

1 Introduction

low productivity & high emissions

digital revolution

The Opus-Zaha Hadid Architects

Emporia - Wingardh Arkitekt Kontor AB - Folcra

The Opus-Zaha Hadid Architects

Emporia - Wingardh Arkitekt Kontor AB - Folcra

With growth of curved shapes predicted we have a unique opportunity to pre-emptively tackle productivity and emission issues by enabling the reuse of nodes & beams

2 Methodology

Problem statement

Realising freeform building geometry requires complex and time-consuming processes in computational shape rationalization, fabrication of custom nodes & beams and insitu construction. Custom building elements are not suitable for reuse and are likely to be recycled in a relatively high energy-consuming melting process.

Research question

How can a design to production workflow be developed towards automatic assembly and circularity of nodes & beams in different freeform building facades?

Framework

1 mesh rationalisation

$$\left(k := \langle N, \frac{d}{ds} T \rangle\right)$$

2 design boundaries

3 node design

4 robotic assembly

5 pavilion construction

3 Mesh Rationalization

How can optimal rationalizations of freeform building facades be determined?

Differential geometry

Discretization is the process of transferring continuous functions into distinct elements

Discrete Geometry

Rationalization can be defined as the approximation of an ideal design surface by a surface which is suitable for fabrication

Rational Geometry

How are freeform shapes constructed?

Nodes, Beams and Panels

via The Guardian

by Waagner-Biro

Node

Pottmann H., et al. Geometry of multi-layer freeform structures for architecture, 2007.

Node: 3 Degrees of freedom per connection

Torsion-free

Triangle meshes – the most basic, convenient, and structurally stable way of representing a smooth shape in a discrete way – do not support desirable properties of meshes relevant to building construction (most importantly, "torsion-free" nodes)

Pottman H. et al., Architectural Geometry, 2007.

Quadrangular rationalization

Quadrangular rationalization

Mesh perturbation: planarize

Mesh perturbation: balanced pullback

Mesh perturbation: balanced pullback

low curvature high curvature low pullback

How can optimal rationalizations of freeform building facades be determined?

4 Design Boundaries

How can theory on mesh rationalization be applied to define the design requirements and boundaries of a reusable nodes and beams system for freeform building facades?

Internal parameters

Node: 3 Degrees of freedom per connection

Beam: Length

Reuse - two hypotheticals

element library ------- variable elements

| Element overlap - shape generation

| Element overlap - result

Conclusion

variable nodes ----- library beams

5 Node Design

How can a reusable node & beam system for freeform building facades be designed?

Explorative design $\left(k := \langle N, \frac{d}{ds} T \rangle\right)$

| Iterative design

Parametric design

Computational placement - frame generation

| Computational placement - angle calculation

|| Computational placement

Torsion

Can small amounts of torsion be compensated by tolerances and flex in the system?

6 Robotic Assembly

What is the state of the art in robotic construction and how can it be used to automatically assemble a system of reusable nodes and beams in freeform building facades?

Literature review

| Ivl 1: Simple Placing

Bonwetsch T., et al. The informed wall: Applying additive digital fabrication techniques on architecture, 2006.

Movement: stationary & linear Sensing: sensorless Solving: interpolation Operation: pick & place

lvl 1: Simple Placing

Movement: stationary & linear Sensing: sensorless Solving: interpolation Operation: pick & place

| Ivl 2: Complex Systems

Movement: XYZ gantry Sensing: force sensing Solving: collision free Operation: system building

lvl 2: Complex Systems

via ETH-Zurich

Movement: XYZ gantry Sensing: force sensing Solving: collision free Operation: system building

| Ivl 3: Smart Instructions

Movement: free

Sensing: computer vision Solving: task planning Operation: symbolic instructions

| Ivl 3: Smart Instructions

Movement: free Sensing: computer vision Solving: task planning Operation: symbolic instructions

lvl 4: Diversified Agents

Kunic A., et al. Design and assembly automation of the Robotic Reversible Timber Beam, 2021.

Movement: system integrated

Sensing: swarm communication Solving: multi robot Operation: heterogeneous

| Ivl 4: Diversified Agents

top left: Melenbrink N., et al. Towards force-aware robot collectives for on-site construction, 2017

top right: Delikanlı B., Gül F. L. A System for Truss Manipulation with Relative Robots: Designing and Prototyping HookBot, 2023.

bottom left: Leder S., et al. Leveraging Building Material as Part of the In-Plane Robotic Kinematic System for Collective Construction, 2022.

bottom right: Lochnicki G., et al. Co-Designing Material-Robot Construction Behaviors: Teaching distributed robotic systems to leverage active bending for light-touch assembly of bamboo bundle structures, 2021.

Movement: system integrated

Sensing: swarm communication Solving: multi robot Operation: heterogeneous

System integrated robots that use swarm-like communication and heterogeneous multi-robot collaboration to achieve high-level task planning

Literature Review: Conclusion

theoretical model ------ practical model

Literature Review: Conclusion

Open Source (BSD)

Free

Widely used

Community support

Documentation

Technologically advanced

Linux based

Complex system architecture

Low level (C++)

Actively in development

Via: moveit.ros.org

Practical assembly - shape

Practical assembly - shape

Practical assembly – internal parameters $k := \langle N, \frac{1}{ds} T \rangle$ 72

Practical assembly – build order

During the assembly process it was found that not compensating for torsion likely resulted in internal stresses and a less accurate geometry

How can the designed nodes & beams be used in a computationally informed robotic construction process to automatically assemble full scale architecture?

Pavilions often will not consider the direct functionality of the architecture, providing freedom to develop specific technologies

Pavilion research - materials

Debney P., et al. Advanced Applications in Computational Design. 2022

Pavilion research - systems

theverymany. Pillars of Dreams. 2019.

 $\left(k := \langle N, \frac{1}{ds} T \rangle\right)$

(Q Q D

Formlabs. 3D Printing at Scale: The FUSE Pavilion. 2017

Pavilion research - robotics

 $Frearson\,A.\,Robotically\,Fabricated\,Structure.\,2022.$

Knippers J. ICD/ITKE Research Pavilion 2012: Coreless Filament Winding Based on the Morphological Principles of an Arthropod Exoskeleton". 2015.

A reusable node and beam system combined with robotic construction can enable a revolutionary change from rigid to fluid architecture where form and function can adapt over time

Friction Lock

Geometry
| Friction coefficient
| Force

8 Conclusion

This thesis introduces a novel reusable node & beam system for use in the automatic assembly of freeform architecture.

The computational algorithm should support more optimised shape generation and any rationalization

The computational algorithm should support more optimised shape generation and any rationalization

The most significant limitation of the current node & beam system is the non-researched integration of facade panels.

The computational algorithm should support more optimised shape generation and any rationalization

The most significant limitation of the current node & beam system is the non-researched integration of facade panels.

A crucial aspect is whether the strength of the node's friction lock is sufficient for the forces in a facade

The computational algorithm should support more optimised shape generation and any rationalization

The most significant limitation of the current node & beam system is the non-researched integration of facade panels.

A crucial aspect is whether the strength of the node's friction lock is sufficient for the forces in a facade

An additional node should be designed with a torsion axis for the system to be able to adapt to any shape

The relation between designer and optimised shape generation algorithms should be further explored

The relation between designer and optimised shape generation algorithms should be further explored

A fully functional facade system should be engineered to be compatible with the node & beam system

The relation between designer and optimised shape generation algorithms should be further explored

A fully functional facade system should be engineered to be compatible with the node & beam system

The friction lock should be strength tested and optimised

The relation between designer and optimised shape generation algorithms should be further explored

A fully functional facade system should be engineered to be compatible with the node & beam system

The friction lock should be strength tested and optimised

The effect of small unresolved torsion on the accuracy of the system should be further explored

Robotic construction research should extent the capabilities of system integrated robotic movement, swarm-like communication and heterogeneous multirobot collaboration through high-level task planning

Robotic construction research should extent the capabilities of system integrated robotic movement, swarm-like communication and heterogeneous multirobot collaboration through high-level task planning

Robotics research can improve the accessibility of highend robotics software and have a more robust framework for robot-human collaboration

Robotic construction research should extent the capabilities of system integrated robotic movement, swarm-like communication and heterogeneous multirobot collaboration through high-level task planning

Robotics research can improve the accessibility of highend robotics software and have a more robust framework for robot-human collaboration

Future robotics research in this faculty should first focus on sensing and collision-free movement

Robotic construction research should extent the capabilities of system integrated robotic movement, swarm-like communication and heterogeneous multirobot collaboration through high-level task planning

Robotics research can improve the accessibility of highend robotics software and have a more robust framework for robot-human collaboration

Future robotics research in this faculty should first focus on sensing and collision-free movement

Multi disciplinary collaboration would be a great boost to the local research and should be sought out

