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Abstract
The learning curve illustrates how the generalization performance of the learner

evolves with more training data. It can predict the amount of data needed for decent
accuracy and the highest achievable accuracy. However, the behavior of learning curves
is not well understood. Many assume that the more training data provided, the better
the learner performs. However, many counter-examples exist for both classical machine
learning algorithms and deep neural networks. As presented in previous works, even the
learning curves for simple problems using classical machine learning algorithms have
unexpected behaviors. In this paper, we will explain what caused the odd learning
curves generated while using ERM to solve two regression problems. Loog et al. [1]
first proposed these two problems. As a result of our study, we conclude that the
unexpected behaviors of the learning curves under these two problem settings are caused
by incorrect modeling or the correlation between the expected risk and the output of
the learner.

1 Introduction
Learning curves are plots demonstrating how the number of training samples influences
the generalization performance of learners. Thus, the learning curves can display how well
the learner solves the problem. They have been an essential tool for researchers to predict
the maximum achievable accuracy, estimate how much data is required for the desired
accuracy, and evaluate the generalization performance of learners [2, 3]. Moreover, their
ability to predict the amount of data needed can be used in large learning problems to save
computational costs and avoid the usage of the excess training samples [4].

A large quantity of research investigated the learning curve for different problems or tried
to find a common model for learning curves of various problems [2, 4]. Many learning curve
models have been proposed, such as the exponential or logarithmic models [2, 4, 5]. While
generating the learning curves for assorted problems, many unexpected behaviors of learning
curves have been observed. Some of the learning curves exhibit non-monotonic behaviors.
This phenomenon is opposed to the common assumption that “The more training data, the
better the performance of the learner”, as proposed in [4, 6, 7]. One well-known example is
the sample-wise double descent learning curve, which exists not only in simple models such
as linear regression, but also appears in deep neural networks [8].

In our study, we mainly investigate the two learning curves with unexpected
behavior introduced by Loog et al. [1]. Under the two proposed problem settings, the
learning curves are not decreasing monotonically, which means the generalization perfor-
mance of the learner is not always improving with more data. As shown in Figure 1a, the
expected risk for the first problem increases as more training data is provided. On the other
hand, the learning curve of the second problem shows a periodic pattern, as presented in
Figure 1b. Instead of decreasing monotonically, its decrease is followed by a jump upwards
periodically. Our target is to explain these learning curves. The main question is why
these learning curves appear? More specifically, what caused the non-monotonic behavior
of the learning curve? Is such behavior caused by distribution, loss of function, learner, or
combined?

The remainder of this paper is structured in the following way. Section 2 will present
other works in the field of the learning curve and discuss how our work is related to them.
Section 3 will introduce the problem settings of the investigated learning curves and our
analysis methodology. Section 4 will display the results of the analysis. Section 5 will
discuss how our study answers the research question and its limitations. Section 6 will go
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(a) How the size of the training data influ-
ence the performance of Aerm with L2 loss
and linear functions without intercept.

(b) How the size of the training data influ-
ence the performance of Aerm with L1 loss
and linear functions without intercept.

Figure 1: Comparison of the variance and bias terms for ERM and ridge regression

through the integrity and reproducibility of our results. Eventually, section 7 will provide
the conclusions and recommendations for future works.

2 Related Work
There is a large number of studies regarding learning curves in general. Many researchers
have tried to find the best function model for the learning curves [2, 4, 9]. Duin [10] inves-
tigated the learning curves of a variety of algorithms to find a reasonably well-performing
algorithm for small-sample-size problems. Likewise, many efforts have been paid to under-
stand the behavior of the learning curves, and there are various assumptions about how the
learning curves should behave. Haussler et al. [7] developed a theory to find a rigorous
bound for the learning curves. Provost et al. [11] suggested that the learning curves should
exhibit a steep decrease in error at the early stage, a more gentle decrease in the middle
stage, and a plateau afterward. Some claimed that the accuracy should increase as more
data is provided [4, 6, 7].

However, while investigating learning curves for various problems, many learning curves
not conforming with the previous assumptions have been discovered. Such unexpected
behaviors of learning curves occur in both classical machine learning algorithms [6] and in
deep neural networks [12]. The learning curves of many problems exhibit the “double decent”
pattern, as presented in Figure 2. In [1], it is shown that even with a simple distribution
and a basic learner, the learning curves can be ill-behaved. These problems and their
learning curves are the focus of this paper. Unlike most of the previously mentioned studies,
which used real-life datasets with unknown distributions, Loog et al. [1] proposed a simple
distribution and used it to generate artificial datasets. Since the distribution is known and
simple, the expected risk can be calculated, instead of estimated using test sets. Thus, the
possibility that the odd learning curves are caused by non-representative test sets, is safely
ruled out. We will try to explain why these learning curves have unexpected behaviors.
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Figure 2: The double descent pattern [6]

3 Problem Setting and Methodology
We will first introduce the settings of the two problems and explain terminologies in section
3.1. Then, we will present the methodology we applied to solve the questions in section
3.2. We have adopted two disparate methods for analyzing the two problems, which will be
introduced in detail separately.

3.1 Problem Setting: the Distribution and the Learners
These two problems are originally proposed in [1]. In both problem settings, the following
aspects are the same:

• The ground truth distribution D is (x, y) ∈ R × R, where P (x = 1) = pa, P (x =
1
10 ) = 1−pa = pb and y = 1. Simply put, the domain Z of this distribution is consisted
of only two points a = (1, 1) and b = ( 1

10 , 1), while the probability of P ((x, y) = a) =
pa, P ((x, y) = b) = 1− pa = pb.

• The hypothesis class H is all linear functions without intercepts; i.e., {h(x) =
βx|β ∈ R}.

• Both of them are regression problems and use ERM (empirical risk mini-
mizer) as the learner. A learner A maps the set of all possible datasets to elements
in the hypothesis class, i.e. A : Z ∪ Z2 ∪ Z3... → H. A ERM Aerm is a learner
which outputs the hypothesis with minimum empirical risk, given a set of training
data. Let L : H → R denote the loss function, R : H → R denote the risk function,
and Sn = {(x1, y1), (x2, y2), ..., (xn, yn)} denote a set of samples with size n. The risk
R(h) for a hypothesis h ∈ H is R(h) = E(x,y)L(h) and the empirical risk R̂(h), given
a training dataset Sn, is R̂(h) = 1

n

∑n
i=1 L(h).
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The main differences between these two problem settings lie in the value of pa and the
loss function.

• Problem I: pa = 0.001. The loss function is L2 loss. The loss of a hypothesis h for a
sample (x, y) is L(h) = (h(x)−y)2. The empirical risk on a given training dataset with
n samples is R̂(h) = 1

n

∑n
i=1(h(xi)−yi)

2. The expected risk is R(h) = E(x,y)(h(x)−y)2.
The empirical risk minimizer Aerm has a closed-form solution (XTX)−1XTY , where
X =

[
x1, x2, . . . , xn

]T and Y =
[
y1, y2, . . . , yn

]T .

• Problem II: pa = 0.1. The loss function is L1 loss. The loss of a hypothesis h for a
sample (x, y) is L(h) = |h(x)− y|. The empirical risk on a given training dataset with
n samples is R̂(h) =

∑n
i=1 |h(xi) − yi|. The expected risk is R(h) = E(x,y)|h(x) − y|.

The empirical risk minimizer Aerm does not have a closed-form solution in general.
However, it indeed has a closed-form solution when X,Y ∈ R, which will be derived
in section 4.2.

3.2 Disparate Methods of Analyzing the Problems
Due to the divergent nature of the two problems, we have tackled them using distinct
methods. For Problem I, we used the bias-variance decomposition to break down the
expected risk into bias and variance terms, and analyzed the resulting terms. This method
has been used in [13] to explain the double descent phenomenon occurring in the learning
curves of linear regression (ERM with L2 loss). Since we have a similar setting, we decided to
adopt the method. We used the bias-variance decomposition here and observed the change
of bias and variance terms with respect to the number of training samples. After observing
the curves of these two terms, we focused on the variance term and further inspected what
is the cause of its increase.

When interpreting the learning curve of Problem II, we started by finding the closed-
form solution of Aerm. Then we calculated the best possible solution of β, i.e, β =
argminβ∈R E(x,y)|βx− y|. While figuring out the solutions, we discovered that the expected
risk is correlated with the probability of A⌉∇⇕ producing a distinct hypothesis. Then, we
drew our attention to that probability.

4 Analysis
In this section, we will present the analysis of the two problems using the method we
introduced in section 3.2. In section 4.1, we will investigate Problem I. The derivation of
the bias-variance decomposition will be provided, along with the analysis of the two terms.
Problem II will be explored in section 4.2. We will show how we derive the closed-form
solution of Aerm and the best possible β. Furthermore, we will explain why the probability
of Aerm producing one specific hypothesis leads to the strange behavior of the learning
curve.

4.1 Problem I
We applied bias-variance decomposition to the expected risk for Problem I and identified
the cause of the increasing learning curve by observing how the resulting terms change with
respect to the number of training samples. We proposed using ridge regression to solve the
problem and then analyzed why the problem occurs. The bias-variance decomposition, the
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use of ridge regression, and the causes of the problem will be presented in detail in the
following sections.

4.1.1 Bias-Variance Decomposition

In the setting of Problem I, the loss function of a given hypothesis h on a sample (x, y)is
L(h) = (h(x)− y)2. The risk is R(h) = E(x,y)(h(x)− y)2. Therefore, the true risk of a fixed
sample size n ESnR(Aerm(Sn)) = ESnE(x,y)(β̂x− y)2. This expression can be decomposed
in the following way.

ESnR(Aerm(Sn)) = ESnE(x,y)(β̂x− y)2, (β̂ = Aerm(Sn))

= ESnEx(β̂x− y)2

= ExESn(β̂x− ESn β̂x+ ESn β̂x− y)2

= ExESn

{
(β̂x− ESn β̂x)2 + (ESn β̂x− y)2 + 2(β̂x− ESn β̂x)(ESn β̂x− y)

}
= Ex

{
V arSn(β̂)x2 + (ESn β̂x− y)2 + ESnG

}
ESnG = ESn

{
2(β̂x− ESn β̂x)(ESn β̂x− y)

}
= 2ESn

{
x2β̂ESn β̂ − β̂xy − x2ESn β̂ESn β̂ + ESn β̂xy

}
= 2

{
x2ESn β̂ESn β̂ − ESn β̂xy − x2ESn β̂ESn β̂ + ESn β̂xy

}
= 0

Thus, ESnR(Aerm(Sn)) = Ex

{
V arSn(β̂)x2 + (ESn β̂x− y)2

}
= Exx

2V arSn(β̂) + Ex(ESn β̂x− y)2

We call the term Exx
2 ·V arSn(β̂) variance and the term (ESn β̂x−y)2 bias. The following

Figure 3 shows how Ex(bias) and variance are changing with respect to the training size n.
As shown in Figure 3, the increase rate of variance terms surpasses the decrease rate of the
bias term, which leads to the result of an increasing expected risk.

Figure 3: How are the Bias and Variance terms evolving with respect to the growth of n
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4.1.2 Ridge Regression

We have applied ridge regression Aridge : Z∪Z2∪Z3... → H instead, in order to decrease the
variance and its increase rate. Assume Sn = {(x1, y1), (x2, y2), ..., (xn, yn)}, Aridge(S

n) =
argminβ∈R λ||β|| +

∑n
i=1(βxi − yi)

2. λ ∈ [0,+∞) is a hyper-parameter controlling the
strength of regularization effect. The larger the λ, the stronger the regularization effect is.
The closed-form solution of Aridge is (XTX +λI)−1XTY , where X =

[
x1, x2, . . . , xn

]T and
Y =

[
y1, y2, . . . , yn

]T . Due to the regularization term in ridge regression, the algorithm is
more stable, which means "a small change of the input does not change the output much."
[14, Chapter 13] Therefore, the variance of the output is lower, compared to Aerm, while
the bias is higher. As shown in Figure 4a, with λ = 0.1, the variance is lowered and grows
at a slower rate. Whereas, the bias starts at a higher value and decreased faster, as shown
in Figure 4b.

(a) Compare Ex(x
2) · variance (b) Compare Ex(bias)

Figure 4: Comparison of the variance and bias terms for ERM and ridge regression

We have experimented further with λ = {0.05, 0.1, 0.25, 0.5}. All learning curves of
Aridge with various λ values are decreasing monotonically for n = 1, 2, ...., 40, as depicted in
Figure 5. Figure 5b shows that with a relatively small λ, Aridge can achieve a lower expected
risk compared to Aerm, when n is large enough. We can also observe that for λ = 0.05, the
learning curve starts to increase again as n increases. This phenomenon can be attributed
to the weak regularization effect posed the small λ value, as the other learning curves are
still decreasing.

4.1.3 Explain Variance Increase

After decomposing the true risk and observing the behavior of the bias and variance terms,
we have further investigated what causes the increase in variance, which is contrary to the
intuition that a larger number of training samples should lead to a lower variance. We
proposed that the increase in variance is caused by the fact that this distribution does not
fit the linear model Y = βX + ϵ, where Eϵ = 0, and X and ϵ are independent with each
other. Therefore cannot be learned by the Aerm here, which is performing the ordinary least
squares method for linear regression.

To prove our claim, we have constructed a similar distribution with four points a1 =
[1, 3

2 ], a2 = [1, 1
2 ], b1 = [ 34 ,

5
4 ], b2 = [ 34 ,

1
4 ], each with probability 1

2pa,
1
2pa,

1
2pb,

1
2pb. This
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(a) Overview of performance with different
lambda

(b) Zoom in on λ = {0.05, 0.1} and n =
[25, 60]

Figure 5: How the size of the training data influence the performance of Aridge with different
λ and linear functions without intercept.

distribution can be reformulated as Y = βX + ϵ. β = 1, X is a discrete random variable
with two possible outcomes: 1 and 3

4 ; P (X = 1) = pa and P (X = 3
4 ) = 1−pa = pb. ϵ is also

a random variable with two possible outcomes: 1
2 and − 1

2 . Each outcome has a probability
of 1

2 and Eϵ = 1
2 ·

1
2 +(− 1

2 ) ·
1
2 = 0. Therefore, this distribution with four points fits the linear

model. As shown in Figure 6, the V arSn(β̂) decreases as the number of training samples
increases.

Figure 6: How the size of the training data influence V arSn β̂

We further inspected the term V arSn(β̂) to verify that the linear model property of this
distribution leads to the decrease of variance. In order to investigate the variance, we first
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calculate ESn β̂.

ESn β̂ = ESn(XT
n Xn)

−1XT
n Y

= ESn(XT
n Xn)

−1XT
n (Xnβ + ϵn)

= ESn(XT
n Xn)

−1(XT
n Xn)β + (XT

n Xn)
−1XT

n ESnϵn

Since ESnϵn = 0, ESn β̂ = β

Then we investigated V arSn(β̂):

V arSn(β̂) = ESn(β̂ − β)2

= EXnEϵn(β̂ − β)2

= EXnEϵn((X
T
n Xn)

−1XT
n (Xnβ + ϵn)− β)2

= EXnEϵn((X
T
n Xn)

−1XT
n Xnβ + (XT

n Xn)
−1XT

n ϵn − β)2

= EXnEϵn((X
T
n Xn)

−1XT
n ϵn − 0)2

= EXnV arϵn((X
T
n Xn)

−1XT
n ϵn)

= EXn

[
(XT

n Xn)
−1XT

n V arϵnϵnXn(X
T
n Xn)

−1
]

Since all training samples are i.i.d , V arϵnϵn = V ar(ϵ) · nIn
= EXn

[
V ar(ϵ)(XT

n Xn)
−1(XT

n Xn)(X
T
n Xn)

−1
]

= V ar(ϵ)EXn(XT
n Xn)

−1

= V ar(ϵ)EXn(

n∑
i=1

x2
i )

−1

Since EXn(
∑n

i=1 x
2
i )

−1 decreases as n increases, the variance also decreases as n increases.

4.2 Problem II
To explain the unexpected periodic behavior of the learning curve for Problem II, we first
deduced the closed-form solution for both Aerm and the optimal β. Then, we discovered
that expected risk is positively correlated to the probability of Aerm outputting one specific
hypothesis, whose curve also has a periodic pattern. We then further investigated why the
curve that probability has periodic behavior. The details will be provided in the following
sections.

4.2.1 Closed-form Solution of Aerm and the Optimal β

In the setting of Problem II, the loss of a hypothesis h on a sample (x, y) is L(h) = |h(x)−
y|.The empirical risk on a given training dataset with n samples is R̂(h) =

∑n
i=1 |h(xi)−yi|.

Therefore, Aerm = argminh∈H R̂(h), where H = {h(x) = βx|β ∈ R}. So Aerm can also be
expressed as Aerm = argminβ∈R

∑n
i=1 |βxi − yi|. We first derive the closed form solution

for Aerm. Let n denote the size of the training dataset, na denote the number of point
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a = (xa, ya) in the training dataset, and nb denote that of point b = (xb, yb).

n∑
i=1

|βxi − yi| = na|βxa − ya|+ nb|βxb − yb|

(1) For β ∈ [0,
ya
xa

)

d

dβ
(na|βxa − ya|+ nb|βxb − yb|) =

d

dβ
(na(ya − xaβ) + nb(yb − xbβ))

= −naxa − nbxb

< 0

(2) For β ∈ [
ya
xa

,
yb
xb

]

d

dβ
(na|βxa − ya|+ nb|βxb − yb|) =

d

dβ
(na(xaβ − ya) + nb(yb − xbβ))

= naxa − nbxb

(3) For β ∈ (
yb
xb

,+∞)

d

dβ
(na|βxa − ya|+ nb|βxb − yb|) =

d

dβ
(na(xaβ − ya) + nb(xbβ − yb))

= naxa + nbxb

> 0

If naxa − nbxb ≥ 0, then the derivative is only negative when β ∈ [0, ya

xa
), which means the

function stops decreasing when β ≥ ya

xa
. Therefore, the minimum of this function is reached

at the point β = ya

xa
. In the other case, when naxa−nbxb < 0, the the derivative is negative

when β ∈ [0, yb

xb
), which means the function stops decreasing when β ≥ yb

xb
. Therefore, the

minimum of this function is reached at the point β = yb

xb
. The closed form solution of Aerm

is thus the following.

β̂ =


yb
xb

if naxa − nbxb < 0

ya
xa

else

The same procedure is applied to find argminh∈H R(h), or equivalently β = argminβ∈R E(x,y)|βx−
y|.

E(x,y)|βx− y| = pa|βxa − ya|+ pb|βxb − yb|

β =


yb
xb

if paxa − pbxb < 0

ya
xa

else

Under this problem setting, paxa − pbxb =
1
10 · 1− 1

10 · 9
10 > 0, β = ya

xa
.

4.2.2 Analysis of the Expected Risk

We then analyzed the expected risk for a given n. Let PSn(β̂ = ρ) denote the probability of
Aerm outputting ρ when the size of the training dataset is n, ya

xa
= β as β̂ = β̂1, yb

xb
̸= β as
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β̂2, PSn(β̂ = β̂1) as Pn
1 , and PSn(β̂ = β̂2) as Pn

2 = 1− Pn
1

ESnR(Aerm(Sn)) = ESnE(x,y)|β̂x− y|

= E(x,y)ESn |β̂x− y|

= E(x,y)(P
n
1 |β̂1x− y|+ Pn

2 |β̂2x− y|)

= Pn
1 · E(x,y)|β̂1x− y|+ Pn

2 · E(x,y)|β̂2x− y|

As β̂1 = argminβ∈R E(x,y)|βx− y|, the smaller Pn
2 is, the larger Pn

1 and the smaller the true
risk for n. Therefore, we further investigate how Pn

2 changes with respect to the number of
training samples. As shown in Figure 7, Pn

2 follows the same decreasing followed by sudden
increase periodic pattern. If we change the value of pa such that paxa − pbxb < 0, then

Figure 7: The change of Pn
2 with respect to n

β = yb

xb
. In this case, β̂2 = argminβ∈R E(x,y)|βx − y| and the smaller Pn

2 is, the larger the
true risk. This claim is supported by the following setting. We set pa = 0.05 and all the
other values remain the same, then paxa − pbxb = 0.05 · 1 − 0.95 · 1

10 = −0.045 < 0. The
learning curve and the curve for Pn

2 under this setting is displayed in Figure 8. The curve
of Pn

2 still has the “decrease then increase ” periodic behavior. Whereas, the learning curve,
instead of following the same trend, exhibits the complete opposite behavior. It increases,
while the curve of Pn

2 decreases.

4.2.3 Explaining the Periodic Pattern of Pn
2

The question of why the learning curve behaves as in Figure 1b can be reduced to the
question why the curve of Pn

2 has the behavior shown in Figure 7. In order to investigate
Pn
2 , we need to understand when will Aerm output β̂2.

β̂ =
yb
xb

= β̂2 if naxa − nbxb < 0
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(a) The learning curve when pa = 0.05 (b) The change of Pn
2 when pa = 0.05

Figure 8: The curve of Pn
2 and the learning curve when β̂2 = β

Thus, for a given n, Pn
2 = PSn(naxa − nbxb < 0). nb can be substituted by n− na.

naxa − nbxb < 0

naxa − (n− na)xb < 0

na(xa + xb) < nxb

na <
xb

xa + xb
n

na <
n

xa

xb
+ 1

PSn(naxa − nbxb < 0) = PSn(na <
n

xa

xb
+ 1

) =
∑
i∈NA

PSn(na = i), where NA = {i ∈ N| i <

n
xa
xb

+1
}. Since n, i ∈ N, |NA| increases by 1, when n increases by ⌈xa

xb
+ 1⌉. In this problem

setting ⌈xa

xb
+ 1⌉ = 11 and as shown in the Figures 1b and 7, the curves have a sudden increase

when 11|n. Therefore, we claim that the increase of |NA| is the cause of the sudden increase.
In order to prove this, we observe

∑
i∈NA

PSn(na = i) before and after |NA| increase by 1.
The proof of this claim is provided in Appendix A. We also claim that Pn

2 decreases while
n increases and |NA| stays the same, the proof of which is provided in Appendix B.

Therefore, we concluded that the shape of the curve showing how Pn
2 changes with respect

to n will always demonstrate such periodic pattern regardless of the value of pa. As shown
in Figure 9, with either larger or smaller values of pa the curve of Pn

2 still displays the same
periodic pattern, which is sudden increase after a fixed period of decrease. Moreover, the
duration of one period is dependent on ⌈xa

xb
+ 1⌉. As illustrated in Figure 10, the duration

of one period is always equal to ⌈xa

xb
+ 1⌉.

5 Discussion
We aimed to explain why the learning curves generated under the two problem settings
have unexpected behaviors. For Problem I, the study demonstrates a correlation between
the increasing learning curve and the distribution not fitting the linear model. We adopted
the bias-variance decomposition to split the expected risk into bias and variance terms.
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(a) When pa = 0.01 (b) When pa = 0.2

Figure 9: The behavior of Pn
2 with different values of pa

(a) When xb =
1
5
, ⌈xa

xb
+ 1⌉ = 6 (b) When xb =

1
20
, ⌈xa

xb
+ 1⌉ = 21

Figure 10: The behavior of Pn
2 with different values of ⌈xa

xb
+ 1⌉

The visualization and analysis of these two terms have shown that the rapid increase in
variance and the, in contrast, slower decrease in bias leads to the ascending learning curve.
We switched to using Ridge Regression to suppress the rapid increase in variance, which
results in learning curve decreasing in the same range. It is unusual for variances to increase
with more training samples. We suggested that this increase is caused by the fact that this
distribution does not fit the linear model. We supported our claim by proposing a similar
distribution, conforming to the linear model, and proved that its variance decreases with
more training samples.

For Problem II, we discovered that the probability of Aerm outputting one hypothesis
leads to the periodic pattern of the learning curve. Through the analysis of β̂ and the
optimal β, we discovered that Aerm only has two possible outcomes, with one equaling to
the optimal β denoted as β1 and the other denoted as β2. For the sake of simplicity, we use
p1 to refer the probability of Aerm outputting β1 and p2 for that of β2. It is shown, with
further derivation, that the expected risk is positively correlated with p2. After plotting how
p2 changes with respect to the number of training samples, we discovered the same periodic
pattern as observed in the learning curve. Therefore, the problem was reduced to why the
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curve of p2 has the periodic behavior, which was answered in section 4.2.3.
Even though we have provided detailed explanations for the unexpected behavior of

learning curves, there are still some limitations in this study. During the analysis for Prob-
lem I, to back our claim that the distribution not conforming with the linear model caused
the increase in variance, we provided a concrete example. However, presenting only one
example is not adequate for rigorously proving our claim. Regarding Problem II, we have
explained why the learning curve has the periodic pattern shown in Figure 1b and 8b.
Whereas, we have not answered whether, with more and more training data, the learning
curve will converge to the lowest possible risk. Besides, our results are limited to these two
specific problem settings and are not yet generalized to other problems.

6 Responsible Research
Our study used an artificial distribution to generate all the datasets and did not involve
any real-life data, thus preventing data breaches from happening. All results and figures
are authentic. Throughout our experiments, we have never altered the results to support
our claims. We have given credits to and added references in the paper whenever we adopt
ideas from other works. Moreover, our study is easily reproducible. The derivations can be
reproduced following the steps we provided in the paper. The experiments are written in
Python using numpy, sympy and matplotlib libraries. Note that we used the sympy library
to increase the precision for floats and matplotlib to generate the figures. As the repository
is not public, if anyone is interested in viewing the original code, please contact the author.

7 Conclusions and Future Work
Our study focused on the strange learning curves introduced in Loog et al. [1]. The learning
curves are generated from two similar regression problems while using ERM as the learner.
The two problems are only different in loss function and one parameter value. We adopted
disparate methods for the two problem settings. For Problem I, we used bias-variance
decomposition to inspect the expected risk. For Problem II, we analyzed the closed-form
solution of the ERM and the optimal hypothesis β.

We have answered our research question for each problem. Regarding Problem I, we
discovered that the rapid increase in variance and the relatively slow decrease in bias, with
respect to the number of training samples, lead to the ascending learning curve. In addition,
we proposed that the increase in variance is caused by the distribution not conforming with
the linear model. To strengthen our argument, we constructed a similar distribution yet
conforming with the linear model and proved that in this case, the variance decreases. As
for Problem II, our analysis showed that the ERM only output two possible hypotheses: β1

equals the optimal β and β2. The expected risk is positively correlated with the probability
of ERM outputting β2. The curve of this probability also presents the periodic pattern,
which produced the strange learning curve. As proved in Appendix A and B, this curve will
display the same periodic pattern regardless of certain changes in the problem setting.

Our study has left room for several follow-up questions. One possible research question
for future study is to analyze whether the learning curves of both questions will converge to
the optimal risk. If they will, how fast will they converge? Is there any upper bound on the
expected risk given the size of the training dataset. The learning problems discussed here
use artificial distributions. Whereas, the odd learning curves generated for real-life learning
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problems also seem of interest to us. Whether some of the unexpected learning curves
generated from real-life problems are also caused by similar reasons is another question
worth studying.

References
[1] M. Loog, T. Viering, and A. Mey, “Minimizers of the empirical risk and risk mono-

tonicity,” in Proceedings of the 33rd International Conference on Neural Information
Processing Systems, 2019, pp. 7478–7487.

[2] L. J. Frey and D. H. Fisher, “Modeling decision tree performance with the power law,”
in Proceedings of the Seventh International Workshop on Artificial Intelligence and
Statistics, ser. Proceedings of Machine Learning Research, vol. R2, 03–06 Jan 1999.
[Online]. Available: https://proceedings.mlr.press/r2/frey99a.html

[3] P. Kolachina, N. Cancedda, M. Dymetman, and S. Venkatapathy, “Prediction of
learning curves in machine translation,” in Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), july 2012, pp.
22–30. [Online]. Available: https://aclanthology.org/P12-1003

[4] B. Gu, F. Hu, and H. Liu, “Modelling classification performance for large data sets,” in
Advances in Web-Age Information Management, 2001, pp. 317–328.

[5] G. H. John and P. Langley, “Static versus dynamic sampling for data mining,” in Pro-
ceedings of the Second International Conference on Knowledge Discovery and Data
Mining, ser. KDD’96. AAAI Press, 1996, pp. 367–370.

[6] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever, “Deep double
descent: where bigger models and more data hurt,” Journal of Statistical Mechanics:
Theory and Experiment, vol. 2021, no. 12, p. 124003, dec 2021. [Online]. Available:
https://doi.org/10.1088/1742-5468/ac3a74

[7] D. Haussler, M. Kearns, H. S. Seung, and N. Tishby, “Rigorous learning curve bounds
from statistical mechanics,” Machine Learning, vol. 25, pp. 195–236, 1996. [Online].
Available: https://doi.org/10.1007/BF00114010

[8] S. d’Ascoli, L. Sagun, and G. Biroli, “Triple descent and the two kinds of
overfitting: where and why do they appear?” Journal of Statistical Mechanics:
Theory and Experiment, vol. 2021, no. 12, p. 124002, dec 2021. [Online]. Available:
https://doi.org/10.1088/1742-5468/ac3909

[9] M. Last, “Predicting and optimizing classifier utility with the power law,” in Seventh
IEEE International Conference on Data Mining Workshops (ICDMW 2007), Oct 2007,
pp. 219–224.

[10] R. Duin, “Small sample size generalization,” in 9th Scandinavian Conference on Image
Analysis, June 1995, pp. 957–964.

[11] F. Provost, D. Jensen, and T. Oates, “Efficient progressive sampling,” in
Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’99, 1999, pp. 23–32. [Online]. Available:
https://doi.org/10.1145/312129.312188

15

https://proceedings.mlr.press/r2/frey99a.html
https://aclanthology.org/P12-1003
https://doi.org/10.1088/1742-5468/ac3a74
https://doi.org/10.1007/BF00114010
https://doi.org/10.1088/1742-5468/ac3909
https://doi.org/10.1145/312129.312188


[12] M. Belkin, D. Hsu, S. Ma, and S. Mandal, “Reconciling modern machine-learning
practice and the classical bias–variance trade-off,” Proceedings of the National Academy
of Sciences, vol. 116, no. 32, pp. 15 849–15 854, july 2019. [Online]. Available:
https://doi.org/10.1073%2Fpnas.1903070116

[13] P. Nakkiran, “More data can hurt for linear regression: Sample-wise double descent,”
2019. [Online]. Available: https://arxiv.org/abs/1912.07242

[14] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning - From Theory
to Algorithms. USA: Cambridge University Press, 2014.

A Appendix
Claim A.1. whenever n increases by ⌈xa

xb
+ 1⌉, which lead to the increase of |NA| by 1, Pn

2

increases.

Proof. Assume when n = m, NA = 0, 1, ..., k and when n = m+ 1, NA = 0, 1, ..., k + 1

k∑
i=0

PSm(na = i) =

(
m

0

)
(1− pa)

m +

(
m

1

)
(1− pa)

m−1p1a

+

(
m

2

)
(1− pa)

m−2p2a + ...+

(
m

k

)
(1− pa)

m−kpka

= (1− pa)
m−k

{(
m

0

)
(1− pa)

k +

(
m

1

)
(1− pa)

k−1p1a

+

(
m

2

)
(1− pa)

k−2p2a + ...+

(
m

k

)
pka

}
︸ ︷︷ ︸

(1)

= (1− pa)
m−k

k∑
i=0

(
m

i

)
(1− pa)

k−ipia︸ ︷︷ ︸
(1)
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We can apply the same procedure when n = m+ 1.

k+1∑
i=0

PSm+1(na = i) =

(
m+ 1

0

)
(1− pa)

m+1 +

(
m+ 1

1

)
(1− pa)

mp1a

+

(
m+ 1

2

)
(1− pa)

m−1p2a + ...+

(
m+ 1

k + 1

)
(1− pa)

m−kpk+1
a

= (1− pa)
m−k

{(
m+ 1

0

)
(1− pa)

k+1 +

(
m+ 1

1

)
(1− pa)

kp1a

+

(
m+ 1

2

)
(1− pa)

k−1p2a + ...+

(
m+ 1

k + 1

)
pk+1
a

}
︸ ︷︷ ︸

(2)

= (1− pa)
m−k

k+1∑
i=0

(
m+ 1

i

)
(1− pa)

k+1−ipia︸ ︷︷ ︸
(2)

We first ignore the common factor (1 − pa)
m−k and focus on the parts (1) and (2), which

causes the differences. Take arbitrary 0 ≤ j ≤ k and assume j is even. We examine the
coefficients of pja in (1) and (2), denoted as cj1 and cj2.

cj1 =

(
m

0

)
·
(
k

j

)
−
(
m

1

)
·
(
k − 1

j − 1

)
+

(
m

2

)
·
(
k − 2

j − 2

)
− ...+

(
m

j

)
=

j∑
i=0

(−1)j−i

(
m

i

)
·
(
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j − i

)
cj2 =

(
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0

)
·
(
k + 1

j

)
−
(
m+ 1

1

)
·
(

k

j − 1

)
+

(
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2

)
·
(
k − 1

j − 2

)
− ...+

(
m+ 1

j

)
=

j∑
i=0

(−1)j−i

(
m+ 1

i

)
·
(
k + 1− i

j − i

)

We use the theorem
(
n+1
k

)
=

(
n
k

)
+

(
n

k−1

)
to decompose terms in cj2. Note

(
n
k

)
= 0, when

k ∈ Z<0

cj2 =

j∑
i=0

(−1)j−i

(
m+ 1

i

)
·
(
k + 1

j

)

=

j∑
i=0

(−1)j−i


(
m

i

)
·
(
k + 1− i

j − i

)
︸ ︷︷ ︸

α

+

(
m

i− 1

)
·
(
k + 1− i

j − i

)
︸ ︷︷ ︸

γ



After the decomposition, we calculate cj2 − cj1 by subtracting the similar terms in cj1 from
the terms labeled with α in cj2. The resulting terms of each such subtraction are labeled
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with rα

cj2 − cj1 =

j∑
i=0

(−1)j−i


(
m

i

)
·
(

k − i

j − i− 1

)
︸ ︷︷ ︸
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+

(
m

i− 1

)
·
(
k − (i− 1)

j − i

)
︸ ︷︷ ︸

γ


Denote

(
m
i

)
·
(

k−i
j−i−1

)
as ai, then

(
m
i−1

)
·
(
k−(i−1)

j−i

)
is ai−1

cj2 − cj1 =

j∑
i=0

(−1)i (ai + ai−1)

= (a(−1) + a0)− (a0 + a1) + ...+ (aj−1 + aj)

= a(−1) + aj

=

(
m

−1

)
·
(
k + 1

j

)
+

(
m

j

)
·
(
k − j

−1

)
= 0

As shown in the result each term in c2j − c1j labeled with rα will be cancelled by the next
term labeled with γ. Thus, only the last rα term will be left, which is 0. Following a similar
procedure, we can derive that c2j − c1j is also 0 when j is odd. Let us now consider j = k+1.

Lemma A.1.
(
n

i

)
−
(

n

i− 1

)
> 0, when 1 ≤ i <

n+ 1

2

Proof. (
n

i− 1

)
=

n!

(n− i+ 1)!(i− 1)!(
n

i

)
=
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(n− i)!(i)!(
n

i− 1

)
=

(
n

i

)
· i

n− i+ 1(
n

i

)
−
(

n

i− 1

)
=

(
n

i

)(
1− i

n− i+ 1

)
For 1 ≤ i <

n+ 1

2
,

i

n− i+ 1
<

n+1
2

n− n+1
2 + 1

= 1

Since
(
n

i

)
> 0,

(
1− i

n− i+ 1

)
> 0 =⇒

(
n

i

)
−
(

n

i− 1

)
> 0
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When k is odd, k + 1 is even

cj1 = 0, since the highest order of pa is k

cj2 =

(
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)
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1

)
+
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)
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=
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+
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(
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When k is even, k + 1 is odd

cj1 = 0, since the highest order of pa is k
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Therefore, in (2) - (1) the coefficients of all pja, 0 ≤ j ≤ k are zero and the coefficient of pk+1
a

is positive. Therefore, (2) - (1) > 0. Since (1− pa)
m−k is also positive,

k∑
i=0

PSm+1(na = i) >

k+1∑
i=0

PSm(na = i)

Therefore, there will always be an increase in pn2 whenever n increases by ⌈xa

xb
+ 1⌉, which

leads to the increase of |NA| by 1.

B Appendix
Claim B.1. whenever n increases without increasing |NA|, Pn

2 decreases.

Proof. Since |NA| stays the same, assume when n = m, NA = 0, 1, ..., k and when n = m+1,
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NA = 0, 1, ..., k
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We can apply the same procedure when n = m+ 1.
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Following the same procedure of proving Claim A.1, we can conclude that the coefficient
of all terms pja is zero, when 0 ≤ j ≤ k. Let us now consider j = k + 1, using Lemma A.1
as in proof of Claim A.1 .
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When k is odd

cj1 = 0, since the highest order of pa is k

cj2 =
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m+ 1
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)
−
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)
+
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)
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(
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)
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(
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cj2 < 0

When k is even

cj1 = 0, since the highest order of pa is k
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(
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Therefore, in (2) - (1) the coefficients of all pja, 0 ≤ j ≤ k are zero and the coefficient of pk+1
a

is negative. Therefore, (2) - (1) < 0. Since (1− pa)
m−k is also positive,

k∑
i=0

PSm+1(na = i) <

k∑
i=0

PSm(na = i)

Therefore, whenever n increases while |NA| stays the same, pn2 decreases.
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