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1 Introduction

1.1 Relevance of the project

Collaborative SLAM (CSLAM) systems allow several independent agents to
collaboratively map a space and to position themselves within it in a common
coordinate frame. The advent of powerful mobile computing devices, high speed
networks and affordable 3D laser scanners has lead to a surge in research on this
topic. The results of this research have already found their way into new tech-
nology, such as intelligent robot swarms, multi-player augmented reality and
autonomous vehicles.
As of yet most research has focused on cases where agents are homogeneous,
meaning they each sense their environment and track their movement in the
same way. However, in practice there could be situations where heteroge-
neous agents are advantageous, with different sensor configurations based on
the agents’ capabilities and purpose. For example, a human agent carrying
lightweight but inaccurate sensors collaborating with a robot carrying heavy
but accurate sensors.
Certain environments pose additional challenges to CSLAM systems based on
their visual and physical characteristics. This is especially the case for indoor en-
vironments like offices or hospitals because external signals are usually blocked.
Because humans spend most time indoors, research on heterogeneous CSLAM in
indoor environments could have various applications, among which in 3D emer-
gency management information systems, asset management and human-service
robot interaction.

1.2 Its place in geomatics

The field of geomatics has historically focused on the outdoors due to limitations
in sensing capabilities and ease of data acquisition. Technological advances have
made it possible to map the world at ever smaller scales and has opened up the
indoors to geomatics. The challenge of combining disparate measurements into
a coherent whole that is more than the sum of its parts is also at the core of
geomatics.
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1.3 Problem statement

The simultaneous localization and mapping (SLAM) problem aims to estimate
the posterior probability distribution of a map of an environment and an agent’s
trajectory within it, based on the agent’s observations, control signals and initial
pose (see equation 1) (Saeedi, Trentini, Seto, & Li, n.d.). Because the resulting
map and trajectory are estimated in the local coordinate frame of the agent’s
initial pose they are referred to as the local map and trajectory.

p(x1:t,mt|z1:t, u1:t, x0) (1)

x1:t is the agent’s local trajectory from the start of the session until time t.
mt is the local map in the agent’s coordinate frame at time t.
z1:t and u1:t are the entire set of the agent’s observations and control signals.

The collaborative SLAM (CSLAM) problem is an extension of the SLAM prob-
lem where a single map and the trajectory of multiple agents are estimated
in a common coordinate frame, based on each agent’s observations and con-
trol signals (see equation 2). The results are referred to as the global map and
trajectories. Effective solutions to the CSLAM problem exist for homogeneous
observations, which represent the same physical quantity at a similar accuracy
and resolution. However, when observations are heterogeneous it becomes un-
feasible to find correspondences between observations directly, as they might
represent different aspects of the environment, e.g. observations of infrared and
visible spectrum light (Saeedi et al., n.d.).

p(Xi
1:t,Mt|zi1:t, ui

1:t, x
i
0) (2)

Xi
1:t and Mt are the global trajectories and map, i identifies agents.

The map merging problem is a subproblem of the CSLAM problem where global
maps and trajectories are estimated by merging local maps derived from each
agents’ observations (see equation 3). If the local maps represent comparable
aspects of the environment, e.g. its geometry or topological structure, map
merging allows us to estimate global maps and trajectories from heterogeneous
observations. However, local maps derived from heterogeneous observations
might still differ in accuracy and resolution, which makes finding correspon-
dences between them difficult (Andersone, n.d.). We call this specific case the
heterogeneous map merging problem, it is largely unsolved (Andersone, n.d.).

p(Xi
1:t,Mt|mi

t, x
i
1:t) (3)

Indoor environments are often highly structured, this places topological and
geometrical constraints on the global map, e.g. ceilings are generally above 2m,
rooms must be reachable. In this thesis we will research how prior knowledge of
the topological and geometrical characteristics of structured indoor spaces can
be used to improve heterogeneous map merging estimates (see equation 4).

p(Xi
1:t,Mt|mi

t, x
i
1:t, eindoor) (4)

eindoor are the defining characteristics of structured indoor environments.
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2 Related work

2.1 Simultaneous Localization and Mapping

Simultaneous Localization and Mapping, commonly abbreviated as SLAM, con-
cerns the problem of agents creating a map of an unknown environment while
simultaneously positioning themselves within it. There are various approaches
to solve this problem depending the resources available to the agent. These
approaches are commonly divided into two categories depending on the type of
algorithm they use (Yousif, Bab-Hadiashar, & Hoseinnezhad, n.d.).

Filtering SLAM The first category is the filtering approach. Early im-
plementations of the filtering SLAM approach used an extended Kalman fil-
ter (EKF) to estimate the agent’s current position and map the environment
(Smith, Self, & Cheeseman, n.d.). The EKF-SLAM approach later lost pop-
ularity in favour of particle filter based approaches such as FastSLAM with
improved computational complexity (Yousif et al., n.d.; Bailey, Nieto, Guivant,
Stevens, & Nebot, n.d.; Montemerlo, Thrun, Koller, & Wegbreit, n.d.).

Smoothing SLAM In contrast with the filtering approach, smoothing SLAM
estimates the current state based on all previous measurements, this is also
called the full SLAM problem (Yousif et al., n.d.). A common approach to
smoothing SLAM is to consider the agent’s path as a graph, where nodes are ei-
ther a pose or a recognizeable landmark in the environment (Grisetti, Kummerle,
Stachniss, & Burgard, n.d.). Edges between nodes represent spatial transfor-
mations that are estimated by sensor measurements (dead reckoning and recog-
nition of previously visited landmarks). Due to the noisy nature of real-world
measurements edges have an associated uncertainty and may contradict other
edges. To solve the SLAM problem error minimization techniques are applied
to find the configuration of edges that maximally conforms to their inherent un-
certainty (Grisetti et al., n.d.). An essential component of graph-based SLAM
systems is loop closure (Grisetti et al., n.d.). If edges are only created by means
of dead reckoning it is not possible to optimize the graph because the relation-
ships between nodes are only measured once; the graph contains no loops. To
create loops agents needs to be able to recognize previously visited landmarks
and position themselves relatively to it. When a landmark has been identified
an edge is added between it and the current node, creating a loop and making
it possible to optimize the graph. Figure 2 illustrates how loop closure is used
to create an optimizable graph.

In the years since its original formulation by Lu and Milios in 1997, advances
in computation have made it easier to solve the large minimization problems
that graph-based SLAM requires. Currently, this approach is used by state-
of-the-art SLAM solutions such as ORB-SLAM and RTAB-Map (Mur-Artal &
Tardos, n.d.; Ragot, Khemmar, Pokala, Rossi, & Ertaud, n.d.).
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Figure 1: Illustration of loop closure in graph-based SLAM.

2.2 Collaborative Simultaneous Localization andMapping

The collaborative SLAM (CSLAM) problem is an extension of the SLAM prob-
lem that deals with multiple agents mapping and positioning themselves within
the same environment. The goal of this is to create a single, global map from
each agent’s local map. Collaboration allows us to speed up mapping time, map
multiple places at once and determine the relative poses of agents.

2.2.1 CSLAM

There are various ways to approach the CSLAM problem that each have their
own pros and cons depending on the environment and agent capabilities. Saeedi
et al (2016) discusses the advantages of different CSLAM methodologies based
on a set of problems that they solve. Based on these results we will discuss the
C-SLAM approaches that show the most promise.

GraphSLAM The GraphSLAM approach to CSLAM is an extension of the
graph-based SLAM approach discussed in the previous section. It relies on en-
counters between agents to create edges between their local pose graphs. The
resulting connected pose graph is then optimized using the same error mini-
mization techniques as mentioned before (Been Kim et al., n.d.). Encounters
can be subdivided into direct and indirect encounters. The former occurs when
agents meeting both in time and space and requires agents to be able to recog-
nize eachother. The latter occurs when agents meet in space but not in time,
meaning they visit the same location at different moments (Been Kim et al.,
n.d.).

Map Merging The map merging approach to CSLAM tries to create a global
map by finding the transformations between agents’ local maps (Saeedi et al.,
n.d.). This relies on overlaps between local maps to work. When one or multiple
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Figure 2: Local pose graph merging using agent encounters.
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overlaps have been identified their relative transformations can be found by
using scan matching algorithms such as the iterative closest point algorithm
(Andersone, n.d.). This is computationally expensive and sensitive to distortions
in the local maps (Saeedi et al., n.d.). Other map merging methods use extracted
features instead of the map’s geometry. In structured environments the Hough
transform can be used to extract line or plane features which can be used to
determine overlaps instead (Saeedi et al., n.d.). Different kind of features types
have also been used to determine overlaps, such as SURF and SIFT, as well
as different feature matching approaches, such as RANSAC or neural network
matching (Andersone, n.d.; Fischer et al., n.d.).

Most map merging algorithms work on a 2D projection of originally 3D maps
to reduce computational complexity. The same algorithms as above can usually
also be applied to 3D data but extra care needs to be taken to ensure real-time
performance by using a suitable feature matching approach (Saeedi et al., n.d.).

Topological Map Merging In the topological map merging approach lo-
cal maps are matched by comparing their topological structure. A graph is
extracted from each agent’s local map that represent the connectivity of the
environment. Some approaches try to detect doors and rooms using object
detection and region segmentation and use those as the edges and nodes of
the graph (Andersone, n.d.). Others extract a Voronoi diagram directly from
the map’s geometry (Andersone, n.d.). After extracting the graphs they can be
merged by finding the transformation that maximizes their overlap using various
optimization methods such as maximum subgraph matching (Alami, Chatila,
& Asama, n.d.).

2.2.2 Communication

2.2.3 Heterogeneous CSLAM
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3 Research questions

3.1 Main question

How can we improve the effectiveness of heterogeneous map merging by exploit-
ing the topological and geometrical characteristics of structured indoor environ-
ments?

3.2 Subquestions

1. Which topological and geometrical constraints define structured indoor
environments?

2. Which local and global map representation are best suited for our prob-
lem?

3. How can we extract this map representation from the local maps produced
by existing single-agent SLAM solutions?

4. How can we use the environmental constraints to improve heterogeneous
map merging effectiveness?

3.3 Scope

To better delineate the scope of the thesis we provide several things that we will
not be doing.

1. Map merging using known relative poses between agents or meeting strate-
gies. Agent behaviour is assumed to be independent and agents are not
able to sense eachother.

2. Map merging using observations unrelated to the environment’s geomet-
rical and topological characteristics. E.g. the environment’s colour or
actively transmitted beacon signals.

3. Map merging assisted by a priori knowledge of the environment. E.g.
building information models (BIM) or floor plans.

4. Correspondence detection between raw observations. Although research
has been done on using machine learning techniques to find correspon-
dences between observations that represent different physical quantities,
e.g. lidar depth and monocular RGB, this thesis focuses on the merging
of derived local maps.

5. Implementing a single-agent SLAM solution ourselves. Much research has
been done on the single-agent SLAM problem and open-source implemen-
tations are widely available.

9



6. Researching observations besides monocular RGB, monocular infrared,
binocular depth and lidar depth. E.g. sonar and radar will not be consid-
ered.

7. Creating a feedback mechanism that allows agents to access the global
map and trajectories. Although useful for real-world applications this is
a matter of implementation and does not add value to the research.
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4 Methodology

Overview of the methodology to be used.
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5 Time planning

Having a Gantt chart is probably a better idea then just a list.
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6 Tools and datasets used

Since specific data and tools have to be used, it’s good to present these con-
cretely, so that the mentors know that you have a grasp of all aspects of the
project.
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