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Abstract To illustrate the influence of the in-line cou-

pling on the prediction of vortex-induced vibration (VIV),

the simulation results of the coupled cross-flow and in-

line VIVs of flexible cylinders - obtained with three dif-

ferent wake oscillator models with and without the in-

line coupling- are compared and studied in this paper.

Both the cases of uniform and linearly sheared flow are

analysed and the simulation results of the three models

are compared with each other from the viewpoints of re-

sponse pattern, fluid force, energy transfer and fatigue

damage. The differences between the simulation results

from the three models highlight the importance of the

in-line coupling on the prediction of coupled cross-flow

and in-line VIVs of flexible cylindrical structures.

Keywords Vortex-induced vibration · Wake oscil-

lator · In-line coupling · Motion trajectory · Energy

transfer · Fatigue damage

1 Introduction

Vortex-induced vibration (VIV) is a well-known phe-

nomenon to civil engineers as they often occur in flex-

ible cylindrical structures, such as chimneys, cables of

suspended bridges, suspended power lines, offshore ris-

ers and mooring cables, that are subjected to air or wa-

ter flows. The possible fatigue damage resulting from

Y. Qu (Corresponding author) and A.V. Metrikine
Department of Hydraulic Engineering, Delft University of
Technology, Stevinweg 1, 2628CN Delft, The Netherlands

Present address of Y. Qu
State Key Laboratory of Ocean Engineering, Shanghai Jiao
Tong University, Shanghai, 200240, China
E-mail: yangqu@sjtu.edu.cn

VIV requires a reliable and efficient prediction of VIV

for the safety design of these structures.

In the early studies on the prediction of VIV, the

focus has been placed on the cross-flow vibration and

the influence of the in-line motion is normally ignored.

However, it has been known, from experiments by Jau-

vtis [1] and Dahl [2], that the presence of the in-line mo-

tion may significantly change the wake pattern and con-

sequently influence the cross-flow hydrodynamic forces

and therefore cross-flow response. The same experiments

have also revealed that certain motion trajectories, de-

fined by a range of phase differences between cross-flow

and in-line vibrations, are favourable for the large am-

plitude VIV. This implies that the motion trajectory, in

addition to the reduced velocity and cross-flow ampli-

tude, plays an important role in the energy transfer be-

tween the structure and fluid for the coupled cross-flow

and in-line VIV [3–5]. Consequently, a tension domi-

nated flexible structure undergoing VIV will tend to

vibrate in the form of travelling wave in both cross-flow

and in-line directions such that the motion trajectories

that are favourable for VIV can persist over a larger seg-

ment of the structure compared to the case of standing

wave [6].

Taking the effect of coupled cross-flow and in-line

vibrations on the dynamics of the wake into accoun-

t for the prediction of VIV has been a long standing

issue. The widely used empirical codes, like VIVANA

and SHEAR7, are still limited to handle the cross-flow

and in-line vibrations separately. The difficulties associ-

ated with building a hydrodynamic force database that

covers a wide range of combined cross-flow and in-line

vibrations with high resolution have prevented these

empirical methods from being extended to predict the

coupled cross-flow and in-line VIV [7]. The wake oscilla-

tor model is another type of VIV model that has gained
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popularity in recent years due to its low computation-

al effort and acceptable accuracy. Although the classic

wake oscillator model also only deals with the cross-

flow VIV, it can be easily extended to predict the cou-

pled cross-flow and in-line VIV by introducing a second

wake oscillator equation to model the effect of the in-

line motion on the fluctuating drag force in addition to

the one that describes the relation between the lift force

and cross-flow response [8,9]. This approach, although

captures some features of VIV, is not entirely consistent

with the fact that the lift and drag forces have the same

origin, i.e., the dynamics of the wake, and are interde-

pendent on each other. It is physically more reasonable

to use only one oscillator to describe the dynamics of

the wake, and this oscillator should be coupled to both

cross-flow and in-line vibrations. In line with this princi-

ple, Qu and Metrikine [10] have developed a new single

wake oscillator model for coupled cross-flow and in-line

VIVs of rigid cylinders and later applied it to flexible

cylinders (Part I, submitted). In this new model, the

in-line coupling is considered in two aspects. The first

one is that a nonlinear in-line motion coupling term,

in addition to the classic linear cross-flow acceleration

coupling [11], is introduced in the wake oscillator equa-

tion. The second one is that a fluctuating in-line force,

in coupling with the lift, is introduced in the equations

of motion of the structure. With this in-line coupling,

the new model has been shown to be able to capture

important features of the coupled cross-flow and in-line

VIV of an elastically supported rigid cylinder [10].

It needs to be pointed out that there are other s-

tudies which have also used the model that contains

only one wake oscillator equation to simulate coupled

cross-flow and in-line VIVs of flexible cylinders, e.g.,

the work by Mina [12] and Bai [13]. The former one

uses exactly the same model by Ogink and Metrikine

[14] which is a reduced formation of the model by Qu

and Metrikine [10] when the two aspects of the in-line

coupling described above are both excluded. The lat-

er one, on the other hand, ignores the in-line motion

coupling term in the wake oscillator equation and only

introduces a fluctuating in-line force that is coupled to

the lift, i.e., the second aspect of the in-line coupling.

According to [12] and [13], both models seem to predict

coupled cross-flow and in-line VIVs of flexible cylinders

with satisfactory results. However, as will be present-

ed in this paper, both aspects of the in-line coupling is

essential and necessary for the correct modelling of cou-

pled cross-flow and in-line VIVs of flexible cylindrical

structures.

The present paper focuses on quantifying the effect-

s of the previously mentioned in-line coupling on the

modelling of the coupled cross-flow and in-line VIV.

x

dX
U = V -

dt

U

y

dY
U = -

dt

VLF

VYF

VDF

VXF



OXF

VF

Fig. 1: Decomposition of the vortex force in drag, lift, cross-
flow and in-line directions

To achieve this goal, simulations of the VIV of a flex-

ible cylinder subjected to both uniform and linearly s-

heared flows are conducted using different models with

and without the in-line coupling. The importance of the

in-line coupling is highlighted by comparing the simu-

lation results of these models with respect to response

pattern, fluid force, energy transfer and fatigue dam-

age. The reminder of this paper is structured as follows.

The models, including the wake oscillator model, in-line

couplings and structural model, are briefly described in

Section 2. Then, in Section 3, the general structural

responses obtained from the three models are present-

ed. A 2D spatial-temporal spectral analysis is carried

out, and vibration modes are extracted at dominant

frequencies. Section 4 investigates the phase difference

between the cross-flow and in-line motions. In Section

5, the differences between the results from the three

models are highlighted from the viewpoint of energy

transfer. The fatigue damage estimated by the three

models is presented in Section 6, and final conclusions

are provided in Section 7.

2 Model description

In this section, the wake oscillator model, in-line cou-

plings as well as the structural model are briefly de-

scribed.

2.1 Wake oscillator model and in-line coupling

Considering a case where the cylinder is rigid and the

flow (with velocity V ) is perpendicular to its axis, the
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total vortex force FV acting on the cylinder is decom-

posed into lift (FV L), drag (FV D) and fluctuating in-

line (FOX) forces; see Fig.1. The FV L and FV D are

assumed to be perpendicular to and aligned with the

relative flow velocity U . The FOX is introduced in the

in-line direction to account for the fluctuating nature of

the in-line force. The magnitude of lift and drag forces

per unit length are related to the relative flow velocity

U and are defined as

FV L =
1

2
ρDU2CV L, FV D =

1

2
ρDU2CV D (1)

where ρ is the mass density of the fluid, D is the di-

ameter of the cylinder, CV L and CV D are lift and drag

force coefficients respectively. The relative flow velocity

is expressed as

U =

√(
V − dX

dt

)2

+

(
dY

dt

)2

(2)

where X and Y are the displacements of the cylinder

in in-line and cross-flow directions respectively.

The FOX is coupled to the lift force, following the

relation between fluctuating lift and drag forces acting

on a fixed cylinder [15], as

FOX =
1

2
αC2

V LρD|Ux|Ux, (3)

where α is an empirical parameter and Ux = V −dX/dt

is the relative flow velocity in the in-line direction.

To satisfy the hydrodynamic forces measured on a

fixed cylinder, the values of α and CV D are calculated

as

α = 2
CD0

C2
L0

(4)

and

CV D = CD −
1

2
αC2

L0 (5)

where CD, CD0 and CL0 are mean drag, fluctuating

drag and fluctuating lift force coefficients measured on

a fixed cylinder. In this paper, CD = 1.2, CD0 = 0.1

and CL0 = 0.3, which are the same as those in [10], are

adopted.

The dynamics of the wake is modelled by a van der

Pol nonlinear equation which is coupled to both the

cross-flow and in-line motions of the cylinder. The e-

quation is given as

d2q

dt2
+εωs(q

2−1)
dq

dt
+ω2

sq−κ
ω4
sD

d2X
dt2

ω4
sD

2 +
(

d2X
dt2

)2 q =
A

D

d2Y

dt2

(6)

where q is the wake variable; ε, A and κ are tunning

parameters; ωs = 2πV St/D is the Strouhal frequency

and St is the Strouhal number. The values ε = 0.08,

A = 8, κ = 5 and St = 0.2 from [10] are adopted in this

paper. The lift force coefficient CV L is associated with

the wake variable q as

CV L =
q

2
CL0 (7)

Representing the interaction between the fluid and

the structure using an equivalent nonlinear oscillator,

as given by Eq.(6), is the most important feature of

the wake oscillator model. Without modelling the re-

al flow field, the computational cost is significantly re-

duced while the main features of the VIV are still cap-

tured. From this viewpoint, the model presented in this

paper is appropriate for the qualitative study of differ-

ent VIV phenomena. However, this simplification also

introduces some limitations. For example, the influence

of the Reynolds number on the flow field is not consid-

ered and the three dimensional flow effect is also not in-

cluded. The model, in its present form, only gives quan-

titative predictions of VIV in certain situations. This

actually is a common limitation of all existing VIV pre-

diction models due to the extremely complex flow field

involved in the problem of VIV. The proposed model

should be used with caution in practical applications

where the quantitative prediction of VIV is important.

Compared to the classic models where only the cross-

flow coupling between the structure and wake oscilla-

tor is considered, the model described above also con-

tains an in-line coupling. This in-line coupling is intro-

duced through an in-line motion coupling term in the

wake oscillator equation and a fluctuating in-line force

that is coupled to the lift in the structure’s equations

of motion. In order to investigate the effect of the in-

line coupling, simulations are conducted with different

models. Model A denotes the complete model, which

includes both in-line coupling terms. Model B excludes

the in-line motion coupling term in the wake oscilla-

tor equation but keeps the fluctuating in-line force, i.e.,

κ = 0; this is similar to the model by Bai [13]. Mod-

el C excludes both terms, i.e., κ = 0 and α = 0, and

is exactly the same as the one proposed by Ogink and

Metrikine [14]. The simulation results of these models

will be compared to each other and the influence of the

in-line coupling will be investigated in Sections 3-6.

2.2 Structural model

In this paper, the models are used to simulate the VIV

experiments undertaken by Shell Oil Company in the
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Table 1: Properties of the riser model

Parameters Values Dimension

External diameter 0.03 m
Length 38 m
Aspect ratio 1266 -
Bending Stiffness 572.3 Nm2

Axial Stiffness 7.82×106 N
Mass 1.088 kg/m
Mass ratio 1.54 -

X
Y

Z

r(p,t)

Uniform 
Flow

Sheared 
Flow

Initial configuration

Deformed configuration

p=0

Fig. 2: Configuration of the riser and the coordinate system .

MARINTEK Offshore Basin Laboratory [16]. In the ex-

periments, a riser of 38 meters is dragged horizontally

or rotated around one end through still water to sim-

ulate a uniform and linearly sheared current. The key

properties of the riser are presented in Table 1. The

configuration of the riser, as well as the definition of

the coordinate system, is illustrated in Fig.2. An initial

tension of 6 kN is applied and one end of the riser is

attached to a spring, while the other is pinned. The rea-

son for using a spring is to simulate the restoring force

provided by the pendulum with heavy clamp weight in

the experiments. Without knowing the exact stiffness

that the pendulum provides, the stiffness of the spring

in the simulation is set to be 5× 104 N/m.

The riser is simplified into a beam. In line with the

Euler-Bernoulli beam theory, only the axial and bend-

ing deformations are considered. The configuration of

the structure is described by the position vector r (p, t)

of the cylinder axis as

r (p, t) =

x (p, t)

y (p, t)

z (p, t)

 (8)

where p is the Lagrange coordinate or arc-length mea-

sured along the undeformed cylinder, and t is the time.

For the convenience of writing, the following notation

will be used to represent the partial derivative with

respect to p: r,p = ∂r/∂p and overdots represent the

derivative with respect to time.

The weak forms of the equations of motion is given

as

δWI + δWS − δWE = 0 (9)

where δWI denotes the virtual work of inertia forces,

δWS is the virtual work of internal (elastic) forces, and

δWE is the virtual work of external forces.

The expressions of δWI and δWS are given as

δWI =

∫ L

0

m0r̈
T δrdp (10)

δWS =

∫ L

0

(EAε0δε0 + EIKδK) dp (11)

where L is the length of undeformed beam, m0 is the

mass of the beam per unit length, E is the modulus

of elasticity, A is the cross-sectional area and I is the

second moment of the area. Furthermore, ε0 is the axial

strain, which is defined as

ε0 = |r,p| − 1 (12)

and K, interpreted in [17] as the material measure of

curvature, is defined as

K =
|r,p × r,pp|
|r,p|2

(13)

The wake oscillators, presented in Section 2.1, are

uniformly distributed along the riser to simulate the hy-

drodynamic force acting on it. Then, the coupled sys-

tem is solved numerically using finite element method

with Hermite shape functions; for detailed descriptions

of the model please refer to Part I (submitted).

3 Response of the structure

In this section, the simulated responses of the riser sub-

jected to uniform and linearly sheared flows are anal-

ysed. Simulations have been conducted at several flow

velocities. Typical responses at two flow velocities V =

0.5 m/s and 1.5 m/s for the uniform flow, as well as at

V = 1.5 m/s and 2.5 m/s for the linearly sheared flow,

are presented. For the linearly sheared flow profile, the

notation V represents the maximum flow velocity at

p = 0.
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3.1 Uniform flow

In this subsection, the simulated VIV of the riser sub-

jected to uniform flow is discussed. The structural re-

sponse patterns are quantified and analysed in the wave-

number-frequency domain after performing a spatial-

temporal spectral analysis based on the 2D Fourier trans-

form, and the complex modes at dominant frequencies

are extracted.

Flow velocity at V = 0.5 m/s

The simulation results of the response of the riser

subjected to a uniform flow at V = 0.5 m/s are de-

picted in Fig.3 and Fig.4, where the 2D PSD of non-

dimensional displacements and the corresponding com-

plex modes at dominant frequencies are presented for

all three models. For Model A, the 2D PSD of non-

dimensional cross-flow and in-line displacements, as il-

lustrated in Figs.3(a) and (b), indicate that the struc-

tural response is at a single frequency in both direc-

tions. The dominant in-line response frequency, indi-

cated by arrows in Fig.3(b), is fx ≈ 1.632fs, which

is approximately twice that of the cross-flow response

fy ≈ 0.816fs. In Figs.3(a) and (b), it is difficult to de-

termine the wavenumber at which the riser is excited,

since the energy seems to spread over a wide range of

wavenumbers. This is because the FFT in the spatial

domain suffers from a small number of spatial cycles.

By observing the complex modes extracted at the dom-

inant frequencies, it is deduced that the wavenumber-

s corresponding to the 3rd and 6th modes are excit-

ed in cross-flow and in-line directions respectively. The

natural frequencies of the corresponding free vibration

modes are indicated in Figs. 3(a) and (b) by red cross-

es; those natural frequencies are slightly smaller than

the actual vibration frequencies in both the cross-flow

and in-line directions. In Figs.4(a) and (b), the spanwise

evolution of the amplitudes and phases of the complex

modes extracted at dominant frequencies of structural

responses in both cross-flow and in-line directions is p-

resented. The cross-flow vibrations predicted by Model

A are clearly in the form of standing waves, as defi-

nite nodes and jumps of π in the phase are observed in

Fig.4(a). The maximum cross-flow vibrations are ob-

served at the antinodes, which are as high as 1.4D.

In the in-line direction, see Fig.4(b), the structural re-

sponse exhibits a mixed standing-travelling character.

The evolution of the magnitude and phase of the com-

plex mode suggests that the in-line vibration is excited

at the middle of the riser and propagates towards both

ends, developing strong standing waves near bound-

aries. The maximum in-line vibration, around 0.3D, is

observed at the anti-nodes of the standing wave near

boundaries.

In Fig.3(c,d) and Fig.4(c,d), the simulated riser re-

sponses are illustrated for Model B. As can be seen in

Figs.3(c) and (d), Model B predicts the riser to vibrate

at higher wavenumbers (corresponding to the 4th mode

in the cross-flow direction and the 8th mode in the in-

line direction) and higher frequencies (fy ≈ 1.029fs and

fx ≈ 2.058fs) compared to those of Model A. The sim-

ulated cross-flow vibrations are in good agreement with

the free vibration structural modes regarding the excit-

ed wavenumber and frequency, while slight deviations

are observed in the in-line response where the actu-

al vibration frequency is lower than the corresponding

natural frequency. The complex modes at the dominan-

t frequencies, as depicted in Figs.4(c) and (d), indicate

that the cross-flow vibration is dominated by a stand-

ing wave, while a predominant travelling wave is ob-

served in the in-line direction. Although the evolution

of the amplitude of the in-line complex mode suggests

the same response pattern as that predicted by Model

A, the evolution of the phase along the span displays

unclear variation patterns. Such variations in the phase

along the span were found to be associated with the

fact that two different wavenumbers are excited in the

in-line direction at the same frequency due to the un-

constrained boundary in the Z direction at one end of

the riser. Concerning the maximum magnitude of vi-

bration, Model B predicts that the maximum cross-flow

and in-line amplitudes of vibration are 0.8D and 0.15D;

both are smaller than those of Model A.

The simulation results of Model C, as pictured in

Fig.3(e,f) and Fig.4(e,f), are similar to those of Mod-

el B; therefore, they are not discussed in detail here.

However, it needs to be noted that while Model C pre-

dicts the same level of cross-flow vibration as Model

B, it predicts the maximum in-line vibration around

0.075D, which is much smaller than that simulated by

the other two models.

Flow velocity at V = 1.5 m/s

For the case of V = 1.5 m/s, the 2D PSD of non-

dimensional cross-flow and in-line displacements and

the corresponding dominant complex modes are pre-

sented in Fig.5(a,b) and Fig.6(a,b), respectively, for Mod-

el A. The predominant wavenumbers corresponding to

the 8th and 16th modes are excited in the cross-flow

and in-line directions at frequencies of fy ≈ 0.914fs
and fx ≈ 1.828fs respectively. In both directions, the

actual vibration frequencies are higher than the natural

frequencies of the corresponding modes. The different

positive and negative wavenumber peaks for the same

frequency imply that the structural response is charac-
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Fig. 3: Spatio-temporal spec-
tra of (a,c,e) cross-flow and
(b,d,f) in-line displacements at
uniform flow V = 0.5 m/s us-
ing Model A (a,b); Model B
(c,d) and Model C (e,f). The
arrows represent the dominan-
t frequencies. The wavenum-
bers and natural frequencies of
selected free vibration modes
are indicated by black verti-
cal dashed lines and red cross-
es respectively.

terised by mixed standing-travelling waves. The mixed

standing-travelling character of the structural response

is confirmed by the spanwise evolution of the amplitude

and phase of the cross-flow and in-line complex modes;

see Figs.6(a) and (b). The generally decreasing trend

of the phase denotes the travelling wave oriented from

p/L = 0 towards p/L = 1. In the case of a pure trav-

elling wave, the variation of the phase is strictly linear.

The modulation of the underlying standing character

of the structural response leads to a zigzagging evolu-

tion pattern of the phase in both the cross-flow and in-

line directions. From this point of view, the travelling

wave is more predominant in the in-line response, as

the evolution of the phase of the in-line complex mode

is less modulated. The evolution of the magnitudes a-

long the span reveals that both cross-flow and in-line

displacements gradually increase along the direction of

the travelling wave and reach their maximum – around

1.7D in the cross-flow direction and 0.3D in the in-line

direction – at the end of the riser where standing waves

dominate. This may imply that the energy is continu-

ally transferred from the fluid to the riser as the trav-

elling wave propagates. It is also interesting to notice

from Fig.6(b) that the standing character of the in-line

displacement seem to be associated with the cross-flow

response. The ripples of the magnitude of the in-line

complex mode, as a result of the modulation of the s-

tanding wave, display a pattern of a mixture of large

cells that are consistent with the cross-flow response

and small ripples. This is a result of the nonlinear cou-

pling effect between the cross-flow and in-line motions

which can only be captured by a nonlinear structural

model.

Predictions by Models B and C are similar, as can

be seen in Fig.5(c-f) and Fig.6(c-f ). Both models pre-

dict that wavenumbers corresponding to the 9th and

18th modes will be excited in the cross-flow and in-

line directions respectively. However, the cross-flow and

in-line dominant frequencies predicted by Model B are

fy ≈ 1.055fs and fx ≈ 2.110fs respectively, which are

higher than those predicted by Model C (fy ≈ 0.992fs
and fx ≈ 1.984fs). The reason for such a difference

is related to the tension increase due to the amplifica-

tion of in-line forces. Model C, as will be demonstrated

in Section 5, underestimates the amplification of the

in-line force and therefore predicts a smaller tension



Title Suppressed Due to Excessive Length 7

 |Y
| [

-]

0

0.5

1

1.5

ar
g(

Y
) 

[-
]

(a)

0 0.2 0.4 0.6 0.8 1
-4

-2

0

2

 |X
| [

-]

(b)

0

0.2

0.4

ar
g(

X
) 

[-
]

0 0.2 0.4 0.6 0.8 1
0

4

8

 |Y
| [

-]

0

0.5

1

ar
g(

Y
) 

[-
]

(c)

0 0.2 0.4 0.6 0.8 1
-2

0

2

4

 |X
| [

-]

(d)

0

0.05

0.1

0.15

ar
g(

X
) 

[-
]

0 0.2 0.4 0.6 0.8 1
-2

-1

0

1

2

 |Y
| [

-]

(e)

0

0.5

1

p /L [-]

ar
g(

Y
) 

[-
]

0 0.2 0.4 0.6 0.8 1
-2
-1
0
1
2

 p/L [-]

 |X
| [

-]

(f)

0

0.05

0.1

ar
g(

X
) 

[-
]

0 0.2 0.4 0.6 0.8 1
0

5

10

15

Fig. 4: Amplitude and phase
of (a,c,e) cross-flow and (b,d,f)
in-line complex modes at u-
niform flow V = 0.5 m/s.
(a,b) correspond to the re-
sponse obtained using Model
A; (c,d) correspond to the re-
sponse obtained using Model
B and (e,f) correspond to the
response obtained using Model
C. The complex modes are ex-
tracted at dominant frequen-
cies identified from Spatio-
temporal spectra.

compared to Model B. As a result, the lock-in at the

same mode for the two cases corresponds to different

natural frequencies, as indicated by crosses in Figs.5(c)

and (e). The dominant frequencies are in good agree-

ment with the corresponding natural frequencies in the

cross-flow direction but are higher than natural frequen-

cies in the in-line direction for both models. The cross-

flow complex modes at dominant frequencies indicate

that for both models, the cross-flow vibration exhibits

a standing-travelling character; however, different from

Model A, the vibration is dominated by standing waves.

The underlying travelling wave pattern for both Models

can be observed by the general increasing trend of the

phase along the span, indicating that the direction of

the travelling wave is opposite to that of Model A. The

maximum cross-flow vibration of Model B is around

1.0D, which is similar to the prediction of Model C,

while the predicted maximum in-line vibration of Mod-

el B is around 0.13D, which is slightly larger than the

prediction of Model C around 0.1D.

3.2 Linearly sheared flow

In this subsection, the simulated VIV of the riser sub-

jected to linearly sheared flow are presented. The flow
profile is such that the velocity at p/L = 1 is zero and

that at p/L = 0 is maximum. The notation V denotes

the maximum flow velocity throughout this subsection.

Flow velocity at V = 1.5 m/s

In Fig.7 the 2D PSD of non-dimensional cross-flow

and in-line displacements are presented for all three

models. In all plots, the vibration frequencies are nor-

malised by the Strouhal frequency that was calculated

at the maximum flow velocity. As can be seen from

Fig.7, all three models predict a single frequency re-

sponse in both the cross-flow and in-line directions,

and the in-line dominant frequencies are approximately

twice those of the cross-flow responses. A comparison of

the results reveals that the models without an in-line

coupling term in the wake oscillator equation (Mod-

els B and C) predict similar responses to the model

with in-line coupling (Model A) regarding the excit-

ed wavenumber and dominant frequency. In general,
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Fig. 5: Spatio-temporal spec-
tra of (a,c,e) cross-flow and
(b,d,f) in-line displacements at
uniform flow V = 1.5 m/s us-
ing Model A (a,b); Model B
(c,d) and Model C (e,f). The
arrows represent the dominan-
t frequencies. The wavenum-
bers and natural frequencies of
selected free vibration modes
are indicated by black verti-
cal dashed lines and red cross-
es respectively.

Model A predicts that the riser will vibrate at slight-

ly higher frequencies (fy ≈ 0.933fs and fx ≈ 1.867fs)

compared to those of Model B (fy ≈ 0.904fs and fx ≈
1.807fs) and Model C (fy ≈ 0.891fs and fx ≈ 1.782fs).

For all three models, the wavenumber corresponding to

the 10th mode is excited in the cross-flow direction;

moreover, according to Models A and C, the in-line

wavenumber corresponding to the 20th mode is excited,

whereas Model B predicts that the in-line wavenumber

corresponding to the 22th mode is excited. The per-

ceptibly larger negative wavenumber peaks compared

to the positive ones imply that the travelling waves are

predominant in the structural responses for all three

models in both the cross-flow and in-line directions,

and these waves propagate from the high-velocity re-

gion (near p/L = 0) towards the low-velocity region

(near p/L = 1).

The travelling-wave-dominant structural responses

of all three models are confirmed by the complex modes

at the dominant frequency, as illustrated in Fig.8. In

the cross-flow direction, the maximum amplitude of the

structural complex mode of Model A is observed around

p/L = 0.45 and exceeds 0.4D, while that of Models B

and C occurs at p/L = 0.28 and is close to 0.3D. Con-

cerning the in-line vibration, Model A predicts the high-

est amplitude of vibration around 0.075D, followed by

Model B, with a maximum around 0.045D, and Model

C predicts the smallest maximum amplitude, which is

smaller than 0.02D.

Flow velocity at V = 2.5 m/s

The simulated VIV of the riser subjected to a s-

heared flow velocity with maximum velocity V = 2.5

m/s are presented in Fig.9, Fig.10 and Fig.11. In Fig.9,

the 2D PSD exhibits a multiple frequency response in

both the cross-flow and in-line directions for all three

models. Although several frequencies are excited in the

cross-flow response, only the first two dominant fre-

quencies that contain the most energy are considered;

they are indicated by arrows in Figs.9(a), (c) and (e).

Here, the strongest frequency is denoted as the main

dominant frequency and the other one as the secondary

dominant frequency. For the in-line response, a substan-

tial amount of energy concentrates at low frequencies;

the reason for this has been explained in Part I (submit-

ted), which is the result of a slowly varying component
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Fig. 6: Amplitude and phase
of (a,c,e) cross-flow and (b,d,f)
in-line complex modes at u-
niform flow V = 1.5 m/s.
(a,b) correspond to the re-
sponse obtained using Model
A; (c,d) correspond to the re-
sponse obtained using Model
B and (e,f) correspond to the
response obtained using Model
C. The complex modes are ex-
tracted at dominant frequen-
cies identified from Spatio-
temporal spectra.

in the in-line force caused by the modulated cross-flow

motion. Apart from this component at low frequencies,

the excited frequencies that are close to twice those

of the dominant cross-flow frequencies are chosen as

the dominant in-line frequencies, indicated by arrows

in Figs.9(b), (d) and (f). At each dominant frequen-

cy, the corresponding excited wavenumber and natural

frequency are also presented. For Model A, the main

dominant cross-flow frequency is fy ≈ 0.914fs, with an

excited wavenumber corresponding to the 13th mod-

e. Models B and C, on the other hand, predict dom-

inant frequencies fy ≈ 0.904fs and fy ≈ 0.871fs re-

spectively, with excited wavenumbers that correspond

to the 14th mode for both cases. Concerning the sec-

ondary dominant cross-flow frequency, all three mod-

els predict it to be around fy ≈ 0.3fs, with an ex-

cited wavenumber corresponding to the 4th mode. In

the in-line direction, the main dominant frequencies are

fy ≈ 1.838fs, fy ≈ 1.806fs and fy ≈ 1.743fs for Models

A, B and C respectively, and the corresponding excit-

ed wavenumbers are at the 26th, 30th and 29th modes.

Similar to the cross-flow case, all three models predict

the same secondary dominant in-line frequency around

fy ≈ 0.6fs, with a wavenumber that corresponds to the

8th mode.

The complex modes at the main and secondary dom-

inant frequencies are presented in Fig.10 and Fig.11

in both the cross-flow and in-line directions. As can

be seen from Fig.10, at the main dominant frequen-

cies, both cross-flow and in-line vibrations are asso-

ciated with travelling waves that propagate from the

high-velocity region towards the low-velocity region. All

three models predict similar maximum cross-flow vibra-

tions – close to 0.4D – at the main dominant frequen-

cy, while Model A predicts the largest in-line vibration

with a maximum value around 0.1D, followed by Model

B around 0.05D and Model C around 0.02D. For the

complex modes at the secondary dominant frequency,

as illustrated in Fig.11, all three models predict similar

cross-flow vibrations, which are in the form of decaying

travelling waves propagating towards the high-velocity

region over a span between p/L = 0 and 0.7 and are

dominated by standing waves near p/L = 1. This im-

plies that the vibrations at the secondary dominant fre-

quency are excited around p/L = 0.7 and propagate

towards both ends of the riser. Models B and C predict
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Fig. 7: Spatio-temporal spec-
tra of (a,c,e) cross-flow and
(b,d,f) in-line displacements at
sheared flow V = 1.5 m/s us-
ing Model A (a,b), Model B
(c,d) and Model C (e,f). The
arrows represent the dominan-
t frequencies. The wavenum-
bers and natural frequencies of
selected free vibration modes
are indicated by black verti-
cal dashed lines and red cross-
es respectively.

a similar maximum cross-flow vibration around 0.13D,

which is slightly smaller than the prediction of Model A

that is close to 0.16D. Concerning the in-line vibration

at the secondary dominant frequency, see Figs.11(b),

(d) and (f ), the pattern of the magnitude of complex

modes are similar for all three cases; however, the evolu-

tions of the phase are different. All three models predic-

t that the in-line vibration at the secondary dominant

frequency will mainly occur between p/L = 0.7 and 1

and will be standing wave dominated. Model A pre-

dicts the largest vibration magnitude with a maximum

value close to 0.08D, whereas Models B and C predic-

t smaller values around 0.04D and 0.02D respectively.

For the rest of the span, from p/L = 0 to p/L = 0.7, the

amplitudes of the in-line vibrations are small. Over the

span p/L = 0−0.7, the almost linearly decreasing phase

shown in Fig.11(b) indicates that Model A predicts the

vibration in the form of a travelling wave that travells

towards the low-velocity region. Model B, on the other

hand, predicts that a large segment of the riser is asso-

ciated with a travelling wave that propagates towards

the high-velocity region, as indicated in Fig.11(d) where

the phase increases over p/L = 0.2−0.6. In Fig.11(f), it

can be seen that the phase of the in-line complex mode

remains almost constant over p/L = 0−0.7, according

to Model C.

4 Phase difference between cross-flow and

in-line motions

The phase difference between the cross-flow and in-line

motions has a significant influence on the wake pattern

when VIV occurs. It affects the hydrodynamic force act-

ing on the structure and consequently influences the

energy transfer between the fluid and structure. As a

result, in VIVs of flexible cylinders, the phase difference

is naturally related to the distribution of excitation and

damping regions. In this section, the definition of the

phase difference, as well as the corresponding trajectory

of structural motion, is presented in subsection 4.1. The

phase differences for all simulation cases are calculated

and discussed in subsection 4.2.
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Fig. 8: Amplitude and phase
of (a,c,e) cross-flow and (b,d,f)
in-line complex modes at s-
heared flow V = 1.5 m/s.
(a,b) correspond to the re-
sponse obtained using Model
A; (c,d) correspond to the re-
sponse obtained using Model
B and (e,f) correspond to the
response obtained using Model
C. The complex modes are ex-
tracted at dominant frequen-
cies identified from Spatio-
temporal spectra.

4.1 Definition of phase difference and motion

trajectory

Assume that the motion of a cross-section of the riser

in the cross-flow and in-line directions can be described

by the following equations:

y = y0 cos (ωt+ φy) (14)

x = x0 cos (2ωt+ φx) . (15)

Then, the phase difference is defined as φxy = φx−2φy.

This definition is in accordance with [7] but has a shift

of 90° compared to the one given by [1]. With such a

definition, the values of φxy in the range of 0°−180° cor-

respond to a counter-clockwise motion trajectory, and

those in the range of 180°−360° correspond to a clock-

wise orbit. Here, the counter-clockwise motion corre-

sponds to the trajectory where the cylinder moves a-

gainst undisturbed flow when reaching the cross-flow

oscillation maximum, while the clockwise motion is as-

sociated with the case where the cylinder moves in the

opposite direction. The in-line and cross-flow phases

φx and φy can be obtained by the angle of the com-

plex modes determined in the previous section as φx =

arg(X) and φy = arg(Y).

It must be clarified that the concept of phase d-

ifference and the application of φxy = φx − 2φy on-

ly make sense when the cross-flow and in-line motions

are synchronised. Here, synchronisation means that the

cross-flow and in-line motions vibrate interdependently

at a constant frequency ratio of 2. In the experiments,

this is not always the case, as the noise can sometimes

be strong [18]. However, this is not a problem here,

as the simulation results indicate good synchronisation

between the cross-flow and in-line motions along the

whole span for all simulated cases. Some examples of

such synchronisation and values of φxy that are spec-

ified for different motion trajectories are presented in

Fig.12 for Model A.

4.2 Discussion

The phase difference φxy is calculated for all simulation

results. The distributions of φxy along the riser are pre-
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Fig. 9: Spatio-temporal spec-
tra of (a,c,e) cross-flow and
(b,d,f) in-line displacements at
sheared flow V = 2.5 m/s us-
ing Model A (a,b), Model B
(c,d) and Model C (e,f). The
arrows represent the dominan-
t frequencies. The wavenum-
bers and natural frequencies of
selected free vibration modes
are indicated by black verti-
cal dashed lines and red cross-
es respectively.

sented in Fig.13 and Fig.14 for the uniform flow cases

and in Fig.15 for the sheared flow case. The boundary

between the counter-clockwise and clockwise trajectory

(180°) is indicated by a vertical thick line.

For the uniform flow case at V = 0.5 m/s, as illus-

trated in Fig.13, three models predict different distri-

butions of φxy along the riser. For Model A, the phase

difference along the riser covers a wide range of values

between 0° and 360°, as can be seen in Fig.13(a). Jump-

s of approximately 310° occur at locations of p/L =

0.64 and p/L = 0.36, which are close to the location-

s of nodes between the cells of the cross-flow standing

wave. The phase difference predicted by Model B, see

Fig.13(b), varies around 0° and alternates between the

counter-clockwise and clockwise regions. As depicted in

Fig.4(d), the alternation is found to be closely related to

the variation in the phase of the in-line motion, which,

as explained in the previous section, is a result of the

excitation of two different wavenumbers at the same fre-

quency in the in-line direction. For Model C, the phase

difference also varies between the counter-clockwise and

clockwise regions, as pictured in Fig.13(c).

For the uniform flow case at V = 1.5 m/s, it is clear

that the distribution of φxy for Model A, as portrayed

in Fig.14(a), exhibits a different pattern compared to

that of Models B and C, see Figs.14(b) and (c). For
Model A, the mixed standing-travelling wave nature

of both cross-flow and in-line displacements leads to a

zigzagging evolution of φxy along the riser. The zigzag-

ging pattern seems to be associated with the cells of

the cross-flow displacement, if one compares Fig.14(a)

with Fig.6(a), within which the phase difference contin-

uously evolves to higher values at nodes and decreases

through the cell before jumping again at the next node.

The variation of φxy is smooth and confined mainly be-

tween 0° and 180°, corresponding to a counter-clockwise

trajectory, except in the region near the upper bound-

ary where the jumps of φxy at nodes exceed 180° as a

result of dominant standing waves over that region in

both the cross-flow and in-line directions. Concerning

Models B and C, the evolution of φxy predicted by the

two models is similar. As illustrated in Figs.14 (b) and

(c), although φxy is mostly confined between 0° and 90°,
significant segments of the span are associated with the

φxy that sweeps through the range 180°−360°.
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Fig. 10: Amplitude and phase
of (a,c,e) cross-flow and (b,d,f)
in-line complex modes at s-
heared flow V = 2.5 m/s
for main dominant frequen-
cy. (a,b) correspond to the re-
sponse obtained using Model
A; (c,d) correspond to the re-
sponse obtained using Model
B and (e,f) correspond to the
response obtained using Mod-
el C. The complex modes are
extracted at main dominan-
t frequencies identified from
Spatio-temporal spectra.

The spanwise variation of the phase difference for

the cases of sheared flow are presented in Fig.15. At flow

velocity V = 2.5 m/s, the structural response contains

multiple frequency components; therefore, only the re-

sults for the case of V = 1.5 m/s are presented here.

Since the response patterns predicted by the three mod-

els are similar in sheared flow cases, it is expected that

the distribution of the phase difference should also not

be vastly different. The similarities between the predic-

tions by the three models are obvious in Fig.15. For all

three models, the phase differences are confined with-

in the counter-clockwise region over a large segment of

the riser near the high-velocity region as a result of a

predominant travelling wave in both the cross-flow and

in-line vibrations. The underlying standing character of

the vibration leads to a zigzagging evolution of φxy a-

long the span; this is similar to the case of uniform flow

velocity V = 1.5 m/s in Model A. In the low-velocity

region, close to the end of the riser where the standing

wave becomes predominant, the variation of the phase

difference becomes large and jumps to the clockwise re-

gion at some locations.

In general, if the distribution of the phase difference

is compared with the corresponding response pattern,

then when the travelling wave is predominant in the re-

sponse (all the sheared flow cases and uniform flow cases

of V = 1.5 m/s for Model A), the phase difference has

a tendency to be confined within a counter-clockwise

range. In contrast, when the standing wave dominates

(all the uniform flow cases for Models B and C and

the uniform flow case of V = 0.5 m/s for Model A), the

phase difference alternatively switches between counter-

clockwise and clockwise ranges. The observations made

on the variation of the phase difference shown in this

section will be correlated with the fluid-structure ener-

gy transfer in the next section.

5 Hydrodynamic forces and fluid-structure

energy transfer

In this section, the hydrodynamic forces and the energy

transfer between the structure and fluid are studied in

relation to the structural responses analysed in Sections

3 and 4. The fluid forces, as well as the fluid-structure
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Fig. 11: Amplitude and phase
of (a,c,e) cross-flow and (b,d,f)
in-line complex modes at s-
heared flow V = 2.5 m/s for
secondary dominant frequen-
cy. (a,b) correspond to the re-
sponse obtained using Model
A; (c,d) correspond to the re-
sponse obtained using Model
B and (e,f) correspond to the
response obtained using Model
C. The complex modes are ex-
tracted at secondary dominan-
t frequencies identified from
Spatio-temporal spectra.
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Fig. 12: Selected trajectories of
the cylinder and corresponding
phase difference from simula-
tions with Model A.
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Fig. 13: Phase difference a-
long the span at uniform flow
V = 0.5 m/s for (a) Model
A, (b) Model B and (c) Mod-
el C.
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Fig. 14: Phase difference a-
long the span at uniform flow
V = 1.5 m/s for (a) Model
A, (b) Model B and (c) Mod-
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energy transfer, are representative of the nonlinear equi-

librium state of the coupled fluid-structure system and

decide the global structural behaviour. The prediction

of the segments of the structure that the energy flows

into (denoted as power-in region) and out from (denot-

ed as power-out region) is of fundamental importance

for VIVs of flexible structures.

5.1 Hydrodynamic forces

In this subsection, the hydrodynamic forces, as well as

their distribution along the riser, are discussed based

on the simulation results. The hydrodynamic forces ex-

erted on the structure are calculated at each nodal lo-

cation of the riser model from the simulated oscillations

of wake variable q using Eqs.(29), (30) and (33) in Part

I (submitted). It needs to be pointed out that the hy-

drodynamic force calculated here excludes the poten-

tial added mass. The calculated hydrodynamic force is

a vector in the space, and only its components in cross-

flow (Fy) and in-line (Fx) directions are considered.

The cross-flow and in-line force coefficients, namely Cy

and Cx, are obtained by normalising the corresponding

forces using the following equation:

Cx,y =
Fx,y

1
2ρDV

2
. (16)

In Fig.16 and Fig.17, the RMS values of the mean in-

line force coefficients, denoted as Ĉx; the fluctuating in-

line force coefficients, denoted as C̃x; and the cross-flow

force coefficients Cy are presented for all three models

at uniform flow velocities of V = 0.5 m/s and V = 1.5

m/s. It is clear in Fig.16(a) and Fig.17(a) that all three

models predict the amplification of Ĉx compared to its

value, around 1.2, on a fixed cylinder, but at different

levels. Model A predicts the most significant amplifica-

tion of the mean in-line force coefficient and Model C

predicts the least. From all three models, the amplifica-

tion of the mean in-line force coefficient is found to be

associated with large cross-flow vibrations of the riser.

The maxima of Ĉx are located in the regions of antin-

odes of cross-flow motion. The same trend was reported

in experiments by [19]. Furthermore, the magnitude of

the simulated maximum mean in-line force coefficient

by Model A – as high as 6 – is comparable to those

observed in the experiments under a similar amplitude

of cross-flow displacement. At the location where the

cross-flow motion is close to zero, for example the cross-

flow nodes at V = 0.5 m/s, the mean in-line force coef-

ficient predicted by Model A is around 2, which is still

higher compared to the case of a stationary cylinder,

while the other two models predict almost no amplifi-

cation.

The fluctuating component of the in-line force coef-

ficients, as illustrated in Fig.16(b) and Fig. 17(b), has

a similar trend to the mean in-line force. In general,

the distribution of C̃x follows a shape similar to that of

magnitude of cross-flow complex mode, meaning that

it is still primarily affected by the cross-flow motion.

In addition, the influence of the in-line motion is also

significant, as the local maxima of fluctuating in-line

forces appear mostly at points associated to the local

maxima of the in-line displacements.

The distribution of the cross-flow force, in contrast

to the in-line force, exhibits a more irregular pattern,

as depicted in Fig.16(c) and Fig.17(c). The cross-flow

forces predicted by Models B and C exhibit a similar

pattern of distribution, with the magnitude calculated

by Model B slightly higher than that by Model C. The

cross-flow force obtained with Model A exhibits a d-

ifferent pattern. Also, Model A predicts, in general, a

larger magnitude of cross-flow force. Efforts have been

made to relate the variation of the cross-flow force to

the structural motions. However, no obvious trend has

been observed. This may imply that for all three mod-

els, the cross-flow force is sensitive to both the cross-

flow and in-line motions. It is interesting to note that

for the uniform flow case at V = 0.5 m/s where the

cross-flow motion is dominated by standing waves, at

the location where the cross-flow motion is almost ze-

ro, the cross-flow force predicted by Models B and C is

close to zero, while that predicted by Model A still has

a significant value.

The hydrodynamic forces for the sheared flow case
with maximum flow velocity V = 1.5 m/s are present-

ed in Fig.18. Different from the cases of uniform flow,

the force coefficients are obtained by normalising the

force with the maximum flow velocity. As a result, al-

l the force coefficients exhibit a gradual decrease from

the high-velocity region to the low-velocity region to-

wards zero. The usage of the maximum flow velocity

in the normalisation makes it difficult to make a direct

comparison between the force coefficients and the re-

sponse amplitude of the riser, as has been done for the

uniform flow. However, by comparing the positions of

the local maxima and minima, it is clear that the large

mean and fluctuating in-line coefficients are normally

found at locations of large cross-flow oscillation ampli-

tude. With regard to the cross-flow force coefficient, its

relation to the cross-flow amplitude is more complex.

For example, in Fig.18(c), the local maxima of Cy are

observed at the local minima of cross-flow vibration for

p/L < 0.5, while for p/L > 0.5 the trend is the oppo-

site.
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5.2 Fluid-structure energy transfer

Follow the concept used by [20], the energy transfer be-

tween the fluid and structure in this paper is quantified

by the force coefficient that is in phase with the velocity

of the riser; for simplicity, it is denoted as excitation co-

efficient Ce here. Its components in the cross-flow and

in-line directions are defined as

Ce,y =
2
T

∫
T
Cy ẏdt√

2
T

∫
T
ẏ2dt

(17)

and

Ce,x =
2
T

∫
T
Cxẋdt√

2
T

∫
T
ẋ2dt

. (18)

The total force in phase with the velocity vector is de-

fined as

Ce =
2
T

∫
T

(Cy ẏ + Cxẋ) dt√
2
T

∫
T

(ẏ2 + ẋ2) dt
. (19)

A positive excitation coefficient means, on average, the

energy transfers from fluid to structure and hence ex-

cites the structural vibration, while a negative excita-

tion coefficient indicates that the structural motion is

damped. The regions corresponding to the positive ex-

citation coefficient are designated as power-in regions,

while those with the negative excitation coefficient are

refer to as power-out regions.

The spanwise distributions of Ce, Ce,y and Ce,x at

uniform flow velocities of V = 0.5 m/s and 1.5 m/s are

presented in Fig.19 and Fig.20. At both flow velocities,
Model A predicts the variation of the excitation coeffi-

cients along the span in a pattern that is different from

those for Models B and C. For flow velocity V = 0.5

m/s, as can be seen in Fig.19(a), the cross-flow and

in-line excitation coefficients share a common power-in

region at the middle of the riser between p/L = 0.4

and p/L = 0.6, according to Model A. Beyond this re-

gion, the energy transfer in the two directions seems

to be opposite at most locations along the span; i.e.

within the region where the riser motion is excited by

the fluid forces in the cross-flow direction, it is damped

out in the in-line direction and vice versa. The same

phenomena are observed and seem to be more percep-

tible for Models B and C, as illustrated in Figs.19(b)

and (c), where the signs of Ce,x and Ce,y are opposite

to each other over almost the entire span of the riser.

The predictions of the cross-flow excitation coefficient

according to Models B and C are almost exact, while

the in-line excitation coefficient predicted by Model B

is significantly larger than that by Model C. At flow

velocity V = 1.5 m/s, it has previously been shown

that the structural response, predicted by Model A, is

characterised by travelling waves that propagate in the

direction from p/L = 0 towards p/L = 1. As a conse-

quence, the general power-in region is expected to be

located over the span that is close to p/L = 0, while

the power-out region is expected to be close to the oth-

er end. This is verified in Fig.20(a), which illustrates

that the excitation coefficient Ce remains positive over

approximately the first half span of the riser and be-

comes alternatively positive and negative over the rest.

For Models B and C, in general, the spanwise variation

of the excitation coefficient at flow velocity V = 1.5

m/s is similar to that at V = 0.5 m/s, except that at

V = 1.5 m/s, the value of the positive Ce is lightly

larger over the span close to p/L = 1. This is consistent

with the insignificant underlying travelling character of

the structural response (corresponding to the travelling

wave oriented from p/L = 1 towards p/L = 0).

To study the relationship between the energy trans-

fer and structural motions, the power-in regions, indi-

cated by grey areas, are portrayed together with the

magnitude of cross-flow complex mode |Y| as well as

the phase difference φxy in Fig.21 and Fig.22 for a u-

niform flow at V = 0.5 m/s and V = 1.5 m/s. As

can be seen in Fig.21(a) and Fig.22(a), no clear rela-

tion is observed between the energy transfer and the

cross-flow motion for Model A. Nevertheless, it is in-

teresting to note that according to Model A, the large

amplitude of cross-flow vibration does not necessari-

ly correspond to the power-out region. For example,

in Fig.21(a), although the cross-flow vibration is at its

maximum around p/L = 0.5, the location is associat-

ed with the energy flow into the structure. The same

phenomenon is observed in experiments by [4]. Further-

more, the underlying mechanism is believed to be re-

lated to the effect of the coupled cross-flow and in-line

motions on the wake dynamics. This reflects the short-

comings of most existing models, including Models B

and C presented here, in the prediction of the coupled

cross-flow and in-line VIV. When dealing with the

two degrees of freedom VIV, the cross-flow vibration

is conventionally treated separately, and the force data

obtained from the forced cross-flow vibration are nor-

mally used. Therefore the most existing models always

predict the power-out region at the location of a large

cross-flow vibration. This can be verified by the ener-

gy transfer predicted by Models B and C, as presented

in Fig.21(b,c) and Fig.22(b,c), which show clearly that

the energy is primarily damped out from the structure

at locations corresponding to large cross-flow vibra-

tions. Apart from the power-out regions corresponding

to large cross-flow vibrations, the energy is also found
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Fig. 22: Power-in regions i-
dentified from Ce in com-
parison with the amplitudes
of the cross-flow complex
modes |Y| and phase differ-
ence φxy at uniform flow ve-
locity V = 1.5 m/s: (a) re-
sults of Model A, (b) result-
s of Model B and (c) results
of Model C. Power-in regions
are indicated by grey colored
area. Black solid lines repre-
sent |Y| and circles represent
φxy
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to be damped out from the structure at locations of s-

mall cross-flow vibrations, according to Models B and

C. For example, in Figs.21(b) and (c), the segments of

the riser around the nodes of cross-flow displacemen-

t are associated with power-out regions. Looking into

the contributions to the energy transfer from the cross-

flow and in-line excitation coefficients, as illustrated in

Figs.19(b) and (c), although the cross-flow excitation

coefficients around the location of the nodes are almost

zero, it is the negative in-line excitation coefficients that

make the total energy transfer at these locations nega-

tive.

Concerning the phase difference, no obvious rela-

tion is observed between it and the power-in regions for

Models B and C, since the energy transfer is primarily
determined by the amplitude of cross-flow vibration for

these two cases. For Model A, although no solid trend is

observed, it seems that the power-in regions are mostly

associated with the phase difference that correspond-

s to the counter-clockwise trajectory (between 0° and

180°).
The excitation coefficients for cases of a sheared flow

profile with maximum flow velocity V = 1.5 m/s are p-

resented in Fig.23. As can be seen in this figure, for all

three models, the regions of positive Ce are located in

the high-velocity zone, while in the low-velocity region,

the Ce remains negative. The cross-flow and in-line ex-

citation coefficients have the same distribution pattern

as that of Ce and both make significant contribution-

s to the total energy transfer within the high-velocity

region, while in the low-velocity region, the in-line ex-

citation coefficients are small. Fig.23 also displays the

limit, indicated by a horizontal dashed line, between

the power-in and power-out regions. Model A predicts

a wider power-in region p/L = 0−0.38 compared to that,

around p/L = 0−0.28, predicted by Models B and C.

Different from the uniform flow cases, the energy trans-

fer between the fluid and structure in the sheared flow

cases is normally expected to be determined by the re-

duced velocity. The reduced velocity range of 5−7 is

commonly assumed to be associated with the power-in

region. Here, for Model A, the power-in region corre-

sponds to the reduced velocity range of Ur = 3.83−6.15,

and that for Models B and C corresponds to the range

of Ur = 4.46−6.25.

The excitation coefficient for the case of sheared flow

with maximum flow velocity V = 2.5 m/s is shown in

Fig.24. The distributions of Ce and its cross-flow and

in-line components Ce,y and Ce,x exhibit the same pat-

tern and trend as those at V = 1.5 m/s; therefore, they

are not discussed in detail here. The reduced velocity

is calculated based on the primary dominant cross-flow

frequency, and the range that corresponds to the power-

in region is found to be Ur = 3.86−6.14 for Model A

and Ur = 4.48−6.14 for Models B and C. These ranges

are similar to those at V = 1.5 m/s and suggest that for

all three models, in the sheared flow cases, the power-in

regions are primarily affected by the reduced velocity.

Different from the case of V = 1.5 m/s, the structural

response at V = 2.5 m/s contains multiple frequen-

cy components, which implies the presence of several

power-in regions that correspond to different frequency

contents. Therefore, a frequency decomposition of Ce,y

and Ce,x based on a Fourier transform is performed.

The contributions from different frequency components

to the cross-flow and in-line excitation coefficients are

calculated with the following equations:

Wx (f) =
Re
(
F [Cx (t)]F [ẋ (t)]

)
|F [ẋ (t)]|

(20)
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and

Wy (f) =
Re
(
F [Cy (t)]F [ẏ (t)]

)
|F [ẏ (t)]|

(21)

where F [·] denotes Fourier transform and the overline

denotes the complex conjugation.

The frequency decomposition of the cross-flow and

in-line excitation coefficients are presented in Fig.25

and Fig.26 for all three models. The previously iden-

tified dominant frequencies are indicated by arrows. In

the cross-flow direction, as illustrated in Fig.25, the fre-

quency decomposition of Ce,y does not display obvi-

ous differences among the models. For all three models,

the most significant positive energy transfer occurs at

the main dominant frequency over the same power-in

region identified from the total excitation coefficients.

Apart from the main power-in region, another region

corresponding to a positive Ce,y is observed in the low-

velocity region around p/L = 0.7 close to secondary

dominant frequency. It has previously been shown in

Fig.9 that the cross-flow response exhibits two frequen-

cy peaks around the secondary dominant frequency.

Therefore, in Fig.25, it is not surprising that the posi-

tive energy transfer occurs at two distinct frequencies.

However, it seems that these two frequencies are well

separated for Models B and C, while they are closely

spaced for Model A. Concerning the frequency decom-

position of the in-line excitation coefficient, similar to

the cross-flow case, apart from the strong positive Ce,x

that occurs at the main dominant frequency, all three

models predict another positive energy transfer at the

secondary dominant frequency. Different from Model-

s B and C, for which the positive energy transfer at

the secondary dominant frequency is mainly located in

the low-velocity zone around p/L = 0.7, a significan-

t positive Ce,x is observed at different locations along

the riser for Model A, even in the high-velocity zone,

for example at p/L ≈ 0.15. The difference is believed

to be related to the in-line coupling term in the wake

oscillator equation. However, further analysis is needed

to understand the underlying mechanism. In the in-line
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Fig. 25: Frequency decom-
position of the cross-flow ex-
citation coefficient for (a)
results of Model A, (b) re-
sults of Model B and (c) re-
sults of Model C.

Fig. 26: Frequency decom-
position of the in-line exci-
tation coefficient for (a) re-
sults of Model A, (b) results
of Model B and (c) results
of Model C.

direction, apart from the positive energy transfer that

occurs at the main and secondary dominant frequen-

cies, a positive Ce,x is also observed at a frequency that

is approximately twice that of the secondary dominant

frequency as a result of the contribution from higher

harmonics.

6 Fatigue damage

In this section, a fatigue analysis is conducted for the

simulation results obtained from the three models. The

main purpose is to investigate the higher harmonics and

their contributions to fatigue damage. Therefore, the

characteristics of the structural response at higher har-

monics are presented in the first subsection through the

spectra of the strain, and the fatigue damage is calcu-

lated and discussed in the second subsection.

6.1 Strain and higher harmonics

To highlight the higher harmonics, the frequency do-

main analysis is performed in this subsection based on

the bending strains at the surface of the riser. The bend-

ing strains of cross-flow and in-line deflections are cal-

culated by the following equation:

εx,y = Kx,y
D

2
(22)

where subscripts ‘x’ and ‘y’ denote the in-line and cross-

flow directions respectively, and Kx,y is the curvature

calculated as the second derivative of the in-line and

cross-flow displacement with respect to the axial coor-

dinate using a central finite difference approximation.

The PSD of in-line and cross-flow strains are evalu-

ated along the riser, and its span-averaged value is plot-

ted in Fig.27–30. In these plots, the vibration frequency

is normalised by the Strouhal frequency fs, and the PS-

D is normalised by its maximum value for the purpose

of comparison. The results from Models A, B and C are
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Fig. 27: Spanwise averaged PSD of bending strain due to (a)
cross-flow and (b) in-line deflections for uniform flow V = 0.5
m/s. Black solid lines represent results from Model A, black
dashed lines represent results from Model B and grey solid
lines represent results from Model C.

presented in the same plot and indicated by black sol-

id, black dashed and solid grey lines respectively. The

spectrum confirms that the in-line response oscillates

at a fundamental frequency twice that of the cross-flow

response. In addition, the most important observation-

s from these plots are the appearance of higher har-

monics. In the cross-flow direction, the riser response is

dominated by a strong primary frequency (denoted by

1×) and has odd higher harmonics (denoted by 3× and

5×), while its even integer multiples (denoted by 2×,

4× and 6×) are found in the in-line direction.

For the uniform flow cases at V = 0.5 m/s and 1.5

m/s, as illustrated in Figs.27 and 28, it is clear that all

three models predict distinct frequency peaks at higher

harmonics. In general, the comparison of the results

from the three models reveals that Model A predicts

the most significant components at higher harmonic-

s. The 3× cross-flow response, as reported by [1], is

a result of the third harmonic component in the lift

force that corresponds to the wake pattern where three

vortices are shed. This wake pattern was found to be

associated with the large cross-flow vibration when the

super-upper branch appears for a small mass ratio sys-

tem. Since Model A is able to capture this phenomenon

of the super-upper branch, see reference [10], it is not

surprising that the model predicts the strongest 3× a-

mong the three models. Regarding to the 4×, 5× and
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Fig. 28: Spanwise averaged PSD of bending strain due to (a)
cross-flow and (b) in-line deflections for uniform flow V = 1.5
m/s. Black solid lines represent results from Model A, black
dashed lines represent results from Model B and grey solid
lines represent results from Model C.
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Fig. 29: Spanwise averaged PSD of bending strain due to (a)
cross-flow and (b) in-line deflections for sheared flow with
maximum velocity V = 1.5 m/s. Black solid lines represent
results from Model A, black dashed lines represent result-
s from Model B and grey solid lines represent results from
Model C.
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Fig. 30: Spanwise averaged PSD of bending strain due to (a)
cross-flow and (b) in-line deflections for sheared flow with
maximum velocity V = 2.5 m/s. Black solid lines represent
results from Model A, black dashed lines represent result-
s from Model B and grey solid lines represent results from
Model C.

6× harmonics, although often observed in the exper-

iments of VIVs of flexible cylinders, little research is

conducted on them. It is clear that their contribution-

s are considerable, especially the 4× harmonics, whose

magnitude predicted by Model A is comparable to the

2× harmonics.

In Fig.29 and Fig.30, the spanwise averaged PSD of

strain for sheared flow cases is presented. It can be seen

that at both flow velocities, the frequency spectrum of

the strain for Model A is characterised by the richness

of the frequency content with small peaks, and this is

much more significant compared to that of Models B

and C. The relative contributions of higher harmonics

are clearly smaller in sheared flow than those in uniform

flow. Nevertheless, Model A still predicts the strongest

high-harmonic components.

6.2 Fatigue damage rate

In this subsection, the fatigue damage is calculated by

applying the Miner summation, and the fatigue damage

at a specific location along the riser is given by

Da =
∑
i=1

ni
Ni

=
1

a

∑
i=1

ni (∆σi)
m

(23)

where Ni represents the number of cycles to failure

at stress range ∆σi, and ni denotes the correspond-

ing stress cycles that take place. The number of cycles

to failure for a given stress range can be found from

an S-N curve, which is associated with the parameters

a and m. Here, log a = 11.687 and m = 3.0 are taken

as suggested by [21]. The rainflow counting method is

applied to find ni for a given time series of strain, and

the stress amplitude is obtained by simply multiplying

the strain with Young’s modulus. It needs to be clari-

fied that the concept of fatigue damage is used loosely

here, since in practical applications, the effective stress,

such as von Mises stress, should be used in the estima-

tion of fatigue damage. For each simulation result, the

fatigue damage is estimated on both the original and a

filter version of the signal, where the higher harmonic-

s have been removed and only the primary harmonics

(1× component in the cross-flow and 2× component in

the in-line direction) are kept.

In Figs.31 and 32, the distributions of the fatigue

damage rate along the riser are presented for the uni-

form flow cases. It is clear from these figures that while

for the cases of Models B and C, the total fatigue dam-

age shows no obvious difference relative to that at the

primary frequency, Model A predicts the total fatigue

damage to be much higher than its component at the

primary frequency. At flow velocity V = 0.5 m/s, all

three models predict a similar order of maximum dam-

age due to the cross-flow vibrations, as can be seen in

Figs.31(a), (c) and (e). For Model A, the excited third

mode in the cross-flow vibration leads to a smaller fa-

tigue damage at the primary frequency compared to

that of Models B and C for which the cross-flow vibra-

tion is dominated by the fourth mode. The significant

contributions from higher harmonics make the maxi-

mum of the total fatigue damage predicted by Model A

comparable to that by Models B and C. In the in-line di-

rection, Model A predicts the highest fatigue damage at

the primary frequency, and Model C predicts the least

damage. Regarding the total fatigue damage, the sig-

nificant higher harmonics make the magnitude of total

fatigue damage predicted by Model A one order higher

than that predicted by Models B and C. At flow veloci-

ty V = 1.5 m/s, the general trend of differences among

the predictions of the three models is similar to those

at V = 0.5 m/s; therefore, this trend is not discussed in

detail here. However, it must be noted that at V = 1.5

m/s, the differences between the total fatigue damage

and its components at the primary frequency seem to be

more significant than at V = 0.5 m/s. According to [2],

the higher harmonic components in the fluid forces are

associated with certain favourable motion trajectories.

Therefore, the higher harmonics are naturally expected

to be stronger in a travelling wave response, as it al-

lows for these favourable motion trajectories to persist
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Fig. 31: Predicted fatigue dam-
age rate due to (a,c,e) cross-flow
and (b,d,f) in-line deflections at
uniform flow V = 0.5 m/s for
(a,b) Model A, (c,d) Model B
and (e,f) Model C. Black solid
lines represent the total fatigue
damage and grey solid lines rep-
resent the fatigue damage esti-
mated from the strain signal af-
ter the higher harmonics are re-
moved.
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Fig. 32: Predicted fatigue dam-
age rate due to (a,c,e) cross-flow
and (b,d,f) in-line deflections at
uniform flow V = 1.5 m/s for
(a,b) Model A, (c,d) Model B
and (e,f) Model C. Black solid
lines represent the total fatigue
damage and grey solid lines rep-
resent the fatigue damage esti-
mated from the strain signal af-
ter the higher harmonics are re-
moved.

over substantial lengths of the riser [6]. Recall that at

V = 1.5 m/s, the structural response in the cross-flow

direction is dominated by travelling waves, while that

at V = 0.5 m/s is standing wave dominated. This may

imply that the relation between the higher harmonics

and motion trajectories are well captured by Model A.

However, more studies are needed to confirm this.

The fatigue damage estimated for the sheared flow

cases are presented in Fig.33 and Fig.34. Similar to the

uniform flow cases, both Model B and Model C predict

that fatigue damage mainly occurs at the primary fre-

quency. For Model A, although the total fatigue dam-

age is observed to be different from its component at

the primary frequency, the difference between the two
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Fig. 33: Predicted fatigue dam-
age rate due to (a,c,e) cross-
flow and (b,d,f) in-line deflec-
tions for sheared flow with max-
imum velocity V = 1.5 m/s for
(a,b) Model A, (c,d) Model B
and (e,f) Model C. Black solid
lines represent the total fatigue
damage and grey solid lines rep-
resent the fatigue damage esti-
mated from the strain signal af-
ter the higher harmonics are re-
moved.
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Fig. 34: Predicted fatigue dam-
age rate due to (a,c,e) cross-
flow and (b,d,f) in-line deflec-
tions for sheared flow with max-
imum velocity V = 2.5 m/s for
(a,b) Model A, (c,d) Model B
and (e,f) Model C. Black solid
lines represent the total fatigue
damage and grey solid lines rep-
resent the fatigue damage esti-
mated from the strain signal af-
ter the higher harmonics are re-
moved.
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is much less significant than in the uniform flow cases.

This implies that the contribution of higher harmonics

in the sheared flow cases may not be as high as those

in the uniform flow. Nevertheless, in sheared flow cas-

es, Model A still predicts the highest level of fatigue

damage among the three in both cross-flow and in-line

directions. While the fatigue damage due to the cross-

flow vibrations is approximately the same according to

Models B and C, the fatigue caused by in-line vibration

for Model C is one order of magnitude smaller than in

Model B.
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7 Conclusions

In this paper, three different wake oscillator models are

used for simulations of VIVs of flexible cylinders sub-

jected to both uniform and linearly sheared flows. The

three models differ from each other with respect to the

inclusion of the in-line coupling that consists of an in-

line motion coupling term and a lift-coupled fluctuating

in-line force term. Model A is the most complete model,

and Model B excludes the in-line motion coupling term

and is similar to the model by Bai [13], while Model

C excludes both and is the same as the model used by

[12].

In the cases of uniform flow, Models B and C predict

similar structural responses, except that the amplitude

of in-line vibration predicted by Model C is much s-

maller than that by Model B. Model A, on the other

hand, predicted that the structure would vibrate in a

different pattern. Especially at higher flow velocities,

according to Models B and C, the structural response

in the cross-flow direction is dominated by a standing

wave that, according to Model A, has a tendency to vi-

brate in the form of a travelling wave. For sheared flow

cases, no obvious difference was observed regarding the

response pattern. All three models predicted the struc-

tural response to be dominated by the travelling wave

that propagates from a high-velocity to a low-velocity

region.

For the uniform flow cases, it has been shown that

the energy transfer between the fluid and structure ac-

cording to Models B and C is primarily determined by

the amplitude of cross-flow vibration. In principal, for

Models B and C, a positive energy transfer has been i-
dentified at locations corresponding to small cross-flow

vibrations, while a negative energy transfer occurs when

the amplitude of cross-flow vibration exceeds certain

values. Such a dependency is not observed in the re-

sults of Model A. Instead, it seems that for Model A,

the positive energy transfer is mostly associated with

a counter-clockwise motion trajectory, which is consis-

tent with experimental observations. For the sheared

flow cases, the energy transfer is found to mainly de-

pend on the reduced velocity, and Model A predicts

the power-in region corresponding to a wider range of

reduced velocities compared to Models B and C.

Finally, the fatigue damage predicted by the three

models has been investigated. It has been demonstrat-

ed that in the cases of uniform flow, Model A predict-

s highly significant contributions to the fatigue from

higher harmonics, which resulted in a much higher rate

of fatigue damage compared to the rates predicted by

Models B and C. In the cases of sheared flow, although

Model A’s predicted fatigue that is caused by higher

harmonics was not as significant as that in the uniform

flow cases, Model A still predicts the highest level of

fatigue damage among the three. This finding suggests

that for a VIV model that does not consider the effect

of in-line motions on the wake dynamics, the fatigue

damage can be significantly underestimated, and the

results therefore need to be taken carefully.

To conclude, the present study highlights the im-

portance of the in-line coupling on the proper mod-

elling of coupled cross-flow and in-line VIVs of flexible

cylindrical structures. Both the in-line motion coupling

term and the lift-coupled in-line force term are essen-

tial and dispensable in the formulation of this in-line

coupling. Excluding both, like the model used in [12],

or only taking the fluctuating in-line force into account,

like the model in [13], would not be able to capture the

influence of the motion trajectory and consequently un-

derestimate contributions to the fatigue damage from

higher harmonics.
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