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Abstract

The offshore wind industry is a quickly growing market because the increasing demand for clean en-
ergy sources. Large wind speeds and the abundance of potential wind farm locations make Offshore
Wind Turbines an interesting solution. Because of high continuous dynamic loading and extreme
environmental conditions, the structural design requires a detailed assessment, especially in the
Fatigue Limit State. In this thesis, the focus lies on improving the modeling of monopile foun-
dations for Offshore Wind Turbines, which could pave the way towards more efficient foundation
design.

The conventional method of modeling the monopile foundation of an Offshore Wind Turbine is
with a nonlinear elastic distributed spring stiffness along the monopile (using p-y curves). Damp-
ing related to the soil is considered through either global damping (like Rayleigh damping) or
local viscous damping. However, the response of the soil around the monopile under wind and
wave loading is better described through a nonlinear hysteretic (rate-independent) model, which is
computationally demanding to model in the time domain. Next to that, a conventional frequency-
domain method can not be combined with any nonlinearity. Therefore, linear elastic models are
used to model the soil response in frequency-domain simulations.

The goal of this thesis is to combine a nonlinear hysteretic soil model with a frequency-domain anal-
ysis. Firstly, a nonlinear hysteretic element is assessed in 1 Degree of Freedom through a nonlinear
frequency-domain algorithm. Results under harmonic loading match a nonlinear time-integration.
However, an analysis of the complexity of the algorithm shows that the method is computationally
challenging to extend to a large Finite Element model under multiharmonic loading. A simplifi-
cation of the strategy is needed. Therefore, a response amplitude-dependent linearization of the
nonlinear hysteretic element is made. This linearization captures both the secant stiffness and
the hysteretic damping ratio of the generated hysteresis loops. The combination of the response
amplitude-dependent element with an iterative solution strategy, the Equivalent Linear method,
is shown to approximate a nonlinear time-integration under both harmonic and multiharmonic
loading, as long as the nonlinearity is limited. Because of the linearization, this Equivalent Linear
method is able to be extended to a large Finite Element model under multiharmonic loading.

A nonlinear hysteretic model is fit to available soil reaction data and a response amplitude-
dependent linearization is generated. A Finite Element model that can be combined with the
Equivalent Linear method is set up and verified with a case study structural model of an Offshore
Wind Turbine. The model is subjected to (high) Fatigue Limit State wave loading. The results are
compared to both a conventional frequency-domain method (with a linear elastic small-strain soil
model) and a nonlinear time-domain method (with a nonlinear elastic soil model). The deflections
and deflection spectra in the foundation found through the Equivalent Linear method correspond
to results from the nonlinear time-domain method, provided the influence of higher harmonics is
limited and the response has a similar amplitude throughout the analyzed time window.
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Results from the Equivalent Linear method show that the main frequency of the first resonance
peak is around 2% smaller than the first natural frequency of the system. This shifted resonance
peak is consistent with the results found through the nonlinear time-domain method. Because of
the local response amplitude-dependent hysteretic damping applied however, an increase of the
soil damping is identified from the results of the Equivalent Linear method. The identified soil
damping in the first mode is 0.64-0.8% critical (4-5% log. dec.), which is similar to other literature.
By combining the observed system properties with literature about fatigue damage estimation, a
hypothesis is stated: the fatigue damage in the foundation calculated through an Equivalent Linear
method with a nonlinear hysteretic soil model will be lower than the fatigue damage calculated
through a nonlinear time-domain method with a nonlinear elastic soil model.
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Latin symbols

A Cross-sectional area [m2]
â/â Fourier coefficient of f (cosine) [N] / [Nm]
B 1st derivative of the shape function matrix N -
b̂/b̂ Fourier coefficient of f (sine) [N] / [Nm]
C Linear damping matrix -
c Viscous damping [Ns/m]
ĉ/ĉ Fourier coefficient of u (cosine) [m] / [rad]
D Hysteretic damping ratio -
d̂/d̂ Fourier coefficient of u (sine) [m] / [rad]
E Young’s Modulus [N/m2]
f/f Force [N] / [Nm]
f0 1st natural frequency of the structure [Hz]
G Shear modulus [N/m2]
H Dynamic compliance matrix -
H Amount of harmonics -
h Element length [m]
I Identity matrix -
I Second moment of area [m4]
J Jacobian -
K Linear stiffness matrix -
K̂ Complex-valued stiffness matrix -
k Stiffness (or distributed stiffness) [N/m2] /[N/m3]
k̂ Complex-valued stiffness (or distributed stiffness) [N/m2] /[N/m3]
k k-th harmonic -
M Linear mass matrix -
M Samples taken in the time-domain part of AFTHBM -
m mass [kg]
N Shape function matrix -
N Axial load on element [N]
n Hysteresis loop parameter Bouc-Wen -
p̂/p̂ Fourier coefficient of z (cosine) [m] / [rad]
q̂/q̂ Fourier coefficient of z (sine) [m] / [rad]
R Reaction force Bouc-Wen [N]
r/r Residual function Bouc-Wen [m] / [rad]
S Spectrum -
T Length of time window [s]
t/t Time [s]
u/u Displacement [m] / [rad]
u̇/u̇ Velocity [m/s] / [rad/s]
ü/ü Acceleration [m/s2] / [rad/s2]
v̂/v̂ Fourier coefficient of r (cosine) [m] / [rad]
ŵ/ŵ Fourier coefficient of r (sine) [m] / [rad]
z/z Hysteretic displacement [m] / [rad]
z Spatial coordinate [m]
0 Vector with all zeros -
1 Vector with all ones -
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Greek symbols

α Ratio between post- and pre-yielding stiffness Bouc-Wen -
β Hysteresis loop parameter Bouc-Wen -
γ Hysteresis loop parameter Bouc-Wen -
ε Convergence criterion -
ζ Damping ratio -
κ Hysteresis loop parameter Bouc-Wen -
ρ unit weight [kg/m3]
φ Regularization parameter LM-algorithm -
Ω Fundamental frequency [rad/s]
Ωe Domain of finite element [-]
ω Frequency [rad/s]
ω0 1st natural frequency [rad/s]
ω1 Damped natural frequency [rad/s]
∇̌n n-th order derivative matrix -

Superscripts

j j-th iteration of the iterative algorithm -
T Transpose
u Deflection
θ Rotation
ˆ Transformed to the frequency domain

Subscripts

bb Backbone
e Element
ex External
i Initial
k k-th harmonic
nl Nonlinear
ref Reference
s Shear
y yield

Abbreviations
AFTHBM Alternating Frequency-Time Harmonic Balance Method
B-W Bouc-Wen
BHawC In-house nonlinear time-domain solver from SGRE
DFT Discrete Fourier Transform
DOF Degree of Freedom
EQL Equivalent Linear
FE Finite Element
FLS Fatigue Limit State
HBM Harmonic Balance Method
IDFT Inverse Discrete Fourier Transform
LM Levenberg-Marquardt
log. dec. Logarithmic decrement
OWT Offshore Wind Turbine
SGRE Siemens Gamesa Renewable Energy
ULS Offshore Wind Turbine
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1.1 Offshore Wind Turbines

The wind energy industry is a growing market because of the increasing demand for renewable
energy sources. One of the options for the placement of these wind turbines is offshore. Larger
wind speeds and the abundance of potential offshore wind farm locations make Offshore Wind
Turbines (OWTs) an interesting solution.

However, the offshore placement of these turbines does come with extra engineering challenges.
High wind speeds, high wave loading and harsh environmental conditions bring the necessity for
detailed structural assessment. Because the forcing frequencies of wind loading, wave loading and
the blade passing frequencies (f1P and f3P ) are close to the 1st natural frequency (f0) of the
structure, a dynamical analysis is necessary (see Figure 1.1). High loads also mean large strains
are observed in the structure and in the surrounding soil. Therefore, nonlinearity must be taken
into account in the analyses.

Figure 1.1: Relation of wave and wind loading spectra to f0, f1P and f3P , [Kallehave et al., 2015].

2 load case groups are most important for OWT design: Ultimate Limit State (ULS) load cases and
Fatigue Limit State (FLS) load cases. In ULS, one assesses the structure under extreme loading
conditions. Under these extreme conditions, larger stresses and strains are allowed in the structure.
Permanent deformations also occur in ULS load cases. In FLS, the behavior of the structure under
regular conditions is observed. Continuous wind and wave loading will result in lower stresses and
strains in the structure. Nonlinear behavior, although smaller, will still be present in FLS load
cases. In this project, the focus lies on FLS analysis, as the fatigue lifetime is often a governing
factor in the design of OWTs.

1.1.1 OWT support structures

Depending on site conditions, a big variety of support structures for OWTs can be used (see
Figure 1.2). Because of the trend for sites to be situated further off the coast and the OWTs
growing in power capacity and size, the sub-structures and foundations are growing as well. 81
% of the constructed OWTs in Europe have a monopile support structure ([Ramirez et al., 2020]).
In this project we will investigate large-diameter monopile support structures. A schematization
of an OWT on a monopile foundation along with some general definitions for a monopile support
structure is shown in Figure 1.3.
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The behavior of these monopile support structures is the subject of large research projects (like the
PISA project [Byrne et al., 2017], the REDWIN project ([Aasen et al., 2017]) and the DISSTINCT
project [Versteijlen et al., 2018])). Better understanding of the nonlinear dynamic behavior around
these foundations allows for more efficient support structure design. The reason for this increase in
efficiency is the possibility of less conservative assumptions for both the stiffness and the damping
of the foundation. This efficiency will in turn allow for a stronger economic viability of Offshore
Wind Energy.

Figure 1.2: Different support structures for OWTs, [Dornhelm et al., 2019].

Figure 1.3: An Offshore Wind Turbine on a monopile foundation, [Hoogstraten, 2019].
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1.2 Dynamical analysis
Dynamical analyses of complex structures like OWTs are generally carried out through a Finite
Element Analysis (FEA). FEA is the process of discretizing a complex structure into smaller
elements of which the approximate behavior is well defined. Such a discretization transforms the
partial differential equations describing the system into a set of ordinary differential equations. In
dynamical analysis, this system is described by the following formulation:

M · ü(t) + C · u̇(t) + K · u(t) + fnl(t, ü, u̇,u) = fex(t) (1.1)

with M being the (linear) mass matrix, C the (linear) damping matrix, K the (linear) stiffness
matrix. In the case of added nonlinearities, an extra term of fnl(t, ü, u̇,u) is added. Any nonlinear
interaction in the system (like dry friction, slipping behavior, contact-dependency or hysteretic
behavior) is summarized into this term. The system is excited by forces collected in fex(t). Dis-
placements, velocities and accelerations of the system are represented by u(t),u̇(t) and ü(t).

1.2.1 Time-domain analysis
Two general families can be defined in solving systems of equations like Equation (1.1): Time-
domain analyses and Frequency-domain analyses.

A Time-domain analysis starts off at a moment in time with predefined velocities and displacements
in the structure. Based on the force at that moment in time, the accelerations, velocities and
displacements at a next time-step is calculated. This procedure is repeated throughout the full
time window. Elaborate time-stepping algorithms have been created to make sure an accurate
solution is found. Next to that, this method can handle very complex (nonlinear) models. This
accuracy and versatility does however come with relatively lengthy analyses. To ensure stability
of the analysis, small time-steps are required at moments in time with large nonlinearities.

When analyzing the structural response of complex structures, analyses in the time domain can
become too computationally costly. In the case of analyzing OWTs, analyses in the time domain
are used for verification of the final design because of the nonlinearities in the system. However, the
liberty of accepting the long computation times can not be taken for concept designs. Constant
changes that are made to the structural design demand quicker calculations. For that reason,
frequency-domain analyses are implemented in the initial design phase.
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1.2.2 Frequency-domain analysis
Instead of splitting up the time window into discrete time steps, one can analyze the problem in
the frequency domain. Separate frequency components of the forcing are found. A time window
of finite length T is assumed. Any real-valued forcing that is periodic in T can be split up into a
summation of sinusoids:

f(t) =

∞∑
k=0

âkcos(kΩt) + b̂ksin(kΩt) (1.2)

where Ω is the fundamental frequency Ω = 2π/T . This summation can also be written in the
complex form:

f(t) =

∞∑
k=0

Re
(
f̂ke

kiΩt
)

(1.3)

Note here the choice for a single-sided spectral representation. This way, the absolute value of f̂k
(complex-valued) corresponds to the amplitude of the associated sinusoid. f̂k are called the Fourier
coefficients of the excitation, as they can be found through performing a Fourier-transform.

A maximum is set on the amount of harmonics needed to receive accurate results from the calcu-
lations. This maximum is called H.

f(t) =

H∑
k=0

Re
(
f̂ke

kiΩt
)

(1.4)

A particular solution for the deflections in the system is filled in. We assume a solution where the
transient part of the solution is neglected and a stationary response is found. A nonlinear system
does not always reach a steady-state solution however. Nonetheless, we assume that for the load
levels under investigation, the OWT does reach a steady-state solution. The suggested solution of
u(t) is:

u(t) =

H∑
k=0

Re
(
ûke

kiΩt) (1.5)

In a classical frequency-domain analysis, nonlinearities can not be taken into account. This means
one can look at each forcing frequency separately. A substitution of (1.4) and (1.5) into (1.1) and
subsequent rearranging leads to:

ûk = (−k2Ω2M + kiΩC + K)−1 · f̂k = H(kΩ) · f̂k (1.6)

where H is called the dynamic compliance matrix. This means a set of (H + 1) Matrix-vector
multiplications is needed to find û. Now that the Fourier coefficients of the response are found, an
Inverse Fourier transform is required for the response in the time domain.

Figure 1.4 shows a simplified flowchart of a conventional frequency domain analysis. As the analyses
performed for OWT design are done with discrete-time signals over a finite length of time (force
input from load calculation software is defined the same), the Fourier transform changes into a
Discrete Fourier Transform (DFT), and the inverse Fourier transform changes into an Inverse
Discrete Fourier Transform (IDFT). In further sections analysis strategies change the conventional
frequency domain procedure. We show differences from the conventional analysis strategy through
these flow charts.
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Figure 1.4: Flowchart of a conventional frequency domain analysis.

Every blue block is a separate calculation. This figure shows the disconnection between analysis
of the different frequencies. Only limited calculations have to be performed. When compared to
a time-domain analysis, where small time steps are required to ensure numerical stability of the
solution, computational effort is significantly lower. The conventional frequency-domain analysis
has a drawback, which is the inability to include nonlinearities into the model. In some engineering
cases, linear modeling is not accurate. This is also the case for the analysis of OWTs on a monopile
foundation.

1.3 Simplifying large dynamical systems with nonlinearity
Because of the large computational demand of a nonlinear dynamical analysis, a large part of
research is devoted towards finding the right simplifications to speed up this process. One option
to reduce the computational demand of a nonlinear dynamical analysis is to reduce the amount
of elements in the finite element model that show nonlinearity. Specifically for the case of OWTs,
the representation of the nonlinear foundation behavior of monopiles is captured with a single
nonlinear macro-element [Krathe and Kaynia, 2016]. Especially for ULS conditions, such a model
shows promise.

Whenever the nonlinearity in the system is limited, a linearization of the nonlinear effects can also
be a viable solution strategy. [Corciulo et al., 2017a] shows that such a linearization can capture
the behavior of such a large dynamical system. An important factor that plays a role however, as
stated by [Corciulo et al., 2017a], is that the linearization applied fits the load level. Next to that,
such a linearization strategy can not model permanent deformations. Therefore, such an analysis
can not be performed when the structure is loaded under ULS conditions.
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1.4 Foundation modeling
The focus area of this project is the modeling of an OWT on a monopile support structure. Figure
1.5 shows 3 popular methods of modeling the monopile foundation:

Figure 1.5: 3 strategies for OWT monopile foundations, [Abadie, 2015].

1. Modeling the soil reaction using a 3D soil medium

2. Modeling the soil reaction using a representative Winkler foundation

3. Modeling the soil reaction using representative coupled springs at mud-line level

The most elaborate model, the 3D soil medium, can be directly fitted to the local site response.
In-situ soil investigation through for example a cone penetration test (CPT) is performed and soil
samples are taken for further testing. By taking samples to a laboratory and performing cyclic
(or dynamic) tests on the soil samples, soil parameters can be found to create a representative soil
body. Stresses and strains in the soil can be calculated in the FE analyses, allowing for nonlinear
soil behavior to be accounted for ([Corciulo et al., 2017b] and [Zhang et al., 2020]). The drawback
however of this 3D soil medium is the large amount of degrees of freedom added to the FE model.
Large amounts of degrees of freedom cause large computational problems. Further simplifications
are often used to speed up the calculations.

The response of the soil body as a whole can also be represented by bedding spring elements
along the foundation. An important step towards this new representation is the tuning of these
bedding spring elements to the site response ([Versteijlen et al., 2016], [Versteijlen et al., 2017],
[Versteijlen et al., 2018] ).

Possible nonlinearity of the soil behavior can still be taken into account by adding nonlinearity to
the bedding spring elements ([Byrne et al., 2017]). This Winkler-type foundation has significantly
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less degrees of freedom when compared to a full 3D soil medium approach. At the same time
however, deflections and rotations of the foundation can still be found. This information is useful
for foundation design, especially for fatigue-driven checks.

Further simplifications can be made in representing the behavior of monopile foundation. A set
of coupled (possibly nonlinear) springs can be substituted at mud-line ([Hoogstraten, 2019] and
[Aasen et al., 2017]). That way, no extra degrees of freedom need to be added for either the
foundation or the soil medium. We however lose information on deflections (and therefore stresses
and moments) in the foundation.

1.4.1 Constitutive soil models

No matter what modeling strategy is picked, a constitutive model must be implemented to define
the behavior of the soil. We will elaborate on 3 common types of constitutive models (as shown in
Figure 1.6):

Figure 1.6: 3 common soil constitutive models, after [Stockhert, 2015].

1. A linear elastic model

2. A nonlinear elastic model

3. A nonlinear hysteretic model

Linear elastic models are most commonly used in small-strain dynamical analyses and in frequency-
domain analyses. If local damping is added, linear viscous (in both frequency-domain and time-
domain) or linear hysteretic damping (although only in frequency-domain methods) is applied as
well.

Nonlinear elastic models allow for the stress-strain relation to change based on the amplitude of
the strains in the soil. At reversal of strain direction however, the load path is exactly followed
back. This means no damping is present in the nonlinear elastic constitutive model. Either local
or global damping must be added to account for the damping in the soil.

Nonlinear hysteretic models also change stress-strain behavior dependent on the strain amplitude.
As an extra condition however, the unloading path is different from the loading path. This means
the model is dependent on its past loading history. Inherent hysteretic (rate-independent) damping
is present in these hysteretic constitutive models. The damping in the soil around OWT when
loaded with wind and wave loading is dominated by material damping [Malekjafarian et al., 2021],
which is nonlinear hysteretic in nature. The combination of a nonlinear hysteretic soil model with
a time-domain method is computationally demanding however. A highly nonlinear constitutive
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model is needed to describe hysteretic behavior in the time domain. Therefore, small time steps
needed to calculate the response of a nonlinear hysteretic soil model in the time domain.

More complex soil behavior like ratcheting [Abadie, 2015], pore pressure build-up, cyclic soften-
ing [Corciulo et al., 2017b] and scouring [Qi and Gao, 2014] could also be modeled. These effects
require advanced constitutive models and generally affect the behavior of the soil at larger time
spans than considered in dynamic analyses. These effects are not considered in this project.

1.4.2 The p-y method

Figure 1.7: Representation of the p-y method, [Bayton and Black, 2016].

The industry standard for analysis of monopile foundations is the p-y method. This strategy
combines a Winkler foundation with a nonlinear elastic constitutive soil model. The soil reaction
is defined as depth-dependent distributed elements. The element behavior is a function of the
deflections in the foundation. Originally derived for use in piles with small diameters, these p-
y curves were fitted to piles with larger diameters using 3D FE simulations and full-scale tests
[Byrne et al., 2017] or lab tests through centrifuge models [Bayton and Black, 2016]. The p-y
curves were designed for monotonic loading. To ensure safe design, these p-y curves are reduced
by a factor when applied in cyclic load cases [DNV, 2019]. Usage of the p-y method in cyclic and
dynamic loading is challenged [Abadie, 2015], as cyclic and dynamic soil properties are currently
not integrated into the method. Next to that, local soil damping is generally not taken into account
(and is instead added through modal or Rayleigh damping).

Usage of the p-y method in the design of monopile foundations allows for consideration of re-
duced soil stiffnesses at larger foundation deflections. However, because of the nonlinear elastic
constitutive model used, the method can not be integrated into conventional frequency-domain
calculations. Initial designs are currently evaluated in the frequency domain with linear elastic
constitutive soil models.
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1.5 Fatigue damage calculation
As the area of focus is simulations in the Fatigue Limit State, the next step to take is to calculate
the fatigue damage. Just as with the simulations, methods for calculation of fatigue damage exist
in both the time domain and the frequency domain. Both methods revolve around calculation of
the stresses in the structure, while taking into account the number of load cycles.

1.5.1 Time domain: Rainflow-counting method
Because of the multiharmonic nature of the loading for OWTs, one can not define a single stress
amplitude for fatigue calculation. Different cycles of different stress amplitudes occur, while these
cycles also overlap. The rainflow-counting method [Matsuishi and Endo, 1968] provides a solution
to that problem, taking inspiration from rain flowing over Japanese pagoda roofs. Figure 1.8 shows
how such a rainflow-counting method works. Firstly, the stress reversal points are isolated from
the time-history of the stresses in the structure. Secondly, half-cycles are derived from the reversal
points. From these half-cycles, a probability density function of the stress cycle amplitudes can be
created.

Figure 1.8: The rainflow-counting method, [Guilherme and Correia, 2016]

This procedure does not have any requirements on the system that is analyzed. Nonlinearities
both the structure and the forcing can be taken into account. However, the method requires time-
history results of the stresses in the structure. This means that probabilistic methods can not be
directly used. A large amount of simulations are needed to find the appropriate probability density
function of the stress cycles.
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1.5.2 Frequency domain: Dirlik method
Just as with the simulations itself, simplified methods exist to approximate probability density
functions of the stress amplitudes in the structure. A probabilistic approach exists in the frequency
domain. Load spectra SFF (ω) are used as an input instead of time-histories of the load. Through
the use of transfer functions (derived through the same method as the dynamic compliance matrix
H(kΩ)) we transform the load spectra into stress spectra Sσσ(ω):

Sσσ(ω) = (HσF (ω))
2 · SFF (ω) (1.7)

The Dirlik method then changes these stress spectra of the structure into probability density
functions that can be used in fatigue damage calculation.

Figure 1.9: The Dirlik formula.

Figure 1.10: The Dirlik formula parameters.

with spectral moments mn defined as:

mn =

∫
S(ω) · ωndω (1.8)

As the Dirlik method directly uses spectra of the load, no information about the time-history of
the load is needed for the calculations. The method of using a transfer function to find stress
spectra however assumes steady-state behavior (no time-history dependent effects can be taken
into account) and also assumes linearity of the structural response.
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1.5.3 Palmgren-Miner rule
The probability density functions of the stress amplitudes in the structure are found (either through
rainflow-counting method or Dirlik method). Such a probability density function looks like Figure
1.11:

Figure 1.11: A probability density function of stress amplitudes, [Madhukar et al., 2018].

Accumulated fatigue damage can afterwards be calculated through the Palmgren-Miner rule:

s∑
i=1

ni(Si)

Ni(Si)
≤ 1 (1.9)

where s different cycles at stress level Si are analyzed, ni expresses the amount of cycles at stress
level Si and Ni expresses the maximum amount of cycles at that stress level. This method assumes
the maximum amount of stress cycles is deterministic however. To ensure safety, design curves
are used to set a safe limit for Ni(Si). These curves are called S-N curves, of which an example is
given in Figure 1.12. In the case of OWT design, the S-N curves are often set up at cross-sectional
level, which means that instead of stresses, shear forces and moments are used as input for S.

Figure 1.12: Example of S-N curves, [Sobczyk et al., 2010].

By increasing the analyzed time until the cumulative fatigue damage ratio reaches 1, the fatigue
life time of the structure can be calculated.
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1.6 Research question and goals
The main goal of the thesis is to improve the modeling of OWTs on a monopile support structure
under FLS conditions, with a focus to the modeling of the foundation. The nonlinear hysteretic
nature of the soil reaction can not be combined with conventional frequency-domain analyses. The
main research question is therefore:

How to combine a nonlinear hysteretic constitutive soil model with a
frequency-domain analysis to improve simulations of Offshore Wind Turbines on a

monopile foundation under Fatigue Limit State conditions?

In order to answer this main research question, we define goals that are tackled separately:

• To compare different solution strategies in the frequency domain based on their ability to
represent hysteretic behavior.

• To evaluate the solution strategies on their ability to be used in a full FE model under
multiharmonic excitation.

• To fit hysteretic constitutive models to available soil reaction data.

• To set up an FE formulation that includes the suggested solution strategy and constitutive
model.

• To verify the FE formulation with an available structural model of an OWT on a monopile
foundation.

• To quantify the change in foundation response (in stiffness, damping and deflection shape)
between a conventional frequency-domain analysis and the suggested solution strategy.

• To compare the suggested frequency-domain solution strategy to a time-domain strategy
which uses a p-y formulation for the monopile foundation. The focus lies on the behavior of
the monopile foundation.
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1.7 Research outline
In Chapter 2 an investigation into a mathematical framework for the combination of nonlinearity
with a frequency-domain calculation is laid out: The Harmonic Balance Method (HBM). For the
case of a hysteretic constitutive model (specifically the Bouc-Wen model of hysteresis), a strategy
called the Alternating Frequency-Time Harmonic Balance Method (AFTHBM) is needed. The
performance of this method in 1DOF to a harmonic load is tested by comparing the results to a
nonlinear time integration strategy. The feasibility of an AFTHBM strategy in NDOF subjected
to multiharmonic loading is also assessed by identifying the complexity of the algorithm.

Chapter 3 presents a simplification of AFTHBM. The dependency of the Bouc-Wen element on
its response amplitude is highlighted. Based on that dependency, a response-amplitude dependent
linearization is defined. The set of linearizations is defined as an equivalent linear (EQL) element.
Through this EQL method the Bouc-Wen element is analyzed in 1DOF to both harmonic and
spectral loading. The results are compared to AFTHBM and to a nonlinear time integration
strategy. The feasibility of the EQL strategy in NDOF subjected to multiharmonic loading is
checked through identification of the complexity of the algorithm. and we decide to move forward
with the EQL method.

In Chapter 4, a fitting procedure of 2 hysteretic constitutive soil models to available soil reaction
curves is shown. The 2 models in question are the Bouc-Wen model of hysteresis and the Masing
model. We assess the stiffness reduction and hysteretic damping curves and make a comparison
between observed stiffness and damping and results from literature. Based on this assessment,
the choice is made to move forward with the Masing model, but to apply a cap to the hysteretic
damping to avoid overdamping at large response amplitudes.

A structural finite element model is set up in Chapter 5, where the different parts of the finite
element definition are shown. We also show how the EQL method fits into this model, and how to
add forcing and other sources of damping next to the soil damping.

In Chapter 6, this structural model is verified through a case study. A structural model used in
Siemens Gamesa Renewable Energy (SGRE) is taken as reference. Mode shapes and resonance
frequencies are compared, and differences in modeling strategy are elaborated on.

Chapter 7 presents a comparison between a conventional (linear) frequency-domain method, 2
versions of the EQL analysis and a nonlinear time-integration method. The subject of comparison
is the structural model from Chapter 6 subjected to (high) FLS wave loading. Stiffness and
damping properties of the foundation are compared and deflection spectra in the foundation are
analyzed. The potential of an EQL analysis is assessed by stating its strengths and limitations.
The usability of an EQL analysis for fatigue damage calculation is also evaluated.

The last chapter, Chapter 8, summarizes the drawn conclusions in the project and answers the
main research question. Recommendations for future research are also stated.
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Section 2

Nonlinear modeling in the frequency
domain
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2.1 Nonlinearity vs. modeling in the frequency domain
Nonlinearity and frequency domain methods are not trivial topics to combine. A conventional
frequency domain analysis hinges on one core principle:

The superposition principle:
F (X1) + F (X2) = F (X1 +X2) (Additivity)
F (aX) = aF (X) (Homogeneity)

where X is an external force applied to the system, and F (X) is the response of the system.
This superposition principle is the base requirement of conventional frequency domain methods,
because it allows an arbitrary load to be split up into components which are separately solvable.
The components we take are the different harmonics in the external force, as the response of the
system to a harmonic force is easier to calculate.

In the case of steady state solutions, this means each separate harmonic component of the force
generates a harmonic response of the same frequency.

However, nonlinear hysteretic models do not follow the superposition principle. An input of a
sinusoidal force will no longer produce an output of a sinusoid.

Because the goal is to do want to combine nonlinearity and a frequency domain analysis, either
the nonlinear hysteretic model or the frequency-domain strategy has to change.

2.2 The Harmonic Balance Method
A technique for combining frequency domain analysis and nonlinearity exists. This technique is
called the Harmonic Balance Method (HBM) and focusses on a change of the frequency-domain
strategy. The combination between dynamics of soil continua and the Harmonic Balance Method
is made in other research [Zhang et al., 2020]. Throughout this chapter, we follow definitions from
[Krack and Gross, 2019]. For HBM to work, the superposition principle can not be used. HBM
instead starts from a different, weaker assumption:

The response to a periodic load is also periodic with fundamental period T

This assumption feels natural: When a load is periodic, we expect the response to also be periodic.
Right from the start however, a limitation that this assumption brings can be seen. In the case
of high loads, permanent deformations could occur in a nonlinear system like the foundation of
a monopile. Therefore, this approach is limited to small and medium strains levels at which the
permanent deformations are limited.

We note here that the fundamental period of the response does not have to be the fundamental
period of the force. This specific note is made to not exclude sub-harmonic responses (the effect
that a force with fundamental period T results in a response with fundamental period which is a
multiple T ).
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The goal is now to formulate a system of equations that can contain a nonlinear element in the
frequency domain. For now, the investigation is restricted to one nonlinear element in isolation.
As this element has 1 Degree of Freedom (1DOF), Equation 1.1 collapses to:

mü(t) + cu̇(t) + ku(t) + fnl(t, ü, u̇,u) = fex(t) (2.1)

As said before, it is assumed that u(t) is periodic with fundamental period T and can be described
with H harmonics. We then define fex(t) with the same fundamental period T . A Fourier series
representation of both the external force and the deflection is defined. Because later algorithms
rely on real-valued coefficients, a sine-cosine representation is used:

fex(t) =

H∑
k=0

âkcos(kΩt) + b̂ksin(kΩt) (2.2)

u(t) =

H∑
k=0

ĉkcos(kΩt) + d̂ksin(kΩt) (2.3)

The Fourier amplitudes of both forcing and response are stored in the following manner:

f̂ex =
[
â0 â1 b̂1 â2 b̂2 · · · âH b̂H

]T
(2.4)

û =
[
ĉ0 ĉ1 d̂1 ĉ2 d̂2 · · · ĉH d̂H

]T
(2.5)

For Equation (2.1) to hold in combination with the assumptions made, fnl(t) must also be periodic
with fundamental period T and able to be described with H harmonics. Its coefficients can be
stored in the same way as f̂ex and û, summarized as f̂nl.

The goal is to transform Equation (2.1) into the frequency domain. This means the time-derivatives
ü(t) and u̇(t) also have to be transformed. Taking a derivative with respect to time in the frequency
domain is relatively straightforward. This goal can be achieved by multiplying û with Ωn and a
derivative matrix ∇̌n, where n stands for taking the n-th derivative with respect to time:

dnû

dtn
= ∇̌n · û (2.6)

The content of this matrix can be derived by taking the derivative of Equation (2.3) and collecting
the resulting coefficients:

∇̌0 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 . . . 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0

...
. . .

...
0 0 0 0 0 1 0
0 0 0 0 0 . . . 0 1


(2.7)
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∇̌1 =



0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 −1 0 0 0 . . . 0 0
0 0 0 0 2 0 0
0 0 0 −2 0 0 0

...
. . .

...
0 0 0 0 0 0 H
0 0 0 0 0 . . . −H 0


(2.8)

∇̌2 =



0 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 −1 0 0 . . . 0 0
0 0 0 −4 0 0 0
0 0 0 0 −4 0 0

...
. . .

...
0 0 0 0 0 −H2 0
0 0 0 0 0 . . . 0 −H2


(2.9)

Note here that ∇̌0 stands for taking the ’0-th’ derivative (not taking a derivative with respect to
time). This operator (Basically I) is useful in generalization of HBM to multiple degrees of freedom
and in simplification of operation matrices.
Combining Equations (2.1 - 2.9) and reordering the terms creates the following set of equations:(

mΩ2∇̌2 + cΩ∇̌1 + k∇̌0
)
· û− f̂ex + f̂nl = 0 (2.10)

Equation (2.10) shows where nonlinearity is added in the system of equations. The most important
part however is to describe the nonlinearity in f̂nl. Through this component, different harmonics
in the response will be linked to each other. Our system can no longer be separated into H + 1
separate calculations, which means we have to solve for all harmonics at the same time.

This change in strategy changes the solution flow chart from Figure (1.4). Figure (2.1) shows
the interconnected nature of the calculation. We have to find a model that can represent the
nonlinear soil reaction around monopile foundations and can be combined with the Harmonic
Balance method to form f̂nl.
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Figure 2.1: Flowchart of the Harmonic Balance Method.
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2.3 Requirements for the nonlinear hysteretic element
A nonlinear hysteretic element must be chosen to represent the soil response in the foundation.
The requirements for this element are:

• The element must show strain-dependent behavior.

• The element must generate hysteresis loops in cyclic/dynamic loading.

• The element must be versatile in fitting.

• The element must have a representation in the time domain.

• The element must be compatible with the Harmonic Balance Method.

The first 2 requirements reflect the type of element we are looking for. The description of nonlin-
earity should focus on strain-dependency and should show hysteretic behavior in cyclic or dynamic
loading conditions. Nonlinear elastic models (like the p-y formulation) for example do not fulfill
the second requirement.

The 3rd requirement is based on the varying behavior of the soil reaction we are emulating. Differing
soil composition, depth and other factors influence the reaction of the soil element. The simplest
models might not be able to capture small differences in behavior.

The last 2 requirements focus on the ability to validate the behavior of the element. When a model
has a proven solution strategy in both the time domain and the Harmonic Balance Method, we
can draw conclusions from the found results more easily.

2.4 The Masing model
A common choice for modeling the cyclic response of a foundation is the following: a Masing model.
An example in modeling cyclic plasticity through a Masing model is shown by [Chiang, 1999]. 3
rules are linked to Masing models, commonly called the original and extended Masing rules. Firstly,
a backbone curve (force-deformation relationship) fbb(u) is defined.
In the case of modeling a foundtion, this relationship is defined by p-y curves introduced in Sec-
tion 1.4.2. The original Masing rule states that, in steady state cyclic behavior, the loading and
unloading branches are defined as:

p(u) =

{
2fbb(u+u0

2 ))− p0 if u̇ > 0

2fbb(u−u0

2 )) + p0 if u̇ < 0
(2.11)

where (u0, p0) denotes the load reversal point. An example of a hysteresis loop generated by this
model is given in Figure (2.2).
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Figure 2.2: A hysteresis loop generated through Masing rules.

The original Masing rule only defines response in steady-state behavior under harmonic loading.
As a multiharmonic loading is added to the system, the definition of the Masing rules needs an
extension. Therefore, two extra rules are added (cited from [Chiang, 1999]):

Rule 1. The equation of any hysteretic response curve can be obtained by applying the original
Masing rule to the virgin loading curve using the latest point of load reversal.

Rule 2. If an interior curve under continued loading or unloading crosses a curve described in a
previous load cycle, the force-deformation curve follows that of the previous cycle.

Addition of these rules means the element is capable of handling arbitrary loading. The extended
Masing model is now assessed based on the requirements set in Section (2.3). Strain-dependent
behavior is indeed modeled, and hysteresis loops are generated. Through custom input of the back-
bone curve, one can control the element behavior. A time-domain solution strategy (following the
original and extended Masing rules) exists as well (for example [Lacarbonara and Vestroni, 2003]).

In the implementation of extended Masing rules, a history of load reversal points has to be stored
and used in the model. This history of load reversal points, a set of state variables of which
nothing is known a priori, can not be treated in the frequency domain. This rules out a solution
strategy of the extended Masing rules through HBM. The original Masing rules are compatible
with the Harmonic Balance Method [van der Esch, 2020]. Ease of implementation of the method
does depend on the definition of the backbone curve however.
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2.5 The Bouc-Wen element
Another suitable candidate for our nonlinear element is the Bouc-Wen model of hysteresis. This
model is broadly used in various academic fields (including civil engineering) and has a relatively
simple setup. An abundance of modifications is available should the need arise for added complex-
ity.

We begin with stating the basic equations related to the Bouc-Wen model. We start from Equation
(2.1) and add our Bouc-Wen element R(t) in the place of fnl(t):

mü(t) + cu̇(t) + ku(t) +R(t) = fex(t) (2.12)

with the element specification:

R(t) = αkiu(t) + (1− α)kiz(t) (2.13)

Here, ki represents the initial stiffness of the element and α represents the (constant) ratio between
the post-yielding stiffness and the initial stiffness. As soil does not have any post-yielding stiffness
(soil fails when the yield strength is reached), α is theoretically 0. However, due to numerical
reasons related to the HBM solution strategy, α can not be 0. Therefore, this post-yielding stiffness
part is included in the formulation of the element. k is added to the system of equations as in the
case of multiple degrees of freedom linear elements can also be present in the system. Addition of
this extra linear stiffness term allows for easier generalization to more degrees of freedom.

z(t) is a newly introduced state variable. This variable is called the hysteretic displacement and
controls the degree of yielding. Just as the other time-dependent variables the relation of z(t) and
ẑ is defined:

z(t) =

H∑
k=0

p̂kcos(kΩt) + q̂ksin(kΩt) (2.14)

ẑ =
[
p̂0 p̂1 q̂1 p̂2 q̂2 · · · p̂H q̂H

]T (2.15)

The behavior of z(t) is controlled through a separate nonlinear ordinary differential equation:

ż(t) = u̇(t) (κ− [γ + β · sgn(u̇(t)) · sgn(z(t))] · |z(t)|n) (2.16)

Four parameters control the final shape of the hysteresis: κ, γ, β and n. Take note here that
γ and β are sometimes interchanged in literature. The effect of the different parameters on the
final hysteresis loop was investigated ([Wong et al., 1994a] and [Wong et al., 1994b]). Next to that,
constraints on said parameters when applied to physical springs were summarized
[Charalampakis, 2010].
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An overview of the Bouc-Wen element in monotonic loading is given in Figure 2.3.

Figure 2.3: The Bouc-Wen model in monotonic loading, [Charalampakis, 2010].

Figure 2.4 shows the hysteresis loop generated by the Bouc-Wen element in cyclic loading.

Figure 2.4: The Bouc-Wen model in cyclic loading, [Charalampakis, 2010].

The Bouc-Wen element is now assessed with respect to the requirements set in Section 2.3. The
Bouc-Wen element is indeed strain-dependent. The degree of nonlinearity varies with the amplitude
of z(t), as can be seen from Equation 2.16. The element does indeed create hysteresis loops in
dynamic loading and can create a wide variety of hysteretic behavior. A solution strategy in the
time domain is relatively straightforward (a set of ODE’s, of which one is non-linear).

The main advantage of the Bouc-Wen element with respect to the extended Masing element, is the
addition of only one state variable z(t). Also, this state variable is defined by a nonlinear ODE.
This means the Bouc-wen element can be more easily combined with HBM than the extended
Masing element. The Bouc-Wen element also theoretically allows for the application of arbitrary
loading (contrary to the original Masing element). Therefore, the decision is made to move forward
with the Bouc-Wen model.

Nevertheless, there is no closed form definition for f̂nl when the Bouc-Wen model is implemented
through classical HBM. A numerical approximation f̂nl is necessary. The Alternating Frequency-
Time Harmonic Balance Method (AFTHBM) is a solution strategy that does exactly that.
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2.6 Alternating Frequency-Time Harmonic Balance Method

2.6.1 Initial linear calculation
AFTHBM tries to solve the problem of finding f̂nl. The calculation will switch to the time domain
whenever an operation can not be performed in the frequency domain. Once the result of this
operation is found, the calculation is continued in the frequency domain again. This process is
iterative, which means wthe AFTHBM is constantly alternating between the time domain and the
frequency domain until a satisfactory result is found. An explanation of AFTHBM can be found
in [Krack and Gross, 2019]. Next to that, Wong describes in [Wong et al., 1994a] an AFTHBM
strategy directly applied to the Bouc-Wen element. We will follow and carry out the strategy of
Wong in order to see whether the strategy is useful within the scope of the thesis.

The first task is to make a first calculation. In every iterative procedure, a good first guess is vital
for convergence tof the algorithm. The derivation of AFTHBM in combination with a Bouc-Wen
element start with Equations 2.12 - 2.13 and rewriting them into HBM form:(

mΩ2∇̌2 + cΩ∇̌1 + k∇̌0
)
· û + αki∇̌0 · û + (1− α)ki∇̌0 · ẑ = f̂ex (2.17)

For the first calculation, the Bouc-Wen element is assumed to act linearly ki. T This changes the
equation to: (

mΩ2∇̌2 + cΩ∇̌1 + k∇̌0
)
· û + ki∇̌0 · û = f̂ex (2.18)

The solution to this problem is:

û =
(
mΩ2∇̌2 + cΩ∇̌1 + k∇̌0 + ki∇̌0

)−1 · f̂ex (2.19)

Equation 2.19 is equivalent to a conventional frequency-domain analysis with slightly different
formulation of the Fourier coefficients. The stiffness of the Bouc-Wen element is not completely
linear however, it is split in a linear and a hysteretic component. To find a good first guess for ẑ,
Equation 2.17 is used. Equation 2.17 on its own is linear and can be solved for ẑ when û is known.
After a reordering of the terms Equation 2.17 changes to:

ẑ =
(
(1− α)ki∇̌0

)−1 ·
(
f̂ex −

(
mΩ2∇̌2 + cΩ∇̌1 + k∇̌0 + αki∇̌0

)
· û
)

(2.20)

The first guesses for û and ẑ are now calculated. These guesses satisfy Equation 2.17 but will
almost certainly not satisfy Equation 2.16. This is where AFTHBM will come into play.
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2.6.2 Inverse Fourier transform and calculation of the residual

Equation 2.16) can not be directly solved in the frequency domain, as was concluded before. f̂nl
is numerically approximated, by calculating f̂nl in the time domain first. Important here is the
discretization of time. Enough samples are needed for a good estimation (to prevent aliasing). The
time vector is defined as:

t =
[
0 T/M 2T/M . . . (M − 1)T/M

]T (2.21)

Where T is still the fundamental period and M denotes the amount of samples taken in the time
domain. û is transformed back into u (and u̇) and ẑ is transformed back into z (and ż):

u =

H∑
k=0

ĉkcos(kΩt) + d̂ksin(kΩt) (2.22)

u̇ =

H∑
k=0

−kΩ · ĉksin(kΩt) + kΩ · d̂kcos(kΩt) (2.23)

z =

H∑
k=0

p̂kcos(kΩt) + q̂ksin(kΩt) (2.24)

ż =

H∑
k=0

−kΩ · p̂ksin(kΩt) + kΩ · q̂kcos(kΩt) (2.25)

The state vectors are now defined in the time domain and Equation 2.16 can be used. This
Equation is turned into an optimization problem:

r(t) = ż(t)− u̇(t) (κ− [γ + β · sgn(u̇(t)) · sgn(z(t))] · |z(t)|n) (2.26)

In order to fill in the guesses for the state vectors, the shift to discrete time is made. This changes
Equation 2.26 to:

r = ż− u̇ ◦ (κ− [γ + β · sgn(u̇) ◦ sgn(z)] ◦ |z|◦n) (2.27)

Where ◦ stands for element-wise multiplication and ◦n refers to element-wise raising to the n-th
power. r is defined as the discrete-time residual of Equation 2.16. When the size of r is minimized,
the best solution of the response of the element is found. This shift in perspective opens up
numerous optimization algorithms.

Based on Equation 2.27, the guess for the solution of û can be updated. For that, AFTHBM moves
back to the frequency domain.

2.6.3 Fourier transform and the LM-procedure
Just as a custom IDFT is defined in Equations 2.22-2.25, a custom DFT is defined to get r back
to the frequency domain:

r̂ =
[
v̂0 v̂1 ŵ1 v̂2 ŵ2 · · · v̂H ŵH

]T (2.28)

v̂0 =
1

M
· rT · 1 (2.29)
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v̂k =
2

M
· rT · cos(kΩt) (2.30)

ŵk =
2

M
· rT · sin(kΩt) (2.31)

where 1 is a vector with all ones. r̂ shows the distribution of the calculation error over the different
analysis frequencies. With this information, we will update our guess of û. A relation between r̂
and û is needed. A Newton-like method is used to solve this piece of the puzzle, which is why a
Jacobian Ĵ is needed:

Ĵ =
δr̂

δû
(2.32)

Again, Ĵ can not be found directly. Ĵ can not be defined in the frequency domain, because Equation
2.27 can not be defined in the frequency domain. The Jacobian is calculated at each moment in
time:

J =
δr

dû
(2.33)

We then transform the result into the frequency domain with a similar IDFT as Equations 2.28-
2.31. r is not directly dependent on û. r is dependent on u̇, z and ż however, which means the
chain rule of differentiation is applied:

δr

δû
=
δr

δu̇
· δu̇
δû

+
δr

δz
· δz
δû

+
δr

δż
· δż
δû

(2.34)

Derivation of these separate parts of the Jacobian J and transformation to Ĵ are included as
Appendix A.

The classical Newton method uses the Jacobian Ĵ in the following way:

ûj+1 = ûj − Ĵ−1 · r̂ (2.35)

where j indicates the j-th iteration of the result.

A large weakness can be spotted here: when Ĵ is singular or near-singular. Especially during early
iterations, this turns out to be the case for the Bouc-Wen element. [Wong et al., 1994a] suggests
to therefore apply another Newton-like method designed for singular and near-singular problems.
This method is called the Levenberg-Marquardt (LM) procedure and follows the following equation:

ûj+1 = ûj −
(
ĴT · Ĵ + φj · I

)−1

· ĴT · r̂ (2.36)

φj indicates a regularization parameter. When φj = 0, we are basically following the classical
Newton method. As the other limit (φj very large), a method of gradient descent is performed.
The method of gradient descent is very stable but very slow. The LM-procedure is a mix of the 2
methods and will adapt to what degree both methods are used to find the next iteration step.
An updated guess for û is now found. The updated guess is used in Equation 2.20 and procedure
is repeated from there. Whenever the solution has converged, the algorithm is terminated and the
final û is stored. The convergence criterion used is:

||̂r|| < ε (2.37)

where ε is chosen based on the accuracy required from the calculation.
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2.6.4 Summary
With all calculation steps laid out in previous chapters, a broader overview of AFTHM is pre-
sented. All segments of the solution strategy are listed, highlighting core outcomes, warnings and
bottlenecks of each segment. Figure 2.5 (after [van der Esch, 2020]) summarizes the AFTHBM
procedure in a flow chart.

Step 1: Linear calculation û
This initial step involves a relatively easy frequency-domain calculation. The linear solution is the
starting point of the procedure because linear result will be sufficiently close to the final answer.
The correct frequency domain representation has to be chosen however (sine-cosine representation),
as other steps require real-valued state variables.

Step 2: Calculate ẑ
In this step, the response of the Bouc-Wen element is split up into a linear stiffness and a hysteretic
stiffness. This step is again linear, û and f̂ex can be directly used to get the answer.

Step 3: IDFT, calculate ˆ̇u, ẑ, ˆ̇z
Through a custom IDFT, the state variables are defined in the time domain. An important variable
is M , which defines the amount of samples to evaluate in the time domain. M directly influences
accuracy of further steps, but is also the main bottleneck for calculation speed.

Step 4: Calculate J and r
A quantification of how well approximation of ẑ matches the nonlinear ODE of the Bouc-Wen
model is made. Next to that, we calculate in what direction to look for a better solution. Both are
done in the time domain, as a frequency-domain representation is impossible. The main bottleneck
is the calculation of J . For each time moment 6·(2H+1) different derivatives have to be calculated.

Step 5: DFT, Calculate Ĵ and r̂
As preparation for the LM-procedure, both J and r are transformed to the frequency domain.
Whereas calculating r̂ is quick, Ĵ is again slowing down the calculation.

Step 6: Update û with LM-procedure
All of the components to update the guess for û are now calculated. The LM-procedure adaptively
applies regularization to the optimization in order to solve the ill-conditioned problem of updating
û. Picking the correct constraints on when to add more or less regularization is key here.

Step 7: Is ||̂r|| small enough?
Lastly, ||̂r|| is calculated and judge if our fit is good enough. If we meet the convergence criterion,
we terminate the algorithm. Otherwise the algorithm returns to Step 2 and the procedure is
repeated from there. Determining the correct convergence criterion is important here, as a too
loose criterion creates inaccurate results and a too strict criterion can never be met.
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Figure 2.5: Summary of the AFTHBM procedure.
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2.7 Comparing AFTHBM and time-integration
The AFTHBM solution strategy is tested with a 1DOF setup. Firstly, the performance of the
Bouc-Wen element is tested in isolation (without other sources of damping or attached masses)
under harmonic loading. The Bouc-Wen element can be tuned to foundation response data, which
means that the stiffness and ultimate strength of the element varies. To assess the behavior of
the element for all cases, the physical parameters are chosen such that the yield force (Fy), yield
displacement (uy) and small-strain stiffness (ki) are all equal to 1.

The Bouc-Wen element also allows control of the post-yielding stiffness (through the parameter
α). As soil does not have a post-yielding stiffness, the Bouc-Wen element should also not show
this behavior. α can not be set to 0 due to the AFTHBM solution strategy, which is why a very
small value of 1E − 10 is chosen.

The shape of the Bouc-Wen hysteresis loop can be changed through the parameters β and γ. The
assumption is made that the hysteresis loops generated by the Bouc-Wen element should show
linear behavior around reversal points. This assumption is met when β is equal to γ and κ is equal
to 1 [Charalampakis, 2010].

2 parameters have the biggest influence on the AFTHBM solution method: H , which is the
amount of harmonics considered, and M , which defines the amount of samples taken in the time
domain. In order to capture the shape of the hysteresis loop at higher load levels, H is set to 7.
Higher amounts of harmonics can be considered, but will both slow down the solution strategy and
can cause convergence issues at higher load levels. M is chosen to be 512, which is a large amount
of samples to be taken. As no convergence issues arise when M is increased, the choice of this
parameter is linked to the computational power available. As long asM > 2 ·H , calculation errors
related to aliasing are prevented. However, to capture the full shape of the Bouc-Wen hysteresis
loop in the AFTHBM calculation as best as possible, it is advised to choose an as high as possible
M .

The model and solution parameters are summarized in Table 2.1:

Variable m c k ki α β γ κ n H M
Value 0 0 0 1 1E-10 0.5 0.5 1 1 7 512

Table 2.1: Parameter setup for evaluation of a 1DOF Bouc-Wen element.
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A harmonic load is applied to the element. Because of the dependency of Bouc-Wen element on
the response amplitude, 3 different load levels are applied:

• Low load level: ||f̂ex|| = 0.05

• Medium load level: ||f̂ex|| = 0.4

• High load level: ||f̂ex|| = 0.8

The Bouc-Wen element is rate-independent. Therefore, the frequency of the harmonic excitation
has no influence on the response when the element is analyzed in excitation.

Figure 2.6 shows the results of this analysis. The response is investigated with both the AFTHBM
strategy and a nonlinear time-integration algorithm. The steady-state behavior of the element
is of interest here, therefore the transient response from the nonlinear time-integration results is
removed. The left figures of Figure 2.6 show the force in the Bouc-Wen element, set out against
the displacement of the element. The right figures show the harmonics of the response (with the
1st harmonic being in the frequency of excitation).

Upon comparing the AFTHBM strategy with the nonlinear time-integration strategy, similar re-
sults are found. Whenever a sufficient amount of harmonics are modelled in the AFTHBM strategy,
the shape of the hysteresis loop is identical to the time-integration strategy.

With increasing load level, a decreasing secant stiffness and a larger relative size of the hysteresis
loop is observed. The 3rd and 5th harmonic in the response also grow with increasing load level.
Activation of just the odd harmonics is a common phenomenon for hysteretic systems under har-
monic loading, as long as the response shows half-wave symmetry (or equivalently, point-symmetry
of the hysteresis loop) [Massopust, 2002]. Important to note here is that the behavior of the Bouc-
Wen element is not directly dependent on amplitude of the force but on amplitude of the response.
When a mass and a viscous damper are added to the element, this note will become even more
important.

45



-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

Displacement (m)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

F
o
rc

e
 (

N
)

Force in element: Low load level

Time integration

AFTHBM

(a)

0 1 2 3 4 5 6 7

n-th Harmonic (-)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

R
e

s
p

o
n

s
e

 a
m

p
lit

u
d

e
 (

m
)

Harmonics of response: Low load level

(b)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Displacement (m)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

F
o
rc

e
 (

N
)

Force in element: Medium load level

Time integration

AFTHBM

(c)

0 1 2 3 4 5 6 7

n-th Harmonic (-)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
e
s
p
o
n
s
e
 a

m
p
lit

u
d
e
 (

m
)

Harmonics of response: Medium load level

(d)

-1.5 -1 -0.5 0 0.5 1 1.5

Displacement (m)

-1.5

-1

-0.5

0

0.5

1

1.5

F
o
rc

e
 (

N
)

Force in element: High load level

Time integration

AFTHBM

(e)

0 1 2 3 4 5 6 7

n-th Harmonic (-)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R
e
s
p
o
n
s
e
 a

m
p
lit

u
d
e
 (

m
)

Harmonics of response: High load level

(f)

Figure 2.6: Analyzing the Bouc-Wen element for 3 load levels. The right figures show the harmonics
of the response. There is no significant difference in amplitude of the harmonics between the time-
integration results and the AFTHBM results.
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A mass and a viscous damper are now added to the test setup. The parameters have been chosen
such that the resonance frequency ω0 of the (small-strain) linear system is equal to 1 rad/s. 5 %
critical viscous damping is added to the setup.
The model parameters for this updated test setup are summarized in Table 2.2:

Variable m c k ki α β γ κ n H M
Value 1 0.1 0 1 1E-10 0.5 0.5 1 1 7 512

Table 2.2: Parameter setup for evaluation of a 1DOF Bouc-Wen element, including mass and
viscous damping.

The same 3 load levels are applied as in the previous test setup. Because of the inclusion of
mass and viscous damping however, the system behaves differently with changing frequency of
the applied load. The element is again subjected to a harmonic load, where the frequency of the
excitation is varied between 0 and 2 rad/s. Results were checked with time-integration analyses.
The results were a match for every check performed, for all 3 load levels.

Figure 2.7 shows the results of this test setup. A clear pattern can be observed in Figure 2.7a.
At higher load levels, the nonlinear resonance frequency becomes lower. The generated hysteresis
loops at higher load levels have a lower secant stiffness, and therefore the structure behaves softer,
reducing the nonlinear resonance frequency. Next to that, the hysteresis loop grows in relative
size, increasing the hysteretic damping in the system. This results in a wider resonance peak at
higher load levels.

As discussed in the setup without added mass and viscous damping, higher load levels also activate
higher harmonics. This can be observed in Figure 2.7b. Another effect pops up however, where a
resonance peak in the Medium load level is present at Ω ≈ 0.33 rad/s. At the High load level,even
more peaks are observed. Similar peaks are observed in Figure 2.7a, although smaller in relative
size. These peaks stem from an effect called super-harmonic resonance. Because higher (odd)
harmonics are generated, the system can also resonate to those higher harmonics. The placement
of the larger peak at Ω ≈ 0.33 rad/s can be explained by the linear resonance frequency of the
system of 1 rad/s In this case, the 3rd harmonic causes resonance. Resonance of the 5th and even
the 7th harmonic also shows up in Figure 2.7a.
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Figure 2.7: 1st and 3rd Harmonic of the B-W element with added mass and viscous damping.
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2.8 Scalability of AFTHBM
Because of the elaborate solution strategy of AFTHBM, these analyses (of 1DOF with 1 harmonic
force) already take significant computing power. The interlinked nature of the calculations, all
analysis frequencies are solved at the same time, do not allow for time saving strategies like par-
allel computing. A doubling of the amount of DOFs of the model will approximately octuple the
computational effort required, O(n3). This relation stems from the (fully populated) matrix in-
version required in Step 6 of the AFTHBM algorithm (Equation 2.36). A doubling of the amount
of analysis frequencies also results in 8 times the computation time because of the same matrix
inversion. The end goal is to analyze a full OWT FE model (>100 DOFs), with spectral loading
like wave and wind loading (>1000 analysis frequencies). To model the hysteretic behavior of the
foundation through AFTHBM at that bigger scale is a large computational challenges. The ques-
tion also comes up if this level of complexity is needed for the problem at hand. The generation of
superharmonics only occurs at higher load levels, while in the Fatigue Limit State such load levels
are generally not reached. A simplification of the method could save significant computational
effort.
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Section 3

Equivalent Linear modeling in the
frequency domain
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3.1 Simplifying AFTHBM - Equivalent Linear characteristics
The root cause of the high complexity of AFTHBM is the generation of higher harmonics. A closer
look at Figure 2.6 reveals that the response of a nonlinear hysteretic element is dominated by the
1st harmonic. The assumption is now made that these higher harmonics can be neglected. For
each response amplitude, a single linear complex element k̂ (with a real part and an imaginary
part) can then describe the response. Analysis of the response can then be split into separate
frequencies again, allowing for faster calculations.

Important parameters can be derive from this complex stiffness k̂, defining the behavior, are the
following:

• The linear stiffness, Re(k̂)

• The hysteretic damping ratio, Im(k̂)/(2 ·Re(k̂))

A range of load amplitudes is applied to the Bouc-Wen element, which leads to a range of equivalent
linear approximations. The linear stiffness and hysteretic damping ratio of the equivalent lienar
element are shown in Figure 3.1.

Figure 3.2 compares Bouc-Wen hysteresis loops found through the AFHBM algorithm wih the
equivalent linear (EQL) approximation. The test setup is the same as in Table 2.1, where no mass
and viscous damper are added. Especially for the Low and the Medium load level, the hysteresis
loops generated look very similar. Only in the High load level a difference can be seen, because of
the influence of the higher harmonics.

Performing a full AFTHBM procedure to find the response of the nonlinear hysteretic element is
not necessary anymore. The most important characteristics of the element, namely its stiffness
and hysteretic damping, can now be looked up in Figures 3.1a and 3.1b. The only issue is now
that the element is dependent on the amplitude of the response, which is not known a priori. The
Equivalent Linear Method provides a way of dealing with this issue.
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Figure 3.1: Stiffness reduction and hysteretic damping curves for the Bouc-Wen element.
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Figure 3.2: Comparing hysteresis loops AFTHBM and EQL for 3 load levels. The figures on the
right show the harmonic decomposition of the EQL approximation. Figure 2.6 shows the harmonic
decomposition of the AFTHBM results.
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3.2 The Equivalent Linear Method
The Equivalent Linear (EQL) Method assumes no higher harmonics are generated and that the
response of a nonlinear hysteretic element is dependent on its response amplitude. This allows us
to split up the response in the frequency domain. An NDOF formulation for the EQL method is
set up, based on a change of Equation 1.6 into:

ûk =
(
−k2Ω2M + kiΩC + K + K̂(uref )

)−1

· f̂k = H(kΩ,uref ) · f̂k (3.1)

where K̂(uref ) contains all EQL elements with complex stiffness k̂ that are dependent on the
response amplitudes uref in the system. We do however not know the response amplitudes of the
system a priori. Also, the definition of a ’response amplitude’ is unclear in the case of multiharmonic
loading like wind and wave loading.

The issue of not knowing the response amplitudes in advance can be solved by iteratively solving
Equation 3.1. A linear response (related to small-strain behavior) is assumed in the first iteration.
We evaluate the calculated response, and based on that result the EQL elements in the system are
updated. This procedure is repeated until the changes of the deflections in the system drop below
an accuracy threshold.

In the case of harmonic loading, the response is also of harmonic nature. uref is taken to be
the amplitude of the harmonic response. In the case of multiharmonic loading, the deflections in
the system are also multiharmonic. A reference response amplitude is chosen that describes the
average degree of nonlinearity in the EQL elements over the time window. As the EQL method
is also used in earthquake engineering, where spectral loads are also common, a metric for finding
this reference response amplitude is known ([Villalobos and Romanel, 2019] and [Pruiksma, 2016]).
The deflections are observed in the time domain and 65 % of the observed maximum deflection is
taken as uref .

The EQL method changes the solution flow chart from Figure 1.4 and Figure 2.1. Figure 3.3 shows
the iterative nature of the calculation. Next to that, instead of solving for all frequencies at the
same time like in HBM, each harmonic component can be analyzed separately in each iteration.

Figure 3.3: Flowchart of the Equivalent Linear Method.
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3.3 Comparing EQL to nonlinear methods

3.3.1 Comparison for harmonic loading
In Figure (3.4) the results are shown of an AFTHBM and an EQL investigation. A 1DOF Bouc-Wen
element with an added mass and viscous damper is chosen as the test setup (with the properties
of Table (2.2)). Harmonic loading is applied, for the same 3 load levels as before. A sweep over
forcing frequencies between 0-2 rad/s is again made. Solid lines indicate the AFTHBM results,
while dashed lines correspond to the EQL results. Only the response in the 1st harmonic is
compared, as EQL assumes no superharmonics are present in the solution.

At a low load level, EQL and AFTHBM find very similar results. The influence of higher harmonics
on the response is negligible. For all load levels, EQL captures the softening behavior of the Bouc-
Wen element (as can be seen by the peak response amplitude being situated at a lower forcing
frequency). For the High load level however, AFTHBM and EQL results differ. The main peaks
do not line up and superharmonic resonance is not present in the EQL results. Above 1 rad/s
alignment for AFTHBM and EQL is observed. The lower response amplitude at higher frequencies
causes higher harmonics in the nonlinear hysteretic element.

The harmonics found through AFTHBM are analyzed. The following areas are investigated: 0-1
rad/s for the High load level, and 0.6-1 rad/s for the Medium load level. These areas show a
difference in response amplitude of the 1st harmonic. These regions have one property in common:
EQL and AFTHBM differ in response whenever the amplitude of the higher harmonics is larger
than 5-10 % of the 1st harmonic. We state a general observation where EQL and AFTHBM find
similar results whenever the amplitude of the higher harmonics in the response is at least one
order of magnitude smaller than the amplitude of the 1st harmonic.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 [rad/s]

0

0.5

1

1.5

2

2.5

R
e
s
p
o
n
s
e
 a

m
p
lit

u
d
e
 [
m

]

Comparing AFTHBM and EQL: 1st harmonic

AFTHBM: ||f
ex

|| = 0.8

AFTHBM: ||f
ex

|| = 0.4

AFTHBM: ||f
ex

|| = 0.05

EQL: ||f
ex

|| = 0.8

EQL: ||f
ex

|| = 0.4

EQL: ||f
ex

|| = 0.05

Figure 3.4: Comparing FRF’s AFTHBM and EQL for 3 load levels.
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3.3.2 Comparison for multiharmonic loading
The forcing that is applied to the OWT is wave and wind loading, which are both multiharmonic
loads. Therefore, the EQL solution strategy is checked in 1DOF for multiharmonic loads as well.
As mentioned before, the response of the element will also be of multiharmonic nature. Therefore,
one can not simply define the response amplitude as the amplitude of a harmonic. The measure
of 65 % of the maximum observed deflection in the time domain ([Villalobos and Romanel, 2019]
and [Pruiksma, 2016]) is used.

The multiharmonic loading that is applied is a zero mean white noise load. All analysis frequencies
have the same force amplitude, apart from the force at 0 Hz. Figure 3.5 shows the load in both
the time domain and the frequency domain.

(a) (b)

Figure 3.5: Applied white noise loading.

Figure 3.6 shows the deflection spectra for the Bouc-Wen element with added mass and viscous
damping under white noise loading. Figure 3.6a shows the result of a Linear analysis, while Figure
3.6b shows the result of an EQL analysis. The reference used is from a nonlinear time integrator.
The EQL method shows a better fit for the main resonance peak.

One part of the response can not be replicated, which is the larger amplitudes at very low analysis
frequencies. As the nonlinear time integrator models the hysteretic behavior directly, permanent
deformations occur when larger response amplitudes are reached. As the element is evaluated in
isolation, this permanent deformation is not counteracted. The EQL method can not replicate
these permanent deformations. It is not expected for these permanent deformations to affect
the results of the EQL analysis in NDOF however. At FLS load levels, permanent deformations
do not have a large effect on the foundation response. Larger deflection amplitudes are reached
in the foundation close to mud-line, possibly causing permanent deformations, but soil elements
deeper into the foundation will counteract this deformation by reacting linearly and bringing the
foundation back to equilibrium.
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Figure 3.6: Comparing response spectra for white noise loading.
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3.4 Scalability of EQL
In Section 2.8 the complexity of the AFTHBM is analyzed. The complexity to both DOFs and
analysis frequencies of AFTHBM is O(n3), meaning a doubling of either DOFs or analysis fre-
quencies would take 8 times as much computational power. The EQL algorithm has a reduced
complexity because of 2 reasons:

• The matrices in the EQL algorithm, which are the matrices from Equation 3.1 are all sparse
(with a limited maximum bandwidth). The origin of the sparse matrices is the limited amount
of entries coming from the FE formulation in combination with the 1D nature of the OWT.
Elements are only connected to their neighbours. Sparse matrix solvers allow for an efficient
solution method.

• The core frequency-domain part of the algorithm can be calculated for each analysis frequency
separately.

Because of the sparse matrices, more efficient solvers can be used to calculate the responses per
analysis frequency. Instead of O(n3) with respect to DOFs, this algorithm has a complexity of
O(n2) (Equation 3.1 requires solving a sparse system of equations, which has this complexity).
Although the core EQL frequency-domain iterations are of complexity O(n) with respect to analysis
frequencies, the complexity of the full algorithm with respect to analysis frequencies is O(nlogn).
Each iteration we also need the deflections in the time domain to determine the reference deflection
amplitude. The transformation to the time domain requires an IDFT which is of complexity
O(nlogn).

An EQL strategy is therefore more suitable analyzing a dynamical system with >100 DOFs for
>1000 analysis frequencies. The algorithm has a significantly reduced complexity with respect to
AFTHBM, has a good performance with respect to multiharmonic loading and is a proven concept
in other domains ([Villalobos and Romanel, 2019] and [Pruiksma, 2016]). It is also expected that
higher harmonics do not dominate the response for OWTs under FLS conditions, allowing for the
EQL approximation to be made. The EQL method is chosen as the solution strategy for the full
OWT support structure.
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Section 4

Fitting a nonlinear hysteretic model
to soil reaction data
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4.1 Available soil reaction data
With the chosen EQL solution strategy, a nonlinear hysteretic model has to be chosen that repre-
sents soil behavior around an OWT monopile foundation. The available soil reaction data consists
of a set of p-y curves (Section 1.4.2) that were fitted to a monopile foundation in sandy soil condi-
tions. A 3D soil body was evaluated in monotonic loading and was then used to calibrate the p-y
curves. An extra reduction factor was applied to take the cyclic behavior of the foundation into
account.

Two nonlinear hysteretic constitutive models are fitted to the p-y curves: the Masing model and
the Bouc-Wen model of hysteresis. Both fitting strategies are explained and an EQL approximation
is made of both models. The stiffness and hysteretic damping curves are extracted and compared
to existing literature.

4.2 Fitting the Masing model
As discussed in Section 2.4, the Masing rules define the generation of a hysteresis loop by directly
looking at the virgin loading curve. The virgin loading curve is defined to be the p-y curve.
The EQL approximation of the Masing model is made by finding the secant stiffness and hysteretic
damping ratio of the generated hysteresis loops. The hysteretic damping ratio is based on an energy
formulation, following Figure (4.1). As a last step, the complex stiffness k̂ is generated from the
linear stiffness and hysteretic damping ratio as in Section 3.1.

Figure 4.1: Calculating the hysteretic damping ratio, [Bratosin and Sireteanu, 2002].
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4.3 Fitting the Bouc-Wen model
Similar the Masing element, the backbone curve of the Bouc-Wen element is fitted to the p-y curves.
As the fit is made in monotonic virgin loading, the Bouc-Wen model reduces to a time-independent
nonlinear ODE ([Wong et al., 1994a]):

dF

du
= αki +

(
κ− [γ + β] ·

∣∣∣∣F − αki · uki

∣∣∣∣n) · (1− α)ki (4.1)

with as boundary condition:

F (u = 0) = 0 (4.2)

A fitting procedure is followed similar to [Charalampakis, 2010]. The nonlinear ODE is compared
to a bilinear model (shown in Figure 4.2). At small deflections (where u approaches 0), F should
reduce to the line ki ·u. At the same time, at large deflections F should approach the line Fy+αki ·u.
Filling in these lines into the ODE, the corresponding constraints are found:

κ = 1 (4.3)

γ + β =

(
Fy
ki

)−n
(4.4)

The shape of the hysteresis loop is determined by the ratio between γ and β. If the stiffness at load
reversal is assumed to be equal to ki (which is also the case for Masing rules), the last constraint
is found:

γ = β =
1

2

(
Fy
ki

)−n
(4.5)

A bilinear model is firstly fit to the p-y curve. With that bilinear model, all Bouc-Wen parameters
can be defined except for one: n. Based on the area under the Bouc-Wen curve and the p-y curve, a
bisection method is used to fit the last parameter n. Figure 4.3 shows the bilinear approximation of
the p-y curve and the comparison between the fitted Bouc-Wen model and the p-y curve. The steps
of Section 3.1 are repeated to find the corresponding stiffness reduction and hysteretic damping
curves.

Figure 4.2: The Bouc-Wen model in monotonic loading, when compared to a bilinear model.
[Charalampakis, 2010] (a) shows the full Bouc-Wen element, while (b) shows just the hysteretic
part.
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Figure 4.3: Fitting a B-W model to a p-y curve in monotonic loading.
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4.4 Comparing the Bouc-Wen model to the Masing model
The fitted nonlinear hysteretic models are compared for a p-y curve at 10m below mudline. Similar
results are found at all foundation depths. Figure 4.4 shows the EQL stiffness reduction curves
and hysteretic damping curves of the fitted models.

The stiffness reduction curve of the EQL Masing model is by definition the same as the secant
stiffness of the p-y curve itself. Because of the limited amount of datapoints in the p-y curve, the
element behaves linearly for all response amplitudes at or below 0.1 mm. This property is made
clear by K/Kmax being 1 at a response amplitude of 10E-4.

The EQL Bouc-Wen model shows a similar stiffness reduction curve. As the behavior at very small
strains is fitted to the p-y curves, the Bouc-Wen element already shows some stiffness reduction
at a response amplitude of 0.1 mm. An abrupt stop of the curve for the EQL Bouc-Wen element
is also observed. Because the method used is force-controlled, the behavior of the element can
not be modeled past full yielding. No unique solution exists at full yielding of the element in
a force-controlled test. A displacement-controlled method is necessary to model the Bouc-Wen
model for larger response amplitudes.

The biggest difference between the Masing model and the Bouc-Wen model of hysteresis is the
hysteretic damping curve. The EQL Bouc-Wen element consistently yields a higher hysteretic
damping ratio than the Masing rules. Damping ratios even increase to over 70 % at larger response
amplitudes. The EQL Masing element yields lower damping ratios, but still hits damping ratios
above 50 % for extreme response amplitudes.

The overdamping of the Masing rules at larger strain levels is a well-known disadvantage
[Yniesta and Brandenberg, 2015]. Observed damping ratios in monopile foundations generally lie
between 5 - 15 % [Beuckelaers, 2017], with maximum damping ratios at large strains reaching up
to 20 % [Yniesta and Brandenberg, 2015].

Although the stiffness reduction curves of both models behave similarly to the p-y curves, too high
damping ratios are observed for both models. We choose to move forward with the Masing model
due to the perfect match of the stiffness curve and a lower hysteretic damping curve. To make
sure no unrealistic damping ratios are reached in the NDOF analysis, a cap of 20 % is applied to
the hysteretic damping curves generated by the Masing model.
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Figure 4.4: Comparison between B-W and Masing in cyclic loading.
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Section 5

Setting up a suitable Finite Element
formulation
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5.1 The Finite Element setup

The next step towards assessing a full OWT is made. A fitting finite element formulation is
needed that can be used in an EQL analysis. With a proper finite element definition, an accurate
discretization of the spatial domain is reached. The following aspects should be included in the
element:

• Stiffness of the monopile and tower (with Timoshenko beam elements), with associated dis-
tributed mass and distributed mass moment of inertia.

• The effect of the dead weight of structure on the behavior of the system, negatively effecting
the resistance of the structure to bending and shear deformations. This effect is called the
geometric stiffness effect.

• Added distributed masses (due to for example displaced water mass and soil mass).

• Added nodal masses and mass moments of inertia.

• Distributed (complex-valued) soil stiffness, changing every iteration of the equivalent linear
calculation.

• Nodal and distributed external loads on the structure.

The element can be defined as follows:

Me · üe + (Ke,struc + Ke,geom) · ue + K̂e,soil · ue = fe,ex (5.1)

Notation from [Wells, 2009] is followed. The derivation starts at the integrals required for calcula-
tion of the elements.

5.1.1 Displacement and acceleration vectors

Vital to every finite element method is definition of the shape functions used. Shape functions
related to both deflections and rotations are needed. As Timoshenko beam elements are used, C0-
continuous shape functions are required [Wells, 2009]. To keep further implementation relatively
straightforward, 1st-order shape functions are used. To make sure an accurate discretization is
made, a small element size is recommended. The shape functions between node 1 and node 2 of
an element are defined as follows:

Nu
1 = Nθ

1 =
z2 − z
h

, z1 ≤ z ≤ z2 (5.2)

Nu
2 = Nθ

2 =
z− z1

h
, z1 ≤ z ≤ z2 (5.3)

N =
[
Nu

1 Nu
2 Nθ

1 Nθ
2

]
(5.4)

Where h stands for the element length. As derivatives of the shape functions with respect to z are
also used, these are defined as well:

Bu1 = Bθ1 = − 1

h
(5.5)

Bu2 = Bθ2 =
1

h
(5.6)
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B =
[
Bu1 Bu2 Bθ1 Bθ2

]
(5.7)

With the specified shape functions, element deflection and rotation fields are defined:

uhe = N · ue,ue =
[
uu1 uu2 uθ1 uθ2

]T (5.8)

ühe = N · üe, üe =
[
üu1 üu2 üθ1 üθ2

]T (5.9)

5.1.2 The Mass matrix
The integrals required for the elemental mass matrix are as follows:

Me =

[
Muu

e 0
0 Mθθ

e

]
(5.10)

Muu
e =

∫
Γe,M

NuTMnNudΓ +

∫
Ωe

NuT ρANudΩ (5.11)

Mθθ
e =

∫
Γe,I

NθT InNθdΓ +

∫
Ωe

NθT ρINθdΩ (5.12)

with Mn and In being the nodal masses and mass moments of inertia that have to be added to
the structure. Added distributed masses and mass moments of inertia are summed up in ρA and
ρI. Evaluation of these integrals (assuming constant ρA and ρI over the element) results in the
following elemental mass matrix:

Me =


M1 + ρAh

3
ρAh

6 0 0
ρAh

6 M2 + ρAh
3 0 0

0 0 I1 + ρIh
3

ρIh
6

0 0 ρIh
6 I2 + ρIh

3

 (5.13)

5.1.3 The Structural Stiffness matrix
The integrals required for the elemental stiffness matrix related to the structure (from [Wells, 2009])
are as follows:

Ke,struc =

[
Kuu
e Kuθ

e

Kθu
e Kθθ

e

]
(5.14)

Kuu
e =

∫
Ωe

BuTGAsB
udΩ (5.15)

Kuθ
e = −

∫
Ωe

BuTGAsN
θdΩ (5.16)

Kθu
e = −

∫
Ωe

NθTGAsB
udΩ (5.17)

Kθθ
e =

∫
Ωe

BθTEIBθdΩ +

∫
Ωe

NθTGAsN
θdΩ (5.18)

To counteract possible shear locking, reduced (1-point) integration is applied to the component
related to shear deformation in Kθθ

e . Evaluating the integrals results in the following elemental
stiffness matrix:
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Ke,struc =


GAs

h −GAs

h
GAs

2
GAs

2

−GAs

h
GAs

h −GAs

2 −GAs

2
GAs

2 −GAs

2
EI
h + GAsh

4 −EIh + GAsh
4

GAs

2 −GAs

2 −EIh + GAsh
4

EI
h + GAsh

4

 (5.19)

5.1.4 The Geometric stiffness matrix
Because of the dead weight on the elements of the tower and the monopile, the resistance to
bending and shear deformation of the elements is decreased. [Wilson, 2000] explains a strategy to
take this geometric stiffness effect into account in dynamic analyses, as long as the axial loads are
constant. Another simplification that is made is that the axial load in an element is defined by the
axial load of the node with the highest elevation. Distributed masses associated with the element
itself are therefore not taken into account. The integral required for the geometric stiffness matrix
is as follows:

Ke,geom =

[
Kuu
e,geom 0
0 0

]
(5.20)

Kuu
e,geom =

∫
Ωe

BuTNBudΩ (5.21)

Note here that the axial load N is defined to be positive in extension. After evaluation of the
integrals, the resulting geometric stiffness matrix becomes:

Me =


N
h

−N
h 0 0

−N
h

N
h 0 0

0 0 0 0
0 0 0 0

 (5.22)

5.1.5 The Soil Stiffness matrix
The integrals required for the elemental soil matrix are as follows:

K̂e,soil =

[
K̂uu
e,soil 0

0 0

]
(5.23)

K̂uu
e,soil =

∫
Ωe

NuT k̂soil(z,uref )NudΩ (5.24)

Important to note here is the nature of the term k̂soil(z,uref ). As discussed in Section 3.2, the
complex stiffness of the soil at a specific elevation is influenced by calculating uref at that elevation.
As these soil stiffnesses are only defined in the nodes, a (linear) interpolation is needed to express
the stiffness over the element. This interpolation is only valid if the elements are small enough
and the reference deflections are similar in amplitude. Evaluation of the integral results in the
following soil stiffness matrix:

K̂e,soil =


k̂1h
4 + k̂2h

12
k̂1h
12 + k̂2h

12 0 0
k̂1h
12 + k̂2h

12
k̂1h
12 + k̂2h

4 0 0
0 0 0 0
0 0 0 0

 (5.25)

with k̂n being the complex soil stiffness at node n.
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5.1.6 The Force vector
In our calculations, we will deal with both nodal loads and distributed loads. Important to note
here is the nature of the wave load we will apply to the structure. This wave loading is defined as
a piecewise linear distributed load, with a changing wave head in each time step. This means that
we need a variable integration scheme. Luckily, we only have to convert these wave loads to nodal
loads once in our calculation. The integrals we will need to solve are:

fe,ex =

[
fue,ex
0

]
(5.26)

fue,ex =

∫
Ωe

NuT fwave(z, t)dΩ +

∫
Ωe

NuT fn(t)dΩ (5.27)

With fn(t) being the applied nodal load at node n. Because fwave(z, t) is piecewise linear, we can
solve each linear part separately with a 2-point Gaussian integration scheme. The nodal loads can
simply be added to each respective node.

5.2 Adding other sources of damping
Other sources of damping are present in the system as well, like aerodynamic damping and struc-
tural damping. Damping ratios are identified for these other damping sources per structural mode.
Applying modal damping is not possible however, as the system can not be solved in the modal
domain (foundation stiffness and damping properties are dependent on the response amplitude,
changing the stiffness matrix with each iteration). A transformation of this modal damping matrix
would result in a fully populated damping matrix, severely slowing down the calculation. Therefore,
another form of damping called Rayleigh damping is applied. Rayleigh damping is a combination
of mass-proportional and stiffness-proportional damping on a global structural scale. Using modal
damping ratios of the modes of the structure, the appropriate amount of damping is applied.
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Section 6

Verifying the structural model
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6.1 Case study setup
In order to evaluate effectiveness of the EQL method in the analyses of OWTs, a custom FE model
(called the EQL model) has to be built. To verify the model, a case study FE model by SGRE is
used. This case study is directly related to the p-y curves used to fit a nonlinear hysteretic model
to soil reaction data. Table 6.1 shows general properties of the case study OWT. The definition of
the different properties is related to Figure 6.1.

Tower
Tower height 125 m
Tower diameter 5-7.5 m
RNA mass 800000 kg
RNA moment of inertia 260000000 kgm2

Sub structure
Sub structure height 50 m
Sub structure diameter 7.5-10 m
Submerged height 17 m

Foundation
Foundation depth 30 m
Foundation diameter 10 m

Table 6.1: General dimensions of the case study OWT.

Figure 6.1: Schematization of an OWT, [Hoogstraten, 2019].
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The EQL model treats the RNA as a single mass with associated mass moment of inertia. This
mass is not located directly at the top of the tower. A rigid link is used to connect the RNA to the
rest of the structure. This is a small deviation from the SGRE model, where an empirical stiffness
is used to connect the RNA to the tower.

An extra geometric stiffness matrix is used in the EQL model to add the effect of the dead weight
of the structure on the resistance to bending deformation and shear deformation. This is also a
simplification the SGRE model, where a coupled stiffness matrix is used to couple the horizontal
and vertical deflections. This however adds an extra DOF in each node.

Next to the basic structure, the EQL model includes added distributed masses due to the soil plug
in the foundation, the entrained water (the body of water inside the structure) and the displaced
water (approximated body of water that moves with the structure). Additional point masses are
added to model miscellaneous structural elements like ladders and platforms. The SGRE model
adds one extra mass we do not include in our model: the marine growth around the sub structure.
This marine growth adds a small bit of mass, but it also plays a role in the exact calculation of the
wave loading on the structure. As the calculated wave loading is taken as an input, this marine
growth is left out of the EQL model.

One final difference is observed between the EQL model and the SGRE model: the order of the
shape functions used in the finite element definition. Where the SGRE model uses 3rd order shape
functions, the EQL model uses 1st order shape functions. This means that a smaller element size
is required in the EQL model in order to achieve the same accuracy. The SGRE model uses a
maximum element size of 5 m while the EQL model uses a maximum element size of 1 m in the
tower and sub structure, and 0.25 m in the foundation.
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6.2 Mode shapes and resonance frequencies
The modal parameters of the SGRE model and the EQL model are now compared. The small-
strain behavior of both models, which means that the Winkler foundation behaves linearly with
the small-strain stiffness. The results are as follows:

1st tower mode
SGRE resonance frequency 0.156 Hz
Modal damping (logdec.) 5 %
Modal damping (critical.) 0.80 %

2nd tower mode
SGRE resonance frequency 0.826 Hz
Modal damping (logdec.) 5.5 %
Modal damping (critical.) 0.80 %

3rd tower mode
SGRE resonance frequency 1.625 Hz
Modal damping (logdec.) 5.5 %
Modal damping (critical.) 0.80 %

Table 6.2: Modal parameters of the SGRE model.

Figure 6.2 shows the comparison in modeshapes between the SGRE model and the EQL model.
The left figures show the modeshapes of the full structure, while the right figures show a zoom on
the modeshape in the foundation. When the resonance frequencies of both models are compared,
absolute and relative errors as in Table 6.3 are found.

1st tower mode
EQL resonance frequency 0.156 Hz
Abolute error 0.05 mHz
Relative error 0.03 %

2nd tower mode
EQL resonance frequency 0.826 Hz
Abolute error 0.35 mHz
Relative error 0.04 %

3rd tower mode
EQL resonance frequency 1.609 Hz
Abolute error 16 mHz
Relative error 0.98 %

Table 6.3: Absolute and relative error: EQL model vs. SGRE model.

The conclusion is made based on the small relative errors that for the purpose of this thesis the
EQL model is verified with the SGRE model.
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Modeshape 2: 0.82616 Hz
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Modeshape 2: 0.82616 Hz
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Modeshape 3: 1.6093 Hz
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Modeshape 3: 1.6093 Hz
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Figure 6.2: Comparing modeshapes SGRE structural model and tuned EQL model.

73



Section 7

Comparing Equivalent Linear
analysis to other strategies for a full
structural model
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7.1 Key differences in analysis strategies
Four different analysis strategies are applied to find the response of a case study OWT under FLS
loading.
Firstly, a Linear frequency-domain analysis is performed, where the stiffness of the soil around the
monopile foundation is equal to the small strain stiffness. Damping originated from soil hysteresis
is approximated through Rayleigh damping, exactly like the other sources of damping.

Two different types of Equivalent Linear analyses are also performed: EQLa and EQLb. The
EQLa analysis defines the stiffness around the monopile foundation to be dependent on the ref-
erence deflection amplitude (uref ). Soil damping is continued to be modeled through Rayleigh
damping. EQLb changes the way foundation damping is applied, by adding local hysteretic damp-
ing which is also dependent on uref .

The final analysis performed is a nonlinear time-domain analysis using SGRE in-house software:
BHawC. The foundation is modeled through p-y curves, while damping originating from the soil
is considered through Rayleigh damping.

Table 7.1 shows the key differences between the 4 analyses performed. An important value to find is
the added damping related to the soil around the monopile foundation. Only the baseline damping
of the OWT is known, which is a combination of hydrodynamic, structural and soil damping. In
order to not take the soil damping into account twice, the contribution of soil damping has to be
removed in the EQLb case. We make an assumption in this thesis that soil damping is defined by
identification of the soil damping for a loadcase with a uref of 2 mm at mudline. The identified
soil damping ratio is 1.35 % log. dec. (0.21 % critical).

Linear EQLa EQLb BHawC
Domain Frequency Frequency Frequency Time

Soil stiffness Linear Elastic Equiv. Linear Equiv. Linear Nonlinear Elastic
(small-strain) (uref ) (uref ) (p-y curves)

Soil damping Rayleigh Rayleigh Hysteretic Rayleigh
(global) (global) (local, uref ) (global)

Other damping Rayleigh Rayleigh Rayleigh Rayleigh
(global) (global) (global) (global)

Table 7.1: Key differences between the analysis strategies.

7.2 Definition of the forcing on the system
The OWT is tested under a (high) FLS wave loading related to a wind speed of 25 m/s which hits
the wind turbine head on (in the fore-aft direction). Because BHawC uses complex aerodynamic
calculations in determining both wind loading and aerodynamic damping, both wind loading and
aerodynamic damping are neglected. In order for this assumption to hold, the turbine is modeled
in an idling state.

Six simulations are performed, related to 6 wave load time series. The time series are generated
by SGRE in-house load calculation software. Although all 6 simulation results are included in Ap-
pendix (), the discussion in further sections focusses on Simulation 5 and Simulation 6. Simulation
5 is representative result for the first 5 analyses performed, while Simulation 6 is a clear outlier.
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7.3 EQL analysis vs. Linear analysis

7.3.1 Foundation stiffness and local hysteretic damping
The results of Simulation 5 are shown in this section. As the difference in the frequency-domain
strategies lies in the modeling of the soil, we naturally look at the properties of the foundation first.
Figure 7.1 shows the stiffness and damping properties of the foundation with depth. For the Linear
case, no reduction of stiffness and no addition of local hysteretic damping is observed (as this is a
linear soil model). Both EQLa and EQLb show significant stiffness reduction over the foundation,
especially close to mud-line. Key to note is the relatively large wave loading (associated with 25
m/s). Load cases with smaller loading result in less stiffness reduction. The presence of different
soil layers can be observed from the blocks of similar stiffness reduction and damping results. We
can also spot the presence of a pivot point around 18-19 m below mud-line. Only EQLb adds local
hysteretic damping, as again it is the only constitutive model with that property.
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Figure 7.1: Stiffness reduction and local hysteretic damping over the foundation.

A difference in the stiffness curves can be observed between EQLa and EQLb, even though both
soil stiffnesses are modeled through an equivalent linear constitutive model. The added hysteretic
damping in EQLb is greater than the Rayleigh damping added in EQLa. This produces smaller
reference amplitudes uref in EQLb, which yields a higher foundation stiffness.

Specifically looking at Figure 7.1b, a large damping contribution of the soil layers from mud-line to
5-10 m depth can be observed for the EQLb care. The soil is weaker in these layers (due to lower
confinement stress and other soil properties) and shows the largest deflections (due to the deflection
shape of the foundation). Both of these effects cause larger soil hysteresis loops to be generated.
The localized addition of soil damping is a more realistic way than adding global Rayleigh damping,
as different parts of the foundation should provide different amounts of damping. One important
note to make is that the cap of 20 % hysteretic damping is clearly visible in the top 2 m of soil. These
weaker soil layers reach larger strains, which would apply unrealistically high hysteretic damping
if the cap was not applied. The method for determining the right amount of hysteretic damping is
dependent on the input damping curves. Although the Masing rules applied approximate stiffness
of the soil quite well, the performance of Masing rules at higher strain amplitudes with respect to
damping is worse. Further research into resembling the foundation response in other ways than
with p-y curves and Masing rules is necessary.
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7.3.2 EQLb: Global soil damping estimation
To estimate contribution of the soil damping in the first mode for the EQLb method, a method
of logarithmic decay is used. To directly estimate damping from the wave load simulations is
relatively difficult. Therefore, a pulse load is applied to the foundation found through applying
wave load simulations. The decay of the system is evaluated afterwards. The deflection of the
RNA over time is shown in Figure 7.2a. A logarithmic fit is applied to the peaks of this decaying
function, as shown in Figure 7.2b.
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Figure 7.2: Estimation of damping in the 1st mode through logarithmic decay.

We can compare this logarithmic fit to the general solution for a 1DOF damped free vibration:

u(t) = Ae−ζω0tcos(ω1t− ϕ) (7.1)

From the slope of the logarithmic fit the damping ratio of the 1st mode can be deduced. This
method of identification has been validated with a damping identification of the Linear model.
As soil damping is not the only damping source, other sources like hydrodynamic and structural
damping are subsracted from the identified damping ratio. The EQLb method produces a founda-
tion damping ratio in the 1st mode between 0.64-0.80 % critical (4-5 % log. dec.). This value
is a range due to the 6 different simulations. In simulations where the foundation shows higher
reference deflection amplitudes uref , the identified soil damping is higher.

These foundation damping ratios are compared to other research, similar damping ratios are found.
Numerical analyses in the time domain (using rotor stop tests) for similar conditions show 1.0-1.5
% critical soil damping in the 1st mode [Dilas, 2018], while modal analysis of experimental rotor
stop tests shows up to 1.5 % critical soil damping in the 1st mode [Versteijlen et al., 2011]. A
frequency-domain analysis where a degraded soil stiffness and local damping are applied showed
0.5-0.7 % critical soil damping in the 1st mode [Chen and Duffour, 2018]. We have to keep in mind
however that more research is necessary into the hysteretic damping curves in dynamic loading
before local response amplitude-dependent hysteretic damping can be reliably applied through the
EQL method.
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7.3.3 Foundation deflections
The solution strategies in the frequency domain, Linear, EQLa and EQLb, are now evaluated
on the basis of deflections in the foundation. Figure 7.3 shows the cumulative distributions of
the deflections at mud-line in the time domain. For the Linear results for example, 50 % of the
time deflections are at or below 2.5 mm. The maximum observed deflection at mud-line is about
9 mm. For EQLa and EQLb, a circle indicates the reference deflection used to determine the
equivalent linear foundation stiffness at mud-line. This circle is placed by taking 65 % of the
observed maximum deflection.

In general, EQLa and EQLb both show larger deflections than the Linear method. A decreased
stiffness of the foundation means the foundation will indeed deflect more. We do see that EQLb
shows smaller deflections than EQLa. The added hysteretic damping causes smaller deflections in
the foundation.
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Figure 7.3: Cumulative distribution of deflections at mudline.

We take a closer look at deflection spectra in the foundation in Figure 7.4. The left figures show the
spectra at mud-line, 10m into the foundation and at pile tip (30m into the foundation). The right
figures show a zoom in around the first mode of the structure. The first natural frequency of the
structure is 0.156 Hz. The peak of the Linear results is indeed situated at 0.156 Hz, but this is not
the case for EQLa and EQLb. A degradation of the foundation stiffness causes a shift of resonance
frequency to about 0.152 Hz. The amplitudes of both EQLa and EQLb are also significantly higher
than Linear, caused by both the shift in resonance frequency (causing the resonance frequency of
the structure to be closer to the frequency content of the wave loading) and a decreased foundation
stiffness.

Again, the lower amplitude of the EQLb spectra can be attributed to added damping in the 1st
mode.

78



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Frequency [Hz]

0

1

2

3

4

5

6

7

D
e

fl
e

c
ti
o

n
 a

m
p
lit

u
d

e
 [

m
]

10-3 Mudline

Linear

EQLa

EQLb

(a) 0-0.5 Hz

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

Frequency [Hz]

0

1

2

3

4

5

6

7

D
e

fl
e

c
ti
o

n
 a

m
p
lit

u
d

e
 [

m
]

10-3 Mudline

Linear

EQLa

EQLb

(b) 0.1-0.2 Hz

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Frequency [Hz]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

D
e
fl
e
c
ti
o
n
 a

m
p
lit

u
d
e
 [

m
]

10-3 10 m deep

Linear

EQLa

EQLb

(c) 0-0.5 Hz

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

Frequency [Hz]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
D

e
fl
e
c
ti
o
n
 a

m
p
lit

u
d
e
 [

m
]

10-3 10 m deep

Linear

EQLa

EQLb

(d) 0.1-0.2 Hz

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Frequency [Hz]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D
e
fl
e
c
ti
o
n
 a

m
p
lit

u
d
e
 [
m

]

10-3 Pile tip

Linear

EQLa

EQLb

(e) 0-0.5 Hz

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

Frequency [Hz]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D
e
fl
e
c
ti
o
n
 a

m
p
lit

u
d
e
 [
m

]

10-3 Pile tip

Linear

EQLa

EQLb

(f) 0.1-0.2 Hz

Figure 7.4: Comparing deflection spectra in foundation. Linear v EQLa v EQLb.
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7.4 Comparing the frequency-domain strategies to nonlinear
time-integration

Two simulations are shown in this section: Simulation 5 and Simulation 6. Simulation 5 shows a
representative results for Simulations 1-5, while Simulation 6 is an outlier. The main comparison is
made between EQLa and BHawC. As soil damping is modeled in the same way (through Rayleigh
damping), the only difference between these 2 strategies lies in the soil stiffness.

7.4.1 Simulation 5
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Figure 7.5: Deflection at mudline: Simulation 5.

Both Figure 7.5 (the deflection at mud-line over time) and Figure 7.6 (the cumulative distribution
of deflections at mud-line over time) show that the EQLa method and BHawC find similar results
for Simulation 5. Apart from an outlier around 200s, the deflections at mud-line show similar
amplitudes. The reference deflection uref used in the EQLa analysis of about 14 mm at mud-line
is representative of the deflections found in BHawC.

0 0.005 0.01 0.015 0.02 0.025 0.03

Deflection [m]

0

10

20

30

40

50

60

70

80

90

100

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n
 o

f 
D

e
fl
e
c
ti
o
n
 [
%

]

Simulation 5: Distribution of deflections at mudline

Linear

BHawC

EQLa

u
ref

 EQLa

Figure 7.6: Cumulative distribution of deflections at mud-line. Simulation 5.
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Figure 7.7 shows a comparison of the deflection spectra at 3 points in the foundation: at mud-line,
10 m below mud-line and at the pile tip. The left figures again show the spectrum from 0-0.5 Hz,
while the right figures show a zoomed in version around the 1st mode.

Looking at the peaks around the 1st resonance frequency, close similarities are observed between
BHawC and EQLa. The amplitudes of the spectra are similar and the peak is situated at the
same frequency (about 2 % lower than the linear resonance frequency). The EQL model shows a
significantly closer resemblance to BHawC than the Linear model.

Looking at the frequency ranges from 0-0.5 Hz a small peak is observed around 0.42-46 Hz. Two
explanations arise for this peak. A blade mode is present at that frequency, which is modeled
by BHawC but not by the structural model used by the EQLa method. Next to that, peaks are
observed at exactly 2 and 3 times the main resonance peak. Because BHawC uses a nonlinear
elastic soil model, generation of higher harmonics could also cause these extra peaks. The EQLa
method assumes no higher harmonics are generated.
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Figure 7.7: Comparing deflection spectra in foundation. Simulation 5.
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7.4.2 Simulation 6
However, not all simulations showed such positive results. Figure 7.8 shows the deflections at
mudline for Simulation 6.
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Figure 7.8: Deflection at mudline: Simulation 6.

With the EQL method, a single reference deflection amplitude uref is used to approximate the
response over the full time domain. Figure 7.8 however shows different types of response. From
0-250s, smaller deflections (to about 10 mm) are observed. Nonlinearity in the soil is limited.
The time span from 250-550s however shows larger deflections (20-30 mm) and therefore more
nonlinearity. From 550-600s extreme deflections up to 60 mm are even observed. It is impossible
to take one uref to describe the foundation behavior over the full time domain.

When looking at the cumulative distribution of deflections at mud-line, Figure 7.9, we see that
the EQLa results indeed do not resemble the BHawC results. The observed maximum deflection
is significantly higher for BHawC and the top 10% of deflections for BHawC are between 20 mm
and 60 mm, compared to 15-25mm for EQLa. However, even though the fit between EQLa and
BHawC is not good, the Linear deflections are significantly lower.
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Figure 7.9: Cumulative distribution of the deflections at mudline: Simulation 6.
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When comparing spectra at mud-line, which is shown in Figure 7.10, the same conclusions are
found. Similar to Figure 7.7, spectra from BHawC show an extra peak around 0.42-0.46 Hz. This
peak is more pronounced for this specific load file. This peak can again be attributed to both
the presence of a blade mode and the generation of higher harmonics. The significant increase in
relative size of this peak with respect to Figure 7.7 can not be explained by just the presence of a
blade mode. The larger contribution of higher harmonics due to the larger degree of nonlinearity
in the foundation would fit this observation better.

Figure 7.10b shows that the EQLa method does not resemble the BHawC response that well
around the 1st structural mode. However, the EQLa method still shows a better resemblance to
the nonlinear time domain method than the Linear method.
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Figure 7.10: Deflection spectra at mudline: Simulation 6.
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7.4.3 Performance of an EQL solution strategy
An EQL analysis of an OWT subjected to multiharmonic loading hinges on 2 important assump-
tions:

• The influence of higher on the response is limited (allowing for the separate calculation of
each frequency component each EQL iteration).

• A single reference deflection amplitudes uref can represent the foundation behavior over the
full time window.

With respect to the first assumption, the analyses of OWTs show that higher harmonics do not
play a critical role in the response of the full system at the investigated load level.

The second assumption brings a bigger limitation to the effectivity of EQL analysis. One of the 6
simulations that was analyzed showed significantly larger deflections (and therefore nonlinearity) for
a short part of the time window. An EQL method can not reproduce large differences in foundation
behavior over time, putting a limit on the load level of the analysis. A relatively simple metric
was used to identify a reference response amplitude (65 % of the maximum in the time domain).
A different method of finding a reference response amplitude could extend the applicability of an
EQL analysis, like a measure defined by the distribution of deflections instead of just the observed
maximum. However, the EQL method would still require one reference response amplitude. If the
foundation behavior can not be defined by one value, no technique of defining a reference response
amplitude can solve that issue.

We have to stress however the performance of the EQL strategy with respect to a the Linear
strategy. For the load level applied in these analyses, an EQL analysis yields closer results to a
nonlinear time-history analysis than a Linear analysis.

Further research is necessary to obtain the limit of applicability of an EQL method, focused on
more runs at the applied load level related to a wind speed of 25 m/s and more runs at lower
wind speeds. Our expectation is however that, because the applied load case is on the high side
of FLS (long-term average wind speeds in the North Sea are around 10 m/s), EQL methods are
suitable for most FLS load cases. Especially in concept design, where quick results are sometimes
needed, an EQL method would provide a better estimation of nonlinear time-history analyses than
a Linear method would.
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7.5 Using an Equivalent Linear solution strategy in fatigue
damage calculations

As the main goal of OWT simulations is to calculate the fatigue life time of the structure, this
section explains how an Equivalent Linear solution strategy could fit into that procedure. As
explained in Section 1.5, fatigue damage calculations can be done in both the time domain and
the frequency domain.

An EQL solution strategy requires a time-history of the forcing applied to the system, which means
the most direct connection to a fatigue damage calculation would be through a rainflow counting
algorithm. As S-N curves for OWTs are often set up on a cross-sectional level, shear forces and
moments have to be added as output from the simulations. An EQL method can then be used
instead of a computationally less efficient nonlinear time domain method.

The combination with the Dirlik method, a fatigue damage calculation taking a probabilistic
approach in the frequency domain, is more difficult to combine with an EQL method. Because
the input of the Dirlik method uses load spectra, no time-history information about the load is
used. The underlying assumption of the Dirlik method is also a linear system. However, an EQL
method can be used to find an appropriate linearization of the foundation response to be used in
the Dirlik method. By using several EQL simulations, a representative linearization for a specific
load level can be found. For each load case analyzed however, a different linearization is needed.

Figure 7.11 shows the comparison of deflection spectra at mud-line for BHawC and the EQLb
method. Two factors play a role in the global dynamic response of the OWT: the place of the
resonance peak and the global damping ratio.
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Figure 7.11: Deflection spectra at mudline, comparing BhawC and EQLb: Simulation 5.

The results of the EQL method show a similar main frequency of the first resonance peak as
the results of BHawC (which is about 2 % lower than the first natural frequency of the system).
Because the resonance peak is shifted to lower frequencies and both wind and wave spectra are
generally situated at lower frequencies (see Figure 1.1), a higher fatigue damage is predicted.
[Schafhirt et al., 2016] did an investigation into the effects of a lower foundation stiffness on the
fatigue damage calculation of an OWT. A lower foundation stiffness that causes a shift of the
resonance peak of 2 % increases the fatigue damage at mud-line by about 5 %. Important to take
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into account however, is that an EQL method changes the foundation properties per load case.
This means that for lower loads, this shift in the resonance peak of the first mode (and therefore
the increase in fatigue damage) is less pronounced.

The other contributing factor is the global damping ratio. An EQL formulation where local
response-amplitude dependent hysteretic damping is applied (EQLb) shows larger global soil damp-
ing ratios than BHawC. The increase in foundation damping is 0.4 - 0.6 % critical. The direct
influence of this higher global soil damping can be seen in Figure 7.11 as well. The deflections
at mud-line are lower for the EQLb case than for BHawC. Although a calculation of the mo-
ments and shear forces at mud-line is necessary, the expectation is that EQL simulations finds
lower fatigue damage at mud-line than BHawC simulations. This hypothesis is strengthened by
[Aasen et al., 2017], where the addition of 0.3 % critical damping reduced total fatigue damage at
mud-line by 13 %.

In [Aasen et al., 2017], the inclusion of a nonlinear hysteretic foundation model (through a macro-
element instead of through a distrubuted foundation stiffness like in this thesis) is evaluated under
varying load conditions related to wind speeds from 2 - 30 m/s. This analysis showed a decrease
in total fatigue damage at mud-line of 11 % with respect to a p-y formulation. In line with this
research, we expect that an EQL analysis would also show a lower total fatigue damage. Using a
calibrated linear foundation with the right amount of damping would also result in similar results,
but would need a recalibration for each load level. The big advantage of a response-amplitude
dependent formulation of the foundation, as stated by [Aasen et al., 2017], is that the need for
recalibration of the foundation for different load cases is reduced.
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Section 8

Conclusions and Recommendations
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8.1 Project overview
The main research question of this project is: How to combine a nonlinear hysteretic constitutive
soil model with a frequency-domain analysis to improve simulations of Offshore Wind Turbines on
a monopile foundation under Fatigue Limit State conditions? In order to answer this question, 7
goals are defined.

• To compare different solution strategies in the frequency domain based on their ability to
represent hysteretic behavior.

• To evaluate the solution strategies on their ability to be used in a full FE model under
multiharmonic excitation.

• To fit hysteretic constitutive models to available soil reaction data.

• To set up an FE formulation that includes the suggested solution strategy and constitutive
model.

• To verify the FE formulation with an available structural model of an OWT on a monopile
foundation.

• To quantify the change in foundation response (in stiffness, damping and deflection shape)
between a conventional frequency-domain analysis and the suggested solution strategy.

• To compare the suggested frequency-domain solution strategy to a time-domain strategy
which uses a p-y formulation for the monopile foundation. The focus lies on the behavior of
the monopile foundation.

In this Section, conclusions are drawn with respect to the main research question first. Afterwards,
conclusions found considering the choice of solution strategy are elaborated on. We then state
conclusions made regarding the modeling decisions related to the soil. Lastly, recommendations
are given for future research.

8.2 Conclusions to the main research question
The main conclusions we find to answer the main research question are the following:

• An Equivalent Linear solution strategy in combination with a nonlinear hysteretic soil model
improves frequency-domain analyses of OWTs under FLS conditions by capturing the depen-
dency of the foundation on the response amplitude. That way, frequency-domain analyses
can approximate nonlinear time-integration methods up to higher load levels.

• Results found through an EQL method closely resemble nonlinear time-integration results.
Both the deflection spectra in the foundation and the distribution of deflections in the foun-
dation are very similar. This only holds provided the variability of the response of the
foundation over the time window is not very large and the influence of generated higher
harmonics is limited (to be at least an order of magnitude smaller than the 1st harmonic).

• The possibility of adding local hysteretic response amplitude-dependent damping through
an EQL method allows for a more realistic incorporation of the soil damping. In the case
study, soil damping ratios found in the 1st structural mode (of 0.64-0.80 % critical / 4-5%
log. dec.) are close to numerical and experimental case studies with similar OWT design
and loading. The accuracy of the applied damping is however directly linked to the quality
of the Equivalent Linear hysteretic damping curves.
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8.3 Conclusions related to the solution strategy
Several conclusions were found related to analyzing the different solution strategies for incorporat-
ing a hysteretic constitutive model into a frequency-domain method:

• In 1DOF, the Alternating Frequency-Time Harmonic Balance Method (AFTHBM) can be
used to solve the response of a nonlinear hysteretic constitutive soil model. The response
amplitude-dependency of the behavior of the element is captured. At higher load levels,
higher harmonics are generated. These higher harmonics also cause superharmonic resonance
when the element is connected to a mass and a viscous damper. The generated hysteresis
loops match nonlinear time integration results, as long as enough higher harmonics are taken
into account.

• However, using AFTHBM to solve the response of a full OWT FE model under multiharmonic
loading is computationally challenging. Complexity of the algorithm with respect to both
degrees of freedom and analysis frequencies is O(n3), because of a necessary inversion of a
fully populated Jacobian in the method.

• When we neglect the generation of higher harmonics and solely focus on the response
amplitude-dependency of the hysteretic element, the solution strategy can be simplified into
an Equivalent Linear Analysis. The system is solved iteratively by alternating between calcu-
lating the response and updating the stiffness and hysteretic damping of the element. These
simplifications allow for the analysis frequencies to be solved separately in each iteration,
significantly speeding up calculations. In the comparison between EQL and AFTHBM when
applied to a Bouc-Wen element, similar results are found under harmonic loading, as long
as the higher harmonics of the response are at least an order of magnitude smaller than the
response in the 1st harmonic.

• The complexity of the EQL strategy with respect to degrees of freedom becomes O(n2) due
to the use of sparse matrices. The complexity with respect to analysis frequencies even goes
down to O(nlog(n)) because the calculations can be split up per analysis frequency. The
analysis of FE models with of a full OWT under multiharmonic loading is computationally
possible, which is why the EQL strategy is implemented in the rest of the thesis.

• To define an uref when a multiharmonic load is applied to the system, the metric of 65%
of the maximum observed response in the time domain is chosen. An EQL analysis in
combination with this metric, commonly used in earthquake engineering, is shown to get a
response spectrum that fits with a nonlinear time integration result.

• An EQL strategy is able to be combined with a fatigue damage calculation. A time-domain
calculation can directly be performed through a rainflow counting algorithm. Otherwise, the
EQL strategy can provide the appropriate linearization to be used in the Dirlik method, for
a specified load level.

• For the investigated case study, the EQLb analysis (with both response-amplitude dependent
soil stiffness and hysteretic damping) is shown to create a 2% decrease of the 1st resonance
peak (which is also observed in a nonlinear time-history analysis). A 0.4-0.6% increase of
critical damping in the 1st structural mode is found when compared to the global damping
applied in the nonlinear time-history analysis. Based on these results in combination with
[Aasen et al., 2017], our expectation is that calculated fatigue damage through an EQLb
analysis is lower than through an analysis which uses p-y curves.
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8.4 Conclusions related to the soil modeling
In the setup of a representative FE model of the foundation, we have fit our constitutive soil model
to available data. The following conclusions were drawn:

• A Bouc-Wen model of hysteresis is fitted to a set of p-y curves (which are based on a
monotonic 3D FE analysis and subsequently reduced by a factor to take cyclic loading
into account). In monotonic loading, the original Bouc-Wen model can indeed be fitted
to these p-y curves. In cyclic loading however, hysteresis loops are generated with too
high hysteretic damping ratios at medium to large strains. The hysteretic damping ratio
reaches levels of up to 70% at medium strains, while literature ([Beuckelaers, 2017] and
[Yniesta and Brandenberg, 2015]) suggests hysteretic damping ratios at medium strains of
5-15%. Maximum hysteretic damping ratios at large strains are observed up to 20%. The
original Bouc-Wen model of hysteresis is therefore not suitable for the use in foundation
modeling where medium to large strains are reached.

• A Masing model is also fitted to a set of p-y curves. Stiffness properties (in both monotonic
and cyclic loading) match perfectly to the used backbone p-y curve. Hysteretic damping
ratios at medium strains of the hysteresis loops generated through the Masing model are
between 5 and 15%, which fits relevant literature. However, at large strains the hysteresis
loops show hysteretic damping ratios of up to 50%. This large hysteretic damping ratio
of the Masing element is also described in other literature [Yniesta and Brandenberg, 2015].
In order to not apply too much damping at large strains, a cap of 20% is applied to the
hysteretic damping ratio of the EQL Masing element.

• From testing a nonlinear hysteretic constitutive soil model in dynamic conditions under
harmonic loading as well as multiharmonic loading, an EQL approximation is shown to
find accurate results as long as nonlinearities are limited. The most important influencing
factors are the response amplitude-dependent secant stiffness and hysteretic damping of the
generated hysteresis loops.

• In the EQLb procedure, the applied damping is hysteretic (rate-independent), which mod-
els the material damping of the soil. The implemented EQL procedure in the frequency
domain can model this type of damping efficiently through applying a complex-valued soil
stiffness. Time-domain methods do not have the possibility to apply a complex-valued soil
stiffness and have to resort to equivalent viscous damping if local damping is applied in the
foundation. Viscous damping is dependent on frequency however, which has the downside of
providing too much damping for higher frequencies. This effect causes overdamping of higher
modes. Although in the load case of this thesis no higher modes are activated, the benefit of
representing soil material damping through hysteretic damping instead of equivalent viscous
damping is present for other load cases like earthquake loading.
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8.5 Recommendations
Our recommendations for future research are as follows:

• The comparison between EQL and nonlinear time-history results has been performed for one
load case, with only 6 load simulations. To investigate the upper limit of applicability of an
EQL method, this analysis has to be repeated for many different load cases, and for many
more load simulations. In that way, one can statistically express the effectiveness of the EQL
method. An EQL strategy can only be used when large permanent deformations do not
occur. Therefore, the response to ULS load cases can not be accurately modeled through an
EQL method.

• Fatigue damage calculations were not performed in this thesis. In Section 7.5, a prediction
is made on what the effect of an EQL solution strategy combined with a nonlinear hysteretic
soil model will be on the fatigue damage. This prediction is based on the change in reso-
nance peaks and critical damping ratios, in combination with literature. Nevertheless, it is
recommended to perform fatigue damage calculations to check that prediction.

• The focus on this thesis was on the modeling of the monopile foundation. Deflection spectra
in the foundation and the stiffness and damping properties of the foundation itself were
compared. However, the modeling of the monopile itself also has an effect on the response of
the rest of the structure. It is recommended to also compare the response (and the fatigue
damage) at locations in the structure other than in the foundation.

• The AFTHBM procedure shown in Section 2 is a force-controlled method. The behavior
of the Bouc-Wen element can be modeled in dynamic conditions, but only to a certain
response amplitude. Afterwards, the element yields. To find the behavior at higher response
amplitudes, it is suggested to use an amplitude-controlled method (like in [Wong et al., 1994a]
and [Wong et al., 1994b]). For an accurate representation of the frequency response function
at larger load levels, a combination of a force-controlled and an amplitude-controlled method
is needed.

• As discussed in Section 4.4, the original Bouc-Wen model of hysteresis reaches hysteretic
damping ratios at medium strains as high as 70%. [Gerolymos and George, 2005] shows a
method of changing the Bouc-Wen model to control the hysteretic damping properties. By
uniformly scaling the Bouc-Wen parameters κ, β and γ (Named A, g and b respectively) as
a function of response amplitude, the relative size of the hysteresis loop is controlled. The
combination of this altered Bouc-Wen model with an AFTHBM procedure is straightforward,
as only Equations 2.27, A.6, A.7 and A.8 require a small change when compared to the
implementation of the original Bouc-Wen model.

• When multiharmonic loading (like wind and wave loading) is applied, the EQL method needs
a representative response amplitude uref for calculating the equivalent linear foundation
response. While in this project a relatively simple metric was used (65 % of the observed
maximum deflections), a more sophisticated metric could extend the robustness of the EQL
method. It is suggested to look into a metric which uses the distribution of deflections in the
time domain.
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• The EQL method requires the input of stiffness degradation and hysteretic damping curves.
While these curves are frequently used as a function of strain in the soil, the 1D foundation
model with a distributed soil stiffness requires curves as a function of deflection in the foun-
dation. [Zhang et al., 2021] suggests a method for finding these curves by directly looking
at 3D FE. The specific method used is only applicable to slender piles however. With a
method like in [Zhang et al., 2021], fitted p-y curves are not required as intermediate results
anymore.

• The identification of soil properties (to be used in the setup of the 3D FE model of the soil
medium) is commonly based on static tests like a CPT test or a triaxial test. To take into
account cyclic and dynamic loading, reduction factors are used and a nonlinear hysteretic
model like the Masing model is implemented (like in this thesis). However, in the case of an-
alyzing an OWT foundation, the soil is loaded under dynamic conditions. It is recommended
that the dynamic soil properties are identified through a dynamic soil test. For example, a
resonant column test [Cavallari, 2016] or a dynamic torsional shear test [Gabryś et al., 2016]
could be used.

• The formulation of most nonlinear hysteretic constitutive soil models is focused on capturing
the shape of the hysteresis loops as best as possible. However, as discussed in Section 1.3,
linearized stiffness and damping properties are sufficient to model the dynamic response of
a large structure with limited nonlinearities. Section 3 shows that at local element level
response-amplitude dependent stiffness reduction and hysteretic damping curves are suffi-
cient as well (when the nonlinearity in the system is limited). It is therefore recommended
that future research looks into identifying these stiffness reduction and hysteretic damping
curves as accurately as possible. For dynamic analysis of large structures with limited non-
linearities, accuracy of the linearized properties contributes more to realistic modeling of the
full structure than the accuracy of the specific shape of the hysteresis loops.

• The foundation model that is applied in this thesis is rate-independent. Rate-dependent
effects are also present in the soil response. These effects are generally neglected for the
analysis of OWTs subjected to wind and wave loading because of the frequency of wind and
wave loading typically being below 1 Hz ([Malekjafarian et al., 2021]). However, for other
load cases like earthquake loading these effects can play a significant role. Resonance of
the soil medium and radiation damping are examples of these frequency-dependent effects.
([Hasper, 2021]) looks into including these effects in a 1D approach, with the assumption of a
linear constitutive soil model. More research is needed into how these effects could be added
to an EQL formulation.
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Appendix A

Derivation of the Jacobian used for
solving the Bouc-Wen model of
hysteresis through AFTHBM

The derivation of the Jacobian is based on the procedure by [Wong et al., 1994a], but is rederived
because of the different definition of the parameters of the Bouc-Wen model. Also, this Appendix
shows the derivation steps. The discrete-time residual function of the Bouc-Wen element is:

r = ż− u̇ ◦ (κ− [γ + β · sgn(u̇) ◦ sgn(z)] ◦ |z|◦n) (A.1)

Although the Jacobian Ĵ has to be defined in the time domain. firstly the Jacobian J is calculated
for each sample in the time domain. The chain rule of differentiation is used to split up the problem
into 6 different derivatives:

J =
δr

δû
=
δr

δu̇
· δu̇
δû

+
δr

δz
· δz
δû

+
δr

δż
· δż
δû

(A.2)

By using mathematical software (Maple), the 3 derivatives related to the residual function are
calculated:

δr

δu̇
= −κ+ (γ + β · sgn(u̇) ◦ sgn(z)) ◦ |z|n + β · u̇ ◦ δ

δu̇
(sgn(u̇)) ◦ sgn(z) ◦ |z|n (A.3)

δr

δz
= u̇ ◦

(
β · sgn(u̇) ◦ δ

δz
(sgn(z)) ◦ |z|◦n +

(γ + n · β · sgn(u̇) ◦ sgn(z)) ◦ |z|◦n ◦ δ
δz (|z|)

|z|

)
(A.4)

δr

δż
= 1 (A.5)

where 1 is defined to be a vector with all ones.
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(a) Absolute function (b) Signum function

Figure A.1: Absolute function and the signum function.

Two functions of which a derivative is present in the equations are the absolute function and the
signum function. Figure A.1 shows these functions. Both functions have a well-defined derivative,
apart from an input value of 0. The derivative of the absolute function is the signum function
(apart from x=0), and the derivative of the signum function is 0 (apart from x=0). To circumvent
numerical issues at later stages, a value is assigned to x=0 (for both functions the derivative at
x=0 is assigned as 0). The singularity at z = 0 is also removed from Equation A.4 by simplifying
the denominator, again to avoid numerical issues. These approximations simplify the derivatives
of r to:

δr

δu̇
= −κ+ (γ + β · sgn(u̇) ◦ sgn(z)) ◦ |z|◦n (A.6)

δr

δz
= u̇ ◦

(
(γ + n · β · sgn(u̇) ◦ sgn(z)) ◦ |z|◦(n−1) ◦ sgn(z)

)
(A.7)

δr

δż
= 1 (A.8)

The next derivative to solve is related to u̇. To find the derivatives of u̇ with respect to the state
vector û, the Fourier representation of u is recalled. After taking a derivative with respect to time,
the derivatives with respect to the state vector û can be isolated:

u =

H∑
k=0

ĉkcos(kΩt) + d̂ksin(kΩt) (A.9)

δu̇

δĉ0
= 0 (A.10)

δu̇

δĉk
= −kΩsin(kΩ · t) (A.11)

δu̇

δd̂k
= kΩcos(kΩ · t) (A.12)

where 0 is defined to be a vector with all zeros.
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Next up, we take a look at the derivative with respect to z. This derivative is split up into 2 parts.
To find the derivatives of z with respect to the state vector ẑ, the Fourier representation of z is
recalled. The derivatives with respect to the state vector ẑ can be isolated:

δz

δû
=
δz

δẑ
· δẑ
δû

(A.13)

z =

H∑
k=0

p̂kcos(kΩt) + q̂ksin(kΩt) (A.14)

δz

δp̂0
= 1 (A.15)

δz

δp̂k
= cos(kΩ · t) (A.16)

δz

δq̂k
= sin(kΩ · t) (A.17)

For the derivative of the state vector ẑ with respect to û, Equation 2.20 is recalled:

ẑ =
(
(1− α)ki∇̌0

)−1 ·
(
f̂ex −

(
mΩ2∇̌2 + cΩ∇̌1 + k∇̌0 + αki∇̌0

)
· û
)

(A.18)

Taking the derivative with respect to û creates the last part of δz
δû :

δẑ

δû
=
(
(1− α)ki∇̌0

)−1 ·
(
−
(
mΩ2∇̌2 + cΩ∇̌1 + k∇̌0 + αki∇̌0

))
(A.19)

The last derivative to find is related to ż. A split of the derivative is again needed. To find the
derivatives of ż with respect to the state vector ẑ, the Fourier representation of z is recalled. After
taking a derivative with respect to time, the derivatives with respect to the state vector ẑ can be
isolated:

δż

δû
=
δż

δẑ
· δẑ
δû

(A.20)

z =
H∑

k=0

p̂kcos(kΩt) + q̂ksin(kΩt) (A.21)

δż

δp̂0
= 0 (A.22)

δż

δp̂k
= −kΩsin(kΩ · t) (A.23)

δż

δq̂k
= kΩcos(kΩ · t) (A.24)

Equation A.19 is reused to create the last part of δż
δû .
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With all parts of J defined, the Jacobian can be transformed to the frequency domain. A custom
DFT is used:

δv̂0

δû
=

1

M
· JT · 1 (A.25)

δv̂k
δû

=
2

M
· JT · cos(kΩt) (A.26)

δŵk

δû
=

2

M
· JT · sin(kΩt) (A.27)
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Appendix B

Response spectra for all 6
simulations of the case study OWT
under FLS conditions
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10-3 Simulation 1:  Deflection spectrum 10 m deep
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10-3 Simulation 1:  Deflection spectrum at Pile tip
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Figure B.1: Comparing deflection spectra in foundation. Simulation 1.
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10-3 Simulation 2:  Deflection spectrum 10 m deep
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10-3 Simulation 2:  Deflection spectrum 10 m deep
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10-3 Simulation 2:  Deflection spectrum at Pile tip
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Figure B.2: Comparing deflection spectra in foundation. Simulation 2.
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10-3 Simulation 3:  Deflection spectrum 10 m deep
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10-3 Simulation 3:  Deflection spectrum at Pile tip
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Figure B.3: Comparing deflection spectra in foundation. Simulation 3.
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10-3 Simulation 4:  Deflection spectrum 10 m deep
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10-3 Simulation 4:  Deflection spectrum 10 m deep
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10-3 Simulation 4:  Deflection spectrum at Pile tip
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Figure B.4: Comparing deflection spectra in foundation. Simulation 4.
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10-3 Simulation 5:  Deflection spectrum at mudline
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10-3 Simulation 5:  Deflection spectrum 10 m deep
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10-3 Simulation 5:  Deflection spectrum 10 m deep
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Figure B.5: Comparing deflection spectra in foundation. Simulation 5.
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10-3 Simulation 6:  Deflection spectrum at Pile tip
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10-3 Simulation 6:  Deflection spectrum at Pile tip
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Figure B.6: Comparing deflection spectra in foundation. Simulation 6.
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