the different topics of the literature study is given here.

Collision Avoidance Modelling

Vehicle Collision Avoidance Modelling is an interesting subject which is widely studied.
This is mainly due to the fact the non-convex collision avoidance constraints, need to be
convexified in order to be used in linear or quadratic solvers, which in turn, are often
preferred due to their widely studied stability and robustness properties. Among other
things, the literature study recaps several methods to handle non-convex constraints, i.e.:

• Sequential Convex Programming (SCP), which approximates the non-convex opti-
mization problem using a sequence of convex OCP’s [6, 3]

• Semi-Definite Programming Relaxations (SDPR), which can be considered as an
extension of linear programming where linear inequalities are replaced by matrix
inequalities [7, 1, 36].

• Mixed Integer Programming (MIP), by relying on binary decision variables, MIP is
able to convexify, non-convex constraints [16, 37, 39, 14, 1, 41]

• Non-Linear Programming (NLP), is able to directly implement non-linear and/or
non-convex constraints

Distributed Model Predictive Control

Another topic discussed in the literature study is Distributed Model Predictive Control
(D-MPC). Decomposing a large networked system can be done using several different
techniques. In general, a division between three different types of Distributed MPC (D-
MPC) can be made, namely:

• Synchronous D-MPC, where each local subsystem simultaneously solves their own
local OCP once, before communicating it to their neighbors, [32, 13, 12, 27, 1, 52].

• Iterative D-MPC, which uses an iterative distributed optimization approach, where
vehicles iterate during a single MPC cycle, until some convergence criteria is met,
[43, 44, 9, 11, 53, 8, 45, 46, 30].

• Sequential D-MPC, here, local subsystems solve their local OCP sequentially. In this
way, posterior vehicle uses communicated information of the anterior ones, [17, 16, 5]

The distributed controllers discussed in the literature review were not necessarily applied
to a vehicle collision avoidance problem, but vital for the understanding of the topic of
distributed MPC.
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4 Introduction

Game Theory

Another important aspect discussed in the literature study is game theory. First, some
basic knowledge regarding game theory is recapped, before discussing three different meth-
ods to solve a Generalized Potential Game. All three solution methods are adopted from
[17], and recapped here:

• An Open-Loop Gauss-Southwell Method, where only a selected player i computes a
best response to the strategies adopted by the other players.

• An Open-Loop Gauss-Seidel Method, where all vehicles sequentially update their
best response according to a predefined ordering.

• A Closed-Loop Gauss-Seidel Method, where all vehicles follow the same procedure
as the open-loop Gauss-Seidel method, but only apply the first temporal step of the
equilibrium solution and, successively, play again.

For all solution methods, recursive feasibility is proven in [17].

In this thesis, some methods based on the discussed control methods will be applied to a
vehicle collision avoidance problem, together with other control methods not previously
mentioned in the literature study.
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Chapter 2

Mathematical Background

2-1 Networked Systems

Graph theory is used to model the interconnection between networked systems, e.g., mul-
tiple automated vehicles. Graphs represent how different systems are connected to each
other. Such a connection is represented by a link (or edge), eij = (i, j) ∈ E , that represents
the existence of a connection between vertices i, j ∈ V. Using a weight matrixWij ∈ Rn×n+ ,
weights can be associated with links:

weight of link(i, j) =Wij

{
> 0 if (i, j) ∈ E ,
= 0 if (i, j) /∈ E . (2-1)

We formulate the definition of a graph, adopted from [21, 10]

Definition 2.1 Graphs
A graph G = (V, E ,W) is a triple that consists of a set of vertices (or nodes) V = {1, . . . , n},
a set of edges (or links) E ⊆ V × V and a weight matrix W, according to (2-1).

A connection (or link) can have different meanings, depending on the application, e.g.,
the exchange of data or mass flow between subsystems. Two vertices i, j ∈ V are adjacent
if there exists an edge eij = (i, j) ∈ E . An adjacent vertex j for a vertex i is a neighbor of
i. The set of all neighbors of i is denoted by Ni, namely:

Ni = {j ∈ V|j 6= i, (i, j) ∈ E} . (2-2)

G is unweighted if Wij ∈ {0, 1} for all i, j, i.e., if all existing links have weight 1. If so, W
is called an adjacency matrix and (V, E)↔W.

An illustration of a network of autonomous vehicles and their corresponding graph G
and weight matrix W is shown below. In this case, if vehicles i, j are neighbors, e.g.
i, j ∈ Ni an edge, eij = 1 ∈ W, represents a communication link between vehicles i, j.
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6 Mathematical Background

Figure 2-1: Example network of autonomous vehicles

Figure 2-2: Undirected graph representing a network of vehicles

W =



0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 1 0
0 0 1 0 1 1
0 0 1 1 0 1
0 0 0 1 1 0.


. (2-3)

2-2 Model Predictive Control

Model Predictive Control is used to optimally control a process while ensuring the satis-
faction of constraints. The basic idea is to use a dynamical model to predict the system
behavior and optimize the predicted inputs over a finite-time prediction and control hori-
zon, Hp and Hu respectively. Then, the first input is applied to the system and the
process is repeated in a receding horizon implementation. Important benefits of MPC are
the ability to handle constraints and adapt to future changes by iteratively solving the
optimization problem. Figure 2-3 and 2-4 shows the concept of MPC for 2 iterations.
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2-2 Model Predictive Control 7

Figure 2-3: Concept of MPC, first iteration [1].

Figure 2-4: Concept of MPC, second iteration [1].

2-2-1 Dynamic Prediction Model

MPC utilizes a dynamical model to predict the future system behavior. A general discrete-
time model can be expressed as:

x(t+ 1) = f(x(t),u(t)), (2-4a)

y(t) = g(x(t),u(t)), (2-4b)

where x(t) ∈ Rn represents the states of the system and u(t) ∈ Rm the control inputs.
The output is denoted as y(t) ∈ Rp. The states evolution is described by the function
f(x(t),u(t)), f : Rn×Rm → Rn, and the output function is g : Rn×Rm → Rp. Neglecting
future disturbances or measurement noise, a (linearized) prediction model can be set up
using the state evolution in (2-5), in order to reduce the computational burden. In this
thesis, in the case of a convexified controller, the dynamical model is linearized around the

Master of Science Thesis Rens Vermeer



8 Mathematical Background

initial conditions of every MPC iteration. Since the vehicles are moving, this linearization
is done around a non-equilibrium. Hence, an affine term E is added to the state matrix
A and input matrix B, this is further explained in section 3-2-1. The future states can be
predicted using the system model through iterative substitution.

x(t+ 1) =Ax(t) + Bu(t) + E
x(t+ 2) =Ax(t+ 1) + Bu(t+ 1) + E

=A2x(t) + ABu(t) + AE + Bu(t+ 1) + E
...

x (t+Hu) =AHux(t) + AHu−1Bu(t) + · · ·+ Bu (t+Hu − 1) +
AHu−1E + · · ·+ E
...

x (t+Hp) =AHpx(t) + AHp−1Bu(t) + · · ·+ Bu (t+Hp − 1) +
AHp−1E + · · ·+ E

(2-5)

The matrices A(t) ∈ Rn×n, B(t) ∈ Rn×m, C(t) ∈ Rp×n and E(t) ∈ Rn represent the result-
ing system matrix, input matrix, output matrix and the affine matrix after linearization,
respectively. The time argument of the matrices is omitted for simplicity of notation.
Please note that a similar prediction model can be composed using a nonlinear model as
well. These predicted states can then be used to setup the objective function.

2-2-2 Objective Function

The objective function consist out of the cost to be minimized by the optimization and is
divided into 2 parts, the running cost and terminal cost. Generally, the former penalizes
the distance of the states and control input, from a reference along the prediction horizon
(t, t+ 1, . . . , t+Hp− 1), to allow for reference tracking. The latter penalizes the weighted
distance of the states from the reference at the final prediction step Hp. The objective
function reads as:

V(x̃, ũ) =
Hp−1∑
k=1

x̃(k)TQix̃(k) +
Hu−1∑
k=1

ũ(k)TRiũ(k)︸ ︷︷ ︸
Running cost

+ x̃(Hp)TPx̃(Hp)︸ ︷︷ ︸
Terminal cost

, (2-6)

where x̃(k) = x(k)− xref (k) and ũ(k) = u(k)− uref (k). Substituting (2-5) in (2-6), the
objective function can be rewritten:

V(x̃, ũ) = x̃T Q̃x̃ + ũTRũ. (2-7)

Here, the terminal cost is augmented in the running cost using Q̃ = diag(Q1, .....,QHp−1,P)
and Qi,P ∈ Rn×n and R ∈ Rm. The state and input evolution over Hp and Hu is denoted
by x̃ and ũ, respectively.

x̃ =


x(1)− xref (1)
x(2)− xref (2)

...
x(Hp)− xref (Hp)

 , ũ =


u(1)− uref (1)
u(2)− uref (2)

...
u(Hu − 1)− uref (Hu − 1)]

 . (2-8)
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2-2 Model Predictive Control 9

In the case of linearized MPC, the number of optimization variables can be decreased by
rewriting (2-7) as a function depending only on the control inputs. Here, a standard QP
problem arises, where the optimization variable is the sequence of the predicted inputs.
In view of (2-5), the overall optimization problem reads as:

min
uHu

J (2-9a)

s.t. Au ≤ b,

:= min
uHu

1
2uTHu

PuHu + 1
2quHu + r0

s.t. AuHu ≤ b. (2-9b)

Each term in (2-9) is defined as (2-10).

uHu =


u(1)
u(2)
...

u(Hu − 1)

 , P = ST Q̃S + R, q =
[
x(k)T x̃THp

ũHu

]  ST Q̃T
Q̃S
R

 ,

T and S are denoted by:

T =


I
A
A2

...
AN

 ,S =



0 0 . . . . . . . . . 0

B . . . ...

AB . . . . . . ...

A2B . . . . . . . . . ...
... . . . . . . . . . . . . 0

AN−1B · · · A2B AB B 0


. (2-10)

2-2-3 Constraints

Handling constraints directly in the optimization problem is one main advantage of MPC.
This has the following benefits:

• Constraints can be implemented on the control input to ensure physical limits on
actuators. If these are not respected, the controller saturates and can cause delays
in the system or even destroy physical components.

• Constraints on states and output can ensure safe desired behavior of the system.

• Constraints can guarantee stability of the MPC controller.

How stability can be guaranteed for linear time-invariant MPC, with constraints is ex-
plained in Appendix A. In general, constraints result in constrained sets:

x(t+ k) ∈ X ⊆ Rn, k = 1, . . . ,Hp,
y(t+ k) ∈ Y ⊆ Rp, k = 1, . . . ,Hp,
u(t+ k) ∈ U ⊆ Rm, k = 0, . . . ,Hu − 1.

(2-11)
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10 Mathematical Background

2-3 Game Theory

Game theory is a mathematical method to analyze circumstances where the success of
an individual is based upon the choices of the others. Game theory originates from the
field of social sciences and economics, but has proven its potential in fields as engineering,
computer science, philosophy and many other fields, [33], [46]. In this section we first give
a simple example of a discrete game, before continuing with elements of game theory in
the continuous space, that are of interest for automated driving applications. We adopt
the theory from [29],[19],[18],[20],[30],[46].

An example of a Discrete Game in Normal-Form

The normal form is the most simple representation of strategic interactions in game theory,
also known as the strategic or matrix form. A game written in normal form represents all
discrete states of each agent and it’s corresponding cost or utility. A well known example
that can be found in literature is the prisoner’s dilemma:

Example 2.1 Prisoner’s Dilemma
Two members of a criminal gang are arrested and imprisoned. Each prisoner is in soli-
tary confinement with no means of speaking to or exchanging messages with the other. The
police admit they don’t have enough evidence to convict the pair on the principal charge.
They plan to sentence both to a year in prison on a lesser charge. Simultaneously, the
police offer each prisoner a Faustian bargain. If he testifies against his partner, he will go
free while the partner will get three years in prison on the main charge. But, there is a
catch... If both prisoners testify against each other, both will be sentenced to two years in
jail. In normal form, the prisoners dilemma game looks like:

B refuses deal B turns state’s evidence
A refuses deal 1 year, 1 year 3 years, 0 years

A turns state’s evidence 0 years, 3 years 2 years, 2 years

Or, in more compact and standard form:

R D

R 1, 1 3, 0
D 0, 3 2, 2

(2-12)

Where R denotes a prisoner refusing the deal andD taking the deal, in other words turning
state’s evidence. Looking at Example 2.1, it is clear that the action of each prisoner would
depend on the action of the other, if information could be exchanged. Game theory helps
in formulating this in a mathematical manner. In a game, all agents act to self-interest.
By this, it is meant that agents are looking for an action that reduces its own cost function,
while still taking the actions of other agents into account. This definition of a discrete
game can be generalized into a continuous action space.

2-4 Nash Equilibrium Problems

In general, the possible actions of a player might be infinite. For example, the action space
can be represented by the whole space Rn, or by a subset. A general game can represented
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2-4 Nash Equilibrium Problems 11

by the interdependent optimization problems:

∀i ∈ V = {1, . . . , N}, min
xi∈Xi

Vi (xi,x−i) , (2-13)

where V is the set of all players, xi is the strategy of agent i, Vi is the cost function of
agent i, that depends both on its own strategy and on the strategies of the other agents
x−i = (x1, . . . , xi−1, xi+1, . . . , xn). The most studied notion of solution for the game (2-13)
is the Nash Equilibrium (NE). To understand the concept of a NE, we will look at games
from an individual agent’s point of view. When an agents knows the strategy of other
agents, his strategic problem becomes simple. Specifically, he would be left with the
single-agent problem of choosing a cost function minimizing action. If the agents −i were
to commit to play x−i, agent i would face the problem of determining his best response.

Definition 2.2 Best Response
Player i’s best response to the strategy profile x−i is a mixed strategy x∗i ∈ Xi such that
Vi (x∗i ,x−i) ≤ Vi (xi,x−i) for all strategies xi ∈ Xi.

Looking at Example 2.1, if prisoner B knows that prisoner A will refuse the deal, his
best response is turning state’s evidence. The best response is not necessarily unique and
is not a solution concept. It does not identify an interesting set of outcomes in this gen-
eral case. However, the notion of best response helps to define what is arguably the most
central notion in game theory, the Nash Equilibrium.

Definition 2.3 Nash Equilibrium
A strategy profile xi ∈ X is a NE if, for all agents i, xi is a best response to x−i. Mathe-
matically, this means:

a tuple x∗ ≡ (x∗i )
N
i=1 ∈ X̂ ,

∏N
i=1Xi is a NE of the game G defined by the pair (X̂ ,Θ),

where Θ denotes the tuple (Vi)Ni=1, if, for every i = 1, . . . , N ,

Vi
(
x∗i ,x∗−i

)
≤ Vi

(
xi,x∗−i

)
, ∀xi ∈ Xi. (2-14)

Example 2.2 Nash Equilibrium
Consider a game with 2 players each with one decision variable; that is, n1 = n2 = 1, and
thus n = 2. For simplicity, we let x ∈ R and y ∈ R denote these 2 players’ strategies,
respectively. Let the players’ problems be

minimize
x

(x− y)2

subject to 0 ≤ x ≤ 1
and

minimize
y

xy + y2

subject to −1 ≤ y ≤ 1
, (2-15)

The optimal solutions are given by:

S1(y) =


0 if y < 0
y if 0 ≤ y ≤ 1
1 if y > 1

and S2(x) =


1 if x < −2
−x/2 if − 2 ≤ x ≤ 2
−1 if x > 2

. (2-16)

It is easy to check that the unique fixed point of the map: S1 × S2 , in other words, a
pair (x, y) such that x = S1(y) and y = S2(x), is (0,0) which is the unique NE of this game.
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12 Mathematical Background

In simple terms, a NE is a stable strategy profile, from which no agent has interest to
unilaterally change its strategy.

In some applications, players might not care about changing their strategies to a best
response when the decrease in cost is under a certain threshold. This leads to the idea of
an ε-NE.

Definition 2.4 ε-Nash Equilibrium
Fix ε > 0. A strategy profile x = (x1, . . . , xn) is an ε-Nash equilibrium if, for all agents i
and for all strategies x′i 6= xi, Vi (xi,x−i) ≥ Vi

(
x′−i,x−i

)
− ε.

A major benefit of ε-Nash Equilibria, is that they always exist for a certain ε > 0. Fur-
ther, algorithms that aim to identify ε-Nash Equilibria need to consider only a finite set
of strategy profiles rather than the whole continuous space. However, "there is no such
thing as a free lunch", ε-Nash Equilibria also have some drawbacks, e.g., Nash Equilibria
are always surrounded by ε-Nash Equilibria, but the opposite is not true. A given ε-Nash
Equilibrium is not necessarily close to a Nash Equilibrium. This is not further explained
here, but the interested reader is referred to [29, Section 3.7].

2-4-1 Generalized Nash Equilibrium Problems

In this section we consider the concept of a Generalized Nash Equilibrium Problem
(GNEP). The GNEP extends the classical Nash Equilibrium Problem by assuming that
each player’s feasible set can depend on the rival players’ strategies.

Definition 2.5 Generalized Nash Equilibrium Problems
The feasible set of each player, dependent on other player’s strategies, is defined as Xi (x−i) ⊆
Rni. Given the other player’s strategies, the aim of player i is to choose a strategy xi that
solves the minimization problem

min
xi∈Xi(x̄−i)

Vi (xi,x−i) , (2-17a)

s.t. xi ∈ Xi (x−i) . (2-17b)

A collective strategy x̄i is called a GNE if, ∀i, xi solves the above minimization problem,
i.e.:

Vv (x̄i, x̄−i) ≤ Vv (yi, x̄−i) , ∀yi ∈ Xi (x̄−i) , ∀i ∈ V. (2-18)

A Generalized Nash Equilibrium (GNE) is a point x̄ in which no player can decrease his
objective function by changing unilaterally x̄i to any other feasible point. An example of
a GNEP is given below.

Example 2.3 GNEP
Consider a game with two players, i.e. N = 2, with n1 = 1 and n2 = 1, so that each
player controls one variable.

Assume that the players’ problems are:

minx1
(
x1 − 1

)2 minx2

(
x2 − 1

2

)2

s.t. x1 + x2 ≤ 1, s.t. x1 + x2 ≤ 1.
(2-19)
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The optimal solution sets are given by:

S1
(
x2
)

=
{

1, if x2 ≤ 0,
1− x2, if x2 ≥ 0 and S2

(
x1
)

=
{

1
2 , if x1 ≤ 1

2
1− x1, if x1 ≥ 1

2 .
(2-20)

Then it is easy to check that the GNE’s of this problem are given by (α, 1− α) for every
α ∈ [1/2, 1]. Note that the problem has infinitely many solutions.

Lastly, the concept of a Generalized Potential Game (GPG) is introduced, which is an
instance of the GNEP class. Roughly speaking, “a GPG is a GNEP where the players are
(unknowingly) minimizing the same function and where the feasible set of each player is
the section of a larger set in the product space Rn”, [40, 20].

Definition 2.6 Generalized Potential Game
A GNEP is a Generalized Potential Game if:

(a) There exists a nonempty, closed set X ⊆ Rn such that, for all i = 1, . . . , N ,

Xi (x−i) ≡ {xi ∈ Xi : (xi,x−i) ∈ X} , (2-21)

where Xi ⊆ Rni are nonempty, closed sets such that
∏N
i=1Xi ∩ X 6= ∅, (i.e. the

"feasible set" of the game is non empty).

(b) There exists a continuous function P (x) : Rn → R such that for all i, for all x−i
(such that Xi (x−i) is not empty), and for all yi, zi ∈ Xi (x−i),

Vi (yi,x−i)− Vi (zi,x−i) > 0, (2-22)

implies

P (yi,x−i)− P (zi,x−i) ≥ σ (Vi (yi,x−i)− Vi (zi,x−i)) . (2-23)

where σ : R+ → R+ is a forcing function: limk→∞ σ (tk) = 0⇒ limk→∞ tk = 0.
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Chapter 3

Problem Statement

3-1 Automated Driving

In many automated driving applications, the goal is to achieve coordination of a large
number of vehicles, for safe and efficient operation.

Controlling such a large network by a single processing unit not only requires high compu-
tational loads, that increases for an increasing number of subsystems, but it’s also difficult
to maintain, since all subsystems rely upon this central agent. In literature, this is over-
come by distributing the plantwide OCP among all subsystems. In order to investigate
the advantages and disadvantages of different distributed MPC algorithms, an objective
analysis and comparison is performed in this thesis. More specifically, in this thesis we
study:

• Centralized MPC, where all subsystems i ∈ V are controlled by a central agent.
This is prone to give the plantwide Pareto optimal solution and will be used as
benchmark.

• Decentralized MPC, where each local subsystem synchronously computes a new
trajectory xi, based on the previously computed (and communicated) trajectories of
its neighbors j ∈ Ni ⊆ V,

• Cooperative Distributed MPC, where each local subsystem i performs multiple
sub-optimal iterations p of a Gauss-Jacobi type distributed optimization, by commu-
nicating its trajectory xi to its neighbors j ∈ Ni every algorithmic iteration, before
applying a new input ui.

• Non-cooperative Distributed MPC, where each local subsystem i sequentially
solves and communicates their trajectory xi to its neighbors j ∈ Ni∩O ⊂ V, in order
to find an ε-Nash Equilibrium. Here, O represents the set of higher order vehicles.

All four controllers are explained in-depth in chapter 4. How each vehicle is modelled and
how the collision avoidance constraints are composed is explained in the following sections.
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16 Problem Statement

3-2 Vehicle Modelling

3-2-1 Vehicle Kinematics

We use a bicycle model to represent the kinematics of each vehicle. An advantage of using
the bicycle model instead of using a more complex dynamical model is the reduction in
computational time of every MPC iteration. Although the kinematic model is relatively
simple, it is accurate enough to represent the trajectory of a vehicle and can be used to
address collision avoidance.

Figure 3-1: Kinematic bicycle model of the vehicle,[2, eq. (1)].

Using a kinematic bicycle model implies the following assumptions:

• The front and rear axle are each represented by a single wheel, centered between the
actual tyres position of each axle.

• The vehicle movement is assumed to be planar, i.e. pitch and roll dynamics of the
vehicle are neglected

• Resistant forces are neglected, i.e. aerodynamic drag and rolling resistance are zero.

• No slip occurs at the tyres, hence the velocity vector of each tyre is parallel to each
tyre, i.e. the driving direction is parallel to the direction of wheel travel.

• No external forces are applied to the front and rear tyres.

• The side-slip angle β(t) (fig. 3-1), i.e., the angular difference between the velocity
vector V and the longitudinal direction of the vehicle, is neglected.

3-2-2 Vehicle Model

Nonlinear Vehicle Model

The nonlinear kinematic bicycle model is:
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3-3 Collision Avoidance Modelling 17

ẋ(t) = f (x(t),u(t)) =


ẋ1(t)
ẋ2(t)
ϑ̇(t)
ψ̇(t)
v̇(t)

 =


v(t) cos(ϑ(t))
v(t) sin(ϑ(t))
v(t)
L tan(ψ(t))

ω(t)
a(t)

 , (3-1)

where f : R5 × R2 → R5 is a continuous nonlinear smooth function, ẋ1(t) and ẋ2(t) rep-
resent the vehicle’s longitudinal and lateral velocity with respect to the global coordinate
axis, ϑ(t) represents the vehicle’s yaw angle relative to the positive x-axis, v(t) the vehi-
cle’s velocity with respect to its body frame. The inputs are steering rate ωi(t) , and the
acceleration ai(t). Note that all positions (and velocities) are measured from the vehicle’s
Center of Gravity (CoG).

Linear Vehicle Model

For controllers based on game theory or some based on distributed optimization, convexity
is a prerequisite for convergence. As a result, the vehicle model and constraints need to
be linearized and convexified. Hence, the non-linear vehicle model is linearized around the
initial conditions of every MPC iteration: x0,u0. Optionally, to increase accuracy of the
linearized model, it is possible to linearize around a shifted optimal trajectory from the
previous MPC step. The resulting (continuous-time) state-space model is of the form:

ẋ(t) = ẋ0(t) + ˙∆x(t),

ẋ(t) = ẋ0(t) + ∂f

∂x

∣∣∣∣
x0

∆x(t) + ∂f

∂u

∣∣∣∣
u0

∆u(t),

ẋ(t) = E +A∆x(t) +B∆u(t),

(3-2)

where,

E =


v0sin(θ0)θ0
−v0cos(θ0)θ0

−v0
Lcos2(ψ0)ψ0

0
0

 , A∆x(t) =


−v0sin(θ0)θ∆ + v∆cos(θ0)
v0cos(θ0)θ∆ + v∆sin(θ0)
−v0

Lcos2(ψ0)ψ∆ + v∆tan(ψ0)
L

0
0

 , B∆u(t) =


0
0
0
ω
a

 . (3-3)

After successful linearization, all matrices are discretized using a zero-order hold approx-
imation.

3-3 Collision Avoidance Modelling

To avoid collision between vehicles, constraints are imposed so that vehicles are not al-
lowed to drive to close to each other. The feasible set of the optimization consist of the
complement of multiple forbidden convex sets, see figure 3-2.
The green area is the feasible set of motion of vehicle v1. The red area is an infeasible
set of motion of vehicle v1. Hence, the domain of vehicle v1’s motion is non-convex and
therefore the motion planning OCP is non-convex. Different solution methods are used to
handle the non-convex OCP, depending on the type of controller needed.
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18 Problem Statement

Figure 3-2: Non-convexity of the collision avoidance constraints, [1].

Nonlinear Programming Constraints

A major benefit of Non-Linear Programming (NLP) is the ability of handling non-convex
constraints and nonlinear equations of motion. This gives a more accurate model compared
to linearized models. These benefits come at the cost of higher computational effort.

NLP Hard constraints For general vehicle collision avoidance between multiple moving
vehicles or obstacles, the following constraint is used. Here xi(t+k) denotes the prediction
of the position of the i-th vehicle at the k-th sample, Hp is the prediction horizon, d(i,j)

safe is
a predefined safety distance between vehicles i and j.

∀k ∈ 1, . . . ,Hp, ∀i, j ∈ V, i 6= j, ‖xi(t+ k)− xj(t+ k)‖ ≥ d(i,j)
safe , (3-4)

Note that this constraint can also be used to avoid collision with static obstacles by simply
changing the time varying position vector xj(t + k) with that of a static obstacle, e.g.,
vp. For nonlinear centralized control, the above constraint can be used to avoid collision
between vehicles or obstacles. Unfortunately, for distributed control, implementing (3-4)
is not possible due to the non-convexity. Convexity is a prerequisite for decomposing
the problem formulation into smaller subproblems used for distributed optimization. In
literature, this problem is generally overcome by convexifying the constraints for collision
avoidance instead of hard constraints

NLP Soft constraints By imposing cost in the objective function, to ensure that vehicles
will not come close to each other, collisions can also be avoided. These collision avoidance
potential function are referred to as soft constraints.

We consider collision cost that is inversely proportional to the distance between vehicles.
Resulting in the potential function:

∑
j∈N ,j 6=i

Hp−1∑
k=1

γ3 ‖Lcol (µij(t+ k))‖2 , (3-5a)

Lcol(t) = 1
‖xi(t+ k)− xj(t+ k)‖ − d(i,j)

safe

(3-5b)

Di =
√

(a/2)2 + (L/2 + b)2. (3-5c)
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Here, xi represents the states of subsystem i and γi represents a positive weighting factor
corresponding to the collision avoidance cost. It can be seen clearly from (3-5b) that
vehicles closer to each other correspond to higher cost values. When properly tuned, this
cost ensures that vehicles will avoid each other, since the vehicles are inclined to lower
cost area’s in the road space-time due to the repulsive force of the potential functions.

Mixed Integer Programming

A method commonly used in literature to convexify non-convex constraints is Mixed In-
teger Programming (MIP). MIP is a powerful tool for planning and control problems
because of its modelling capabilities and the availability of good solvers.

Linear constraints are used to convert a non-convex problem into a linear/quadratic con-
vex programming problem. Each vehicle is mathematically represented by a polyhedron,
e.g., a combination of linear constraints.

MIP Vehicle Collision Avoidance Constraints For general vehicle collision avoidance
between multiple moving vehicles, (3-4) is used as starting point. The ∞-norm is used to
convert this quadratic function to a linear approximation. This results in the following:

|xi(t+ k)− xj(t+ k)| ≥ d(i,j)
safe , k = 1, . . . ,Hp,

OR |yi(t+ k)− yj(t+ k)| ≥ d(i,j)
safe , k = 1, . . . ,Hp.

(3-6)

This can be expressed as "greater than" OR logic statements. These OR statements can
be expressed as AND statements using binary variables, this method is referred to as the
Big-M method. To reduce the total number of binary variables, a method first introduced
in [37] is used to reduce the total number of binary variables from 4 to 2 for each vehicle
or obstacle. Note that the variables xi and yi change over time, but their argument is left
out for simplicity of notation.

xj − xi ≥ d(i,j)
safe , vi is to the left of vj ,

OR xi − xj ≥ d(i,j)
safe , vi is to the right of vj ,

OR yj − yi ≥ d(i,j)
safe , vi is below vj ,

OR yi − yj ≥d(i,j)
safe , vi is above vj .

(3-7)

xj − xi ≥ d(i,j)
safe −M

(
c(i,j)

1 (t+ k) + c(i,j)
2 (t+ k)

)
,

AND xi − xj ≥ d(i,j)
safe −M

(
1− c(i,j)

1 (t+ k) + c(i,j)
2 (t+ k)

)
,

AND yj − yi ≥ d(i,j)
safe −M

(
1 + c(i,j)

1 (t+ k)− c(i,j)
2 (t+ k)

)
,

AND yi − yj ≥ d(i,j)
safe −M

(
2− c(i,j)

1 (t+ k)− c(i,j)
2 (t+ k)

)
.

(3-8)

Here, c1,2(i, j)(t+ k) ∈ {0, 1} is a set of binary variables and M is a positive number that
is much larger than any position or velocity to be encountered in the problem. Note that
also the binary variables c(i,j)

1 , c
(i,j)
2 ∈ {0, 1} change over time. When using the Big-M

method, only 2 binary variables are used between 2 vehicles at every step in the horizon,
e.g., for any combination of c1 and c2, exactly one constraint is active as shown in below
truth-table 3-1.
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Truth Table
c1 c2 Formula Active Constraint
0 0 c1 + c2 first
1 0 1-c1 + c2 second
0 1 1+c1 − c2 thirth
1 1 2-c1 − c2 fourth

Table 3-1: Truth table showing the active constraints using the Big-M method

MIP Obstacle Collision Avoidance Constraints Obstacle avoidance using MIP can be
done similar as vehicle to vehicle collision avoidance. For simplicity, obstacles are repre-
sented as static 4-sided polyhedrons (N = 4) in the 2D-space, but this method can be easily
extended to higher dimension polyhedrons with N > 4 andmoving in certain directions.

Figure 3-3 shows the representation of an obstacle modeled as a 4-sided polyhedron. The
obstacle is constructed by defining 4 outward normal vectors qi−y(p), where qi ∈ R2, i =
1, . . . , 4 represents the middle point of each of the four sides.

Figure 3-3: Representation of a 4-sided polyhedron obstacle,[1].

Using the definition of a halfspace, the i− th halfspace used to form the side of an obstacle
is defined as

(
qi − y(p)

)
(x − qi) ≤ 0. The area of obstacle vp at point (x y)T is defined

using these halfspaces to represent a polyhedron, [1, section 4.4.2]:

vp =
{

(x y)T ∈ R2| A(x y)T ≤ b
}
, (3-9)

where:

A =



(
q1 − y(p)

)T(
q2 − y(p)

)T(
q3 − y(p)

)T(
q4 − y(p)

)T


, b =



(
q1 − y(p)

)T
q1(

q2 − y(p)
)T

q2(
q3 − y(p)

)T
q3(

q4 − y(p)
)T

q4


. (3-10)

Expressing these equations in terms of position y(p), orientation ϑ(p) and obstacle dimen-
sions, widthW (p) and length L(p), the area of an obstacle can be described by the following
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inequality:


cos

(
ϑ(p)

)
sin
(
ϑ(p)

)
− cos

(
ϑ(p)

)
− sin

(
ϑ(p)

)
sin
(
ϑ(p)

)
− cos

(
ϑ(p)

)
− sin

(
ϑ(p)

)
cos

(
ϑ(p)

)


(
x
y

)
≤


L(p) + x(p) cos

(
ϑ(p)

)
+ y(p) sin

(
ϑ(p)

)
L(p) − x(p) cos

(
ϑ(p)

)
− y(p) sin

(
ϑ(p)

)
W (p) + x(p) sin

(
ϑ(p)

)
− y(p) cos

(
ϑ(p)

)
W (p) − x(p) sin

(
(p)
)

+ y(p) cos
(
ϑ(p)

)

 .
(3-11)

In order for vehicles to avoid obstacles, the area of a vehicle i should be outside the area
of an obstacle vp. Similar to vehicles collision avoidance constraints, this can be defined
in ”greater than” OR logic statements:

cos
(
ϑ(p)

)
x(i) + sin

(
ϑ(p)

)
y(i) ≥

L(p) + x(p) cos
(
ϑ(p)

)
+ y(p) sin

(
ϑ(p)

)
OR − cos

(
ϑ(p)

)
x(i) − sin

(
ϑ(p)

)
y(i) ≥

L(p) − x(p) cos
(
ϑ(p)

)
− y(p) sin

(
ϑ(p)

)
OR sin

(
ϑ(p)

)
x(i) − cos

(
ϑ(p)

)
y(i) ≥

W (p) + x(p) sin
(
ϑ(p)

)
− y(p) cos

(
ϑ(p)

)
OR − sin

(
ϑ(p)

)
x(i) + cos

(
ϑ(p)

)
y(i) ≥

W (p) − x(p) sin
(
ϑ(p)

)
+ y(p) cos

(
ϑ(p)

)
.

(3-12)

Again, using binary variables and the Big-M method, these ”greater than” OR logic state-
ments can be converted to "smaller than" AND logic statements. The MIP obstacle colli-
sion avoidance constraints become:

cos
(
ϑ(p)

)
x(i) + sin

(
ϑ(p)

)
y(i) ≥ L(p) + x(p) cos

(
ϑ(p)

)
+

y(p) sin
(
ϑ(p)

)
−M

(
c

(i,p)
1 + c

(i,p)
2

)
AND − cos

(
ϑ(p)

)
x(i) − sin

(
ϑ(p)

)
y(i) ≥ L(p) − x(p) cos

(
ϑ(p)

)
−

y(p) sin
(
ϑ(p)

)
−M

(
1 + c(i,p)

1 − c(i,p)
2

)
AND sin

(
ϑ(p)

)
x(i) − cos

(
ϑ(p)

)
y(i) ≥W (p) + x(p) sin

(
ϑ(p)

)
−

y(p) cos
(
ϑ(p)

)
−M

(
2− c(i,p)

1 − c(i,p)
2

)
AND − sin

(
ϑ(p)

)
x(i) + cos

(
ϑ(p)

)
y(i) ≥W (p) − x(p) sin

(
ϑ(p)

)
+

y(p) cos
(
ϑ(p)

)
−M

(
1− c(i,p)

1 + c(i,p)
2

)
,

(3-13)

where c(i,p)
1 , c

(i,p)
2 ∈ {0, 1}.

Miscellaneous Collision Avoidance Constraints

Some additional Quadratically Constraint Quadratic Programming (QCQP) methods to
convexify collision avoidance constraints are recapped here. These methods are explained
in detail in the literature study.

• Sequential Convex Programming (SCP), uses a sequence of affine approximations
of the non-convex constraints, that form a conservative approximation of the actual
obstacles or vehicle, which is improved every SCP iteration, see figure 3-4.
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Figure 3-4: Sequential Convex Programming Iterations, [3].

• Semi-Definite Programming Relaxations (SDPR), uses convex positive semi-definite
inequality constraints and the Schur-decomposition to relax the original non-convex
constraints to a QCQP problem.

3-3-1 Constraint Comparison

All the different types of collision avoidance constraints described earlier, have their own
characteristics. To investigate the effect of these different constraints, we do a small com-
parison between the methods that are applied in this thesis, i.e., MIP and NLP.

A vehicle is approaching an obstacle of 3.25 m (single lane width is 3.5 m) and will have
to avoid it to continue driving. The contours of the obstacle and vehicle representation
depends on the type of constraint used. The actual vehicles and obstacle are presented as
the colored shapes and the outlined shapes are the prediction of the vehicle states in the
prediction horizon of the MPC.

The mixed integer constraints (3-13) used in this thesis, form a four-sided polyhedron
in R2. This results in a larger forbidden area as apposed to the NLP quadratic circle
constraint (3-4), in R2. Therefore, using the MIP constraints will require more evasive
steering action, as can be seen in figure 3-5.

The quadratic potential function (3-5), also forms a circle in R2. The cost of this po-
tential function approaches infinity when approaching the border of the obstacle. In this
case, the potential function acts as a non-decreasing monotonic cost function. Hence,
there is also cost associated with a vehicle close to the obstacle. As a result, a vehicle does
not only avoid the border of the vehicle, it also avoids the neighboring free space up to a
certain distance, depending on the weights given to the potential function.

Clearly, if the area of a vehicle can be represented by a circle in R2, the quadratic circle
constraints are the most beneficial since these require the least evasive action.
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Figure 3-5: Collision Avoidance Constraint Comparison
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Chapter 4

Controller Architecture

4-1 High-and Mid-level Control

In this work, we consider a hierarchical control architecture. First, each vehicle is embed-
ded with a High Level Controller (HLC), that works as a reference generator. Here, an
ideal trajectory is generated independently by every vehicle, according to simple logical
rules. Then, using the reference generated by the HLC, a Mid Level Controller (MLC),
computes a collision free path that is compatible with the vehicle dynamics. Specifically,
different MPC controllers are tested as MLC, where the simplified bicycle dynamics (3-1),
are used to model each vehicle. Finally, a Low Level Controller (LLC) are implemented
to generate the actual inputs of the vehicles’ actuators. Figure 4-1 shows the complete
controller architecture. In this work, we only focus on the path planning algorithms show
inside the dashed square.

4-1-1 High-Level-Controller: Reference Generator

To ensure all vehicles follow basic traffic rules (e.g., no right side overtaking maneuvers,
no unnecessary driving in left lane), every Mid-level MPC controller is augmented with
a HLC. This HLC receives perception information from sensors, e.g. available space in
the road space-time. In the case of decentralized or distributed controllers, the HLC also
receives communicated/estimated trajectories of other subsystems. Using this informa-
tion, the lateral reference trajectory and the velocity reference can be altered (if needed)
according to its surrounding. In this work, a three-lane highway is used.

Using the information received from perception sensors, e.g., LIght Detection And Rang-
ing (LIDAR), RAdio Detection And Ranging (RADAR) and/or camera systems, or infor-
mation received via a communication network, the HLC is able to change the lateral and
velocity reference. Here, the lateral reference corresponds to one of the 3 road lanes and
the velocity reference defines the set speed of a vehicle. Possible situations where the HLC
changes the originally specified reference are:

• A vehicle is approaching a slower vehicle in the same lane and the higher adjacent
lane is free −→ shift lane up.
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• A vehicle is driving in the middle or left lane and a lower adjacent lane is free −→
shift lane down.

• A vehicle is approaching a slower vehicle in a higher lane −→ lower velocity to match
upper lane vehicle’s velocity.

• A vehicle is approaching a slower vehicle and higher lanes are occupied −→ lower
velocity to match velocity of vehicle in front

The HLC uses only logic statements to determine if a reference should be altered. Al-
gorithms (1) and (2) give an overview how the HLC is composed for a decentralized (ór
distributed) controller for subsystem i. Note that the HLC is the same for the centralized
as for the decentralized controllers, the only difference being that the decentralized con-
trollers only takes its neighbors Ni into account.

The HLC is divided into 3 sections, i.e., Part I,II,III. The first part is responsible for
shifting the lateral reference a lane higher when a vehicle is approaching a slower vehicle
or when a vehicle is performing an overtaking maneuver and its initial lateral reference
is actually 1 or 2 lanes lower. Note that when a lane changing maneuver is set into ac-
tion, this shift in reference is hold for at least αHp, where α ∈ [0,∞). This is done
to avoid that vehicles are continuously changing lane, portraying unrealistic behaviour.
While checking availability of the adjacent lanes, the logic statements only take vehicles
in the same lane, ∆L(xi, xj) = 0, or vehicles in the higher or lower adjacent lane into
account, ∆L(xi, xj) = 1 ∧ (xi < xj ∨ xi > xj). Longitudinally, a safety distance dcovered
is used. This distance represent the distance covered over a prediction horizon. Part II
not only shifts the lateral reference 1 or 2 lanes lower, if free, it also prevents the vehicles
of returning back to their higher initial reference lane if the current lower lane is still free.
The last part restricts vehicles of passing other vehicles from their right side, respectively.

4-1-2 Mid-Level-Controller: MPC

Using the reference trajectories received from the HLC, the Mid-Level-Controller (MLC)
computes a collision free path, using the estimated/ communicated trajectories of other
subsystems. As MLC, we chose MPC, to easily take into account the vehicles’ dynamics
and collision avoidance constraints. We test different MPC frameworks which are discussed
in sections 4-2,4-3,4-4 and 4-5.
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Figure 4-1: Controller architecture
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Algorithm 1: High Level Controller, variable reference
1 dcovered = vihHp;
2 PART I, shift lane up
3 for k = 1 : Hp do
4 for j ∈ Ni do
5 Hold lane shift for αHp:
6 if hold_y(i) == 1 then
7 yref (i, k) = hold_yref(i);
8 if count(i) ≤ αHp then
9 hold_y(i) = 1;

10 count(i) = count(i) + 1;
11 else
12 hold_y(i) = 0;
13 count(i) = 0;
14 end
15 Shift lane up if approaching slower vehicle:
16 else if xi < xj & vi > vj & ∆L(yi, yj) = 0 & |xi − xj | <

dcovered
2 & lane_occupied(above) == 0 then

17 yref (i, k) = yset(i) + lane_width;
18 hold_y(i) = 1;
19 hold_yref(i) = yref (i, k);
20 Shift lane up if lane lower is not yet free while overtaking:
21 else if xi < xj & vi > vj & ∆L(yi, yj) = 1 & yi > yj & |xi − xj | <

dcovered & lane_occupied(below) == 1 then
22 if lane_occupied(current) == 1 then
23 yref (i, k) = y(i, 1) + lane_width;
24 hold_y(i) = 1;
25 hold_yref(i) = yref (i, k);
26 else
27 yref (i, k) = yset(i) + lane_width;
28 hold_y(i) = 1;
29 hold_yref(i) = yref (i, k);
30 end
31 else
32 yref (i, k) = yset(i);
33 end
34 end
35 end
36 PART II, shift lane down if lower lane is free
37 for k = 1 : Hp do
38 for j ∈ Ni do
39 if lane_occupied(current) == 0 then
40 yref (i, k) = y(i, 1);
41 else if lane_occupied(below) == 0 & lane_occupied(current) == 0 then
42 yref (i, k) = yset(i)− lane_width;
43 else
44 yref (i, k) = yset(i);
45 end
46 end
47 end
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Algorithm 2: High Level Controller, variable reference
1
2 PART III, No overtaking on the right of other vehicles
3 for k = 1 : Hp do
4 for j ∈ Ni do
5 if hold_v(i) == 1 then
6 vref (i, k) = hold_vref(i);
7 if count2(i) ≤ αHp then
8 hold_v(i) = 1;
9 count2(i) = count2(i) + 1;

10 else
11 hold_v(i) = 0;
12 count2(i) = 0;
13 end
14 else if xi < xj & yi ≤ yj & vi ≥ vj then
15 vref (i, k) = min(vj , vset(i));
16 hold_v(i) = 1;
17 hold_vref(i) = vref (i, k);
18 else
19 vref (i, k) = vset(i);
20 end
21 end
22 end
23
24 FUNCTION [output]=lane_occupied(case)
25 if case == below then
26 for j ∈ Ni do
27 if yi < yj & ∆L(yi, yj) ≤ 2 & |xi − xj | < dcovered & xi ≤ xj then
28 output = 1
29 BREAK
30 end
31 end
32 else if case == current then
33 for j ∈ Ni do
34 if ∆L(yi, yj) = 1 & |xi − xj | < dcovered

2 & xi < xj & vi > vj then
35 output = 1
36 BREAK
37 end
38 end
39 else if case == above then
40 for j ∈ Ni do
41 if yi < yj & ∆L(yi, yj) = 1 & |xi − xj | < dcovered

2 & xi ≤ xj then
42 output = 1
43 BREAK
44 end
45 end
46 else
47 output = 0
48 end
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4-2 Centralized Model Predictive Control

Traditionally, control of large, networked systems is achieved by designing local, subsystem-
based controllers, which ignore the interaction between subsystems. This decentralized
control often leads to poor performance when the interaction between subsystems is sig-
nificant. Centralized control overcomes this limitation. In this chapter we introduce
Centralized Model Predictive Control (C-MPC), that leads to a solution which is globally
optimal for the overall system. Although centralized architectures are often not practical,
because of computational burden or communication limits, C-MPC can serve as a bench-
mark for comparing and assessing different Distributed Model Predictive Control (D-MPC)
approaches.

In C-MPC, one controller is responsible for controlling all the subsystems. Each vehi-
cles’ dynamics are represent by the bicycle model presented in (3-1). The dynamics of
all subsystems are combined which results in the plantwide model, e.g. (4-1). Here, for
simplicity, the overall system is represented as a discrete, nonlinear model of the form:

x(t+ 1) =

 f1 (x1(t),u1(t))
...

fN (xN (t),uN (t))

 (4-1)

We define a the standard quadratic MPC cost function. The objective is to track a
reference ri(t+k), while avoiding collisions between vehicles. The resulting MPC problem
is:

V ?(x(·),u(·)) = min
u(·),x(·)

N∑
i=1

Hp−1∑
k=1

`xi (xi(t+ k), ri(t+ k)) + Vif (xi(Hp))

Hu−1∑
k=0

`ui (ui(t+ k))
)
, (4-2a)

subject to (∀i, j ∈ V):

xi(t+ 1 + k) = fi (xi(t+ k),ui(t+ k)) , k = 0, . . . ,Hp, (4-2b)
xi(t+ k) ∈ Xi, k = 1, . . . ,Hp, (4-2c)
ui (t+Hp) ∈ Ui, k = 0, . . . ,Hu − 1, (4-2d)
c(i,j)
c.a. (xi(t+ k), xj(t+ k)) ≤ 0, k = 1, . . . ,Hp. (4-2e)

Here the meaning of the constraints is as follows:

• fi : Rni × Rmi → Rni describes the dynamic prediction model of vehicle i,
i = 1, . . . , N .

• xi(t+ k) ∈ Xi ⊆ Rni denotes the states of vehicle i, for k = 1, . . . ,Hp.
Xi is the constraint set of the states of vehicle i for

• ui(t+ k) ∈ Ui ⊆ Rmi denotes the control inputs to vehicle i, where
mi ∈ N. Ui is the constraint set of the inputs to vehicle i.
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• c(i,j)
c.a. : Rni × Rnj → R represents a coupling constraint between vehicles i and j,

c(i,j)
c.a. (xi(t+ k),xj(t+ k)) = d

(i,j)
safe − ‖xi(t+ k)− xj(t+ k)‖ . (4-3)

Note that the handling of (4-3) varies depending on the collision avoidance method.

The objective function is defined as:

• `xi : Rni × Rni → R is a function for the evaluation of the tracking error of
vehicle i between its predicted trajectory xi(t+ k) and reference trajectory

ri(t+k) for k = 1, . . . ,Hp−1. We will usually consider the following quadratic form
for `xi , weighted by the matrix Qi(k):

`xi (xi(t+ k), ri(t+ k)) = ‖xi(t+ k)− ri(t+ k)‖2Qi
. (4-4)

• `ui : Rmi → R defines the input cost at each step in the prediction
of vehicle i. Using Ri(k) as weighting matrix, `ui is defined as:

`ui (ui(t+ k)) = ‖ui(t+ k)‖2Ri
. (4-5)

In our implementation we solved the OCP in (4-2) using nonlinear optimization framework
CasADi [4], which implements an interior-point algorithm. Convergence of the solver is
speed up by solving the OCP in a direct multiple shooting fashion and by initializing each
MPC iteration, exploiting the information of the previous iteration.

4-3 Decentralized Model Predictive Control

In centralized control, all subsystems rely upon the central agent, making plantwide con-
trol difficult to coordinate and maintain. These obstacles discourage implementation of
centralized control for large-scale plants. By decomposing the central problem into N sub-
problems and relying on communication between neighboring subsystems, each subsystem
is able to compute its own control input based on the information of its neighbors. This
method is adopted from [13],[32].

Definition 4.1 Neighbors Ni
A pair of vehicles i, j ∈ V are considered neighbors if:

‖pi(t)− pj(t)‖ ≤ αdcovered, (4-6)

where dcovered = vihHp,pi(t) =
√

x2
i (t) + y2

i (t) and α ∈ (1, 2). A pair of vehicles i, j ∈ VN
are considered "close" neighbors if:

|xi(t+ k)− xj(t+ k)| ≤ dcovered & |yi(t+ k)− yj(t+ k)| < µ. (4-7)

where µ denotes a single road-width.

In literature, this method is also referred to as (Cooperative) Distributed (Nonlinear) MPC
([32],[13],[12],[51]), but since this method does not rely on distributed optimization, and
to avoid confusion with other methods, here it is named Decentralized MPC (Dec. MPC).

All subsystems solve their local subproblem synchronously. Hence, at every time instance
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t the estimated trajectories of all neighbors j ∈ Ni,∀i ∈ V should be known. These are
assumed to be the optimal trajectories obtained from the previous MPC iteration. Since
prior to t = 0 no OCP has been solved, these have to be initialized. This starts by initial-
izing the estimated control ûi.

Definition 4.2 Initialization of estimated control
At every time instance τ in interval [t, t + Hp], the estimated control for each vehicle is
defined as follows:

{
ûi (τ, t) = u∗i (τ ; (t− 1)) if τ ∈ [t, (t− 1) +Hp)
ûi (τ, t) = 0, if xi (t) = ri(Hp) or if τ ∈ [(t− 1) +Hp, t+Hp]

(4-8)

u∗i (τ ; (t− 1)) denotes the optimal solution solved at the previous MPC iteration with
initial state xi ((t− 1)). Since prior to t0 no OCP has been solved, an initialization method
is defined for the time interval [(t0 − 1), (t0 − 1) +Hp]. Algorithm 3 is introduced:

Algorithm 3: OCP Initialization
1 if τ ∈ (t0 − 1) then
2 solve (4-9) with initial state xi (t0 − 1)), xj (t0 − 1) and ûj (τ ;xj(t0 − 1)) = 0
3 for all τ ∈ [(t0 − 1), (t0 − 1) +Hp] and K = +∞.
4

The optimal control obtained by Algorithm 3, with the mentioned conditions, is the esti-
mated control for the time interval [t0, t0 +Hp].

Please note, K = +∞, implies that the compatibility constraint is not important prior to
t0. The state and control trajectories obtained at (t0 − 1) over interval τ ∈ [(t0 − 1),
(t0 − 1) +Hp] are denoted by x∗i (τ ; xi ((t0 − 1))) and u∗i (τ ; xi ((t0 − 1))) . This optimal
control is applied to the ith vehicle over [(t0 − 1), t0].
Again, using nonlinear bicycle model (3-1) to represent the vehicles’ dynamics, the De-
centralized Nonlinear MPC for vehicle collision avoidance problem for subsystem i ∈
V at time t is formulated as:

V ?
i (xi(0), x̂j(·),ui(·)) = min

x(·),u(·)

Hp−1∑
k=1

`xi (xi(t+ k), ri(t+ k)) + Vif (xi(Hp)) ,

+
Hu−1∑
k=0

`ui (ui(t+ k)) +
∑

j∈Ni,j 6=i

Hp−1∑
k=1

γ ‖Lcol (µij (xi, x̂j))‖2
 (4-9a)

subject to (∀i, j ∈ Ni):

xi(t+ 1 + k) = fi (x̂i(t+ k),ui(t+ k)) , k = 0, . . . ,Hp, (4-9b)
x̂j(t+ 1 + k) = fj (xj(t+ k), ûj(t+ k)) , k = 0, . . . ,Hp, (4-9c)
xi(t+ k) ∈ Xi, k = 1, . . . ,Hp, (4-9d)
ui (t+Hp) ∈ Ui, k = 0, . . . ,Hu − 1, (4-9e)
‖xi (t+ k)− x̂i (t+ k)‖ ≤ h2K (4-9f)

The first functions and variables in (4-9) are defined equivalently to (4-2a). The last term
in (4-15a) denotes the collision avoidance soft constraint. Below all remaining functions
and constraints are explained:
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• Lcol (µij (xi, x̂j)) : Rni×Rnj→R describes the cost associated with the collision avoid-
ance of vehicle i with vehicle j ∈ Ni:

∑
j∈N ,j 6=i

Hp−1∑
k=1

γ ‖Lcol (µij(t+ k))‖2 where, Lcol(t) =


1

‖xi(t)−xj(t)‖−2Di
if j ∈ Ni,

0 if j /∈ Ni.
(4-10)

here, 2Di is defined similar to (3-5), γ denotes a weighting term.

• fj : Rnj × Rmj → Rnj describes the dynamic prediction model of neighboring vehicle
j ∈ Ni.

• x̂j(t+ k) : Rnj denotes the estimated/communicated states of vehicle j
from the previous MPC iteration, for k = 1, . . . ,Hp.

• ‖xi (t+ k)− x̂i(t+ k)‖ ≤ h2K : Rni × Rnj → R represents the compatibility con-
straint that ensures feasibility of each computed control input. Here, h2K denotes the
multiplication of the squared sample time with a constant K ∈ (0,∞) and h2K ≈ 0.

Similar to C-MPC, the OCP in (4-9) is solved using the nonlinear optimization framework
CasADi.

4-4 Cooperative Distributed Model Predictive Control

In Dec. MPC, each subsystem communicates ones every MPC iteration to its neighbors,
(2-2). The newly computed trajectories are constrained to not deviate too much from the
previously computed trajectory by a compatibility constraint. This ensures feasibility, but
comes at the cost of optimality. Cooperative Distributed MPC (Coop. D-MPC) overcomes
this limitation, set by the compatibility constraint and simple communication scheme, by
communicating several times every MPC iteration and generally using distributed opti-
mization to solve the OCP.

In [43, Section 3-5] an example of linear time-invariant Coop. D-MPC is given for net-
worked agents where exponential closed-loop stability is guaranteed. This method is also
used in [34], [42] and [26]. When ran for sufficient suboptimal iterations, i.e., p −→ ∞,
the algorithm converges to the plantwide Pareto-optimal solution is achieved by explicitly
modelling the effects of inputs of subsystem j on the states of subsystem i,∀i, j ∈ V. [44]
gives a similar approach for nonlinear plants, where an extra distributed gradient algo-
rithm is used to ensure a decrease in the non-convex objective function. Unfortunately,
both distributed algorithms only take simple input bounding constraints into account.
In [30] a Coop. D-MPC framework is shown based on game theory. Here, all agents solve
their individual cost function and cooperate to find a global cost decreasing solution. Fea-
sible Cooperation MPC is introduced in [45], this method is also based on game theory and
has a local cost function that is replaced by a cost function that measures the system-wide
impact of the local control inputs. This is done with the purpose of avoiding competition
and to increase the cooperation among subsystems in a D-MPC scheme.

In our case, the collision avoidance constraints make the OCP non-convex and time-
varying. As a result, above mentioned algorithms can not be directly implemented. Other
distributed algorithms such as, primal and dual decomposition and Alternating Direction
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Method of Multipliers (ADMM) have as significant drawback that the constraints are only
satisfied asymptotically. In [53] and [47], ADMM is applied to a vehicle collision avoidance
problem. In the first, the algorithm is required to run "tens of iterations" before conver-
gence, making it unsuitable for fast driving vehicles which need quick decision making.
In the latter, the ADMM algorithm is only iterated a single time. By dividing the free
road space-time between holonomic vehicles, collision avoidance is ensured at the cost of
having a conservative feasible space for each vehicle. In this thesis, an adaptation to [43]
is used. Sub-optimal cooperative distributed MPC is implemented. Here, a coordinator
is not necessary and suboptimal input trajectories can be injected into the subsystems,
allowing the plant to stop the iterative process before reaching the stopping criteria. This
property increases the flexibility of distributed MPC, and the plantwide control strategy
can be treated as suboptimal MPC.

Sub-Optimal Cooperative Control for Vehicle Collision Avoidance

For any initial state x(0), the suboptimal MPC is initialized with a feasible input trajectory
ũ(0). For subsequent sample times, ũ(t+ 1) is denoted as the warm start, i.e., a feasible
input sequence for x(t+1) used to initialize the suboptimal MPC algorithm. Each sample
time, ũ(t+ 1) is obtained by shifting the previous warm start one step forward. The first
(applied) control input is omitted and at the end the sequence is augmented with a zero:

ũi(t+ 1) = {ui(1), ui(2), . . . , ui (Hp − 1) , 0} . (4-11)

Each local subsystem performs p iterations of a feasible path algorithm and computes u
such that the solution of the OCP is improved w.r.t their own local objective function. At
each sample time, the first input in the (suboptimal) trajectory is applied, u = u(0). The
state is updated by the state evolution equation x(t+ 1) = f(x(t), u(t)).

When applying the algorithm proposed in [43, Section 3-5] to a vehicle collision avoid-
ance problem, some adaptations inherent to the problem set up occur. First, it is noted
that the vehicle states are uncoupled. This can be explained by considering a possibly
non-minimal centralized model between subsystem i, j ∈ V.

x(t+ 1) = Ax(t) +
∑
j∈V

Bjuj , yi(t) = Cix(t) (4-12)

Then, for each input/output pair (uj , yi) the triple (A,Bj , Ci) is transformed into its
Kalman canonical form, [35]:


zocij
zocij
zoij
zocij

 =


Aocij 0 Aocc̄ij 0
Aōocij Aōcij Aōcoc̄ij Aōcc̄ij

0 0 Aoc̄ij 0
0 0 Ac̄cij Aōc̄ij



zocij
zocij
zoij
zocij

+


Boc
ij

Boc
ij

0
0

uj ,

yij =
[
Cocij 0 Coc̄ij 0

] 
zocij
zocij
zocij
zocij

 , yi =
∑
j∈V yij ,

(4-13)

here, zocij denotes the modes of A that are both observable by yi and controllable by uj . The
distributed state space model that denotes the effects of subsystems j ∈ V to subsystem i

Rens Vermeer Master of Science Thesis



4-4 Cooperative Distributed Model Predictive Control 35

becomes:

Aij ← Aocij , Bij ← Boc
ij , Cij ← Cocij , xij ← zocij . (4-14)

By definition, no input of one vehicle can control the states of another vehicle, hence zocij
is empty and the vehicle states are fully decoupled. The resulting vehicle models only
consist of local states and inputs, equivalent to (3-2).

The second adaption is the feasibility of the computed suboptimal trajectories. Due to
the collision avoidance constraints, the algorithm either needs to run for a fixed number
of iterations p, or a compatibility constraint, similar to (4-9f), should be applied to en-
sure feasibility of the suboptimal trajectories when the algorithm is stopped prior to the
stopping criteria. This latter option is applied to preserve the benefits of suboptimal MPC.

Taking these adaptations into account, the Coop. Distr. MPC algorithm for vehicle
collision avoidance for subsystem i ∈ V at time t is formulated as:

V ?
i (xi(0),ui(·)) = min

x(·),u(·)

Hp−1∑
k=1

`xi (xi(t+ k), ri(t+ k)) + Vif (xi(Hp))

Hu−1∑
k=0

`ui (ui(t+ k)) (4-15a)

subject to (∀i, j ∈ Ni):

xi(t+ 1 + k) = f (xi(t+ k),ui(t+ k)) , k = 0, . . . ,Hp, (4-15b)
x̂j(t+ 1 + k) = fj (x̂j(t+ k), ûj(t+ k)) , k = 0, . . . ,Hp, (4-15c)
xi(t+ k) ∈ Xi, k = 1, . . . ,Hp, (4-15d)
ui (t+ k) ∈ Ui, k = 0, . . . ,Hu, (4-15e)
c(i,j)
c (xi(t+ k), xj(t+ k)) ≤ 0, k = 1, . . . ,Hp, j > i, (4-15f)

vi = vpi , ∀i ∈ V, (4-15g)
‖xi (t+ k)− x̂i (t+ k)‖ ≤ h2K. (4-15h)

Agent i is trying to follow its reference trajectory ri with a minimum change in its in-
puts ui. The functions and variables in constraint (4-15b) - (4-15f) are defined using
the linear vehicle model and collision avoidance constraints in section 3-2-2 and 3-3. Con-
straint (4-15h) is defined equivalent to (4-9f). The plantwide cooperative control iteration,
performed in parallel by every subsystem, is given by:

up+1
i =

∑
j∈Vi

wjσ
(
v?i ,v

p
j

)
,

∑
j∈Vi

wj = 1, ∀wj > 0, (4-16)

where σ
(
u?i , u

p
j

)
denotes the convex combination step for subsystem i. This distributed

optimization is of the Gauss–Jacobi type. Note that for simplicity the dependence of u?i
on upj is omitted. At the last iterate p̄, we set u← (vp1,v

p
2) and apply u(0) to the plant.
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The following properties follow.

Lemma 4.1 Feasibility
Given a feasible initial guess ũi(0), the iterates satisfy:(

vpi ,v
p
j

)
∈ UNi × UNj , xpi ∈ Xi ∩ C ∀i ∈ V, (4-17)

where C denotes the constrained set from (4-15f). If ran for a sufficiently large, fixed
number p, or when using compatibility constraint (4-15h) and the iterative algorithm is
stopped prematurely at p ≥ 1, all (sub-optimal) trajectories are feasible.

Lemma 4.2 Convergence
The plantwide cost,

V (x(0),vp) =
∑
∀i∈V

Vi(xi(0),vpi ) (4-18)

is non-increasing and converges as p −→∞.

Observation 4.1 Optimality
As p −→∞, the plantwide cost V (x(0),vp) converges to a constant value, but convergence
to the Pareto optimal solution can not be guaranteed, due to the non-convexity of (4-15).

Proof of Lemma 4.1, 4.2 and Observation 4.1 is given in Appendix B.

4-5 Non-cooperative Distributed Model Predictive Control

In a road traffic environment, traffic participants might be selfish decision makers. Typi-
cally, each driver behaves according to its own individual interests, while sharing the road
space-time with the other drivers. This makes game theory an interesting framework to
model and cope with non-cooperative behaviors in automated driving. We formulate a
Non-cooperative Distributed MPC (Noncoop. D-MPC) framework based on a Generalized
Potential Game. To find a solution to the game we adopt a method from [17, Section VI].

A Generalized Potential Game for Vehicle Collision Avoidance

We will consider the mixed integer MPC framework where each agent i solves its own
OCP

V ?
i (xi(0),ui(·)) = min

x(·),u(·)

Hp−1∑
k=1

`xi (xi(t+ k), ri(t+ k)) + Vif (xi(Hp))

Hu−1∑
k=0

`ui (ui(t+ k)) (4-19a)

subject to (∀i, j ∈ Ni):

xi(t+ 1 + k) = f (xi(t+ k),ui(t+ k)) , k = 0, . . . ,Hp, (4-19b)
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x̂j(t+ 1 + k) = fj (x̂j(t+ k), ûj(t+ k)) , k = 0, . . . ,Hp, (4-19c)
xi(t+ k) ∈ Xi, k = 1, . . . ,Hp, (4-19d)
ui (t+ k) ∈ Ui, k = 0, . . . ,Hu, (4-19e)
c(i,j)
c (xi(t+ k), xj(t+ k)) ≤ 0, k = 1, . . . ,Hp, j > i. (4-19f)

By computing a solution to (4-19), each agent i ∈ V can be driven towards its set point
in the road space-time over the horizon Hp. However, each control strategy is computed
by assuming the strategies of the neighbors are given. If even a single of these strategies
change, the computed strategies may not be optimal anymore or even unsafe. To achieve
this, (4-19) is formulated as a Generalized Potential Game (Definition 2.6).

Similar to [17], the feasible set of each player is defined as, Xi (x−i) := {xi ∈ Rni |A (xi, x−i) ≤ b}
and X := {x ∈ Rn|Ax ≤ b}. By noticing that each Vi (xi) depends only on the local vari-
able xi, we introduce the function P : Rn → R, defined as P (x) :=

∑
i∈V Vi (xi), that

satisfies for all i ∈ V, for all x−i, and for all xi, yi ∈ Xi (x−i),

P (xi,x−i)− P (yi,x−i) = Vi (xi)− Vi (yi) . (4-20)

According to Definition 2.6, P is an exact potential function for the proposed automated
driving coordination game. The best response mapping from player i, given the strategies
of its neighbours x−i:

x?i (x−i) ∈
{

argminxi
Vi (xi)

s.t. (xi, x−i) ∈ X .
(4-21)

Using Definition 2.4, with ε > 0, x? ∈ X is an ε-Nash Equilibrium (ε-NE) of (4-21) if, for
all i ∈ V,

Vi (x∗i ) ≤ inf
xi∈Xi(x∗−i)

Vi (xi) + ε. (4-22)

An ε-NE is a set of strategies that, up to an accuracy ε, are individually optimal, given
the constraints.

We adopt a best-response based algorithm for computing an ε-NE via an iterative proce-
dure given in [17, Section VI]. We refer to a temporal step as a sample step of the decision
variables over Hp and to algorithmic step as an iterative step to compute a solution of the
game. The vector of decision variables at the k-th algorithmic step of player i and of its
neighbors, respectively, are denoted as xi(k) and x−i(k), k ∈ Hp. The i-th vector of deci-
sion variables at time t, computed at the algorithmic step k, is denoted as xi(t|k). Lastly,
a cost variation is introduced ∆Vi(k) := Vi (xi(k))− Vi (x∗i (k)), with x∗i (k) ∈ x?i (x−i(k)).

An inter-vehicle ordering relation at time t, i.e., �t, is defined to formulate the sequence
in which each OCP is solved. Given any pair of vehicles (i, j) ∈ V2, we say that j has
lower order than i at time t, namely j ≺t i when:

‖pj‖2 > ‖pi‖2 , (4-23)
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where ‖·‖2 denotes the Cartesian distance with respect to the origin of the global world
frame, e.g., the vehicle that has progressed the most in the road space-time. The sub-
scripts will refer to vehicles which follow the ordering in Ot. For any vehicle i, x−i(k) is
obtained by stacking xj(k + 1) for all j ≺t i and xj(k) for j �t i.

We investigate a closed-loop implementation of a Gauss-Seidel type algorithm, equivalent
to [17, Section VI]. The vehicles implement only the first temporal step of the equilibrium
solution, before a new one is calculated. This limits the amount of communication to
xi(t + 1|k), k ∈ N, since the players are only interested in the "next" action of its neigh-
bours. In Algorithm 4 each player is assumed to have estimates for the remaining parts of
the strategies, i.e., x̂(h|k), ∀h ∈ Ht := {t+ 2, . . . , t+ T}, k ∈ N. Note that this requires
additional linear constraints and restricts the feasible set to X̂t := {x ∈ Rn|Atx ≤ bt} ⊆ X .

Algorithm 4: Gauss-Seidel Method (Closed Loop)
1 Choose a feasible point x(0) ∈ X̂t, set k := 0
2 while x(k) is not an ε−NE do
3 Broadcast xi(t+ 1|k) to Ni, ∀i ∈ Ot
4 for all i ∈ Ot do

5
xi(k + 1) :=

{
x∗i (k) if ∆Vi(k) ≥ ε
xi(k) otherwise

Broadcast xi(t+ 1|k + 1) to all j �t i
6 end
7 Set k:=k+1

8 end

Since each best-response mapping in (4-21) is based on estimated strategies of their neigh-
bours, feasibility and existence of an ε-NE over the full horizon is not self-evident. Ac-
cording to [17, Lemma 2] and [17, Proposition 4], when assuming a non-empty set X̂t for
all t, and let Ot ⊆ I be an ordered set of vehicles and ε > 0, Algorithm 4 provides a
feasible collective strategy (xi(t+ 1|k), x−i(t+ 1|k)) and computes an ε− NE, x ∈ X̂t of
the GPG.
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Chapter 5

Controller Assessment

In this chapter we present the testing scenarios and the assessment criteria for our con-
trollers. The two main evaluation criteria are the plantwide feasibility of the controller
and its effectiveness.

5-1 Testing Scenario

5-1-1 Scenario I: Unrestricted Highway

As first scenario we consider a standard highway scenario where N vehicles are driving in
parallel, in front or behind each other. All vehicles are trying to track their own velocity
reference.

Figure 5-1: Unrestricted Highway testing scenario

5-1-2 Scenario II: Roadworks Obstructed Highway

In the unrestricted scenario, no obstructions are present. To increase heterogeneity, we
assume that the 3-laned highway is restricted to only a single lane due to road works. All
vehicles are warned for these roadworks by road signs. These signs tell the vehicles to
slow down to 70 km/h and eventually merge into a single lane. This results in a more
challenging scenario, making the differences in the controllers possibly more noticeable.

Figure 5-2: Obstructed Highway testing scenario
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5-2 Evaluation Criteria

The evaluation of the MPC strategies are done according to two criteria: feasibility of
the control strategy and effectiveness of the controller. The former focuses on the com-
putational time and the robustness of a controller, the latter focuses on the trajectory
quality.

5-2-1 Feasibility

The most important aspect in control for autonomous vehicles is the controller’s feasibility.
If the controller is not able to find the newly computed control input within the fixed
sampling time interval h, safety can be compromised. Also robustness to hardware failure
is an important aspect which needs to be taken into account.

Computation Time

An important aspect to take into account in the MPC implementation, is the sampling
time h. A prerequisite is that a feasible control input is found within a single MPC itera-
tion, i.e., within the sampling time. Obviously, the scale of the OCP plays an important
role here, computation time scales exponentially with an increasing numbers of subsys-
tems. For embedded control, the following inequality should hold: Tsol ≤ h. Here, Tsol is
the time it takes to compute a single prediction and control horizon and h the sampling
time.

The computation time is evaluated by computing the mean and maximum values over
all time steps of a simulation.

Robustness to Hardware Failure

Possibly the second most important aspect in embedded control for autonomous vehicles
is robustness. This can be achieved by building-in safety systems, but it can also be
achieved in the design of the control framework. Centralized control is able to account for
plantwide interactions but, organizationally, all subsystems rely upon the central agent,
making plantwide control not robust to hardware failure. If the central controller fails, or
communication with the central controller fails, all vehicles are essentially out of control.
This deters implementation of plantwide control. Decentralized control overcomes this
limitation by decomposing the plantwide problem into subproblems and allowing each ve-
hicle to compute its own control input, depending on the communicated/estimated states
of the other vehicles. In this case, if communication fails, only a single vehicle will be out
of control and safety could be assured by an emergency controller. Note that the design
of emergency controllers is out of the scope of this research.

Robustness to hardware failure is not quantitatively evaluated, it is simply taken into
account in the assessment of each controller.

5-2-2 Trajectory Quality

The quality of the vehicle trajectories are evaluated by computing different objectives.
The first criteria is the overall plantwide effectiveness, i.e., the summed cost of all local
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subsystems with respect to their reference. It is expected that, the more vehicles cooperate
with each other, the lower the overall cost is.
The second criteria is the individual satisfaction of each subsystem. Plantwide effective-
ness (and control) can come at the cost of some subsystems having to sacrifice their own
objective to increase plantwide efficiency. It is expected that the non-cooperative dis-
tributed controller, based on game theory, has a higher individual satisfaction since this
controller finds a(n) (epsilon)-Nash Equilibrium. Here, all subsystems agree upon their
actions based on the actions of the others.
The final criteria represents the progress each vehicle has made. Different then above men-
tioned criteria, this is not with respect to some reference, but purely the cost associated
with the progress made in the simulation, i.e., the summed progress of all paths.

For all criteria, the following holds. The standard weighting matrices Qi and Ri in the
OCP may vary between controllers, e.g., because of the presence of potential functions in
the objective function, the state weights possibly need to be re-tuned accordingly. Because
of this, the computed objective values between controllers can not be compared. There-
fore, the applied trajectories are substituted into different assessment objective functions,
(5-1). Here, the weighting matrices Qresulti and Rresulti are equivalently defined for all
controllers and all vehicles. Below, the different objective functions are listed.

• Overall effectiveness:

V (x)∑
∀i∈V

=
∑N
i=1

(∑Hp

k=1 ‖xi(t+ k)− ri(t+ k)‖2Qresult

)
V̄C−MPC

(5-1a)

where,
Qresulti = blkdiag(zeros(3), ψweight,

vweight
vseti

). (5-1b)

• Individual satisfaction:

V (x)i =
∑Hp

k=1 ‖xi(t+ k)− ri(t+ k)‖2Qresult

V̄C−MPC

(5-2)

• Progress of all paths:

V (x)path =
∑N
i=1

(∑Hp

k=1 (xi(t+ k)− xmax) + ∆yi(t+ k)
)

V̄C−MPC

(5-3)

The first bullet point represents the overall effectiveness, which is measured by evaluating
the rate at which vehicles meet their velocity reference and the possible steering angles
needed to overtake vehicles. This summed cost is normalized with the mean summed cost
of C-MPC, i.e., V̄C−MPC .

The individual satisfaction is measured by evaluating the variance of the cost of each
subsystem with respect to their reference, again normalized with the mean summed cost
of C-MPC. Since all values are normalized with the mean summed cost of C-MPC, the
combination of an overall summed cost equivalent to C-MPC, and a smaller variance in
this cost, would correspond to a more individually optimal solution. The opposite is true
for larger variances.
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The cost of the progress made in the path is measured by adding the difference in progress
in longitudinal direction with respect to the maximum longitudinal distance, xmax, to the
sum of the difference in lateral direction between every MPC iteration. Again, normalized
by the mean summed cost of C-MPC.
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Chapter 6

Simulation Results Unrestricted
Highway Scenario

This chapter presents and discusses the simulation results of the MPC path planning al-
gorithms according to the criteria discussed in chapter 5, in the Unrestricted Highway
scenario.

For simplicity, all vehicles are assumed to be identical in size. The figures show the
resulting trajectories at the following time steps:

• The initial time step to show the starting positions of the vehicles.

• Time steps in which it can be seen that the collisions are avoided.

• Time steps where it can be seen that the reference changes.

The predicted trajectories of all vehicles are shown using circles, the actual vehicle state
is shown with a colored circle in the same corresponding color. The steering angle and
velocity (and corresponding reference) are pictured below the vehicles trajectories. A final
plot is shown which depicts the completed trajectories of each vehicle.

The discussed testing scenario are shown for N = 12 subsystems in the Unrestricted
Highway scenario and the Roadworks Obstructed Highway. First, the globally optimal
centralized solutions are shown for different time steps in the simulation, followed by a
final overview of the traveled path. For decentralized/distributed controllers, the traveled
paths are often really similar. Hence, to save space only the final overview of the traveled
path is shown. After each decentralized/distributed controller, the mean objective values
normalized w.r.t. the centralized controller are shown, together with the computational
times and communication burden of those controllers.
All simulations are performed in MATLAB [31]. The optimization problems are solved
using different optimization software libraries. C-MPC and Dec. MPC are defined as
nonlinear MPC controllers, which are solved using CasADi, [4], which is a state of the art
software framework for nonlinear optimization. Coop. D-MPC and Non-coop. D-MPC
use mixed integer variables to convexify the constraints, making the problems a Mixed
Integer Quadratic Programming (MIQP) problem. These are solved using the Gurobi
MIQP solver, [24]. All simulations are conducted on a computer equipped with an Intel
Core i7, 2,7 GHz Quad-Core processor and 16 GB RAM memory.
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6-1 Centralized MPC

Figure 6-1: MPC iteration = 1, Initial conditions

Figure 6-2: MPC iteration = 44, Lateral reference of the olive green vehicle is shifted to
lower lane after overtaking.

Figure 6-3: MPC iteration = 93, several more lane changes are performed to overtake or
merge to a lower lane.
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Figure 6-4: MPC iteration = 125, all vehicles are approaching there velocity reference.

Figure 6-5: MPC iteration = 152, all vehicles have reached there velocity reference, when
lower adjacent lanes are free, a lane change is performed.

Figure 6-6: Testing scenario Highway, C-MPC for N=12 vehicles, full trajectories.

Trajectory Quality C-MPC

Below a bar graph is shown representing the individual cost values of C-MPC for each
subsystem (for N = 12) using (5-2). This cost and according variance are later on used as
benchmark to compare the individual satisfaction of each subsystem with respect to other
distributed controllers. Note that the normalized objective values (5-1) and normalized
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path cost (5-3) are not shown since these would all equal one.

Figure 6-7: Local cost values C-MPC, scenario I

sub

Computation Time C-MPC

The figure below shows the minimum, maximum and mean computational times of C-MPC
for increasing number of subsystems. The mean computation time represents the average
time it takes the centralized controller to compute and predict the states of all vehicles
for a single MPC iteration. As explained before, for (embedded) control it is important to
finish computation before a predefined sample time. Hence, the minimum and maximum
computation times are shown as well. Clearly, for increasing number of subsystems the
maximum computation time increases as well. The overall mean computation time of
C-MPC lies within 44 milliseconds for N = 2 and 360 milliseconds for N = 12.

Figure 6-8: min, max and mean solve time C-MPC, scenario I
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6-2 Decentralized MPC

Figure 6-9 only shows the final applied trajectories are shown, for N = 12 vehicles.

Figure 6-9: Testing scenario Highway, Dec. MPC for N=12 vehicles, full trajectories.

Trajectory Quality Dec. MPC

Figure 6-10 depicts the evaluation function values of Dec. MPC according to (5-1), (5-2)
and (5-3), normalized with respect to those of C-MPC. The mean objective values represent
the costs associated with the weighted steering angle ψ and weighted velocity error ve.
When comparing the trajectories between both controllers, the objective values are close
to each other as well, e.g., the mean normalized objective values of Dec. MPC are close
the one (the mean normalized objective values of C-MPC). Only for rising number of N ,
the differences become larger. This is due to the rise in complexity of the scenario and
the lack of cooperation compared to the centralized controller.

Figure 6-10: Mean Objective, Individual Satisfaction and Path Cost Dec. MPC, normalized
with respect to average of C-MPC, Scenario I

One cause of the difference in cost, in the case of N = 12 vehicles is caused by a timing
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difference in Dec. MPC, that cases one vehicle to deviate from his lateral reference, as
shown in the orange trajectory (i = 5) in figure 6-9 and local cost plot for i = 5 (compared
to C-MPC i = 5). As expected, the variance of the cost between local subsystems is the
highest for Dec. MPC since this controller has the lowest cooperation among subsystems.

Although the mean objective values of Dec. MPC are higher for any number of subsystems,
the cost related to the progress made is similar to C-MPC in the case ofN = 12 subsystems
for Dec. MPC.

Computation Time Dec. MPC

Figure 6-11 depicts the average time required to solve a single Dec. MPC iteration for a
single vehicle with N = {1, 2, . . . , 12}, compared to the average time it takes the C-MPC
controller.

Figure 6-11: Mean, Min., and Max. computation time Dec. MPC, Scenario I

In the decentralized case, the mean computation time is computed by logging the time it
takes for a single vehicle to solve its own local OCP and then taking the mean of these
values. As expected this value remains equivalent for a growing number of subsystems.
For N = 2 vehicles, the computation time for Dec. MPC is higher compared to the
time it takes for C-MPC to solve the OCP. This can be explained by the addition of the
compatibility constraint (4-9f) in Dec. MPC, which is not present in C-MPC. The smaller
the value for h2κ, the smaller the feasible space, the longer it takes for the non-linear
OCP to be solved. The overall mean computation time of Dec. MPC lies within 60 and
82 milliseconds for any configuration of N .

Communication Dec. MPC

Having less cooperation among subsystems has a benefit in the sense that it requires less
communication. In Dec. MPC, each subsystem communicates its own computed trajec-
tory to neighboring subsystems before computing a new trajectory. For simplicity it is
assumed that relative distance between neighboring subsystems does not affect the com-
munication time.

The actual time it takes for vehicles to communicate depends on the communication
protocol. Different Vehicle-to-Vehicle (V2V) communication protocols exist using differ-
ent types of technology. A possible communication protocol is introduced in [50] using
Dedicated Short Range Communication (DSRC). Here, automated vehicles communicate
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with each other at a rate of 10 message/second. Hence for simplicity, in this thesis we
can assume that a single communication cycle takes ±0.1s.. Note that this is not yet
taken into account in the computation time and will increase the overall time it takes for
a vehicle to complete a single MPC iteration.
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6-3 Cooperative Distributed MPC

The overall applied trajectories for N = 12 subsystems is shown in figure 6-12.

Figure 6-12: Testing scenario Highway, Coop. D-MPC for N=12 vehicles, full trajectories.

Trajectory Quality Coop. D-MPC

As expected, the objective values of (Sub-optimal) Cooperative Distributed MPC are close
to the centralized version but do not converge to the centralized solution, see Observation
4.1. Below results are achieved using a maximum number of cooperative iterations of
p = 3. Even lower objective values can be achieved by increasing p, but this decrease in
objective value does not weigh up to the increased effort in communication.

Figure 6-13: Mean Objective, Individual Satisfaction and Path Cost Dec. MPC, normalized
with respect to average of C-MPC, Scenario I

Not only do the mean objective values closely represent the values of the centralized con-
troller up to a difference of max 7%, the cost related to the progress made in the applied
path equals that of the centralized version up to an accuracy of 0.1%.
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The cost variance for N = 12 is similar to the centralized version with a variance of
0.5224 and 0.5195, for C-MPC and Coop. D-MPC, respectively.

Computation Time Coop. D-MPC

The computation time of Coop. D-MPC is computed as the average of the sum of com-
putation times of a single MPC iteration for a single vehicle. For p = 3, each vehicle
(re-)computes his trajectory 3 times. Hence, the sum of computation times is the time it
took to (re-)compute its trajectory 3 times.

Figure 6-14: Mean computation time Coop. D-MPC, Scenario I

Clearly, the mean, min. and max. computation times of Coop. D-MPC are significantly
lower than that of C-MPC. This not only is an effect of distributing the OCP over N
subsystems, but also due to the fact Coop. D-MPC runs a linearized OCP in stead of
a nonlinear one. As explained in chapter 3-2, the original nonlinear OCP is convexified
using mixed integer variables. An inherent downside of mixed integer variables is the fact
that computational time increases exponentially with increasing number of mixed integer
variables. By cleverly making use of the Big-M method, this total number of binary
variables can be reduced and hence there effect on the computational time is reduced too.
The mean computation time of Coop. D-MPC lies within 25 to 35 milliseconds for any
configuration of N .

Communication Coop. D-MPC

Similar to the computational time, the amount of communication depends on the number
of cooperative iterations p. All results are achieved using p = 3, hence all neighboring
subsystems communicate 3 times every MPC iteration. Note that in the case of Coop.
D-MPC, the controller is able to stop prematurely. In this case, the number of communi-
cations is fixed to the actual applied number of cooperative iterations.
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6-4 Non-Cooperative Distributed MPC

The last controller to be assessed in the first scenario is the Non-Coop. D-MPC based on
a Generalized Potential Game. In figure 6-15, the final trajectories are displayed, for N =
12 vehicles.

Figure 6-15: Testing scenario Highway, Non-Coop. D-MPC for N=12 vehicles, full trajecto-
ries.

Trajectory Quality Non-Coop. D-MPC

The objective values of Non-Coop. D-MPC are the closest to the values of C-MPC, with
a maximum increase of 3.2% for N = 5 subsystems. Looking at the overall cost and path
cost shown in figure 6-16, it can be stated the trajectories are close to 100% equivalent to
those of the C-MPC controller.

Figure 6-16: Mean Objective, Individual Satisfaction and Path Cost Dec. MPC, normalized
with respect to average of C-MPC, Scenario I

As shown in section 4-5, in the Non-Coop. D-MPC controller, all subsystems communicate
to try to find an ε-Nash Equilibrium. We would expect to find this notion of equilibrium
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back in the variance of the local cost, e.g., we would expect to have less variance since all
subsystems (or rather players) agree upon the actions of the others and find there optimal
solution accordingly. A minor decrease in variance is shown in figure 6-16 but this is
almost negligible.

Since the cost for the progress in the path is equal and all trajectories are essentially
equivalent to those of C-MPC, it is also expected that the individual cost of each subsys-
tem(/player) is equivalent.

Computation Time Non-Coop. D-MPC

In contrast to the Coop. D-MPC controller, the number of algorithmic iterations is not
fixed in the case of Non-Coop. D-MPC. Here, the players iterate until an ε-Nash Equilib-
rium is found, for any arbitrarily small ε. As a result, the computational time may vary
too.

Figure 6-17: Mean computation time Non-Coop. D-MPC, Scenario I

Logging the number of game iterations showed that in general, in most MPC iterations,
the players of the game found an ε-Nash-Equilibrium after 3 game iterations, occasionally
needing 4 game iterations. As a result, the mean computation time of a single MPC
iteration lies within 50 to 65 milliseconds for any configuration of N . Similar to Coop.
D-MPC, Non-Coop. D-MPC benefits from faster computational times due to linearizing
and convexifying the OCP.

Communication Non-Coop. D-MPC

Having a solution close to the Pareto plantwide optimal solution, even with increased
consensus among subsystems/players, comes at the cost of requiring a significant amount
of communication between subsystems. In stead of locally computing a solution in parallel
of each other, the Non-Coop. D-MPC controllers solve there own local OCP sequentially
and communicate this solution to players with lower ordering. As a result, the amount of
communication of Non-Coop. D-MPC not only depends on the amount of game iterations,
it also depends on the total number of subsystems/players, i.e.:

ncomm(N,ngame) = N ∗ ngame(N), (6-1)

where ncomm represents the amount of communications and ngame the median of the
amount of game iterations. Figure 7-18 shows the average amount of communication
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depending on the total number of players N times the logged number of game iterations
for each configuration of N .

Figure 6-18: Non-Coop. D-MPC communications
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6-5 Controller Comparison - Unrestricted Highway Scenario

In this section we focus on the results of our controllers for N = 12 vehicles and perform
a comparison between them. Note that although all MPC controllers are different, tra-
jectories might be similar due to the fact the ideal reference generated by the HLC is the
same for all controllers.

Although all the MPC controllers are different, the ideal reference generated by the HLC is
the same. Because of this, all trajectories are similar, but still, some numerical differences
arise. Figure 6-19 shows the numerical values corresponding to trajectory quality criteria
(5-1), (5-2) and (5-3) for N = 12 subsystems.

Figure 6-19: Trajectory Quality: Objectives, Costs, Cost Variance and Solve Time, Scenario
I

As benchmark we use C-MPC, since this gives the plantwide Pareto optimal solution.
Purely looking at cost and objective values, Non-Coop. D-MPC approaches this solution
the most, having only an increase of 0.2% on the mean normalized objective value and
an even smaller increase of < 0.01% on the path cost. This shows the controller has
made virtually equivalent progress in the simulation and shows similar reference tracking
behaviour as C-MPC.

Second comes Coop. D-MPC with an increase in objective of 3.4% and a similar in-
crease in path cost of only < 0.01%. Here, the sub-optimality of Coop. D-MPC plays a
roll in the increase in mean normalized objective value. As shown in Appendix B, applying
more cooperative iterations decreases the summed objective value close to the plantwide
Pareto optimal solution. Lastly, the objective value and path cost of Dec. MPC show the
highest increase of objective value but similar progress cost, with an increase of 9.6% and
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0.48%, respectively.

Looking at the computation times in figure 6-19, C-MPC requires the longest time to
solve the plantwide OCP, as expected. Also the maximum occurred computation time is
significantly bigger for C-MPC, shown in figure 6-20. Second comes Dec. MPC, the main
reason for this is that Dec. MPC is the only decentralized/distributed controller based on
a non-linear optimization scheme, which in general, requires longer computation than con-
vex solvers. The fastest to solve the plantwide OCP for a single MPC iteration, is Coop.
D-MPC. By having a fixed1 number of iterations and relying on a MIQP solver. Close
after Coop. D-MPC comes Non-coop. D-MPC with an average computation time slightly
higher than that of Coop. D-MPC. This is due to the non-fixed convergence criteria of
the game theoretic controller.

Lastly, we assess the communicational load of our controllers, shown in figure 6-20. Clearly,
the communicational load of Non-Coop. D-MPC is the highest. By having a sequential
solving scheme, the communicational load increases with increasing number of subsys-
tems. Second comes Coop. D-MPC, with a fixed number of iterations, p = 3 (assuming
the cooperative iterations are not stopped prematurely). C-MPC and Dec. MPC both
only require a single communication every MPC iteration.

Figure 6-20: Communicational load - Unrestricted Highway Scenario

6-6 Conclusion Unrestricted Highway Scenario

In the first scenario, where vehicles simply accelerate to their reference velocity while
having to avoid each other, we have seen that different methods of distributing or decen-
tralizing the plantwide OCP gave different numerical results, even though all controllers
are able to meet their reference, avoid collisions and even have similar trajectories.

Non-coop. D-MPC based on a Generalized Potential Game gives the closest result to
the centralized solution, The controller makes virtually equivalent progress in the simu-
lation and shows similar reference tracking behaviour as C-MPC. This is due to the fact
each local subsystem sequentially solves their own local OCP. Hence, every subsystem
computes their new trajectory based on the most recent information of others. This re-
duces possible estimation errors and increases efficiency of the overall control method.

1Number of cooperative iterations is fixed, although the controller is able to stop the iterative process
before convergence
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Coop. D-MPC and Dec. MPC follow, both with slightly higher objective values than
C-MPC, but similar path costs. Showing that both controllers are slightly less efficient in
reference tracking and cooperation, but overall progress made in the simulation is similar
to that of C-MPC. In the case of Coop. D-MPC, efficiency can also be improved by in-
creasing the number of cooperative iterations.

It can be concluded that in a simple scenario, e.g., no obstacles or obstructions, all con-
trollers give similar results as C-MPC. This is due to the fact that, although all controllers
are inherently different, the ideal reference generated by the HLC is the same for all con-
trollers. Depending on the choice of controller, efficiency can be improved at the cost of
having more communication and higher computational load. Additionally, since all con-
trollers suffer from an occasional increase in computation time, for embedded control it
is recommended that all controllers will be equipped with an extra emergency controller.
Since it is highly likely that at some point in the experiment the controller will not be
able to finish computation within the predefined sample time. Although, of course this is
highly dependent on the processing power in the embedded controller. The design of an
emergency controller is out of the scope of this thesis.
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Chapter 7

Simulation Results Obstructed
Highway Scenario

This chapter presents and discusses the simulation results for our second scenario: Road-
works Obstructed Highway. First the results are shown, and later on discussed. Similar
to the first scenario, only the full trajectories of C-MPC are shown. For completeness we
add the trajectories of the other controllers in Appendix C.
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7-1 Centralized MPC

Figure 7-1: MPC iteration = 1, initial conditions.

Figure 7-2: MPC iteration = 51, velocity reference is lowered to 70 kp/h, due to roadworks.

Figure 7-3: MPC iteration = 91, Approaching the roadworks, all vehicles will have to merge
to the lowest lane
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Figure 7-4: MPC iteration = 136, cooperation among vehicles is required to merge to the
lowest lane.

Figure 7-5: MPC iteration = 181, if roadworks are avoided, velocity reference is increased
to initial velocity reference.

Figure 7-6: Testing Scenario Obstructed Highway, C-MPC for N=12 vehicles, full trajectories.

Trajectory Quality C-MPC

Figure 7-7 shows the individual cost values of C-MPC of each subsystem (for N = 12) in
the second scenario. this cost is a result of (5-2). This cost and according variance are
later on used as benchmark to compare the individual satisfaction of each subsystem with
respect to other distributed controllers. Note that the normalized objective values (5-1)
and normalized path cost (5-3) are not shown since these would all equal one.
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Figure 7-7: Local cost values C-MPC, scenario II

Computation Time C-MPC

Figure 7-8 below shows the minimum, maximum and mean computational times of C-MPC
for N = 12 subsystems. The mean computation time represents the average time it takes
the centralized controller to compute and predict the states of all vehicles for a single MPC
iteration. Clearly, for increasing number of subsystems the maximum computation time
increases as well. The overall mean computation time of C-MPC lies within 37 milliseconds
for N = 2 and 710 milliseconds for N = 12. Not only does the mean computation time
increase significantly compared to the first scenario, the maximum computation time that
has occurred during the simulation has increased to unacceptable numbers, up to 36s for
a single MPC iteration.

Figure 7-8: min, max and mean solve time C-MPC, scenario II
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7-2 Decentralized MPC

The applied trajectories of Dec. MPC for N=12, in the second scenario are shown in
figure 7-9. Intermediate trajectories are shown in Appendix C. All vehicles are able to
avoid collision while tracking their reference.

Figure 7-9: Testing scenario Obstructed Highway, Dec. MPC for N=12 vehicles, full trajec-
tories.

Trajectory Quality Dec. MPC

Figure 7-10 depicts the mean objective values of Dec. MPC, normalized with respect
to those of C-MPC. The objective and cost values represent the costs associated with
evaluation criteria (5-1), (5-2) and (5-3).

Figure 7-10: Mean Objective, Individual Satisfaction and Path Cost Dec. MPC, normalized
with respect to average of C-MPC, Scenario II

For the second scenario, it’s clear that the difference between the plantwide optimal solu-
tion of C-MPC and the solution of Dec. MPC is larger than compared to the unrestricted
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highway scenario. With a maximum increase of 67% and an average increase 44%. The rise
in complexity requires more cooperation between vehicles to perform close to the Pareto
optimal optimal solution. Since in Dec. MPC, the communication between vehicles is
minimal, the vehicles are not able to reach the same level of cooperation as in the case of
C-MPC. Not only do the objective values increase, the path cost also increases as a result
of the lack of cooperation in Dec. MPC.

Computation Time Dec. MPC

Figure 7-17 depicts the mean,max and minimum time required to solve the OCP for a
single MPC iteration. Due to the more complex scenario, the mean computation time of
Dec. MPC has also risen. The nonlinear controller seems to be sensitive to increases in
complexity, as the maximum occurred computational time also increased significantly.

Figure 7-11: Mean, minimal and maximum computation time Dec. MPC, Scenario II

Communication Dec. MPC

For Dec. MPC, communication is fixed to a single time every MPC iteration. Hence, the
communication of Dec. MPC for the second scenario is the same as for the first scenario.
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7-3 Cooperative Distributed MPC

Figure 7-12 shows the applied trajectories of the Coop. D-MPC controller for N = 12
vehicles, in the second scenario. Applying sub-optimal steps results in a different time of
the high-level-controller. Hence, the order in which vehicles merge to the lowest lane is
slightly different and the overall trajectories are too.

Figure 7-12: Testing scenario Obstructed Highway, Coop. D-MPC for N=12 vehicles, full
trajectories.

Trajectory Quality Coop. D-MPC

Similar to the first scenario, all results are achieved using p = 3 cooperative iterations.

Figure 7-13: Mean Objective, Individual Satisfaction and Path Cost Dec. MPC, normalized
with respect to average of C-MPC, Scenario II

The difference in summed mean objective values of Coop. D-MPC between the first and
second scenario is smaller as in the case for Dec. MPC. By communicating p = 3 times
every MPC iteration, the level of cooperation is increased. As a results, Coop. D-MPC is
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able to approach the plantwide optimal solution up to a maximum difference of 8% with
an average increase of 6% with respect to the centralized solution.

The progress made by the Coop. Dist. controller is similar to the progress made by
the centralized controller. Although timing is different, the cost for the overall applied
path is equivalent up to an increase of 1%. This offset between the cost for the applied
path and objective value can be explained by the fact the controllers apply sub-optimal
inputs. For p = 3 cooperative iterations, the applied input u = vpmax , initialized by
the warm start ũ, is still sub-optimal due to the fact it has not yet converged to the
actual computed input vpmax . As a consequence, the applied inputs result in trajectories
in which the sub-optimality is measured in the velocity error, but not significantly seen in
the overall progress that is made.

The variance of the local objective cost between the 12 subsystems of Coop. D-MPC
is slightly higher than the variance of the plantwide optimal solution, namely 0.51824
and 0.4185, respectively. The main difference with respect to 7-7 is made in the cost of
subsystem i = 8.

Computation Time Coop. D-MPC

Similar to the first scenario, the computation time shown in figure 7-14 is the time it
took a local subsystem to (re-)compute their trajectory p = 3 times. Similar to other
controllers, the computational time has risen slightly due to the rise in complexity of the
scenario. The mean time ranges from 44 to 57 milliseconds, with outliers of maximum 262
milliseconds for N = 12.

Figure 7-14: Mean computation time Coop. D-MPC, Scenario II

Communication Coop. D-MPC

If not stopped prematurely, the number of communication cycles for Coop. D-MPC is
fixed to the number of maximum cooperative iterations p. All simulations are performed
for p = 3.
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7-4 Non-Cooperative Distributed MPC

Figure 7-15 shows the trajectories resulting from the Generalized Potential Game repeat-
edly solved by the Non-Coop. D-MPC, for N = 12 vehicles. An interesting result is the
lane change performed by subsystem i = 5, e.g., the purple trajectory, which performs a
lane change from the lowest to the middle lane, while other vehicle are all changing lane to
lower lanes only. This could be explained as a possible result from the ε-Nash Equilibrium
found by the Non-Coop. D-MPC controller.

Figure 7-15: Testing scenario Obstructed Highway, Non-Coop. D-MPC for N=12 vehicles,
full trajectories.

Trajectory Quality Non-Coop. D-MPC

Again the Non-Coop. D-MPC controller gives the best result in terms of the mean nor-
malized objective values. It approaches the plantwide optimal solution the most, the same
can be concluded for the path cost, with a maximum increase of 2.5% and 0.8%, respec-
tively. Interestingly, although the mean normalized objective and normalized path cost
are (almost) equivalent to the results of C-MPC, the local cost variance of Non-Coop. D-
MPC is lower than that of C-MPC, namely 0.2941 and 0.4185, respectively. So although
the plantwide solution is not as effective (but almost as effective), the individual solutions
of Non-Coop. D-MPC tend to have a more consensus like property. This results from a
property of the Generalized Potential Game, where all vehicles iterate until a collective
strategy x̄ is found, where each local player has found their epsilon-optimal cost decreasing
trajectory with respect to the other players trajectories, i.e. an ε-Nash Equilibrium:

Vv (x̄i, x̄−i) ≤ Vv (yi, x̄−i) , ∀yi ∈ Xi (x̄−i) , ∀i ∈ V, (7-1)

where x̄−i represents the epsilon-optimal set of strategies from all other players then
i. Since the summed overall objective values of C-MPC and Non-Coop. D-MPC are
equivalent, it can be stated that the average individual satisfaction of the Non-Coop.
D-MPC controller is higher. This is considered as a beneficial property of Non-Coop.
D-MPC.
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Figure 7-16: Mean Objective, Individual Satisfaction and Path Cost Non-Coop. D-MPC,
normalized with respect to average of C-MPC, Scenario II

Computation Time Non-Coop. D-MPC

For the second scenario, the amount again depends on the number of game iterations which
where required to solve the Generalized Potential Game. Logging these game iterations,
we found that a solution to the game is found in 3 to 4 game iterations, with a median
of 3. Similar to the first scenario, Non-coop. D-MPC benefits from faster computational
times due to linearizing and convexifying the OCP, compared to the C-MPC and Dec.
MPC.

Figure 7-17: Mean, minimal and maximum computation time Non-Coop. D-MPC, Scenario
II
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The mean computation time ranges from 38 to 64 milliseconds, with occasional outliers
up to 420 milliseconds. This is an increase compared to Coop. D-MPC, which is the only
other controller using a linearized and convexified OCP. This increase can be explained by
the converging/stopping criteria of Non-Coop. D-MPC. Solving the game is not stopped
prior to finding a ε-Nash Equilibrium.

Communication Non-Coop. D-MPC

Again, the amount of communication depends on the amount of game iterations and the
total number of subsystems/players, i.e., (7-18). Logging the amount of game iterations
for any configuration of N and using the median as input for ngame(N), the following
amount of communications is needed for the second scenario:

Figure 7-18: Non-Coop. D-MPC communications

7-5 Controller Comparison - Obstructed Highway Scenario

In contrast to the first scenario, the second scenario shows more distinction between con-
trollers. With increasing level of complexity comes the need of more cooperation between
vehicles in controllers. Figure 7-19 shows the numerical values corresponding to trajectory
quality criteria (5-1), (5-2) and (5-3) for N = 12 subsystems in the second scenario.

Especially Dec. MPC shows a significant increase in mean objective value. Clearly in
a more complex scenario, the controller is not able to achieve close to plantwide optimal
control. By only communicating a single time and restricting each local feasible set by
(4-9f), the controller performs up to 45% less efficient as C-MPC (in the case of N = 12
subsystems). Although reference tracking is less efficient, the overall cost for the progress
that is made is only increased by 2.6%. This shows that although efficiency is significantly
lower, the controller is still able to meet its target position.
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Figure 7-19: Trajectory Quality: Objectives, Costs, Cost Variance and Solve Time, Scenario
I

Both cooperative and non-cooperative distributed controllers perform significantly better
with a mean normalized objective value of 1.089 and 1.003, respectively. Communicating
p = 3 times seems to increase the level of cooperation enough to approach the centralized
solution up to 9%, while the non-cooperative approaches the centralized solution up to an
increase of just 1%. Please note that this does not necessarily hold for other configurations
of N . Of course, performance of Coop. D-MPC can be improved by increasing the number
of cooperative iterations. Both controllers show virtually equivalent cost as C-MPC for
the progress in path made in the simulation.

Furthermore, probably the most interesting result can be derived from the variance be-
tween the local mean objective cost. The game theoretic controllers shows that although
the plantwide objective cost is slightly higher, the individual solutions of Non-Coop. D-
MPC tend to have a more consensus like property. Where C-MPC controls all subsystems
the most efficiently, at the cost of some subsystem’s individual satisfaction, Non-Coop.
D-MPC is able to find a higher averaged individual satisfaction. This is derived from the
fact Non-Coop. D-MPC has a lower variance between individual cost values. Since both
C-MPC and Non-Coop. D-MPC have an almost equivalent summed overall cost, the vari-
ance can be used to state that the average individual satisfaction is higher for Non-Coop.
D-MPC, showing a more consensus-like solution.

In general, due to the increased complexity of the second scenario, all controllers re-
quire longer computational times than compared to the first scenario. C-MPC shows a
significant increase in mean and maximum computational time, as shown in figure 7-19
and 7-20. Second comes Dec. MPC, followed by Coop. and Non-Coop. D-MPC.
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Assessing the communicational load of our controllers, shown in figure 6-20. We see simi-
lar behaviour as for the first scenario. The communicational load of Non-Coop. D-MPC
is the highest, due to the sequential solving scheme. Second comes Coop. D-MPC, with
a fixed number of iterations, p = 3 (assuming the cooperative iterations are not stopped
prematurely). C-MPC and Dec. MPC again only require a single communication every
MPC iteration.

Figure 7-20: Communicational load - Unrestricted Highway Scenario
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7-6 Conclusion Obstructed Highway Scenario

In a more challenging scenario, e.g, an obstructed highway, a bigger distinction among
controllers emerges in our simulations. With increasing level of complexity comes the
need of more cooperation between vehicles in controllers. Although all trajectories of all
controller are able to avoid collision, the difference in cooperation and hence efficiency is
more evident.

In C-MPC, when merging to the lowest lane, one vehicle slows down while the other
speeds up in order to be able to merge to one lane, see figure 7-4. In Dec. MPC for
example, the vehicle already in the lower lane, does not alter his own velocity to enable
the other vehicle to merge. This results in a less plantwide optimal solution, as is expected.

Non-Coop. D-MPC performs the best in sense of the mean normalized objective value,
followed closely after by Coop. D-MPC. Both controllers show similar progress when it
comes to the applied path. Dec. MPC shows a significant increase in mean objective. In
a more complex scenario, the controller is not able to achieve close to plantwide optimal
control.

Perhaps the most interesting result shown, is achieved by the game theoretic controller.
This shows that although the mean plantwide objective cost is close too, but slightly higher
than C-MPC, the individual solutions of Non-Coop. D-MPC tend to have a more con-
sensus like property, while C-MPC controls all subsystems the most efficiently, at the cost
of some subsystem’s individual satisfaction, Non-Coop. D-MPC is able to find a higher
averaged individual satisfaction.

Combining the plantwide objective, individual objective and the progress made in the
path, Non-Coop. D-MPC performs the best. This performance however comes at a cost
of an extremely high communicational load, due to the fact all local subsystems solve their
local OCP sequentially. Second in lines comes Coop. D-MPC, where all local subsystems
compute their own trajectory p = 3 times. Although no increased average individual
satisfaction, the controller is still able to achieve performance similar to the plantwide
optimal solution, while only communicating up to maximum 3 times, with the possibility
of stopping the cooperative iterations before convergence.
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Chapter 8

Conclusion and Recommendation

Although C-MPC gives a plantwide optimal solution, implementation of plantwide control
is often not practical due to computational and organizational complexity. Distributing
the OCP over local subsystems solves this issue.

In this thesis, we compared the performance of three different distributed MPC con-
trollers for multi-vehicle autonomous driving. All distributed controllers are able to meet
their reference and avoid collisions, in our simulations. The non-Coop. D-MPC controller
was able to approach the centralized solution by sequentially solving a single local OCP
according to a predefined order and communicating its solution to vehicles with lower or-
der. This advantage comes at the cost of high communication effort and having to follow
strict ordering among subsystems. As a consequence, it is difficult to guarantee that all
vehicles are able to compute their final solution within the predefined sample time of the
MPC controller. This strategy relies on fast communication and the ability of each local
subsystem to quickly compute a solution to their OCP.

With Coop. D-MPC however, all local subsystems compute their solution synchronously
and in parallel to each other and iteratively apply a sub-optimal cooperative step for a
fixed number of iterations, p. The performance of Coop. D-MPC improves for an in-
creasing number of p, but due to the non-convexity of the collision avoidance constraints,
Coop. D-MPC dues not guarantee to converge to the centralized optimal solution, while
simulations show that it is able to approach to this centralized solution up to acceptable
accuracies. Obviously, communication and computation time increase for an increasing
number of p. In this thesis, all simulation are performed with p = 3. This gives a good
trade-off between performance and communicational and computational load. Another
benefit of Coop. D-MPC is the ability to stop the iterative sub-optimal algorithm prior
to meeting its stopping criteria. This adds extra flexibility and robustness to the controller.

In simple scenarios, Dec. MPC has shown the ability to give similar performance as
C-MPC, while limiting communication and computation to a single iteration. For increas-
ing complexity, Dec. MPC has shown to have degrading performance and shows a lack of
cooperation due to limited communication.

It can be concluded, that for the three assessed distributed controllers, Coop. D-MPC
has the best trade-off between feasibility in sense of communication, computation and
robustness, while still showing good performance. If the total number of subsystems is
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low and communication is fast and cheap, Non-Coop. D-MPC can be considered too. In
fact, our simulations show that only Non-Coop. D-MPC can ensure the best performance
among our distributed controllers, but also has the advantage of providing solutions that
are more fair, where the cost of cooperation is shared among vehicles.

For future studies, it is recommended too further investigate the communicational load of
the distributed controllers and the corresponding feasibility for embedded control. Since
the load of communication is not studied in simulations or experiments, and only assump-
tions are made according to other studies. Also, the stability of the distributed controllers
is not studied in this thesis. In the case of Dec. MPC and Coop. D-MPC, this is still
an an active field of research, due to the non-convexity of the collision avoidance con-
straints. Furthermore, stability for game theoretic controllers, even without the presence
of non-convex constraints, is also an active field of research.
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Appendix A

Stability Proof LTI MPC

With a MPC controller one can impose state and/or input constraints on the system.
Below one can find an overview of the constraint types and the constraints itself. There
are four types of constraints; State-, Input-, Terminal- and Stability constraints. Just as
an example, we refer to possible constraints for a vehicle in a highway scenario, using the
bicycle model in (3-1).

Constraint
type

State
constraint X =



|x|
|y|
|ψ|
|V |

 ≤

xmax
ymax
ψmax
Vmax




Input
constraint U =

{
|δ| ≤ δmax

}

Terminal
constraint Xf =



|x− xref|
|y − yref|
|ψ − ψref|
|V − Vref|

 ≤

xref. error
yref. error
ψref. error
Vref. error




Stability
constraint

∀x ∈ Xf ,∃u ∈ U
s.t. f(x, u) ∈ Xf and

Vf(f(x, u)) ≤ Vf(x)− `(x, u)

Table A-1: All constraint types and the constraint values itself for the MPC controller are
described

An example for state constraints could be the road space-time, the vehicle should not
be allowed to drive of the road and higher than the allowed speed limit. The maximum
steering angle poses a constraint on the input and the terminal constraints ensure reference
tracking.
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To obtain asymptotic stability we are looking for an input such that ∀x,∃u ∈ U, the
following two conditions from [26, Section 2.4] hold 1:

1. Vf (x(t+ 1)) ≤ Vf (x(t))− `(x(t), u(t)),

2. x(t+ 1) ∈ Xf , where Xf is a positively invariant terminal set.

The first condition guarantees a Lyapunov decrease, such that the terminal cost is less or
equal than the terminal cost in the previous time step. To prove 1, it is first necessary
to assume that the Lyapunov function equals the optimal value function, V u

∞ = 1
2x

TPx.
The unconstrained infinite-horizon optimal control problem is given below.

Puc
∞(x) : min

u

∞∑
k=0

`(x(k), u(k)) (A-1)

where,
x(k) = φ (k;x0,uk) = Akx0 + Ckuk (A-2)

and,
Ck =

[
Ak−1B . . . A2B AB B

]
(A-3)

From equation A-1 the optimal steady-state LQR gain, K, is found as well as the direct
solution P . The Discrete Algebraic Riccati Equation (DARE) and the results from the
unconstrained infinite-horizon optimal control problem are given below.

0 < P = A>KPAK +QK

K = −
(
BTPB +R

)−1
BTPAT

(A-4)

where,

AK = A+BK

QK = Q+KTRK
(A-5)

Now we define the optimal value function as our Lyapunov function.

Vf (x) := V uc
∞ (x) = 1

2x
TPx (A-6)

By doing this and choosing the input u as Kx, the following result is obtained.

Vf (x(t+ 1)) = Vf (Akx(t))

= 1
2x

T (t+ 1)Px(t+ 1)

= 1
2x

T (t)ATk PAkx(t)

= 1
2x

T (t)Px(t)− 1
2x

T (t)QKx(t)

= Vf (x(t))− 1
2x

T (t)Qx(t)− 1
2x

T (t)KTRKx(t)

= Vf (x(t))− 1
2x

T (t)Qx(t)− 1
2u

T (t)Ru(t)

= Vf (x(t))− `(x(t), u(t))

(A-7)

1Please note that not all assumptions needed to prove asymptotic stability are explained. The ones
stated are though the ones that in many cases are not met a-priori. Please check [26] for the remaining
conditions, e.g., the state-solution and cost function must be continuous and the terminal constraint set
compact.
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This concludes the proof for condition 1. To ensure that ∀x, u ∈ U and x(t+ 1) ∈ Xf , we
have to guarantee a solution, where all constraints are met and end up in the final terminal
invariant set. This is done by creating different terminal sets, whom are subjected to a
set of constraints.

XU
f = {x ∈ X|AUKx ≤ bU}

XKf =
{
x ∈ X|AXf

AKx ≤ bXf

} (A-8)

Here the combination between AU and bU describe the input constraints of the system and
AXf

and bXf
characterize the initial terminal set. By taking the intersection of Xf and

the terminal sets as described above we obtain the following final terminal set.

Xfin
f := Xf ∩ XU

f ∩ XKf (A-9)

After creating the final terminal set it can be expressed as follows.

Xfin
f = AXfin

f
x ≤ bXfin

f
(A-10)

here AXfin
f

and bXfin
f

is made up out of stacking the matrices and vectors that create the
final constraint.

AXfin
f

=

 AXf

AUK
AXf

AK

 (A-11)

bXfin
f

=

 bXf

bU
bXf

 (A-12)

Xfin
f =

 AXf

AUK
AXf

AK

x ≤
 bXf

bU
bXf

 (A-13)

For implementation purposes it is needed to create a conversion from state constraints to
input constraints. This conversion is demonstrated below as an example for the terminal
constraints.

AXf
xN ≤ bXf

AXf
(Tx0 + SuN ) ≤ bXf

AXf
Tx0 +ASuN ≤ bXf

AXf
SuN ≤ bXf

−AXf
Tx0

(A-14)

Clearly, this aggressively augmenting is not optimal in the sense that it always produces
a relatively ”small” set. There are of course more elaborate ways to augment the terminal
set differently, creating a larger augmented terminal set that still proves both. This can be
of great difference in many applications since the MPC optimization could easily render
infeasible by having a ”too small” terminal constraint set. Especially when a short horizon
is desired (e.g. for computation time and complexity purpose.
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Appendix B

Proofs for Sub-Optimal Cooperative
Distributed Control for Vehicle

Collision Avoidance

In chapter 4-4, 3 Lemmas are given describing properties of sub-optimal cooperative dis-
tributed MPC applied to a vehicle collision avoidance problem. First feasibility of the
sub-optimal trajectories is shown by inductive reasoning (Lemma 4.1), next it is shown
that the local cost functions of each subsystem converge to a fixed value (Lemma 4.2), but
not to the Pareto optimal solution (Lemma 4.3).

B-1 Proof of Lemma 4.1

By assumption, initial guess ũ(0) is feasible. Since the input constraint sets Ui, ∀i ∈ V are
convex and since the cooperative control convex step of (4-16) with p = 0, in combination
with compatibility constraint (4-15h), implies feasibility of

(
v1

1,v
1
2
)
. Feasibility for p > 1

follows by induction.

B-2 Proof of Lemma 4.2

Since each local subsystem makes use of (mixed integer) linear constraints for collision
avoidance (see section (3-3)) and has a linear vehicle model, Vi(xi(0),vpi ) is convex. Hence,
the plantwide objective, e.g., the sum of local cost functions is also convex. For every p ≥ 0
the plantwide cost function satisfies the following:

V
(
x(0),vp+1) = V (x(0), w1 (v∗1,v

p
2) + w2 (vp1,v∗2))

≤ w1V (x(0), (v∗1,v
p
2)) + w2V (x(0), (vp1,v∗2))

≤ w1V (x(0), (vp1,v
p
2)) + w2V (x(0), (vp1,v

p
2))

≤ V (x(0),vp)

(B-1)
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where (v∗1,v
p
2) denotes the optimal input sequence with respect to vp2. Note that (B-1)

shows the plantwide cost function for N = 2 vehicles, but the result applies to any number
of vehicles. The first inequality, results from (4-16), the second from the convexity of the
plantwide cost function, the third inequality follows from the optimality of v∗i , ∀i ∈ V, the
last inequality follows from the fact that the summed weight equals one, e.g.

∑
i∈V wi =

1, ∀wi > 0. Since the cost is bounded, the plantwide cost converges.

B-3 Observation 4.1 Explained

Although the plantwide cost converges, it does not guarantee to converge to the plantwide
Pareto optimal solution. This is shown by proving how the solution converges to the
plantwide optimal solution, in case that the overall plantwide OCP is convex and only has
simple bounds on the input as constraints. Using this as an contradicting example, it is
shown why this is not possible in presence of non-convex (collision avoidance) constraints.
This proof is adopted from [43].

Optimality proof in case of convex OCP

From Lemma 4.2, it is known that the algorithm converges, say to
¯
V . Since V is quadratic

and strongly convex, its sublevel sets lev≤a(V ) are compact and bounded for all a. In
the case of only having bounds on the input, all iterates of the distributed optimization
algorithm belong to the compact set lev≤V (v0)(V ) ∩ U. Since all sets are convex, the
intersection of all sets is convex too. Hence, there is at least one accumulation point.
Let v be such accumulation point and choose any integer value p ∈ I for which {vp}p∈I
converges to v. By noticing that V (x(0),v) =

¯
V 1, and moreover that

lim
p∈I,p→∞

V (x(0),vp) = lim
p∈I,p→∞

V
(
x(0),vp+1

)
= V . (B-2)

By strict convexity of V and compactness of Ui,∀i ∈ V, the minimizer of V (x(0), ·) is
attained at a unique point u0 =

(
u0

1,u0
2
)
By taking limits in (B-1) as p → ∞ for p ∈ I,

and using w1 > 0, w2 > 0 we deduce directly that

lim
p∈I,p→∞

V (x(0), (v∗1 (vp2) ,vp2)) = V (B-3a)

lim
p∈I,p→∞

V (x(0), (vp1,v∗2 (vp1))) = V (B-3b)

We can conclude that v = u0 (since V = V
(
x(0),u0). Since v was an arbitrary accumu-

lation point of the sequence vp, and since this sequence is confined to a compact set, we
conclude that the whole sequence converges to u0.

Optimality in case of non-convex OCP

In the case of an OCP that has to ensure vehicle collision avoidance, non-convexity arises
as explained in chapter 3-3. In the case of sub-optimal cooperative distributed MPC, this
unfortunately comes at the cost of not having the guarantee the distributed algorithm
converges to the plantwide Pareto optimal solution.

1Proof by contradiction is given in [43, Appendix A],the interested reader is referred to here
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In the case of a convex OCP with bounded and compact constraint sets, all iterates
of the distributed algorithm belong to the intersection of these sets, which in its self is
a convex, compact and bounded level set, e.g., lev≤V (v0)(V ) ∩ U. As explained above,
since this level set is convex, there exists at least one accumulation point. In the case of
a non-convex OCP due to non-convex collision avoidance constraints, this intersection of
constrained sets is non-convex too, e.g. lev≤V (v0)(V )∩U∩X ∩C. Here, X and C represent
the sets resulting from additional state constraints and (non-convex) collision avoidance
constraints, respectively. Hence, such a accumulation point does not necessarily exist and
convergence to the plantwide Pareto optimal solution is not guaranteed.

An empirical experiment is done to see if the distributed algorithm would approach the
plantwide Pareto optimal solution. The sub-optimal cooperative distributed MPC con-
troller is ran for different number of cooperative iterations, e.g. p = 1, 2, 3, 5, 10, 20, 30, 50.
The objective values of the distributed controller are normalized with respect to the cen-
tralized solution, i.e., a Pareto optimal solution would correspond to an objective value of
1.

The experiment is conducted in the Unrestricted Highway Scenario for N = 12 vehicles.
As can be seen in the figure below, the solutions converge to a constant value, but do not
converge to the centralized, Pareto optimal solution.

Figure B-1: Convergence and optimality experiment Coop. D-MPC
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Appendix C

Trajectories Obstructed Highway
Scenario

Since, in comparison to the first scenario, the trajectories of the distributed controllers for
the second scenario are slightly different compared to the centralized controller, they are
shown here.
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C-1 Decentralized MPC

Figure C-1: MPC iteration = 1.

Figure C-2: MPC iteration = 70.

Figure C-3: MPC iteration = 94.
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Figure C-4: MPC iteration = 142.

Figure C-5: MPC iteration = 170.

Figure C-6: Testing Scenario Obstructed Highway, Dec-MPC for N=12 vehicles, full trajec-
tories.
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C-2 Cooperative Distributed MPC

Figure C-7: MPC iteration = 1.

Figure C-8: MPC iteration = 70.

Figure C-9: MPC iteration = 94.
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Figure C-10: MPC iteration = 142.

Figure C-11: MPC iteration = 180.

Figure C-12: Testing scenario Obstructed Highway, Coop. D-MPC for N=12 vehicles, full
trajectories.
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C-3 Non-Cooperative Distributed MPC

Figure C-13: MPC iteration = 1.

Figure C-14: MPC iteration = 70.

Figure C-15: MPC iteration = 94.
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Figure C-16: MPC iteration = 142.

Figure C-17: MPC iteration = 180.

Figure C-18: Testing scenario Obstructed Highway, Non-Coop. D-MPC for N=12 vehicles,
full trajectories.
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List of Acronyms

NE Nash Equilibrium
GNEP Generalized Nash Equilibrium Problem
GNE Generalized Nash Equilibrium
GPG Generalized Potential Game
QP Quadratic Programming
NLP Non-Linear Programming
MPC Model Predictive Control
C-MPC Centralized Model Predictive Control
D-MPC Distributed Model Predictive Control
CoG Center of Gravity
MIP Mixed Integer Programming
SCP Sequential Convex Programming
SDPR Semi-Definite Programming Relaxations
QCQP Quadratically Constraint Quadratic Programming
OCP Optimal Control Problem
ADMM Alternating Direction Method of Multipliers
Coop. D-MPC Cooperative Distributed MPC
Noncoop. D-MPC Non-cooperative Distributed MPC
Dec. MPC Decentralized MPC
DSRC Dedicated Short Range Communication
V2V Vehicle-to-Vehicle
LLC Low Level Controller
MLC Mid Level Controller
HLC High Level Controller
LIDAR LIght Detection And Ranging
RADAR RAdio Detection And Ranging
ADAS Advanced Driving Assistence Systems
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List of Symbols

ε Equilibrium approximation treshold
γ Collision avoidance potential function weight
Rn Algebraic set with dimension n
E Set of edges, a.k.a. communication links
G Connected and undirected graph
K Constant
Ni Set of neighboring nodes of agent i
O Vehicle ordering
S Solution of a game
U Constrained set of the inputs of subsystem i

V Set of vertices/nodes, a.k.a. vehicles
W Weight matrix
Xi Constrained set of the states of agent,player,subsystem i

ω Steering rate
ψ Steering angle
σ Forcing Function
τ Undefined time instance
θ Vehicle body angle in global frame
h Sampling time
Hp Prediction Horizon
Hu Control Horizon
P Potential Function of a game
V Objective/Cost function
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