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ABSTRACT: 

 

As lidar point clouds become larger streamed processing becomes more attractive. This paper presents a framework for the 

streamed segmentation of point clouds with the intention of segmenting unstructured point clouds in real-time. The framework is 

composed of two main components. The first component segments points within a window shifting over the point cloud. The 

second component stitches the segments within the windows together. In this fashion a point cloud can be streamed through these 

two components in sequence, thus producing a segmentation. The algorithm has been tested on airborne lidar point cloud and 

some results of the performance of the framework are presented. 

 

 

1 INTRODUCTION 

 
1.1 Background 

 

The segmentation of lidar data has traditionally been a post 

processing operation typically effected on an entire lidar 

dataset. But recent advances in lidar technology now demand 

streamed methods of segmentation. Two advances in 

particular necessitate this. Firstly, scan rates have increased 

considerably. Secondly, mobile scanners are typically 

mounted on vehicles, but will soon also be portable and this 

opens scanning to a wide range of real-time applications. The 

increased volume of scans and the future requirement for real-

time segmentation will mean that static segmentations will 

become complex, inefficient and inadequate. This will require 

streamed approaches to segmentation.  

 

1.2 Previous Work 

 

There is an extensive of body of work on the segmentation of 

range data and unstructured point clouds. A general review of 

segmentation algorithms is provided by Hoover et al (1996) 

and Wang and Shan (2009). In a static segmentation segments 

are mostly aggregated by means of clustering, region growing 

and merging/dividing, or connected components frameworks. 

Most segmentation algorithms use one or a combination of 

these frameworks.  

 

An example of a clustering segmentation approach is 

presented by Filin (2002). Region growing algorithms achieve 

segmentation by examining point neighborhoods about 

selected seed points. Segments are built radiating outward 

from these seed points until the entire point cloud is 

segmented. Proximal segmentation algorithms define distance 

measures between points in a cloud. Points that are within a 

given distance of each other are joined by edges to form a 

disconnected graph. A connected component analysis of the 

disconnected graph yields segments (the sub graphs). 

Streamed segmentation frame works build on the above 

segmentation algorithms with the objective of (1) partially 

loading the point cloud into main memory, i.e., the 

segmentation is done in chunks (2) removing from main 

memory those chunks that are no longer needed and make 

room for succeeding chunks. When a chunk is removed from 

memory it is written to a segmentation file. This framework 

minimizes the memory footprint and allows the point cloud to 

be streamed into a segmentation processor. 

 

1.3 Current approaches 

 

The study of streamed processing of point clouds has been 

ongoing with applications devoted to meshing and surface 

generation. Examples of such research are presented by 

Bolitho et al (2007) and Isenburg and Lindstrom (2005). 

Many of these applications are designed to be off-line and 

require a restructuring of the point cloud file. The approaches 

below consider situations where the processing has to be real-

time and a reorganization of the point-cloud file is not 

possible. 

 

Most of streamed segmentation approaches are designed for 

range images. Klasing et al 2009 present a streamed 

segmentation approach in which they search for the nearest 

points in a sequence of range images. Another example is 

present by Heisele and Ritter (1999). Wang and Tseng (2011) 

present a volumetric streamed segmentation for unstructured 

point clouds. In their approach they voxelize the point cloud. 

For real time segmentation this presents two overheads. 

Firstly, voxelization requires the extent of the point cloud to 

be determined. Secondly the increments to the point cloud 

have to be voxelized. These streamed techniques are designed 

to take advantage of the structure of the data or create a data 

structure that facilitates the streamed segmentation. This 

complicates the application of these algorithms. 

 

1.4 Objectives 

 

This paper proposes a streamed segmentation framework 

designed to work on unstructured point clouds. The 

framework is based on a moving windows strategy. The 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-3, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

161



objective of the framework is to stream existing segmentation 

approaches. The paper is divided into four sections. Section 

two presents the proposed streamed segmentation framework. 

In section three the results of experiments are presented. 

Section four discusses the results of the experiments. Finally 

in section five the paper is concluded. 

 

2 METHOD 

 
2.1 Algorithm 

 

The framework of the algorithm is shown in Figure 1. The 

algorithm is composed of three components arranged in the 

following sequence: 

 

1. Segmentor: This component segments each span of the 

point cloud. 

 

2. Weaver: This component aggregates current segment 

labels with previous segment labels. 

 

3. Extractor: This component extracts objects from the 

streamed segments. 

 

This paper only discusses the Segmentor and Weaver 

components. 

 

2.1.1 Segmentor 

 

The point cloud is partitioned into contiguous spans. The first 

three spans (Window 1) are loaded into memory and 

segmented, Figure 1 (b). The segmentation algorithm used to 

segment the spans is called the segmentor. Next the first two 

spans are unloaded from memory but the segment labels 

together with the point indexes are retained. After this the 

fourth and fifth spans are loaded into memory and segmented 

together with the third span (Window 2). Note here that only 

three spans are loaded into memory at any one moment. The 

segmentation algorithm used in each window depends on the 

application. In Figure 1 segmentation is done by proximity 

but it can easily be another algorithm. 

 

2.1.2 Weaver 

 

This component is the core of the proposed moving window 

segmentation algorithm. Because the segments from windows 

1 and 2 overlap the segment labels from the first window can 

be simply carried over to the overlapping segments in the 

second window. The weaver algorithm aggregates segments 

in a fashion similar to region growing and connected 

components. However only a partial graph is built and 

segment labels are unloaded from memory when they are no 

longer needed. 

 

Additionally the connected components analysis is done on 

the fly. To begin two lookup tables (LUT) are created. The 

first LUT is made of single key-value pairs and provides the 

segment label (value) of every point (key) in the cloud. The 

second LUT is made of multi key-value pairs and provides the 

segment label (value) for the segments in the current window 

against the segment labels (key) of overlapping segments in 

the previous window. The lookup tables are populated as in 

Figure 1. 

 

The First Segmentation 

 

In the first segmentation all segments are labeled sequentially 

starting from 1. The segment labels are transferred to the 

points. The point-segment label pairs are added to the LUT. 

All segments labels are added to the Segment-Segment LUT, 

but because there are no overlapping segments to the right the 

labels are paired with a value of -1. The value of -1 is used to 

indicate non-existent data. 

 

The Second Segmentation 

 

All new segments are labeled sequentially starting from the 

last segment label. Each point in the window is looked up in 

the Point-Segment LUT. If the point exists in the LUT 

nothing further is done for the Point-Segment LUT. However 

in the Segment-Segment LUT the key-value pairs are updated 

for those segments that overlap, i.e., now have a segment on 

the right side. For example in the table in Figure 1 (c) 

segment 1 now has segment 4 to its right. If the point doesn’t 

exist in the LUT then the point-segment label pair is added to 

the LUT. All new segments labels are added to the Segment-

Segment LUT, but because there are no overlapping segments 

to the right the labels are paired with a value of -1 

 

Succeeding Segmentations 

 

All points not inside the current or previous window are said 

to be out of scope. Points that are out of scope are unloaded 

from memory and removed from the Point-Segment LUT. 

This is shown in Figure 1(d). Segments go out of scope when 

none of their points lie inside the current or previous window. 

The entries in the Point-Segment and the Segment-Segment 

LUT for the points and segments that go out of scope are 

written to a Point-Segment and Segment-Segment file 

respectively. Unloading points and segments that are out of 

scope ensure that the footprint of the algorithm in memory is 

as small as possible and that the lookups in the LUTs are as 

fast as possible. Moreover it is consistent with the objective of 

developing a streamed segmentation. As with the first and 

second segmentation all new segments are labeled 

sequentially starting from the last segment label. The 

aggregation procedure now proceeds as in the second 

segmentation. 

 

The Last Segmentation 

 

The last segmentation proceeds as in the preceding 

segmentations. However at the end all remaining points and 

segment labels are written to the Point-Segment and Segment-

Segment files. After this the points and segments are unloaded 

from memory. 
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Figure 1: The moving window segmentation of a spanned point cloud (a). Points in the first three spans (the segmentor window) 

are selected and segmented (b). The segmentor window is moved forward by two spans. There is an overlap of one span between 
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the current and previous segmentor window, therefore the segments overlap. Because of the segment overlaps the segment labels 

can now be carried over from the previous window into the current window (c). The process is repeated in steps (d) and (e) until 

the entire point cloud has been segmented (f). 

 

2.2 Discussion 

 
2.2.1 Advantages 

 

General 

 

The algorithm can be applied to any point cloud. Also as 

points are streamed to the algorithm knowledge of the 

geometric characteristics of the point cloud are not required. 

  

Multi-purpose 

 

The framework allows any existing segmentation algorithm to 

be used.  

 

Memoryless 

 

The segmentation only depends on adjacent windows with no 

knowledge required of the windows that preceded them. This 

allows for point clouds to be streamed through the segmentor 

and weaver, thus making the algorithm applicable for real-

time applications such as mobile mapping.  

 

Flexible 

 

The size, number and overlap of spans/windows can be 

adapted to the geometric characteristics of the point cloud 

(e.g. point spacing). For the ease of explanation, the 

demonstration example in Figure 1 uses spans of equal size, 

three spans per window and windows overlap by one span. 

These parameters can all be changed. 

 

2.2.2 Disadvantages 

 

Memoryless 

 

The order in which spans are streamed to the framework has a 

strong influence on the quality of the segmentation. If spans 

are not fed sequentially then there will be an over 

segmentation.  

 

Self-Intersection 

 

If a stream loops on itself (in space) the framework does not 

account for previous segmentations in the overlap. Therefore 

the same segment will be detected multiple times in the same 

location. This limits the application of the framework where a 

full segmentation is required. A solution to this is being 

investigated. 

 

2.2.3 Segmentation History 

 

The final segmentation is contained in the Point-Segment and 

Segment-Segment files. Essentially these files contain two 

graphs that describe the relationship between points and 

segments, and overlapping segments. The files provide a 

history of the segmentation. However, if a history of the 

segmentation is not desired, then the segment labels can be 

easily carried over on the fly where segments overlap. 

Naturally the Segment-Segment LUT will now always 

contain -1 on the right hand side. 

 

3 EXPERIMENTS AND RESULTS 

 
3.1 Data source 

 

The data source used in the test is of a residential district of 

Stuttgart, see Figure 2. The data is a small subset (190000 

points) of the OEEPE project on laser scanning (Petzold and 

Axelsson, 2001). The point cloud has a point spacing of about 

1.0 m. The landscape is not particularly difficult to segment 

but for the purpose of the test it was considered adequate.  

 

 
Figure 2 Test data used in the experiments 

 

 
Figure 3 The spanned point cloud. Here for visual clarity 

spans of 50 m are used. Ideally smaller spans are desirable. 

The spans are loaded into memory when needed. 
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3.2 Segmentation 

 

The method of segmentation used in the segmentor is 

proximity segmentation. A Delaunay triangulation was used 

to generate the edges between the points. The proximity 

threshold was set at 2.5 m. Proximity segmentations are not 

robust, but again for the purposes of this test they were 

considered sufficient. 

 

3.3 Demonstration 

 

Figure 3 and Figure 4 show how the algorithm works on a real 

point cloud. The point cloud is spanned and then groups of 

adjacent spans (the segmentor window) are segmented. The 

window is then repeatedly moved and segmented until the 

entire point cloud is segmented. 

A visual comparison of the moving window segmentation 

against a static segmentation showed visually no difference. 

This is mostly due to the proximity segmentation which is 

expected to always perform the same along span edges.  

 

 
(a) 

 
(b) 

Figure 4 The segmentation of each segmentor window. 

Unmerged segments (a) and merged segments (b). 

 

3.4 Performance 

 

It’s desired to know how the moving window segmentation 

performs at different span widths. This is shown in Figure 5. 

As expected the static segmentation is faster than the moving 

window segmentation. At the lower smaller span widths the 

triangulation is faster because of the fewer in-circle tests. As 

the span width is increased this advantage is lost. Further 

increases in the span width see the processing time 

decreasing. This is because the number of triangulations are 

becoming fewer and offsetting the cost of in-circle tests.  

 
Figure 5 Span width versus processing time. The solid line 

show the processing times for segmentation with varying span 

width. The dotted line shows the processing time for a static 

segmentation. 

 

 
Figure 6 Count of spans in a segmentor window versus 

processing time. The solid line shows the processing times for 

segmentation with varying span counts. The dotted line shows 

the processing time for a static segmentation. 
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The maximum represents the point at which the balance of the 

width of spans versus the number of spans is most 

unfavorable. Further tests on are needed to confirm this. 

 

In the above tests only three spans were used in a segmentor 

window. Figure 6 shows the effect of varying the number of 

spans in a segmentor window. The fewer spans in the 

segmentor window the greater the processing time. Again this 

is because of the in-circle tests in the triangulation. As the 

number of spans increase the triangulations become fewer and 

the cost of in-circle tests is reduced. 

 

Isotropy 

 

From the explanation provided in section 2.1 it may be 

concluded that the framework is isotropic. This is only 

because a proximity segmentation algorithm has been used to 

explain the segmentor. Proximity segmentation algorithms are 

generally isotropic particularly if the tested proximal 

neighborhood is small. Segmentation algorithms such as scan 

line algorithms are strongly direction dependent. Because of 

this the framework is not guaranteed to be isotropic.  

 

Edge effects 

 

As can be seen in Figure 1 the success of the framework 

depends on consistent segment generation in the window 

overlaps. Segmentation algorithms that are based on surface 

analysis, such as region growing algorithms, may yield 

different segmentations at the edges of the windows. Because 

of this consistent segments are not guaranteed in the window 

overlaps. The framework may behave unpredictably in such 

situations. The solution to this problem is being investigated. 

 

4 DISCUSSION 

 

The test in Figure 5 and Figure 6 suggest that there exists a 

relationship between processing time, the width of spans, the 

number of spans in the point cloud and the number of spans in 

a segmentor window. Determining this relationship requires 

further testing. From the tests it can be said that where 

resources are available static segmentation should be used. 

The moving window segmentation should be used when 

resources (e.g., memory) are insufficient or where a real time 

application is needed. 

 

5 CONCLUSION 

 

A frame work has been presented for the streamed 

segmentation of point clouds with the intention of segmenting 

unstructured 3D point clouds in real-time. The frame work 

has been tested on an airborne lidar point cloud. However the 

framework should work with any 3D point cloud as long as 

overlaps between segmentor windows can be established in 

the point cloud. This means that the framework is ideal for 

use with point clouds produced by 2D mobile scanners. 

 

Presently the performance of the framework is being studied 

more thoroughly, particularly to understand the stability of the 

framework in the overlaps of windows. Also being studied is 

the extension of the frame work to 2D and 3D, with the 

intention of serving off-line segmentation of very large point 

clouds. 

 

A future publication is also planned to present the extractor 

component. 
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