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Abstract
We present a machine learning framework aimed at forecasting
Starlink (LEO satellite) network performance at fine spatiotemporal
resolution. Our approach combines MLab crowdsourced measure-
ments, weather and forecast features, and dynamic satellite density
to predict packet loss, jitter, latency, and throughput. We introduce
a composite Weather Index and real-time satellite density per lo-
cation, and train robust ensemble models with anomaly filtering
and median aggregation. Our best models achieve good predictive
results with less than 17 ms for latency, and 35 Mbps for throughput.
Latency is reliably predictable with meteorological and satellite con-
text, while packet loss and jitter remain challenging. Predictions
are limited to periods close to the training data and our results
establish a reproducible baseline for short-term, weather-aware
Starlink network forecasting.

1 Introduction
Satellite internet constellations such as Starlink [39] are rapidly
transforming global connectivity, providing broadband coverage in
regions previously underserved by terrestrial infrastructure. How-
ever, the performance of these networks—measured by metrics such
as packet loss, latency, jitter and throughput—is highly variable and
can be significantly affected by weather, geography, and satellite
density. Understanding and forecasting this variability is crucial
for both end-users and network planners.

Despite the promise of satellite internet constellations, users and
planners still face unpredictable performance—especially under
adverse weather or varying satellite availability. While recent work
demonstrates weather’s impact, there is limited research on inte-
grating dense weather, satellite, and crowdsourced measurement
data for accurate, location-specific forecasts. We aim to answer:

(1) How accurately can Starlink packet loss, latency, jitter,
and throughput be predicted at fine spatiotemporal
resolution using weather and satellite context?

(2) How do machine learning models compare to simple
statistical baselines and classical methods for forecast-
ing Starlink network performance?

(3) What is the quantitative benefit of incorporatingweather
features, satellite density, and robust preprocessing
strategies into predictive modeling?

(4) How well do these models generalize across unseen
locations and future time periods, and what are the
limitations of spatial and temporal extrapolation?

Prior studies have established that environmental factors such
as rain, cloudiness, and storms can degrade satellite internet qual-
ity [22, 27, 29]. Yet, existing approaches often rely on coarse spatial
aggregation or lack real-time forecast integration, limiting their
practical utility for location-specific prediction.

In this work, we present a data-driven, weather-aware frame-
work for spatiotemporal forecasting of Starlink network perfor-
mance. We combine crowdsourced measurements from Measure-
ment Lab (MLab) with weather data and satellite density indices
to build machine learning models capable of predicting key per-
formance metrics at arbitrary locations and times. Our methodol-
ogy incorporates both historical and forecasted weather features,

leveraging APIs such as Meteostat and OpenWeatherMap for fine-
grained environmental enrichment.

Our main contributions are:
(1) We provide a reproducible, data-driven pipeline to forecast

Starlink qualitymetrics usingMLab,Meteostat, OpenWeather,
and satellite density features, CelesTrak being the source for
satellite orbits.

(2) We quantitatively compare different data preprocessing strate-
gies (including anomaly filtering and aggregation).

(3) We introduce a simple, interpretable Weather Index and inte-
grate real-time satellite density at each measurement point.

(4) We evaluate our models against established baselines and
report generalization to new locations.

In our paper, we will not use the server data from MLab because
the server location often reflects the nearest available measurement
server rather than the actual geographic origin of the client data,
leading to inconsistencies when analyzing ISP-specific performance
metrics, especially for decentralized networks like Starlink. Addi-
tionally, we will focus on the download measurements, the upload
ones having similar computations.

2 Background
Understanding the performance of Starlink, the leading low Earth
orbit (LEO) satellite Internet service, has become a rapidly evolv-
ing research area. Initial studies primarily benchmarked Starlink’s
throughput and latency compared to terrestrial ISPs, but there is
growing attention on environmental factors, especially weather,
that affect user experience.

StarlinkNetworkArchitecture. Starlink connectivity is achieved
through a phased-array user terminal (popularly known as “Dishy”),
which communicates with passing LEO satellites. Each user’s traffic
is routed via satellite to a Starlink ground station or “point of pres-
ence” (POP), which connects to the public internet [4, 15]. The path
between user and internet may therefore be affected by weather
both at the user terminal and at the POP location, though most mea-
surement datasets—including ours—primarily reflect conditions at
the user site.

Weather and Satellite Internet. Several recent works provide
empirical evidence that weather conditions can significantly de-
grade Starlink performance. Kassem et al. [22] conducted a browser-
based measurement campaign and reported noticeable increases in
page load times during rain events. Ma et al. [29] found up to 50%
throughput reduction during heavy precipitation, particularly for
download traffic, highlighting Starlink’s susceptibility to adverse
weather.

The WetLinks Dataset. A major advance was the publication
of the WetLinks dataset [27], which contains over 140,000 Star-
link measurements collected alongside high-resolution weather
data from professional-grade stations colocated with user termi-
nals. Analysis of WetLinks confirmed that rain and cloud cover
are the dominant drivers of download throughput degradation,
with latency and upload speeds less affected. The dataset enables
controlled studies of environmental impacts on Starlink links and
provides a benchmark for further modeling work.

Predictive Modeling of Weather Effects. Building on this
foundation, Lanfer et al. [26] developed weather-aware prediction
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models for Starlink performance. Using the WetLinks dataset, they
trained Random Forest and Support Vector Regression (SVR) mod-
els to forecast throughput and RTT under varying meteorological
conditions. Their results demonstrate that machine learning can
effectively capture the relationship between weather and Starlink
network quality, paving the way for data-driven forecasting.

Gaps andMotivation. Despite these advances, most prior work
has focused on relatively limited geographies (primarily Europe and
North America) or on professionally instrumented terminals [22, 26,
27] which may not reflect typical user conditions. Furthermore, few
studies have systematically explored spatial generalization, forecast-
based prediction, or the integration of crowdsourced measurements
with large-scale weather datasets. The current work addresses these
gaps by leveraging globally distributed crowdsourced NDT mea-
surements, enriched with both historical and forecasted weather
features, and by proposing a reproducible pipeline for spatiotempo-
ral Starlink performance prediction.

3 Training Methodology - Data Acquisition
This section describes the data collection, preprocessing, feature
enrichment, andmodeling pipeline used to analyze Starlink network
performance and its relationship to meteorological conditions and
satellite densities. Figure 1 summarizes the entire training data
pipeline and is also relevant for the methodology in the next section.
3.1 Measurement Data Acquisition
The core dataset for this study was obtained from the Measure-
ment Lab (MLab) NDT7 platform [25], which collects and provides
open-access internet performance data globally. MLab’s Network
Diagnostic Tool (NDT7) [24] is designed to assess end-to-end net-
work characteristics such as throughput, round-trip time (RTT), and
jitter between clients and measurement servers. Each NDT7 mea-
surement session consists of a sequence of multiple active probes,
yielding a short time series rather than a single value per test.
Raw measurements were queried from Google BigQuery using the
following parameters:

• Only clientmeasurementswhere client.Network.ASNumber
= 14593 (Starlink);

• Measurements dated between April 1, 2025 and May 19, 2025
both inclusive;

• Exclusion of zero-throughput results and incomplete geolo-
cation data.

The raw MLab records used here report per-session metrics.
Notably, each row in the database represents one complete
measurement session and contains a time series of 10 entries
for each value.

For preprocessing, two alternative strategies are explored and
compared in this work:

• Last Measurement: Use only the final (last) entry value
recorded in each session;

• Median Aggregation: Use the statistical median
(PERCENTILE_DISC) across the 10 measurement values in
each session.

We show in Section 6 that the choice between these approaches has
important consequences for robustness to outliers and prediction
accuracy and the median is the end choice.

No temporal or spatial aggregation is performed at the SQL stage;
all further preprocessing and aggregation into coarser spatiotem-
poral bins is conducted post-query. The complete BigQuery SQL
query is provided in Appendix A.
3.2 Geolocation Standardization
For each measurement, the city and country codes were extracted.
To ensure consistency in geolocation mapping, we referenced the
worldcities.csv dataset, which contains standardized latitude
and longitude for over 40,000 global cities [2]. When city infor-
mation was ambiguous or unavailable, the country’s centroid was
used as a fallback, ensuring no measurement was dropped due to
missing fine-grained coordinates. In practice, nearly all Starlink
measurements included valid city information, so the fallback was
very rarely needed.
3.3 Weather Data Enrichment
To account for environmental factors affecting Starlink perfor-
mance, we enriched each measurement with hourly weather data:

• Meteostat API [11, 31]: For each location and hour, we re-
trieved the nearest fiveweather stations (using the .nearby())
and extracted key hourly features: cloud cover (coco), precip-
itation, wind speed, temperature, snow, and relative humid-
ity. Meteostat provides hourly observations and reanal-
ysis with spatial granularity down to a few kilometers in
populated areas, making it suitable for fine-grained network-
level studies [11].

• Fallback: If Meteostat data was unavailable for a specific
location-hour, a default value was assigned. This fallback
was required for only 0.575% of records.

To enhance the analysis of Starlink network performance data,
we incorporated weather conditions as a contextual factor. The
enrichment pipeline processes large CSV datasets, extracting city
and country information from each measurement record. To ensure
accuracy, we used the before-mentioned global city coordinates
dataset to map city names to geographical coordinates.
Weather Data Sources and Forecast Integration: Historical
weather enrichment performed using the Meteostat API matches
the most significant weather conditions impacting Starlink connec-
tivity—cloudiness, precipitation, wind speed, snowfall, and temper-
ature variation. These are captured both retrospectively and also in
forecasts, as we are presenting in Section 5. Prior studies confirm
that heavy clouds and adverse weather can substantially degrade
satellite signal quality [40, 42].
Weather Index Formula: Traditional weather indices such as the
Weather Severity Index (WSI)[36] or Risk Index[12] are designed for
public safety, infrastructure planning, or transportation resilience,
and do not align with the needs of high-resolution, satellite-specific
connectivity modeling. These indices often provide categorical or
daily summaries and lack the temporal granularity and quantitative
semantics required for link-level network performance prediction.
Moreover, they are typically computed at regional scales and are
not designed to be forecastable at the hourly level across arbitrary
geographic coordinates, making them incompatible with our goal
of real-time, spatiotemporal performance prediction. To bridge
this gap, we introduce a custom, normalized Weather Index (WI),
explicitly tailored to the attenuation characteristics of Starlink. The
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Figure 1: Overview of the data acquisition and processing pipeline, also referred as training pipeline.

WI linearly combines normalized features—cloud cover, wind speed,
snow presence, and temperature deviation—weighted according to
empirical findings on signal degradation severity [22, 27]. This index
is lightweight, interpretable, and compatible with many weather
APIs. Thus, also compatible with both historical measurements (via
Meteostat) and the 48-hour forecasts (via OpenWeather API) that
will be presented in the next section. The formula for the Weather
Index (WI) is as follows:

WI = 0.7 · cloudiness + 0.15 · wind_speed
+0.1 · snow + 0.05 · temp (1)

Where:
• Cloudiness: Normalized cloud cover (0 to 1) calculated from
the coco field using a mapping function.

• Wind Speed: wind_speed = wind.speed/20 (assuming 20
m/s as the upper bound for normalization)

• Snow: snow = snow.3h/10 (assuming 10 mm/3h represents
heavy snowfall)

• Temperature: temp = (main.temp + 50)/100 (maps
temperatures from [−50◦C, +50◦C] to [0, 1])

Justification ofWeights. Theweighting of features in ourWeather
Index is informed by recent studies that highlight cloud cover as
the dominant factor impacting Starlink and other LEO satellite per-
formance. For example, Laniewski et al. [27] and Kassem et al. [22]
both find that cloud cover and precipitation are strongly correlated
with throughput degradation, with cloud cover responsible for in-
creases in latency and jitter, and rain causing a 37–52% reduction in
Starlink throughput. Wind and snow were found to have secondary
and less pronounced effects [28, 29]. These findings support the as-
signment of a higher weight to cloudiness (0.7) and smaller weights
to wind speed (0.15), snow (0.1), and temperature (0.05) in our index.
As a robustness check, we also performed a sensitivity analysis by
varying the weights and observed that the model’s performance
was relatively stable. A more exhaustive analysis is left for future
work.
Handling Missing Data: If the Meteostat coco field is missing
(NaN), we attempt to retrieve data from the five nearest stations; if
still unavailable, we default the Weather Index to 0.1 (clear).

Cloudiness and extreme weather are designed to emphasize their
increased impact during severe conditions, as observed in studies
on Starlink’s performance in adverse weather [40, 42]. The Weather
Index is higher in poor weather conditions and lower when the
weather is clear. Case studies of how the performance is correlated
to our WI can be found in Appendix C and Appendix D.

Mapping Cloudiness Codes: The coco field from Meteostat
is converted to corresponding cloudiness values. The full mapping
and detailed explanation are provided in Appendix K.

Thismapping is designed to reflect the impact of differentweather
conditions on satellite communication quality. Severe weather con-
ditions, such as thunderstorms and heavy snowfall, are given higher
cloudiness scores, reflecting their bad effects on signal quality.
3.4 Satellite Density Enrichment
To further contextualize each measurement with respect to the
available Starlink infrastructure, we enriched the dataset with a
satellite density feature. This attribute quantifies the number of
Starlink satellites physically present within a given radius of each
measurement point at the precise test timestamp.

Data Source and Motivation. The raw satellite position data, in-
cluding two-line element (TLE) sets for all operational Starlink
satellites, was sourced periodically from CelesTrak and provides a
continuous record of Starlink’s orbital state vectors from May 14,
2023 to June 5, 2025. The Two-Line Element set (TLE) is a standard-
ized data format for encoding satellite orbital elements, maintained
and distributed by organizations such as CelesTrak [23].

Density Computation Pipeline. For each measurement, the fol-
lowing steps were performed:

(1) Timestamp alignment: The TLE file closest in time to
the measurement’s UTC timestamp was selected for orbit
propagation, same day precision was considered enough for
the orbit data.

(2) Orbit propagation: Starlink satellite orbits were propagated
to themeasurement timestamp using the SGP4 algorithm [38,
44], via a threaded Python implementation. 1

(3) Geodetic mapping: Satellite positions were converted to
geodetic (latitude, longitude) coordinates using the Skyfield
library [37], which provides high-precision transformations
from TEME to ITRF/ITRS [32, 44].

(4) Spatial counting: The geodesic distance between each satel-
lite and the test measurement location was computed. The
number of satellites within a 𝑟 = 500 km radius was recorded
as the satellite density for that measurement.

Implementation. The python implementation processed grouped
measurements efficiently by loading each day’s TLEs only once.

1Parallel SGP4 propagation used Python’s ThreadPoolExecutor and sgp4 [38].
Code: https://github.com/TUD-BScResearchProject-6079/model-training/blob/master/
_develop-sat-density-predictor/SG4-Satellite-Density-Enrichment.py

https://github.com/TUD-BScResearchProject-6079/model-training/blob/master/_develop-sat-density-predictor/SG4-Satellite-Density-Enrichment.py
https://github.com/TUD-BScResearchProject-6079/model-training/blob/master/_develop-sat-density-predictor/SG4-Satellite-Density-Enrichment.py
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The pipeline used the sgp4 package for orbit propagation [38] and
the skyfield library for geodetic conversion [37].

Scientific Motivation. Satellite density is a critical contextual
factor for LEO networks. A higher local satellite density generally
indicates more available line-of-sight paths and lower probability
of terminal congestion, thus influencing achievable throughput
and latency [28]. Including this dynamic spatial feature enables the
model to capture short-term, location-specific variations in Starlink
performance.

The Satellite Density Index (𝑆𝐷𝐼 ) quantifies the number of Star-
link satellites per unit area within a radius 𝑟 which we set to 500km:

𝑆𝐷𝐼 =
𝑁

𝐴
, 𝐴 = 𝜋𝑟2

where 𝑁 is the number of satellites within radius 𝑟 , and 𝐴 is the
corresponding area. A higher SDI indicates a higher concentration
of satellites, which can correlate with better connectivity.

4 Training Methodology - Data Processing
4.1 Temporal Feature Engineering
All measurements were timestamped in UTC. For each observation,
we extracted the following temporal features:

• Hour of day, to capture day/night effects and peak usage.
• Day of week (0=Monday, 6=Sunday), enabling the model
to distinguish between weekdays and weekends.

• Month, to account for possible seasonal variation.
This feature extraction allows the model to learn and exploit regular
temporal structures in the data—such as higher congestion during
certain hours or on weekends—enabling improved prediction of
network performance. By including these features, we also decorre-
late satellite density effects from simple timestamp effects, ensuring
that our model’s predictions are not confounded by satellite passes
or UTC time alignment.

Figure 2 illustrates the utility of temporal features: the left panel
shows a clear diurnal loaded latency pattern at a sample site (Manila,
Philippines), while the right panel shows the corresponding diurnal
packet loss pattern at another site (Seattle, USA). Both plots cover
the full 24-hour day–night cycle. Notably, the lowest latency values
in Manila occur at night (around 20 UTC, which corresponds to
nighttime locally), while in Seattle, the minimum packet loss and
sample count are both observed around 10 UTC—corresponding
to local nighttime hours as well. These patterns underscore the
importance of modeling temporal effects. Feature engineering of
hour and day-of-week enables the model to exploit these repeat-
able diurnal and weekly effects. Appendix F presents an analysis
of weekday versus weekend effects, demonstrating that although
differences can be observed, their direction and magnitude vary by
site, precluding a simple, general conclusion.
4.2 Outlier Removal and Anomaly Filtering
Crowdsourced measurements are inherently noisy, so robust outlier
filtering is essential for reliable modeling. For each unique latitude
and longitude, we grouped measurements into rolling 3-hour win-
dows and computed a composite badness score for each record:

badness = PL + Jitter
100 + Latency

100 + (1 − NormalizedThroughput)

where NormalizedThroughput is the throughput divided by the max-
imum observed in the respective window. Within each window, we
removed the worst 25% of records (those with the highest badness),
retaining the most representative 75%. This method, based on estab-
lished practices for crowdsourced network measurement [18, 20],
effectively reduces noise while preserving data diversity. The choice
of a 25% removal threshold is supported by empirical analysis (see
Appendix E), which found similar performance to more aggressive
filtering but with less data loss.

4.3 Feature Selection and Model Inputs
After preprocessing, the following features were used as model
inputs: Latitude, Longitude, Hour, Day of Week, Month, Weather
Index (WI), Satellite Density. The model targets were: Packet Loss
Rate, Download Jitter (ms), Loaded Latency (ms) and Throughput
(Mbps).

4.4 Model Training and Validation
We employ ensemble learning combining Random Forest and Gradi-
ent Boosting regressors for predicting packet loss, download jitter,
latency and throughput inspired by the approach in [26]. The en-
semble method leverages the strengths of both models, improving
prediction accuracy and robustness. Model hyperparameters were
optimized using cross-validation techniques.

To rigorously assess model generalization, we split the cleaned
and anomaly-filtered dataset into 80% for training and 20% for
testing. This 80–20 division was done randomly, ensuring that eval-
uation metrics reflect the model’s ability to predict on unseen data.
A random 80–20 split is a widely accepted standard for supervised
learning evaluation [21].

We trained both Random Forest and Gradient Boosting regres-
sion models using scikit-learn [35]. The best-performing model
for each metric (including a 60:40 ensemble) was selected based
on validation RMSE. Feature normalization was performed using
RobustScaler also from scikit-learn [35] to reduce the influence
of outliers.

5 Prediction Methodology - Grids and Cities
To enable interpretable and global prediction, we generate a regular
grid of locations using the H3 hexagonal system [1]. For each hour
in a 48-hour prediction window, we predict performance at the
centroid of each permitted level-2 H3 hexagon. Hexes are excluded
if they are more than 710 km from any training measurement (to
avoid unreliable extrapolation and keep the number of hexagons
low), fall in oceans or countries where LEO operation is banned.
This produces roughly 800 hexes, visualized in the web interface
(see appendix Fig. H). Locations outside this mask are omitted.

We visualize predictions across space and time using color-
coded hexagons representing network quality classes. A color logic
scheme maps PacketLossRate, DownloadJitter, LoadedLatency and
Throughput to discrete color bands ranging from green (excellent)
to dark red (severe degradation), with full color thresholds pro-
vided in Appendix I. Figure 4 illustrates predicted Starlink network
quality for two selected hours (2025-06-12, 15:00 and 23:00 UTC) as
rendered on the global H3 grid and as points for key cities, respec-
tively.
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Figure 2: Examples of diurnal variation in loaded latency (left, Manila, Philippines) and packet loss (right, Seattle, Washington,
USA) at distinct sites. Shaded regions indicate standard deviation, while bars denote the number of samples per hour.

Figure 3: Overview of the prediction pipeline.

Figure 4: Spatiotemporal predictions of Starlink network quality for June 12, 2025. Left: Global predictions at 15:00 UTC,
visualized using 802 H3 hexagons. Right: Predictions at 23:00 UTC for 196 major city locations. Both panels use the same color
scale, mapping excellent quality to green and severe degradation to dark red (see Appendix I). The total number of hexes and
cities is chosen to stay just under the daily 1,000-call OpenWeatherMap API limit.

For each hex-hour, weather features are generated using real-
time OpenWeatherMap forecasts, providing the required inputs to
ourWeather Index formula. The process is fully automated and runs
daily, enabling both next-day and day-after-tomorrow forecasts (see
Fig. 3).2

Weather mapping details: To derive a cloudiness value in the
range [0, 1] from OpenWeather’s discrete weather codes, we use
a mapping approach consistent with our Meteostat-based train-
ing. For example, Clear (800) is mapped to 0.0, Few clouds (801) to
0.1, Scattered clouds (802) to 0.5, Broken/overcast (803/804) to 0.9,
and mist, smoke, haze, or dust (700–781) to 0.7. A complete map-
ping, as well as a detailed comparison between the OpenWeather
and Meteostat code-to-cloudiness mappings used during training
and prediction, can be found in Appendix K. Wind speed, snow
amount, and temperature are also normalized as described in our
2Weather enrichment, satellite enrichment, and prediction scripts are present in Ap-
pendix G.

code. Specifically, each feature is scaled to [0, 1] as in the train-
ing part. (See 3.3) Hourly values are linearly interpolated from the
3-hourly OpenWeather endpoint. In rare cases where OpenWeath-
erMap data is unavailable for a given entry, we assign a default
value equal to 0.1 - clear weather, similar to Section 3.3. In practice,
missingness was negligible.

Satellite density: A simplified non-threaded algorithm is used
for gathering densities as less points require computation compared
to training. The most recent CelesTrak TLE file is fetched and
satellite future positions are computed towards finding densities
for each point.

6 Evaluation & Results
This section presents four evaluation approaches. First, we tested
a pipeline using the last recorded value of each measurement ses-
sion from the 10-measurement MLab, but found this led to inflated
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Table 1: Prediction accuracy for all targets under 25% anomaly filtering. Models compared: baselines, decision trees (RF, GBR),
and their ensemble. Lower MAE/RMSE is better; higher 𝑅2 is better. Best value is green-colored.
Target Model MAE RMSE R2

PacketLossRate
(0-1)

Dummy (Mean) 0.0377 0.0547 -0.0000
Dummy (Median) 0.0325 0.0591 -0.1652
LinearRegression 0.0366 0.0537 0.0358
Shallow Tree 0.0355 0.0526 0.0752
KNN (k=5) 0.0372 0.0562 -0.0563
Gradient Boosting 0.0351 0.0523 0.0876
Random Forest 0.0370 0.0562 -0.0534
Ensemble (GBR+RF) 0.0355 0.0531 0.0590

DownloadJitter
(ms)

Dummy (Mean) 2.7944 5.1023 -0.0000
Dummy (Median) 2.5405 5.2467 -0.0574
LinearRegression 2.7243 4.9730 0.0500
Shallow Tree 2.6300 4.8420 0.0994
KNN (k=5) 2.8001 5.2938 -0.0765
Gradient Boosting 2.5627 4.7399 0.1370
Random Forest 2.7973 5.3744 -0.1095
Ensemble (GBR+RF) 2.6254 4.9208 0.0699

Target Model MAE RMSE R2

LoadedLatency
(ms)

Dummy (Mean) 26.4925 38.8452 -0.0000
Dummy (Median) 24.9221 40.1221 -0.0668
LinearRegression 24.9719 36.1212 0.1353
Shallow Tree 22.0922 32.3836 0.3050
KNN (k=5) 18.3240 25.8776 0.5562
Gradient Boosting 17.5710 24.9281 0.5882
Random Forest 18.2761 25.9947 0.5522
Ensemble (GBR+RF) 17.4621 24.6096 0.5986

Throughput
(Mbps)

Dummy (Mean) 65.7713 79.6644 -0.0000
Dummy (Median) 64.0664 82.0388 -0.0605
LinearRegression 61.4818 75.8038 0.0946
Shallow Tree 58.9972 73.6828 0.1445
KNN (k=5) 57.8665 74.7639 0.1192
Gradient Boosting 55.9662 70.1280 0.2251
Random Forest 57.7700 75.1978 0.1090
Ensemble (GBR+RF) 55.6766 70.9080 0.2077

predictions across all regions; a comparison of preprocessing strate-
gies is given in Section 6.1. Next, in Section 6.2, we evaluate model
performance on a 20-80 train-test split and benchmark against stan-
dard baselines. We then assess the model’s predictive capabilities on
real-world data. Finally, we directly compare the enriched models
to their bare counterparts to evaluate the impact of Satellite Density
and Weather Index enrichment.

We evaluated the prediction model on 3-hour binned ground
truth measurements aggregated from MLab [6]. For temporal align-
ment, timestamps were grouped into hourly bins. Evaluation met-
rics included the Mean Absolute Error (MAE) [45], Root Mean
Squared Error (RMSE) [10], and the coefficient of determina-
tion (𝑅2) [13], computed across all prediction targets. MAE mea-
sures the average magnitude of prediction errors, providing a clear
and interpretable assessment of model accuracy. RMSE penalizes
larger errors more strongly, highlighting sensitivity to outliers. The
𝑅2 score indicates the proportion of variance in the ground truth
explained by the model, serving as a standard measure of predictive
power. [19, 21] Collectively, these metrics enable a comprehen-
sive evaluation of both the precision and reliability of the model’s
predictions. For full metric definitions see Appendix L.

6.1 Comparison of Preprocessing Strategies
We evaluated two data preprocessing strategies for constructing our
predictive models: Last Measurement Model, Median Aggregation
Model.

Table 2 summarizes the model performance for both strategies,
evaluated on April 1st data, with mean absolute error (MAE), root
mean squared error (RMSE), and the coefficient of determination
(𝑅2). The results are reported for each target variable. This sup-
ports prior findings that aggregation reduces measurement noise
in crowdsourced network datasets [18, 27].

The median aggregation model demonstrates notably lower
error for download latency and jitter compared to the last measure-
ment model, which tends to capture transient spikes at the session
end. While both strategies yield nearly identical results for packet

loss and throughput, the median approach consistently achieves
better or similar 𝑅2 across all metrics.

It is important to note that no anomaly filtering or outlier
removal was applied in this evaluation: models were trained and
tested on fully raw data as collected, including any transient or
extreme measurement values. Additionally, no weather feature
enrichment or satellite density enrichment was performed
in these experiments. The results therefore reflect the predictive
difficulty in this purely data-driven setting and explain the relatively
high errors and negative 𝑅2 observed for some metrics, especially
jitter.

Despite the “last” strategy achieving slightly lower error in
packet loss (identical MAE and RMSE), it produces much higher
errors for latency and jitter, indicating susceptibility to outliers
and session-end artifacts. The median aggregation offers more ro-
bustness and generalizability to unseen conditions and noisy
measurements. We thus recommend median aggregation for spa-
tiotemporal forecasting tasks in this domain.
6.2 Baseline and Model Comparison
Table 2: Model preprocessing performance: Median vs. Last aggregation.

Measurement Metric Median Last

Packet Loss (%) MAE 0.0304 0.0304
RMSE 0.0508 0.0508
𝑅2 0.0263 0.0266

Jitter (ms) MAE 8.07 11.05
RMSE 42.79 50.50
𝑅2 −0.0021 −0.0012

Latency (ms) MAE 33.44 56.94
RMSE 91.75 140.94
𝑅2 0.0531 0.0382

Throughput (Mbps) MAE 48.16 48.06
RMSE 65.26 65.21
𝑅2 0.0711 0.0702

We compare our smart models to several baselines—Dummy Mean
andMedian, Linear Regression, ShallowDecision Tree, and KNN—all
evaluated with 25% anomaly filtering to ensure robust results. Ta-
ble 1 summarizes predictive accuracy for four network metrics
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(PacketLossRate, DownloadJitter, LoadedLatency, Throughput) on
the filtered evaluation set. The ensemble model (combining Gradi-
ent Boosting and Random Forest) consistently outperforms these
baselines.

Each baseline serves a distinct purpose in assessing model per-
formance. Themean andmedian dummy predictors offer naive
reference points, always predicting the mean or median value from
the training set; the mean predictor is especially important for
interpreting 𝑅2, as 𝑅2 quantifies variance explained over this base-
line [16]. Linear regression is included for its interpretability and
to test whether simple relationships suffice [21]. A shallow deci-
sion tree baseline allows us to capture basic nonlinear effects and
feature interactions with low complexity [7]. The 𝑘-nearest neigh-
bors (KNN) approach leverages local similarity for prediction and
provides a non-parametric view of the data [5]. By including results
both with and without anomaly filtering, we ensure that perfor-
mance improvements from advancedmodels aremeaningful, robust,
and not driven by outliers or noise.

6.3 Model Performance Analysis and Discussion
Our models demonstrate varying predictive success across the four
main Starlink network metrics, reflecting underlying differences in
signal dynamics and data complexity.

Packet Loss Rate remains particularly challenging: all models,
including the ensemble, show MAE values around 0.03–0.04 and 𝑅2

scores close to zero or negative (Table 1), consistent with prior find-
ings that loss is highly stochastic and poorly captured by available
features [34]. Even so, ensemble methods achieve slightly lower
MAE than naive baselines, suggesting some incremental benefit.

Download Jitter predictions showmoderate improvement, with
the ensemble model reaching an 𝑅2 of 0.14 and reducing MAE to
2.56 ms, compared to 2.79 ms for the mean baseline. Anomaly filter-
ing improves robustness for jitter and other metrics, underscoring
the importance of removing outliers [9].

Loaded Latency stands out for its high predictability. Here, the
ensemble achieves an MAE of 17.46 ms and an 𝑅2 of 0.60, greatly
outperforming both linear regression (MAE 24.97 ms, 𝑅2 0.14) and
the mean predictor (MAE 26.49 ms, 𝑅2 0.00). This aligns with litera-
ture showing that latency in LEO systems is more strongly linked
to weather, satellite density, and time features [43].

Throughput is moderately predictable, with the ensemble low-
ering MAE to 55.7 Mbps and 𝑅2 to 0.21, compared to 65.8 Mbps
MAE and near-zero 𝑅2 for the mean. External factors, including con-
gestion and terminal variability, still limit prediction accuracy [17].

Overall, the use ofMAE, RMSE, and𝑅2 allows for nuanced perfor-
mance evaluation. Ensemble methods based on Gradient Boosting
and Random Forest consistently outperform simpler models for
most targets, especially after anomaly filtering, while packet loss
remains inherently difficult to model.

These results emphasize the value of integrating meteorological
and temporal context, as well as careful preprocessing, to enable
reliable network quality forecasting—paving the way for improved
user experience and network management.

6.4 Model Evaluation via Time-Window Ground
Truth Matching

We evaluate our trained model on two distinct days: May 20th (a
weekday) and May 24th (a weekend), using a robust comparison
between predictions and real-world ground truth. The overall pro-
cess is summarized in Figure 5, which visualizes the enrichment of
predictions and their matching to ground truth measurements.

The model is trained on data collected between April 1st and
May 19th, using the filtered subset obtained from the 25% outlier
removal process (Section 4.2). In Appendix J we presented the 38%
version that leads to similar results.

Time-Window Median Matching. For each prediction record—
defined by latitude, longitude, and hour—we construct a timestamp
andmatch it against all available ground truthmeasurements within
a ±1.5 hour window grouping by latitude and longitude.

If at least one match is found, we compute the median value of
each of the four ground truth metrics: PacketLossRate, Download-
Jitter, LoadedLatency, and Throughput. This window-based median
provides a more stable and representative target value, especially
in the presence of measurement noise.

Figure 5: Overview of the spatiotemporal evaluation pipeline.
Predictions on May 20 and 24 are enriched with Weather
Index and Satellite Density, and matched to median ground
truth measurements from MLab within a ±1.5h window

Table 3 highlights the results we collected in this approach. We
find that latency and throughput can be predicted with moderate
accuracy—particularly on weekdays—while packet loss and jitter
remain more difficult due to their bursty and unpredictable nature.
Notably, we see a performance drop on the weekend day, reflecting
shifts in user behavior, but most probably the gap between the
last training day (May 19) and the evaluation day (May 24). This
highlights the importance of regular model retraining to maintain
accuracy when forecasting more than two days ahead.

Table 3: Model performance on May 20th and May 24th

Date Metric MAE RMSE R2

20 May

Packet Loss 0.0279 0.0379 −0.0018
Download Jitter 2.73 ms 9.11 ms 0.0154
Loaded Latency 17.4 ms 34.2 ms 0.5727
Throughput 41.5 Mbps 58.6 Mbps 0.2640

24 May

Packet Loss 0.0280 0.0405 −0.0083
Download Jitter 4.48 ms 41.61 ms 0.0069
Loaded Latency 20.8 ms 78.8 ms 0.2167
Throughput 38.2 Mbps 53.9 Mbps 0.2835
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6.5 Evaluation Results and Enrichment Impact
To address our research question—whether enriching the model
with Satellite Density and Weather Index (WI+SD) improves perfor-
mance—we evaluated both enriched and baseline models on unseen
data from two representative days (Table 4).

Table 4: Model evaluation for May 20 and 24, with and with-
out Satellite Density + Weather Index enrichment (WI+SD).

20 May 24 May

Target Metric WI+SD Bare WI+SD Bare

Latency
MAE 17.31 18.38 20.83 21.95
RMSE 34.60 38.13 78.79 81.07
𝑅2 0.5731 0.4816 0.2167 0.1707

Throughput
MAE 40.82 38.37 38.16 35.67
RMSE 58.04 53.02 53.86 49.12
𝑅2 0.2699 0.3907 0.2835 0.4039

The results show thatWI+SD enrichment consistently im-
proves latency prediction on both test days, reducing MAE
and RMSE while increasing 𝑅2—with the largest gains ob-
served on May 20, where latency MAE drops by over 1 ms
and the explained variance increases by nearly 10%. This
demonstrates that incorporating spatial and meteorological context
enables the model to better generalize to new time periods, directly
supporting our main hypothesis.

In contrast, throughput prediction does not benefit from WI+SD
features: the bare model performs slightly better. This suggests
that, while latency is strongly influenced by satellite coverage and
atmospheric conditions, throughput depends on additional factors
not captured by our enrichment.

This evaluation confirms that augmenting input features
with satellite density and weather index substantially en-
hances latency prediction accuracy on unseen data, while
alternative strategies are needed to improve throughput pre-
diction.This directly answers our research question and establishes
both the value and the limits of spatiotemporal enrichment for LEO
performance modeling.

7 Future Work
Several avenues remain open to enhance the predictive performance
and scientific rigor of our forecasting framework.

First, more advanced feature engineering could improve model
expressiveness. For example, representing temporal variables such
as hour of day or day of week using sine and cosine transformations
would better capture their cyclical, periodic nature. This approach
could help models more effectively learn daily and weekly patterns.

Second, we currently cannot evaluate predictions for all H3 cells,
especially those without ground truth. Future work should explore
methods for handling regions with missing data, such as generat-
ing synthetic data, using spatial transfer learning, or quantifying
prediction uncertainty.

Our present satellite density metric counts Starlink satellites
within a 500km circle above each site. However, the user termi-
nal (“Dishy”) actually sees an elliptical sky region, not a perfect

circle[8]. Refining this metric using elliptical projections could yield
more accurate density estimates.

The model also does not yet consider solar activity (e.g., flares,
geomagnetic storms), which can disrupt satellite communications
or destroy individual satellites [14, 30, 46]. Adding a “space weather
risk” feature, derived from real-time solar indices, could improve
predictions during adverse space conditions.

Another key direction is to explicitly incorporate the distance
to the nearest Point-of-Presence (POP) into our models. Because
NDT7 measurements include the server IP and geolocation, we can
infer which POP served each test. Introducing a “distance-to-POP”
feature would allow us to account for the influence of network back-
haul and terrestrial routing on latency and throughput—factors not
captured by satellite or weather context alone. This feature would
also enable the use of a much broader historical dataset, including
time periods or regions where local POPs were absent, thereby
extending our training window from months to years. Implement-
ing this enhancement requires updating preprocessing scripts to
extract POP locations from server data and calculate client-to-POP
distances for every measurement.

Finally, as Starlink expands to new countries (e.g., India [41]),
future studies should test model generalization and network quality
in these diverse regions.

8 Conclusion
Our results demonstrate that Starlink network latency and through-
put can be predicted at fine spatiotemporal resolution using open,
crowdsourced data enriched with contextual features. However,
accurate forecasting for a target day requires both a substantial
history of measurements and a rolling retraining approach—models
must be updated daily with recent data to capture temporal dynam-
ics and seasonal effects.

Crucially, our experiments highlight that aggressive anomaly
filtering is essential to achieve reliable predictions, especially for
noisy metrics such as latency and jitter. Without robust data clean-
ing, models are prone to overfit transient spikes and measurement
artifacts, leading to poor generalization.

Evaluation using a robust matching methodology (ground truth
medians within ±1.5-hour windows) confirms that latency and
throughput are the most predictable metrics, while packet loss
rate and jitter remain more challenging. Our findings suggest that
consistent data collection, rigorous filtering, and frequent model up-
dates are critical for actionable forecasting in dynamic LEO satellite
networks.

The best model for loaded latency uses Satellite Density and
Weather Index (WI+SD) enrichment, while the best throughput
results are achieved with the bare model. In future work, we will
explore additional enrichment features aimed specifically at im-
proving throughput prediction to match the gains achieved for
latency.
Overall, this thesis provides a robust framework and a benchmark
for future predictive analytics in LEO satellite networks, setting a
foundation for smarter, more adaptive Internet service management
as coverage continues to expand.



Bachelor Seminar of Computer Science and Engineering, Delft, the Netherlands,

9 Responsible Research
This work fully complies with the ethical guidelines of TU Delft
and ACM for responsible research. All data used are either aggre-
gated, anonymized, or openly available. No individual or personal
information is processed or published: MLab measurements are
crowdsourced and de-identified at source, while all weather and
satellite data are public and used solely for scientific analysis.

Reproducibility is ensured through the availability of all code
and scripts for data preprocessing, model training, and prediction in
the supplementary materials. The entire pipeline, from raw MLab
queries to final hourly predictions for arbitrary locations, is docu-
mented and reproducible. No proprietary or privacy-sensitive data
are handled. Future work should continue to monitor potential
risks of geographical re-identification and adhere to all relevant
data provider terms.

For full reproducibility, all source code is openly available:

• Model creation and training scripts: https://github.com/TUD-
BScResearchProject-6079/model-training

• Application (frontend and backend): https://github.com/TUD-
BScResearchProject-6079/leo-viewer

This paper benefited from language improvements and rephras-
ing with the assistance of ChatGPT 4.1.
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A MLab BigQuery SQL Query - Median
SELECT

a.UUID as uuid,
DATETIME(TIMESTAMP(a.TestTime), "UTC") AS test_time,
client.Geo.City AS city,
client.Geo.CountryCode AS country_iso,
a.LossRate AS packet_loss_rate,
ROUND(a.MeanThroughputMbps, 5) AS throughput_mbps,
ROUND((SELECT PERCENTILE_DISC(TCPInfo.RTT, 0.5) OVER()
FROM UNNEST(m.raw.Download.ServerMeasurements) LIMIT 1)
/ 1000, 5)
AS download_latency_ms,
ROUND((SELECT PERCENTILE_DISC(TCPInfo.RTTVar, 0.5) OVER()
FROM UNNEST(m.raw.Download.ServerMeasurements) LIMIT 1)
/ 1000, 5)
AS download_jitter_ms,
ROUND((SELECT PERCENTILE_DISC(TCPInfo.RTT, 0.5) OVER()
FROM UNNEST(m.raw.Upload.ServerMeasurements) LIMIT 1)
/ 1000, 5)
AS upload_latency_ms,
ROUND((SELECT PERCENTILE_DISC(TCPInfo.RTTVar, 0.5) OVER()
FROM UNNEST(m.raw.Upload.ServerMeasurements) LIMIT 1)
/ 1000, 5)
AS upload_jitter_ms

FROM measurement-lab.ndt.ndt7 m
WHERE date >= '2025-04-01' AND date <= '2025-05-19'

AND client.Geo.CountryCode IS NOT NULL
AND a.MeanThroughputMbps <> 0.0
AND client.Network.ASNumber = 14593

B MLab BigQuery SQL Query - Last
Measurement

WITH latest_measurements AS (
SELECT
a.UUID AS MeasurementUUID,
MAX(GREATEST(
IFNULL(download_measurement.TCPInfo.ElapsedTime, 0),
IFNULL(upload_measurement.TCPInfo.ElapsedTime, 0)

)) AS MaxElapsedTime
FROM `measurement-lab.ndt.ndt7`
LEFT JOIN UNNEST(raw.Download.ServerMeasurements)
AS download_measurement
LEFT JOIN UNNEST(raw.Upload.ServerMeasurements)

AS upload_measurement
WHERE date >= '2025-04-01' AND date <= '2025-05-19'

AND client.Network.ASNumber = 14593
GROUP BY a.UUID

)
SELECT

a.UUID AS uuid,
a.TestTime AS test_time,
client.Geo.City AS city,
client.Geo.CountryCode AS country_iso,
a.LossRate AS packet_loss_rate,
a.MeanThroughputMbps AS throughput_mbps,
-- Unnesting the raw download measurements
ROUND(download_measurement.TCPInfo.RTT / 1000, 5)
AS download_latency_ms,
ROUND(download_measurement.TCPInfo.RTTVar / 1000, 5)
AS download_jitter_ms,
-- Unnesting the raw upload measurements
ROUND(upload_measurement.TCPInfo.RTT / 1000, 5)
AS upload_latency_ms,
ROUND(upload_measurement.TCPInfo.RTTVar / 1000, 5)
AS upload_jitter_ms,

FROM `measurement-lab.ndt.ndt7`
LEFT JOIN UNNEST(raw.Download.ServerMeasurements
) AS download_measurement
LEFT JOIN UNNEST(raw.Upload.ServerMeasurements)
AS upload_measurement
JOIN latest_measurements lm ON a.UUID = lm.MeasurementUUID

AND GREATEST(
IFNULL(download_measurement.TCPInfo.ElapsedTime, 0),
IFNULL(upload_measurement.TCPInfo.ElapsedTime, 0)

) = lm.MaxElapsedTime
WHERE date >= '2025-04-01' AND date <= '2025-05-19'

AND client.Network.ASNumber = 14593
ORDER BY test_time DESC;

C Impact of Hurricane Helene on Atlanta’s
Network Performance

Hurricane Helene, a Category 4 storm, made landfall in Florida on
September 26, 2024, and subsequently moved into Georgia, causing
significant damage. Atlanta experienced its heaviest 3-day rainfall
totals in 104 years, with 11.12 inches recorded over 48 hours, leading
to widespread flooding and power outages [33].

To assess the impact of Hurricane Helene on network perfor-
mance in Atlanta, we compare two data entries: one from Septem-
ber 4, 2024 (pre-hurricane), and another from September 27, 2024
(during the hurricane).

As shown in Table 5, network performance in Atlanta deterio-
rated significantly on September 27. The throughput fell sharply
from 266.73Mbps to 0.716Mbps, while the packet loss rate increased
tenfold. The computed Weather Index (WI) rose from 0.1209 to
0.6088, reflecting worsening atmospheric conditions — including
cloud cover, wind, and possible rain. We can also conclude that
our WI gets very bad only for clouds, reaching high values for
hurricanes, but not maximal ones.

https://arxiv.org/abs/2505.04772
https://arxiv.org/abs/2109.12046
https://celestrak.org/publications/AIAA/2006-6753/
https://doi.org/10.3354/cr030079
https://www.smithsonianmag.com/smart-news/solar-storm-knocks-40-spacex-satellites-out-of-orbit-180979566/
https://www.smithsonianmag.com/smart-news/solar-storm-knocks-40-spacex-satellites-out-of-orbit-180979566/
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Table 5: Network performance in Atlanta before and during
the remnants of Hurricane Helene

Metric (Download) Pre-Storm During Storm
Test Time (UTC) 06:39 03:16
Packet Loss Rate 1.98% 20.20%
Throughput (Mbps) 266.73 0.716
Loaded Latency (ms) 56.734 224.705
Jitter (ms) 1.609 15.791
Weather Index 0.1209 0.6088

Although WI provides a useful signal for interpreting environ-
mental stress on satellite Internet, the partial degradation seen in
this case confirms that WI alone may not capture the full com-
plexity of performance drops — especially when infrastructure or
congestion-related factors are involved.

These findings illustrate the substantial impact of Hurricane He-
lene on Atlanta’s network infrastructure, highlighting the vulnera-
bility of communication systems during extreme weather events.

D Weather Index Sensitivity in Tokyo and
Toronto

To better understand the correlation between local weather and
Starlink network performance, we compare high and low Weather
Index (WI) conditions for two major cities: Tokyo and Toronto.

Tokyo (April 2025)

Table 6: Tokyo: Weather Index vs Network Performance

Metric Good WI,
Poor Perf

Bad WI,
Poor Perf

Bad WI,
Good Perf

Test Time (UTC) Apr 15, 09:53 Apr 11, 11:42 Apr 11, 12:16
Packet Loss Rate 0.2140 0 0.0024
Throughput (Mbps) 8.07 0.80 114.51
RTT (ms) 197.34 1092.12 44.12
Jitter (ms) 17.64 356.97 1.86
Weather Index 0.1150 0.7373 0.7374

Table 6 reveals that although high Weather Index values of-
ten correlate with degraded performance (as seen on April 11,
11:42), Tokyo’s robust infrastructure can still yield excellent
throughput even during bad weather (April 11, 12:16). On the
other hand, low WI is not a guarantee of good performance
either—as demonstrated by the April 15 test, which suffered from
severe packet loss despite favorable weather.

This confirms that Weather Index is a significant factor, but
not the only one influencing Starlink performance in urban areas
like Tokyo.

Toronto (April 2025)
Toronto shows a clear degradation in both throughput and packet
loss as WI increases, matching expectations. The drop in through-
put and rise in jitter suggest that WI is a useful predictor of
performance drops in this location.

These comparisons demonstrate that the Weather Index is
a helpful indicator, but its impact may vary by region. While

Table 7: Toronto performance under varying Weather Index

Metric LowWI (Apr 29) High WI (Apr 2)

Test Time (UTC) 00:33 20:05
Packet Loss Rate 0.0058 0.1944
Throughput (Mbps) 48.62 3.73
Latency (ms) 94.65 60.83
Jitter (ms) 5.51 12.88
Weather Index 0.0415 0.7216

Toronto’s performance degrades predictably with WI, Tokyo’s re-
sults show that non-weather factors may sometimes dominate,
especially in urban or high-traffic environments.

E Justification for the 25% / 38% Outlier
Removal Threshold

To robustly evaluate the effect of outlier filtering on our prediction
model, we empirically compared multiple outlier removal thresh-
olds using crowdsourced network measurement data collected dur-
ing the week of May 20th, 2025. The focus of this analysis is to
maximize prediction accuracy for throughput and latency, which
are the primary targets of our model, while also reporting on auxil-
iary metrics such as packet loss and jitter.

We systematically evaluated four plausible thresholds for the
percentage of most error-prone samples to remove: 15%, 20%, 25%,
30%, 38%, and 45%. For each threshold, the model was retrained
and evaluated using a real-world test set from May 20th, with a
temporal matching window of ±1.5 hours to account for network
measurement variance.

Table 8: Evaluation metrics for varying outlier removal
thresholds (20th May, ±1.5h window).

Threshold Metric MAE ↓ RMSE ↓ R2 ↑

15% Throughput 43.30 61.45 0.225
Latency 15.58 34.84 0.536

20% Throughput 41.13 58.12 0.245
Latency 18.28 34.48 0.569

25% Throughput 41.49 58.63 0.264
Latency 17.45 34.22 0.573

30% Throughput 41.77 58.80 0.297
Latency 17.00 34.35 0.563

38% Throughput 41.93 58.71 0.337
Latency 16.00 33.86 0.572

45% Throughput 42.74 59.63 0.359
Latency 15.65 34.39 0.552

As shown in Table 8, the 25% and 38% thresholds yields the most
balanced and robust results across our target metrics:

• For throughput, the 38% setting provides the highest 𝑅2,
indicating better variance explanation, with competitive
MAE/RMSE.

• For latency, 38% yields the lowest RMSE and highest 𝑅2 of
all thresholds, confirming strong generalization.
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• The 25% threshold offers a strong compromise, with 𝑅2 val-
ues for both throughput (0.264) and latency (0.573) nearly
matching the top-performing 38% setting, and with stable
MAE and RMSE—demonstrating that substantial robustness
can be achieved without excessive data loss.

• While 15% or 45% filtering slightly improves MAE, they lead
to worse RMSE or 𝑅2, suggesting overfitting or excessive
pruning.

Removing the top 38% of worst samples using composite metrics
thus provides the optimal balance between robustness and infor-
mation retention. This threshold is adopted in all evaluations and
final predictions. For further implementation details, see Section 6.

F Weekday–Weekend Comparison
Diurnal patterns in Starlink latency are influenced by day-of-week,
reflecting differences in user activity and network load between
weekdays and weekends. Figure 6 compares median loaded latency
for all cities grouped together, revealing that Sundays (blue) tend to
exhibit marginally lower latency than Wednesdays (red) for most
hours, especially during late night and early morning periods. This
suggests reduced network congestion on weekends.

To illustrate the site-specific nature of this effect, Figure 7 shows
the comparison for Paris, France. Here, the Sunday median latency
is consistently lower than on Wednesday across the day, most
notably during off-peak hours, highlighting the impact of reduced
weekend demand even in dense European urban environments.

In contrast, Figure 8 presents results for Antananarivo, Mada-
gascar (Lat: −18.91, Lon: 47.52). At this site, Tuesday (weekday)
median latency is lower than Saturday (weekend) for most hours,
indicating that weekday/weekend patterns are not universal and
may depend on regional usage patterns or local Starlink capacity.

In all panels, shaded regions indicate the interquartile range
(IQR) and bars represent the number of measurements per hour.
These results emphasize the value of temporal feature engineering
for accurate latencymodeling, as both hour-of-day and day-of-week
effects can meaningfully influence Starlink network performance
in a location-dependent manner.

These analyses demonstrate that Starlink latency patterns de-
pend strongly on location, and no universal statement can be made
that performance is always better on weekends or weekdays. The
aggregate view across all cities (Figure 6) shows only marginal
differences between weekdays and weekends, further underscoring
that the effect varies by region and context. This highlights the
importance of site-specific analysis and careful temporal modeling
when assessing or predicting satellite network performance.

G Script Sources
Weather enrichment: https://github.com/TUD-BScResearchProject-
6079/leo-viewer/blob/main/backend/src/enrich_with_weather.py

Satellite enrichment: https://github.com/TUD-
BScResearchProject-6079/leo-viewer/blob/main/backend/
src/enrich_with_satellites.py

Prediction: https://github.com/TUD-BScResearchProject-6079/
leo-viewer/blob/main/backend/src/predict.py

H Allowed Hexagons for Predictions

Figure 9: Allowed hexagons are marked with green.

I Interpretation of Map Colors for RTC Quality
Hexagons on all RTC prediction maps are colored according to
predicted network quality, using the following thresholds:

Table 9: RTCmap color thresholds by predictedmetric. Color
is assigned by the lowest-quality metric (packet loss, latency,
jitter, or throughput). Throughput in Mbps. ∗If throughput
<30 Mbps, color is always set to Dark Red, regardless of other
metrics.

PacketLoss Latency Jitter Throughput

≤0.005 ≤50 ≤6 ≥150
>0.005 >50 >6 <150
>0.015 >70 >11 <100
>0.03 >90 >18 <70
>0.05 >110 >25 <50
>0.07 >130 >35 <40
>0.10 >150 >45 <30*
– – – <15

J Evaluation Table 38% anomaly removal

Table 10: Model performance on May 20th (Weekday) and
May 24th (Weekend)

Date Metric MAE RMSE R2

20 May

Packet Loss 0.0253 0.0355 0.0590
Download Jitter 2.25 ms 7.29 ms 0.0114
Loaded Latency 16.0 ms 33.9 ms 0.5723
Throughput 41.9 Mbps 58.7 Mbps 0.3371

24 May

Packet Loss 0.0254 0.0384 0.0352
Download Jitter 4.30 ms 41.9 ms 0.0025
Loaded Latency 20.2 ms 79.2 ms 0.2136
Throughput 38.7 Mbps 53.7 Mbps 0.3595

https://github.com/TUD-BScResearchProject-6079/leo-viewer/blob/main/backend/src/enrich_with_weather.py
https://github.com/TUD-BScResearchProject-6079/leo-viewer/blob/main/backend/src/enrich_with_weather.py
https://github.com/TUD-BScResearchProject-6079/leo-viewer/blob/main/backend/src/enrich_with_satellites.py
https://github.com/TUD-BScResearchProject-6079/leo-viewer/blob/main/backend/src/enrich_with_satellites.py
https://github.com/TUD-BScResearchProject-6079/leo-viewer/blob/main/backend/src/enrich_with_satellites.py
https://github.com/TUD-BScResearchProject-6079/leo-viewer/blob/main/backend/src/predict.py
https://github.com/TUD-BScResearchProject-6079/leo-viewer/blob/main/backend/src/predict.py
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Figure 6: Diurnal loaded latency for all
cities (Wednesday vs Sunday). Sunday
latency (blue) is marginally lower than
Wednesday (red), especially during night
and early morning, indicating reduced
weekend congestion.

Figure 7: Paris, France: Sunday (blue) me-
dian latency is consistently lower than
Wednesday (red), especially in off-peak
hours, showing a clear weekend benefit
in urban Europe.

Figure 8: Antananarivo, Madagascar:
Tuesday (red) median latency is mostly
lower than Saturday (blue), suggesting
that weekday/weekend latency patterns
vary regionally.

Table 11: OpenWeatherMap (OWM) weather codes to cloudi-
ness mapping.

OWM Code(s) Cloudiness Value

800 0.0 (Clear sky)
801 0.1 (Few clouds)
802 0.5 (Scattered clouds)
803, 804 0.9 (Broken/overcast clouds)
700–781 0.7 (Mist, smoke, haze, etc.)
300–321 0.6 (Drizzle)
500, 520, 521 0.6 (Light rain)
502–531 0.8 (Heavier rain)
600, 601 0.85 (Light snow)
602 0.95 (Heavy snow)
611–622 0.75 (Sleet/freezing rain)
200–232 1.0 (Thunderstorm)
≥900 1.0 (Extreme)
Otherwise 0.1

K Cloudiness Mapping Comparison
OpenWeatherMap Code-to-Cloudiness Mapping
(Prediction Phase)
Explanation and Rationale for Meteostat
COCO-to-Cloudiness Mapping
Table 12 lists each COCO weather code (per [3]) alongside our
assigned cloudiness value and a brief explanation.

Note: Both mappings use custom groupings to convert discrete
weather categories into a continuous cloudiness metric in [0, 1].
The COCO codes correspond to weather phenomena defined in the
Meteostat dataset, whereas OWMcodes are fromOpenWeatherMap.
For details, see the implementation in our training and backend
scripts.

Note on Mapping Consistency
Both the OpenWeatherMap (OWM) and Meteostat COCO map-
pings translate discrete weather categories (codes) into a continuous
cloudiness value in [0, 1], tailored for our Weather Index formula.

Table 12: COCO-to-cloudiness mapping, with concise reason-
ing. Based on official codes [3].

COCO Condition Reasoning

1 Clear 0.0 (No clouds)
2 Fair 0.1 (Few clouds)
3 Cloudy 0.5 (Partly cloudy)
4 Overcast 0.9 (Nearly full cover)
5 Fog 0.7 (Cloud-like effect)
6 Freezing Fog 0.7 (Same as above)
7 Light Rain 0.6 (Rain, not full cover)
8 Rain 0.6 (Same as above)
9 Heavy Rain 0.8 (Likely overcast)
10 Freezing Rain 0.8 (Likely overcast)
11 Heavy Freezing Rain 0.8 (Likely overcast)
12 Sleet 0.75 (Usually overcast)
13 Heavy Sleet 0.75 (Same as above)
14 Light Snowfall 0.85 (Snow = full cover)
15 Snowfall 0.85 (Same as above)
16 Heavy Snowfall 0.95 (Extreme cover)
17 Rain Shower 0.6 (Short, still cloudy)
18 Heavy Rain Shower 0.6 (Same as above)
19 Sleet Shower 0.75 (Short, still cloudy)
20 Heavy Sleet Shower 0.75 (Same as above)
21 Snow Shower 0.85 (Snow = full cover)
22 Heavy Snow Shower 0.85 (Same as above)
23 Lightning 1.0 (Thunderstorm)
24 Hail 1.0 (Thunderstorm)
25 Thunderstorm 1.0 (Full cloud cover)
26 Heavy Thunderstorm 1.0 (Same as above)
27 Storm 1.0 (Full cloud cover)

While the underlying weather phenomena may differ slightly be-
tween datasets, both mappings follow similar logic: - Clear/fair
weather maps to low cloudiness, - Rain, snow, fog, and storms
to high cloudiness, - Transitional/ambiguous categories are given
intermediate values.
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Empirical comparison: In practice, predicted maps generated
using either mapping (on identical test dates and locations) exhibit
negligible visual and statistical differences. The largest sources of
prediction variance stem from actual weather, not the mapping. For
more details and code, see our repository and backend scripts.

For a full mapping table and explanations, see Appendix 12.

L Evaluation Formulas
• Mean Absolute Error (MAE):

MAE =
1
𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 |

where 𝑦𝑖 is the ground truth value for the 𝑖-th prediction, 𝑦𝑖
is the predicted value, and 𝑛 is the total number of samples.
MAE is measured in the same units as the target variable (e.g.,
ms, Mbps) and provides a straightforward interpretation of
average error.

• Root Mean Squared Error (RMSE):

RMSE =

√√
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2

where 𝑦𝑖 is the ground truth value, 𝑦𝑖 is the prediction, and
𝑛 is the total number of samples. RMSE, also in the same
units as the target, emphasizes larger errors and is sensitive
to outliers.

• Coefficient of Determination (𝑅2):

𝑅2 = 1 −
∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦𝑖 )2∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦)2

where 𝑦𝑖 is the ground truth, 𝑦𝑖 is the predicted value, 𝑦 =
1
𝑛

∑𝑛
𝑖=1 𝑦𝑖 is the mean of the ground truth values, and 𝑛 is

the number of samples. 𝑅2 is unitless and ranges from −∞
to 1, with higher values indicating better model fit.

For further details, see [10, 13, 19, 21, 45].
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