
 
 

Delft University of Technology

Continuous deployment and schema evolution in SQL databases

de Jong, Michael ; Van Deursen, Arie

DOI
10.1109/RELENG.2015.14
Publication date
2015
Document Version
Accepted author manuscript
Published in
Proceedings - 3rd International Workshop on Release Engineering, RELENG 2015

Citation (APA)
de Jong, M., & Van Deursen, A. (2015). Continuous deployment and schema evolution in SQL databases.
In Proceedings - 3rd International Workshop on Release Engineering, RELENG 2015 (pp. 16-19). Article
7169446 IEEE. https://doi.org/10.1109/RELENG.2015.14

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/RELENG.2015.14
https://doi.org/10.1109/RELENG.2015.14


Delft University of Technology
Software Engineering Research Group

Technical Report Series

Continuous Deployment and Schema
Evolution in SQL Databases

Michael de Jong and Arie van Deursen

Report TUD-SERG-2015-013

SERG



TUD-SERG-2015-013

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication in the Proceedings of RELENG 2015, the Third International Workshop on
Release Engineering. ACM, 2015.

c© 2015 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.



Continuous Deployment and Schema Evolution
in SQL Databases
Michael de Jong∗, Arie van Deursen†

Delft University of Technology,
Delft, The Netherlands

Email: M.deJong-2@student.tudelft.nl∗

Email: Arie.vanDeursen@tudelft.nl†

January 29, 2015

Abstract—Continuous Deployment is an important enabler of
rapid delivery of business value and early end user feedback.
While frequent code deployment is well understood, the impact
of frequent change on persistent data is less understood and
supported. SQL schema evolutions in particular can make it
expensive to deploy a new version, and may even lead to
downtime if schema changes can only be applied by blocking
operations.

In this paper we study the problem of continuous deployment
in the presence of database schema evolution in more detail. We
identify a number of shortcomings to existing solutions and tools,
mostly related to avoidable downtime and support for foreign
keys. We propose a novel approach to address these problems,
and provide an open source implementation. Initial evaluation
suggests the approach is effective and sufficiently efficient.

I. INTRODUCTION

SQL databases are an integral part of many (web) appli-
cations. They provide strong guarantees about the storage
and retrieval of persistent data which makes them useful for
various software applications.

For release engineers, the persistence of the data and espe-
cially the structure of this data as embedded in the applica-
tion’s SQL schema is at odds with today’s need for continuous
deployment. Challenges include combining zero downtime
constraints with evolving database schemas (affecting tables,
columns, foreign keys, constraints, etc.), and the need to be
able to rollback changes without loss of data.

We can distill the challenge of continuous delivery in the
presence of schema evolution into two separate problems:

First, given the deployment of a new version of a (web)
application, depending on the deployment strategy it might
be required that both the old and the new version of the
application run in parallel (Rolling Upgrades, or Canary
Releases [2]). This means that the schema on the SQL database
needs to be compatible with the schema expected by both the
old and the new version of the application.

Second, operations which modify the database schema in a
SQL database (DDL statements) can be either non-blocking or
blocking in nature, depending on the implementation of the op-
erations in that specific SQL database. In case of non-blocking
DDL statements, SQL queries issued by the application may

proceed, whereas with blocking DDL statements these queries
may be put on hold for the duration of the operation. This
disruption can range from milliseconds to hours depending
on the schema operation, the size of the affected table(s),
and the database implementation. One such example would
be adding a new non-nullable column to an existing table
in a PostgreSQL database. This operation is blocking in
nature, preventing other queries from running while it is being
executed. When applied to a table of 50 million records (see
Section V-B), the queries from the application can be blocked
for 2.5 minutes.

When service windows are short or even non-existent, these
two problems make releasing new versions of applications
frequently problematic for release engineers. To address this
problem we aim to find or implement a tool which allows its
users to not only alter their database schema in a non-blocking
fashion, but also do this without affecting older applications
still operating on the older version of the schema.

II. STATE OF THE ART

A. Continuous Delivery
We first examine existing approaches, tools, and research

aiming to solve these problems. Our starting point is the
seminal book “Continuous Delivery” [2]. This book describes
three high-level approaches to deal with migrating data without
loss of data or requiring downtime:

• Approach 1: Copy the database or schema and start
recording transactions. When the copying has completed,
apply the schema changes to the copied database or
schema. Finally replay all the recorded database trans-
actions on the copied database or schema to reach an
equivalent state. Once this state has been achieved, it
must either be maintained by continuing to record and
playback transactions, or make the switch from the old
to the new database or schema.

• Approach 2: When using Blue-Green deployments, two
instances of the database are available. Take the inactive
database and apply the schema operations to it. In the
mean time these two databases need to be kept synchro-
nized. This can be done by using approach 1, or somehow

SERG Continuous Deployment and Schema Evolution in SQL Databases

TUD-SERG-2015-013 1



ensure that the table under change remains in a read-only
state until the active and inactive databases have switched
roles.

• Approach 3: The last is an approach where schema
operations are performed separately from the application
deployments using operations which are non-blocking. As
a consequence the application must be able to deal with
either the old or the new database schema being in use,
and construct SQL queries which can operate correctly
on both schemas.

B. Current Tooling

Since evolving the schema of a database and coordinating
the deployment of software are both complex tasks, we looked
for tooling which could help automate this for software and
release engineers.

1) Percona Toolkit [6] & Openark Kit [4]: These are
tools designed to help DBAs perform administrative tasks
on MySQL databases. The commands oak-online-alter-table
and pt-online-schema-change create an empty copy of the a
specified table (a ghost table) and apply schema operations
to the ghost table. These commands then proceed to install
triggers on both tables, which insert, update, or delete the
corresponding record in the other table when a record in their
own table is inserted, updated, or deleted. A background task
iterates over all records in the original table (in batches) and
lazily copies records from the original table to the ghost table.
When all records have been copied the original table and ghost
table switch names atomically, ensuring that clients now use
the ghost table when querying the original table name.

2) TableMigrator [9]: This is a tool which works like
Openark Kit and Percona Toolkit. Instead of using triggers
to synchronize the two tables with each other, TableMigrator
requires tables to have an additional column which stores the
date and time that record was last modified. Using this infor-
mation corresponding records in both tables are synchronized
with each other by passing over all records in multiple passes.
Once a pass can be done relatively quickly, TableMigrator
acquires an exclusive write lock on the original table —
blocking the entire table — and proceeds to do a final pass.
Once this has been done, it atomically swaps the names of the
original and ghost table before releasing the write lock. Since
this final pass can be done quickly, any application executing
queries on that table is only very briefly blocked.

3) SoundCloud’s Large Hadron Migrator [3] & Facebook’s
Online Schema Change [5]: These are both tools which
closely follow Approach 1 described earlier (Section II-A).
They create a copy of a table (including its contents) and
record modifications to records in the original table using
triggers into a special “deltas” table. Once they have copied
the original table and its contents, they apply the specified
schema operations to the ghost table before proceeding to
replay the recorded modifications from the “deltas” table onto
the ghost table. When the “deltas” table is almost empty,
these tools acquire an exclusive write lock on the original
table — like TableMigrator does — and apply the last of the

recorded modifications before atomically switch the names of
both tables.

C. Research

1) Imago: Imago [1] is a tool which follows Approach 2.
With Imago there are two production environments, called
“universes”. Imago integrates with the application and its envi-
ronment at both the ingress point (load balancer) to be able to
switch users from one “universe” to the other, and at the egress
point where the (web) application sends queries to the SQL
database. When a new version of the application (requiring a
change to the database schema) needs to be deployed, Imago
bootstraps the inactive production environment with a copy
of the active database, applies the required schema operations
and then copies over the data from the old universe to the new
universe. When this process is almost complete, it enforces a
short period of read-only access to the SQL database, while
it is switching users from the old “universe” to the new
“universe” using the load balancer. Imago makes no claims
in regards to its support for foreign keys.

D. Limitations

• None of the tools used in practice support foreign keys.
• The tools primarily focus on MySQL databases.
• These tools are limited in the sense that they typi-

cally only support making small changes to the exist-
ing database schema. This forces software and release
engineers to often release intermediate versions of the
application, as the schema is altered in several steps.

III. PROPOSED APPROACH

A. Vision

We feel that the current situation is an impediment to the
adoption of Continuous Deployment. Although Continuous
Deployment has made great improvements on workflows,
team dynamics, and tooling for deploying and monitoring
applications, the area of schema evolution in databases has
received little attention. Therefore we aim to address these
problems by developing a new tool which adheres to the
following principles:

• A solution should not put restrictions on how to deploy
applications, or which methods of deployment can be
used: Blue-Green deployments, Rolling upgrades, Canary
releases, etc.

• Clients connected to the database must be able to access
the contents of the database according to an active version
of the database schema of their choosing. Their “view”
should only contain tables, columns, foreign keys, etc
which are present in their chosen version of the database
schema, but contain the same data as is present in all
other “views”.

• Versioning and rolling back are important for release en-
gineers. A solution should support versioning the changes
being made to the database schema, and be able to
rollback to a previous version if the need arises.

Continuous Deployment and Schema Evolution in SQL Databases SERG

2 TUD-SERG-2015-013



• Foreign keys are an integral part of SQL databases and
should be supported.

B. Solution Direction

The previously discussed tools from practice all use Ap-
proach 1 or a variation of it. They prove that this is a viable
way for simple evolutions of the database schema. However
where these tools all create a single ghost table, we aim to
create one ghost table for each table that is under change, and
ghost tables for all tables which in turn are dependent on these
tables under change. For instance adding a new non-nullable
column “summary” to the “books” table (see Figure 1), means
we should also create a ghost table for the “publications“ table
since there is a foreign key pointing from the “publications”
table to the “books” table. The other tables do not require ghost
tables, as they do not have any foreign keys referencing either
the “books” or “publications” table. This approach ensures that
we can support foreign keys.

In addition, the tools from practice all allow release engi-
neers to switch the table names manually after the the original
and the ghost table have been synchronized. This allows for
two or more versions of the application to co-exist on the
same database as long as each version correctly queries the
correct (ghost) table. Although the current tools from practice
do not solve this specific problem, we think that this is easily
solved using a small wrapper around database drivers for most
programming languages.

Finally, with this approach it is possible to perform several
schema evolutions at once. In the example, we could for
instance also add even more columns to either the “books”
or “publications” table.

IV. IMPLEMENTATION STATUS

A. Current Status

We are in the process of implementing and experimenting
with the approach just described via a new tool that we
have named QuantumDB [7]. The aim is to make Continuous
Deployment more attainable for software and release engineers
for applications relying on SQL databases. Although not yet
ready for production environments, we have implemented
enough to perform a quick evaluation in a small experiment.

QuantumDB currently consists of two parts:
• qdb:core is the program responsible for performing the

actual migration tasks on the database. It does this by cre-
ating ghost tables of tables under change, using triggers to
keep the ghost tables and the original tables synchronized
with each other, and a background task which copies
the data from the original tables to the ghost tables in
small batches to prevent degrading the performance of
the database.

• qdb:driver is a Java JDBC driver which can wrap another
JDBC driver. When used, the software engineers can
specify a database schema version on which that version
of their application operates. The driver then rewrites
SQL queries sent to it by the application, and passes them
on to the wrapped database JDBC driver which in turn

(a) Original database schema, before migration

(b) Database schema in mixed-state, during migration

(c) New database schema, after migration

Fig. 1: Query performance of demo application before and
during migration

sends them to the database. When rewriting queries, it
replaces table names with the names of the associated
(ghost) table names where applicable.

With QuantumDB we can currently take one of the ac-
tive database schemas, apply an arbitrary number of schema
operations to it, and expose the resulting database schema
in addition to the original database schema. Once the last
application connected to a particular version of the database
schema disconnects, the tables associated with that database
schema version can be safely discarded.

V. INITIAL MEASUREMENTS

In order to validate our work at an early stage we have setup
a small experiment to verify that the proposed approach and
our implementation of it behaves as expected.

A. Setup

We have installed PostgreSQL 9.3 and a small test applica-
tion — made available on GitHub [8] — on a server with a 4-
core Intel Core i7-3770, a 1TB hard disk, and 16GB memory.
The test application inserts 50 million records into a single
table called “users” and starts a simple demo application with
two threads which continuously query and manipulate the data
in that table using SELECT, INSERT, UPDATE, and DELETE
statements. It then uses one of two methods to add a non-
nullable column to the “users” table. During this process we

SERG Continuous Deployment and Schema Evolution in SQL Databases

TUD-SERG-2015-013 3



(a) Before migration (b) During migration

Fig. 2: Query performance of demo application before and
during migration

keep track of the duration of the queries issued by the demo
application and how long each method takes to complete.

The “naive” approach simply executes an “ALTER TABLE
users ADD COLUMN” statement to add the new column to
the database. Once this statement has completed, we can start a
new demo application which can operate on the new structure
of the “users” table. Since the new structure of the “users”
table is compatible with both the old and the new version of
the demo application they can run in parallel to each other,
allowing for any kind of deployment method to be used.

The second approach uses QuantumDB to add the new
column. It first creates a ghost table based on the “users”
table with the new column. It then iteratively copies records
from the “users” table to the ghost table in batches of 2,000
records at intervals of 50 milliseconds. With this we attempt
to avoid negatively affecting the performance of the queries
issued by the demo application while we are copying the
records. Unlike with the previous approach, with this approach
the demo applications use the QuantumDB JDBC driver which
exposes each demo application to a different version of the
database schema (containing either the “users” table or the
ghost table). The driver ensures that each query is rewritten
in such a way that the correct table is queried for that specific
version of the schema.

B. Results

The total migration time for the “naive” approach was 2
minutes and 26 seconds, during which the demo application
was unable to read from or write to the database. The total
migration time for the QuantumDB approach was 50 min-
utes and 41 seconds. Although significantly slower than the
“naive” approach, the demo applications remained operational
throughout this period (see Figure 2).

It is worth noting that we have not invested any time in
improving the performance of QuantumDB or reducing the
performance impact it has on the database and its clients.
During this experiment we noticed that the hard disk was
periodically unable to write data to disk quickly enough. As
a result queries were taking significantly longer than normal
to complete. We are confident that we can greatly reduce this
by tweaking the PostgreSQL config, switching to a faster hard

disk, or lowering the rate of migration during the copy phase.

VI. ROAD AHEAD

As stated before, work on QuantumDB is not finished.
To be able to use QuantumDB effectively in production
environments we still need to work on the following issues:

• QuantumDB can already deal with foreign keys referring
from tables under change to other tables not under
change. To fully support foreign keys QuantumDB would
also need to be able to handle foreign keys referring to
tables under change. This is currently being worked on.

• Use performance metrics to throttle the copy phase. When
the database is (too) busy (high disk I/O, high CPU usage,
or memory starvation), we should slow down the iterative
copy process. Vice-versa we can speed it up when the
database is not under load.

• QuantumDB currently only supports PostgreSQL, but
since most SQL databases have support for triggers
and procedures of some kind, this should prove easily
extendable to other popular SQL databases.

• The driver currently uses a very rudimentary query rewrit-
ing algorithm to replace table names under change with
the names of ghost tables. It does not yet support the
entire PostgreSQL query syntax.

VII. CONCLUSION

Although development of QuantumDB is still ongoing,
initial measurements are promising. With our small test appli-
cation we have shown that we can migrate from one database
schema to a state where both the old and the new database
schemas are active, while still enabling database clients to
remain operational. Applications can connect with the database
according to a specific schema version, and no longer have
to deal with database schemas being in an in-between state.
This should effectively allow further decoupling of the release
process from the development process. We believe that this ap-
proach can put Continuous Deployment and Canary Releases
in reach of more software and release engineers.

REFERENCES

[1] Tudor Dumitraş and Priya Narasimhan. Why Do Upgrades Fail and
What Can We Do About It?: Toward Dependable, Online Upgrades
in Enterprise System. In Proceedings of the 10th ACM/IFIP/USENIX
International Conference on Middleware, Middleware ’09, pages 18:1–
18:20, New York, NY, USA, 2009. Springer-Verlag New York, Inc.

[2] Jez Humble and David Farley. Continuous Delivery: Reliable Software
Releases Through Build, Test, and Deployment Automation. Addison-
Wesley Professional, 1st edition, 2010.

[3] Large Hadron Migrator. https://github.com/soundcloud/lhm, January
2015.

[4] Shlomi Noach. Openark kit, common utilities for MySQL. https://code.
google.com/p/openarkkit/, January 2015.

[5] Online Schema Change for MySQL. https://www.facebook.com/note.
php?note id=430801045932, January 2015.

[6] Percona Toolkit for MySQL. http://www.percona.com/software/
percona-toolkit, January 2015.

[7] QuantumDB. http://quantumdb.io, January 2015.
[8] QuantumDB demo for RelEng 2015. http://github.com/quantumdb/

RelEng-demo, January 2015.
[9] TableMigrator. https://github.com/freels/table migrator, January 2015.

Continuous Deployment and Schema Evolution in SQL Databases SERG

4 TUD-SERG-2015-013





TUD-SERG-2015-013
ISSN 1872-5392 SERG


