
MOVING WINDOW SEGMENTATION FRAMEWORK FOR POINT CLOUDS

George Sitholea, Ben Gorteb

a Geomatics Division, School of Architecture, Planning and Geomatics, University of Cape Town, Private Bag X3, Rondebosch,

7701, South Africa, Email: george.sithole@uct.ac.za
b Optical and Laser Remote Sensing, Delft University of Technology,

P.O.Box 5058, 2600GB Delft, the Netherlands, email: b.g.h.gorte@tudelft.nl

KEYWORDS: Algorithm, Segmentation, Lidar, Point Cloud

ABSTRACT:

As lidar point clouds become larger streamed processing becomes more attractive. This paper presents a framework for the

streamed segmentation of point clouds with the intention of segmenting unstructured point clouds in real-time. The framework is

composed of two main components. The first component segments points within a window shifting over the point cloud. The

second component stitches the segments within the windows together. In this fashion a point cloud can be streamed through these

two components in sequence, thus producing a segmentation. The algorithm has been tested on airborne lidar point cloud and

some results of the performance of the framework are presented.

1 INTRODUCTION

1.1 Background

The segmentation of lidar data has traditionally been a post

processing operation typically effected on an entire lidar

dataset. But recent advances in lidar technology now demand

streamed methods of segmentation. Two advances in

particular necessitate this. Firstly, scan rates have increased

considerably. Secondly, mobile scanners are typically

mounted on vehicles, but will soon also be portable and this

opens scanning to a wide range of real-time applications. The

increased volume of scans and the future requirement for real-

time segmentation will mean that static segmentations will

become complex, inefficient and inadequate. This will require

streamed approaches to segmentation.

1.2 Previous Work

There is an extensive of body of work on the segmentation of

range data and unstructured point clouds. A general review of

segmentation algorithms is provided by Hoover et al (1996)

and Wang and Shan (2009). In a static segmentation segments

are mostly aggregated by means of clustering, region growing

and merging/dividing, or connected components frameworks.

Most segmentation algorithms use one or a combination of

these frameworks.

An example of a clustering segmentation approach is

presented by Filin (2002). Region growing algorithms achieve

segmentation by examining point neighborhoods about

selected seed points. Segments are built radiating outward

from these seed points until the entire point cloud is

segmented. Proximal segmentation algorithms define distance

measures between points in a cloud. Points that are within a

given distance of each other are joined by edges to form a

disconnected graph. A connected component analysis of the

disconnected graph yields segments (the sub graphs).

Streamed segmentation frame works build on the above

segmentation algorithms with the objective of (1) partially

loading the point cloud into main memory, i.e., the

segmentation is done in chunks (2) removing from main

memory those chunks that are no longer needed and make

room for succeeding chunks. When a chunk is removed from

memory it is written to a segmentation file. This framework

minimizes the memory footprint and allows the point cloud to

be streamed into a segmentation processor.

1.3 Current approaches

The study of streamed processing of point clouds has been

ongoing with applications devoted to meshing and surface

generation. Examples of such research are presented by

Bolitho et al (2007) and Isenburg and Lindstrom (2005).

Many of these applications are designed to be off-line and

require a restructuring of the point cloud file. The approaches

below consider situations where the processing has to be real-

time and a reorganization of the point-cloud file is not

possible.

Most of streamed segmentation approaches are designed for

range images. Klasing et al 2009 present a streamed

segmentation approach in which they search for the nearest

points in a sequence of range images. Another example is

present by Heisele and Ritter (1999). Wang and Tseng (2011)

present a volumetric streamed segmentation for unstructured

point clouds. In their approach they voxelize the point cloud.

For real time segmentation this presents two overheads.

Firstly, voxelization requires the extent of the point cloud to

be determined. Secondly the increments to the point cloud

have to be voxelized. These streamed techniques are designed

to take advantage of the structure of the data or create a data

structure that facilitates the streamed segmentation. This

complicates the application of these algorithms.

1.4 Objectives

This paper proposes a streamed segmentation framework

designed to work on unstructured point clouds. The

framework is based on a moving windows strategy. The

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-3, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

161

objective of the framework is to stream existing segmentation

approaches. The paper is divided into four sections. Section

two presents the proposed streamed segmentation framework.

In section three the results of experiments are presented.

Section four discusses the results of the experiments. Finally

in section five the paper is concluded.

2 METHOD

2.1 Algorithm

The framework of the algorithm is shown in Figure 1. The

algorithm is composed of three components arranged in the

following sequence:

1. Segmentor: This component segments each span of the

point cloud.

2. Weaver: This component aggregates current segment

labels with previous segment labels.

3. Extractor: This component extracts objects from the

streamed segments.

This paper only discusses the Segmentor and Weaver

components.

2.1.1 Segmentor

The point cloud is partitioned into contiguous spans. The first

three spans (Window 1) are loaded into memory and

segmented, Figure 1 (b). The segmentation algorithm used to

segment the spans is called the segmentor. Next the first two

spans are unloaded from memory but the segment labels

together with the point indexes are retained. After this the

fourth and fifth spans are loaded into memory and segmented

together with the third span (Window 2). Note here that only

three spans are loaded into memory at any one moment. The

segmentation algorithm used in each window depends on the

application. In Figure 1 segmentation is done by proximity

but it can easily be another algorithm.

2.1.2 Weaver

This component is the core of the proposed moving window

segmentation algorithm. Because the segments from windows

1 and 2 overlap the segment labels from the first window can

be simply carried over to the overlapping segments in the

second window. The weaver algorithm aggregates segments

in a fashion similar to region growing and connected

components. However only a partial graph is built and

segment labels are unloaded from memory when they are no

longer needed.

Additionally the connected components analysis is done on

the fly. To begin two lookup tables (LUT) are created. The

first LUT is made of single key-value pairs and provides the

segment label (value) of every point (key) in the cloud. The

second LUT is made of multi key-value pairs and provides the

segment label (value) for the segments in the current window

against the segment labels (key) of overlapping segments in

the previous window. The lookup tables are populated as in

Figure 1.

The First Segmentation

In the first segmentation all segments are labeled sequentially

starting from 1. The segment labels are transferred to the

points. The point-segment label pairs are added to the LUT.

All segments labels are added to the Segment-Segment LUT,

but because there are no overlapping segments to the right the

labels are paired with a value of -1. The value of -1 is used to

indicate non-existent data.

The Second Segmentation

All new segments are labeled sequentially starting from the

last segment label. Each point in the window is looked up in

the Point-Segment LUT. If the point exists in the LUT

nothing further is done for the Point-Segment LUT. However

in the Segment-Segment LUT the key-value pairs are updated

for those segments that overlap, i.e., now have a segment on

the right side. For example in the table in Figure 1 (c)

segment 1 now has segment 4 to its right. If the point doesn’t

exist in the LUT then the point-segment label pair is added to

the LUT. All new segments labels are added to the Segment-

Segment LUT, but because there are no overlapping segments

to the right the labels are paired with a value of -1

Succeeding Segmentations

All points not inside the current or previous window are said

to be out of scope. Points that are out of scope are unloaded

from memory and removed from the Point-Segment LUT.

This is shown in Figure 1(d). Segments go out of scope when

none of their points lie inside the current or previous window.

The entries in the Point-Segment and the Segment-Segment

LUT for the points and segments that go out of scope are

written to a Point-Segment and Segment-Segment file

respectively. Unloading points and segments that are out of

scope ensure that the footprint of the algorithm in memory is

as small as possible and that the lookups in the LUTs are as

fast as possible. Moreover it is consistent with the objective of

developing a streamed segmentation. As with the first and

second segmentation all new segments are labeled

sequentially starting from the last segment label. The

aggregation procedure now proceeds as in the second

segmentation.

The Last Segmentation

The last segmentation proceeds as in the preceding

segmentations. However at the end all remaining points and

segment labels are written to the Point-Segment and Segment-

Segment files. After this the points and segments are unloaded

from memory.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-3, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

162

 Point-Segment LUT Seg-Seg LUT

Point Seg ID Seg ID L Seg ID R

1

2

:

11

2

2

:

1

1

2

3

-1

-1

-1

(a) (b)

Point Seg ID Seg ID L Seg ID R Point Seg ID Seg ID L Seg ID R

6

:

11
12

:
16

:

24

1

:

1
4

:
6

:

7

1

4

5
6

7

4

-1

-1
-1

-1

16

:

19
:

24
25

:

45

6

:

6
:

7
8

:

8

6

7

8

8

8

-1

(c) (d)

Point Seg ID Seg ID L Seg ID R

45

:
50

51

52
53

8

8
8

9

9
9

8

9

9

-1

(e) (f)

Figure 1: The moving window segmentation of a spanned point cloud (a). Points in the first three spans (the segmentor window)

are selected and segmented (b). The segmentor window is moved forward by two spans. There is an overlap of one span between

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-3, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

163

the current and previous segmentor window, therefore the segments overlap. Because of the segment overlaps the segment labels

can now be carried over from the previous window into the current window (c). The process is repeated in steps (d) and (e) until

the entire point cloud has been segmented (f).

2.2 Discussion

2.2.1 Advantages

General

The algorithm can be applied to any point cloud. Also as

points are streamed to the algorithm knowledge of the

geometric characteristics of the point cloud are not required.

Multi-purpose

The framework allows any existing segmentation algorithm to

be used.

Memoryless

The segmentation only depends on adjacent windows with no

knowledge required of the windows that preceded them. This

allows for point clouds to be streamed through the segmentor

and weaver, thus making the algorithm applicable for real-

time applications such as mobile mapping.

Flexible

The size, number and overlap of spans/windows can be

adapted to the geometric characteristics of the point cloud

(e.g. point spacing). For the ease of explanation, the

demonstration example in Figure 1 uses spans of equal size,

three spans per window and windows overlap by one span.

These parameters can all be changed.

2.2.2 Disadvantages

Memoryless

The order in which spans are streamed to the framework has a

strong influence on the quality of the segmentation. If spans

are not fed sequentially then there will be an over

segmentation.

Self-Intersection

If a stream loops on itself (in space) the framework does not

account for previous segmentations in the overlap. Therefore

the same segment will be detected multiple times in the same

location. This limits the application of the framework where a

full segmentation is required. A solution to this is being

investigated.

2.2.3 Segmentation History

The final segmentation is contained in the Point-Segment and

Segment-Segment files. Essentially these files contain two

graphs that describe the relationship between points and

segments, and overlapping segments. The files provide a

history of the segmentation. However, if a history of the

segmentation is not desired, then the segment labels can be

easily carried over on the fly where segments overlap.

Naturally the Segment-Segment LUT will now always

contain -1 on the right hand side.

3 EXPERIMENTS AND RESULTS

3.1 Data source

The data source used in the test is of a residential district of

Stuttgart, see Figure 2. The data is a small subset (190000

points) of the OEEPE project on laser scanning (Petzold and

Axelsson, 2001). The point cloud has a point spacing of about

1.0 m. The landscape is not particularly difficult to segment

but for the purpose of the test it was considered adequate.

Figure 2 Test data used in the experiments

Figure 3 The spanned point cloud. Here for visual clarity

spans of 50 m are used. Ideally smaller spans are desirable.

The spans are loaded into memory when needed.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-3, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

164

3.2 Segmentation

The method of segmentation used in the segmentor is

proximity segmentation. A Delaunay triangulation was used

to generate the edges between the points. The proximity

threshold was set at 2.5 m. Proximity segmentations are not

robust, but again for the purposes of this test they were

considered sufficient.

3.3 Demonstration

Figure 3 and Figure 4 show how the algorithm works on a real

point cloud. The point cloud is spanned and then groups of

adjacent spans (the segmentor window) are segmented. The

window is then repeatedly moved and segmented until the

entire point cloud is segmented.

A visual comparison of the moving window segmentation

against a static segmentation showed visually no difference.

This is mostly due to the proximity segmentation which is

expected to always perform the same along span edges.

(a)

(b)

Figure 4 The segmentation of each segmentor window.

Unmerged segments (a) and merged segments (b).

3.4 Performance

It’s desired to know how the moving window segmentation

performs at different span widths. This is shown in Figure 5.

As expected the static segmentation is faster than the moving

window segmentation. At the lower smaller span widths the

triangulation is faster because of the fewer in-circle tests. As

the span width is increased this advantage is lost. Further

increases in the span width see the processing time

decreasing. This is because the number of triangulations are

becoming fewer and offsetting the cost of in-circle tests.

Figure 5 Span width versus processing time. The solid line

show the processing times for segmentation with varying span

width. The dotted line shows the processing time for a static

segmentation.

Figure 6 Count of spans in a segmentor window versus

processing time. The solid line shows the processing times for

segmentation with varying span counts. The dotted line shows

the processing time for a static segmentation.

2.5

2.7

2.9

3.1

3.3

3.5

3.7

3.9

25 35 45 55

P
ro

ce
ss

in
g
 t

im
e

(s
ec

o
n

d
s)

Span width (m)

2.5

3.0

3.5

4.0

4.5

5.0

2 3 4 5 6 7

P
ro

ce
ss

in
g
 t

im
e

(s
ec

o
n

d
s)

Span count

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-3, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

165

The maximum represents the point at which the balance of the

width of spans versus the number of spans is most

unfavorable. Further tests on are needed to confirm this.

In the above tests only three spans were used in a segmentor

window. Figure 6 shows the effect of varying the number of

spans in a segmentor window. The fewer spans in the

segmentor window the greater the processing time. Again this

is because of the in-circle tests in the triangulation. As the

number of spans increase the triangulations become fewer and

the cost of in-circle tests is reduced.

Isotropy

From the explanation provided in section 2.1 it may be

concluded that the framework is isotropic. This is only

because a proximity segmentation algorithm has been used to

explain the segmentor. Proximity segmentation algorithms are

generally isotropic particularly if the tested proximal

neighborhood is small. Segmentation algorithms such as scan

line algorithms are strongly direction dependent. Because of

this the framework is not guaranteed to be isotropic.

Edge effects

As can be seen in Figure 1 the success of the framework

depends on consistent segment generation in the window

overlaps. Segmentation algorithms that are based on surface

analysis, such as region growing algorithms, may yield

different segmentations at the edges of the windows. Because

of this consistent segments are not guaranteed in the window

overlaps. The framework may behave unpredictably in such

situations. The solution to this problem is being investigated.

4 DISCUSSION

The test in Figure 5 and Figure 6 suggest that there exists a

relationship between processing time, the width of spans, the

number of spans in the point cloud and the number of spans in

a segmentor window. Determining this relationship requires

further testing. From the tests it can be said that where

resources are available static segmentation should be used.

The moving window segmentation should be used when

resources (e.g., memory) are insufficient or where a real time

application is needed.

5 CONCLUSION

A frame work has been presented for the streamed

segmentation of point clouds with the intention of segmenting

unstructured 3D point clouds in real-time. The frame work

has been tested on an airborne lidar point cloud. However the

framework should work with any 3D point cloud as long as

overlaps between segmentor windows can be established in

the point cloud. This means that the framework is ideal for

use with point clouds produced by 2D mobile scanners.

Presently the performance of the framework is being studied

more thoroughly, particularly to understand the stability of the

framework in the overlaps of windows. Also being studied is

the extension of the frame work to 2D and 3D, with the

intention of serving off-line segmentation of very large point

clouds.

A future publication is also planned to present the extractor

component.

6 REFERENCES

Bolitho, M., Kazhdan, M., Burns, R., Hoppe, H., 2007.

Multilevel streaming for out-of-core surface reconstruction.

Proceedings of the fifth Eurographics Symposium on

Geometry Processing, Aire-la-Ville, Switzerland, 2007. pp.

69 -78.

Filin, S., 2002. Surface clustering from airborne laser

scanning data, The International Archives of

Photogrammetry, Remote Sensing and Spatial Information

Sciences, vol. XXXIV, 3A, Graz, pp 117-124.

Heisele, B., Ritter, W., 1999, Segmentation of range and

intensity image sequences by clustering. Proceedings 1999

International Conference on Information Intelligence and

Systems

Hoover, A., G. Jean-Baptiste, X. Jiang, P.J. Flynn, H. Bunke,

D.B. Goldgof, K. Bowyer, D.W. Eggert, A. Fitzgibbon, and

R.B. Fisher, 1996. An experimental comparison of range

image segmentation algorithms, IEEE Transactions on Pattern

Analysis and Machine Intelligence, 18, pp 673 – 689

Isenburg, M., Lindstrom, P., 2005. Streaming meshes.

Proceedings of IEEE Visualization 2005, Minneapolis,

U.S.A.. pp 231-238.

Klasing, K., Wollherr, D., and Buss, M., 2009, Realtime

segmentation of range data using continuous nearest

neighbors. Technische Universität München in Proc. ICRA, 6

pages

Petzold, B., Axelsson, P., 2001. Results of the OEEPE

working group on laser data acquisition. Proceedings of

OEEPE workshop on airborne laser scanning and

interferometric SAR for detailed digital elevation models.

March 1-3, Stockholm, Sweden. Official Publication No. 40.

CD-ROM., 6 pages.

Wang, J., Shan, J., 2009. Segmentation of lidar point clouds

for building extraction. In Proceedings American Society of

Photogrammetry Remote Sensing Annual Conference. pp 9–

13.

Wang, M., Tseng, Y., 2011. The Photogrammetric Record

26(133): pp 32–57

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-3, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

166

