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With growth of curved shapes predicted we have a unigue
opportunity to pre-emptively tackle productivity and
emission issues by enabling the reuse of nodes & beams



2 Methodology




| Problem statement

Realising freeform bullding geometry requires complex and
time-consuming processes In computational shape
rationalization, fabrication of custom nodes & beams and IN-
situ construction. Custom building elements are not suitable
for reuse and are likely to be recycled in a relatively high
energy-consuming melting process
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| Research question

How can a design to production workflow be developed
towards automatic assembly and circularity of nodes &
Deams In different freeform bullding facades?
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| Framework

1 mesh rationalisation
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3 Mesh Rationalization

How can optimal rationalizations of freeform building
facades be determined?
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| Differential geometry
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Discretization Is the process of transferring
continuous functions into distinct elements
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Rationalization can be defined as the
approximation of an ideal design surface by a
surface which i1s suitable for fabrication
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| Rational Geometry




|How are freeform shapes constructed?
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Nodes, Beams and Panels
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| Node

PottmannH., et al. Geometry of multi-layer freeform structures for architecture, 2007

Node: 3 Degrees of freedom per
connection

frogn) (R&EW)

| (&N (T

21



| Torsion-free

Triangle meshes — the most basic, convenient, and structurally
stable way of representing a smooth shape in a discrete way — do
not support desirable properties of meshes relevant to building
construction (most importantly, “torsion-free” nodes)

Pottman H. et al., Architectural Geometry,2007
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| Quadrangular rationalization
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| Quadrangular rationalization

planar | non-planar

torsion
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| Mesh perturbation: planarize

torsion-free |
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| Mesh perturbation: balanced pullback
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| Mesh perturbation: balanced pullback

low curvature nigh curvature

low pullback | TR (igh pullback
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How can optimal rationalizations of freeform
oullding facades be determined?
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4 Design Boundaries

How can theory on mesh rationalization be applied
to define the design requirements and boundaries

of a reusable nodes and beams system for freeform
oullding facades?




| Internal parameters

Node: 3 Degrees of freedom per
connection
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| Reuse - two hypotheticals

clement library -

- variaple elements
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| Element overlap - shape generation
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| Element overlap - result

Similarity (in overlap %)
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| Conclusion

variable nodes -

- lbrary beams

35



9 Node Design

How can a reusable node & beam system for
freeform building facades be designed?




| Explorative design

d
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| Iterative design
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| Parametric design
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| Computational placement - frame generation
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| Computational placement - angle calculation
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| Computational placement




| Case study - Yas Marina Hotel
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| Case study - Yas Marina Hotel
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| Case study - Yas Marina Hotel
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| Case study - Yas Marina Hotel
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| Case study - Yas Marina Hotel

Histogram of Node Torsion Angles in Yas Hotel Case
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Can small amounts of torsion be compensated
oy tolerances and flex in the system?
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6 Robotic Assembly

What Is the state of the art In robotic construction
and how can It be used to automatically assemble

a system of reusable nodes and beams in freeform
oullding facades?




| Literature review

|' LVL 1: Simple Placing | LVL 2: Complex Systems | LVL 3: Smart Instructions | LVL 4: Diversified Agents
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| | | |
Solving | [interpolation —|collision free = |task planning —~ [multi robot
| I | I
| | | I
Operation | |pick & place —|system building  —=]|symbolic instructions —=~ |heterogeneous
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| vl 1: Simple Placing

Bonwetsch T, et al. The informed wall: Applying additive digital fabrication techniques on architecture, 2006

Movement: stationary & linear Sensing: sensorless  Solving: interpolation  Operation: pick & place

&) (= (Y €
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| vl 1: Simple Placing

Movement: stationary & linear Sensing: sensorless  Solving: interpolation  Operation: pick & place
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| lvl 2: Complex Systems
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| lvl 2: Complex Systems
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via ETH-Zurich

Movement: XYZ gantry Sensing: force sensing  Solving: collision free  Operation: system building
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vl 3: Smart Instructions

Dorfler K, etal. M

Movement: free Sensing: computer vision  Solving: task planning  Operation: symbolic instructions
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obile Robotic Brickwork, 2016
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| vl 3: Smart Instructions
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| lvl 4: Diversified Agents

Movement; system integrated  Sensing: swarm communication  Solving: multi robot - Operation: heterogeneous
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lvl 4: Diversified Agents

top left: Melenbrink N, et al. Towards force-aware robot collectives for
on-site construction, 2017

top right: Delikanli B, GULF. L. ASystem for Truss Manipulation with
Relative Robots: Designing and Prototyping HookBot, 2023

pottom left: Leder S, et al. Leveraging Building Material as Part of the
In-Plane Robotic Kinematic System for Collective Construction, 2022

pottomright Lochnicki G., et al. Co-Designing Material-Robot
Construction Behaviors: Teaching distributed robotic systemsto
leverage active bending for light -touch assembly of bamboo bundle
structures, 2021

Movement: system integrated  Sensing: swarm communication  Solving: multi robot  Operation: heterogeneous
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System integrated robots that use swarm-Llike
communication and heterogeneous multi-robot
collaboration to achieve high-level task planning
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| Literature Review: Conclusion

theoretical model -

- practical model
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| Literature Review: Conclusion
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| ROS & Movelt

Open Source (BSD)

-ree

Widely used

Community support
Documentation
Technologically advanced

LInux based

Complex system architecture
Low level (C++)

Actively In development
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| ROS & Movelt

|IROS2 Humble

T |OMPL
/ open motion planning library

|moveit 2
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|Grasshopper
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| ROS & Movelt
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'ROS & Movelt
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| ROS & Movelt
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| Practical assembly - shape
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| Practical assembly - shape
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| Practical assembly - shape
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assembly - internal parameters
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| Practical assembly - inte
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| Practical assembly - build order
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| Practical assembly
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During the assembly process it was found that
not compensating for torsion likely resulted in
iNnternal stresses and a less accurate geometry

717






7 Pavilion Construction

How can the designed nodes & beams be used In
a computationally informed robotic construction
orocess to automatically assemble full scale
architecture?
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Pavilions often will not consider the direct
functionality of the architecture, providing
freedom to develop specific technologles
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|Pavilion research - materials

A

VTN Architects. Bamboo Stalactite. 2018
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Debney P., et al. Advanced Applicationsin Computational Design. 2022




| Pavilion research - systems




| Pavilion research - robotics
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A reusaple node and beam systerm combined with robotic
construction can enable a revolutionary change from rigid to fluid
architecture where form and function can adapt over time
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| Pavilion Design #1
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| Pavilion D
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| Friction Lock

Geometry

Friction coefficient
Force
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| Construction




| Construction
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| Construction




| Construction
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| Construction




| Construction

T
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| Construction
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This thesis Introduces a novel reusable node & beam
system for use In the automatic assembly of freeform
arcnitecture
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Discussion

The computational algorithm should support more
optimised shape generation and any rationalization
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Discussion

The computational algorithm should support more
optimised shape generation and any rationalization

The most significant limitation of the current node &
beam system Is the non-researched integration of
facade panels.

A crucial aspect Is whether the strength of the node’s
friction lock Is sufficient for the forces in a facade

An additional node should be designed with a torsion
axis for the system to be able to adapt to any shape

100



Future Research - facade

The relation between designer and optimised shape
generation algorithms should be further explored
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Future Research - facade

The relation between designer and optimised shape
generation algorithms should be further explored

A fully functional facade system should be engineered to
pe compatible with the node & beam system

The friction lock should be strength tested and optimised

The effect of small unresolved torsion on the accuracy of
the system should be further explored
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Future Research - robotics

Robotic construction research should extent the
capabllities of system Iintegrated robotic movement,
swarm-like communication and heterogeneous multi-
ropot collaboration through high-level task planning
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Future Research - robotics

Robotic construction research should extent the
capabllities of system Iintegrated robotic movement,
swarm-like communication and heterogeneous multi-
ropot collaboration through high-level task planning

Robotics research can improve the accessipility of high-
end robotics software and have a more robust
framework for robot-numan collaboration

—uture robotics research in this faculty should first focus
on sensing and collision-free movement

Multl disciplinary collaboration would be a great boost to
the local research and should be sougnt out
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