
Extracting LLVM Intermediate Representation
from Agda

Jochem Broekhoff
Supervisors: Jesper Cockx, Lucas Escot

EEMCS, Delft University of Technology, The Netherlands

June 27, 2022

A Dissertation
Submitted to EEMCS faculty
Delft University of Technology,

In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering

Extracting LLVM Intermediate Representation from Agda

JOCHEM BROEKHOFF, Delft University of Technology, The Netherlands

Agda, a promising dependently typed function language, needs more mainstream adoption. By the process of

code extraction, we compile proven Agda code into a popular existing language, allowing smooth integration

with existing workflows. Due to Agda’s pluggable nature, this process is relatively straightforward. We

implement a solution in Haskell and perform an empirical benchmark analysis. We show that LLVM’s

Intermediate Representation language is a usable and promising target, although some optimizations are

necessary before broader application. More indirect paths towards LLVM IR appear more suitable, because of

the large translation gap.

Additional Key Words and Phrases: code extraction, Agda backend, LLVM Intermediate Representation

1 INTRODUCTION
Agda is a dependently typed functional programming language, part of the class of languages that

embrace programming without side-effects. What distinguishes Agda from popular functional

languages, such as Haskell, OCaml or F#, is its type system. Dependent types allow programmers

to reason about correctness of their programs in a very fine way. In general, a value whose type

is dependent has a type which depends on the actual value. This allows logic and more generic

constraints to be encoded in types. For example, a list of items could have a type which captures

the length, or similarly, one might write a function which takes such a list and returns another

list whose length is guaranteed to be equal or less. This is, in the most general sense, not possible

in non-dependently typed languages. Even though languages such as C++ have extensive macro

processing and compile-time type instantiation and verification engines, dependent types are still

more powerful.

Dependent types are useful for example to prove at compilation time that a program will never

error
1
. Stronger yet, it can be used to write general-purpose proofs of any logic statement, by the

Curry-Howard correspondence [Howard 1980]. Throughout the main body of this paper, several

examples will be given to demonstrate this in more detail.

Other dependent functional languages exist, such as the newer Idris2 and the older Coq are

popular alternatives. Executing an Agda program is normally done by compiling the source code

into another (executable) format. This step normally happens via an intermediary language, which

is why the process is also referred to as code extraction. Two compilation backends are provided

out-of-the-box: Haskell and JavaScript [Agda Team 2022]. As the compiler implements a highly

pluggable backend architecture, it allows the development of new and experimental backends with

relative ease. This is exactly what we have used to research the applicability of using the LLVM

intermediate representation (IR) as a code extraction target for Agda.

The choice for LLVM IR is particularly interesting because it is part of a large family of soft-

ware [LLVM Team 2022d], which we would like to tap into. This is similar to how Agda by default

compiles to Haskell, which opens up the possibility of interfacing with the entire Haskell ecosys-

tem. Similarly, compiling to LLVM IR allows us to leverage many optimizations that have been

implemented by the LLVM pipeline. Moreover, as LLVM IR works in C-compatible mode by default,

we can link with native system libraries.

Although there are many similarities, there are at least as many differences. LLVM is a low-level

language, situated somewhere in between pure assembly and C. This inherently means that we

1
That is of course unless the programmer explicitly disables safeguards.

Author’s address: Jochem Broekhoff, Delft University of Technology, Van Mourik Broekmanweg 6, Delft, The Netherlands,

2628 XE.

HTTPS://ORCID.ORG/0000-0003-4186-0560
https://orcid.org/0000-0003-4186-0560

2 Jochem Broekhoff

gain generality, while discarding high-level coherency and relation details. A safe assumption is

that the GHC Haskell compiler is significantly more intelligent than the compiler backend we are

te implement. Thus, it is unlikely that our backend will outperform Agda’s default choice.

In order to systematically investigate the usefulness of such a rudimentary backend, the following

research question is posed: ‘Is LLVM IR a practical compilation backend for Agda?’ Furthermore, it

can be divided into several sub-questions, which will all be answered individually:

(1) To what extent can, and need, Agda types be mapped onto LLVM’s type system?

(2) Which Agda features are necessary to answer the main research question?

(3) From an architectural perspective, how is the backend structured?

(4) How does the implementation compare time-wise to backends from the peer group and the

built-in ones?

The content of this paper is structured as follows. First, we give some more in-depth background

information in section 2. Section 3 briefly explains the method we used. Then, implementation

details are outlined in section 4, followed by empirical results demonstrated and discussed in section

5. Then, we draw a conclusion in section 6, where we also mention possibilities for future work.

Some related work is discussed in section 7. We end with a short statement on responsible research

in section 8.

2 BACKGROUND
In this section we introduce the necessary background information about compilers, Agda, thunks

and laziness. Specifically regarding Agda, we refer to Agda Team [2022]; van der Walt [2012] as

excellent sources which introduce the language by many examples.

2.1 Compiler backends
It is in the interest of the language to support multiple backends, as this allows smoother integration

by end-users in existing workflows. To give an impression, the competing languages Idris2 and

Coq compile to C, Scheme [Idris2 Team 2020], and OCaml [Annenkov et al. 2021; Letouzey 2008],

respectively. Even though Agda may often just be used to run proofs and play with the type system,

it is perfectly usable for real-world applications. New backends not only provide library writers

new mechanisms to deliver libraries with guarantees such as safety and finite-time termination.

Moreover, it allows deeper integration with existing workflows of users, by providing a foreign-

function interface (FFI). Using this FFI, it is not even necessary for the end-users to be programming

anything in Agda.

Agda implements a pluggable backend architecture. This means that developers can write a new

or custom backend for any target language without requiring deep knowledge of other internals.

Conventionally, the heavy-lifting such as type-checking and high-level optimizations are done in

the front-end phases of the compiler. This leaves the backend with a generic representation of the

input program to map onto its specific target language.

This project will provide such a backend for the LLVM Intermediate Representation (LLVM IR)

language. LLVM itself is the name, not an abbreviation, of the project of a set of “reusable compiler

and toolchain technologies” [LLVM Team 2022d]. Well-known projects belonging to LLVM are

the Clang C/C++ compiler [LLVM Team 2022a], the LLDB debugger [LLVM Team 2022c] and the

LLD linker [LLVM Team 2022b]. Separate from this, the LLVM Core project provides the necessary

resources for the LLVM IR language, an integral part of the entire LLVM project family. It is a

static-single assignment (SSA) format in which many parts of a typical LLVM pipeline communicate.

The Clang compiler, for example, parses the C/C++ code and emits LLVM IR for further processing

by several optimization passes, followed by a final translation to machine code. Similarly, the

Extracting LLVM Intermediate Representation from Agda 3

Fig. 1. Grammars. Some parameters are named for clarity.

(a) Agda treeless
⟨Term⟩ ::= Var ⟨idx⟩

| Prim ⟨Prim⟩
| Def ⟨QName⟩
| App subj:⟨Term⟩ args:⟨Term*⟩
| Lam ⟨Term⟩
| Lit ⟨Literal⟩
| Con ⟨QName⟩
| Let var:⟨Term⟩ body:⟨Term⟩
| Case ⟨idx⟩ ⟨CaseInfo⟩ ⟨Term⟩ ⟨Alt*⟩

⟨Prim⟩ ::= Add | Add64 | Sub | Sub64 | . . .

⟨QName⟩ ::= a fully qualified identifier

⟨CaseInfo⟩ ::= case meta-information

⟨Literal⟩ ::= Nat ⟨integer ⟩
| Word64 ⟨integer64⟩
| Float ⟨double⟩
| String ⟨string⟩
| Char ⟨char ⟩
| QName ⟨QName⟩

⟨Alt⟩ ::= ⟨match value⟩ body:⟨TTerm⟩

(b) Mid-Level Intermediate Representation
⟨module⟩ = ⟨Entry*⟩

⟨Ident⟩ ::= Ident ⟨string⟩
| IdentRaw ⟨string⟩

⟨idx⟩ = ⟨integer ⟩

⟨Entry⟩ ::= Thunk ⟨Ident⟩ private:⟨bool⟩ ⟨Thunk⟩
| Direct ⟨Ident⟩ pushArg:⟨bool⟩ ⟨Body⟩
| Main ref:⟨Ident⟩
| Alias ⟨Ident⟩ aliasOf:⟨Ident⟩

⟨Thunk⟩ ::= Delay ⟨Body⟩
| Value ⟨Value⟩

⟨Body⟩ ::= MakeValue ⟨Value⟩
| Apply subj:⟨Arg⟩ args:⟨Arg*⟩
| Case subj:⟨idx⟩ alts:⟨Alts⟩ fallback:⟨Body⟩
| Error ⟨string⟩

⟨Arg⟩ ::= Extern ⟨Ident⟩
| Record ⟨idx⟩
| Erased

⟨Alts⟩ ::= Data (ident:⟨Ident⟩, arity:⟨integer ⟩, ⟨Body⟩)*
| Nat (⟨integer ⟩, ⟨Body⟩)*

⟨Value⟩ ::= Data id:⟨integer64⟩ arity:⟨integer ⟩
| Function ⟨Ident⟩
| Literal ⟨Literal⟩

Agda2LLVM backend will emit LLVM IR which is to be optimized, assembled and linked by further

processing parts, e.g. Clang.

2.2 Quick Intro to Agda and its Syntaxes
Agda internally uses several representations of the input, some of which the backend can use. The

most simplified syntax is called the treeless form [Agda Team 2022], which is a very low-level syntax

which only supports the lambda form and case and let constructs, including some primitive

operations. Most of its grammar is listed in grammar 1a. As the documentation mentions: this

syntax is “not used for type checking”, but “intended to be used as an input for the compiler

backends”. Roughly this syntax level is what other functional language compilers mostly operate

on, in terms of actual translation to imperative or more machine-specific code. Our challenge

is to compile this to LLVM IR. GHC, Haskell’s compiler, solves a similar problem by leveraging

its Spineless Tagless G-Machine (STGM) [Peyton Jones 1992], followed by a translation through

C-- [Peyton Jones et al. 1999] to machine code.

Although Agda has overlap with Haskell, there is still a non-empty difference [Agda2HS Team

2021]. Natural numbers in Agda, represented by the built-in type N, are defined as the Peano

numbers, as is shown in listing 1. Fortunately, to mitigate severe overhead of actually using Peano

numbers at runtime, Agda provides built-ins which allow backends to leverage the target’s numeric

primitives. This not only holds for natural numbers, but a wide range of similar primitives.

Continuing on the natural number example, we can use it to define a vector type, a list type of

fixed length. Listing 2 shows the Agda implementation. Observe that the empty ([]) constructor

returns a vector with elements of the required type, and a length set to zero. Correspondingly, the

4 Jochem Broekhoff

Listing (1) The natural numbers de-
fined in Agda, as Peano numbers.

1 data Nat : Set where
2 zero : Nat
3 suc : Nat → Nat

Listing (2) A vector with its length embedded in the type.

1 data Vec (A : Set) : (l : Nat) → Set where
2 [] : Vec A zero
3 _::_ : {n : Nat} → A → Vec A n → Vec A (suc n)

Fig. 3. Two states of a Thunk, expressed as a Haskell data type.

1 data Thunk a =
2 Forced { evaluatedValue :: a }
3 | Delay { evaluator :: (Context -> a), context :: Context }

cons (_::_) constructor returns a vector that is one longer (by suc n, the successor of n) than the

vector to which an element is concatenated. The previous length n is derived implicitly, which is

why this meta-variable is defined inside curly braces instead of parentheses. Note that the name of

the cons constructor contains two underscores: these indicate that the constructor can be used as

an operator, with operands at the positions of the underscores. Constructing a vector can thus be

done like x :: y :: [], which has the type Vec A (suc (suc zero)), where A is the type of x and y.

2.3 Theory Recap: Thunks & Laziness
In the implementation we describe in section 4, but also in the MLIR syntax we just listed, we

heavily rely on the concept of thunks. A thunk is, according to Raymond [1991] in his dictionary:

“an expression, frozen together with its environment, for later evaluation if and when needed”, and

“the process of unfreezing these thunks is called ‘forcing’.”

We use thunks to achieve laziness. Being lazy means not executing code that is not necessary

right now, but only when it really is needed, i.e. when the program cannot otherwise continue its

execution. Passing arguments to a function which ends up not using the argument, means that all

code related to that argument is never executed. This allows working with infinite data structures,

such as lists of infinite length, as the list’s elements are only computed one-by-one. Where in

imperative languages such as Java, complete pipeline processing frameworks exist
2
, lazy languages

such as Haskell or Agda provide most of the logic implicitly.

In practical terms, a thunk can be represented by a simple data structure, as demonstrated in

figure 3, listed in Haskell syntax
3
. A thunk can only exist in two states: either it is already forced

and a value is readily available, or it is not yet forced and thus still delayed. In that case, only a

reference to a function that can produce the value is stored, alongside some context information.

The value of such a context heavily depends on implementation details, but in general it is a capture

of the context where the thunk was instantiated. This way, the evaluator can for example access

local variables.

When a force point in the program is reached, and the thunk appears to still be delayed, it will be

forced. The evaluator is executed, given its context, to produce a value. The thunk is then atomically

replaced with a Forced instance, which includes the just computed value. Because thunks can be

shared, replacing it with a forced value instantly propagates the change to all other locations where

the thunk is used.

2
For example, Java Stream, introduced in version 8.

3
Haskell itself is already lazy, so thunks are already implicitly used. This code just demonstrates the different thunk states.

Extracting LLVM Intermediate Representation from Agda 5

3 METHOD
The method exists of two parts: implementing the backend (3.3) and analyzing its performance

characteristics by the means of running benchmarks (3.4), in order to answer the research questions.

Before we describe these two, we take note of the actual scope that applies to the implementation

(3.1), as a fully ready-to-use implementation cannot be expected. Additionally, we mention some

supporting material that may be useful for reading or repeating an implementation (3.2).

3.1 Scope
Agda offers a plethora of features. Although function bodies are abstracted away in the treeless

form we deal with, not all treeless features have to be supported. Besides function definitions, we

must also deal with primitives and constructors for data types. In the implementation section about

these different kinds of definitions (4.4), we mention how we use them exactly.

We actually were able to implement support for almost all treeless terms, but opted to disregard

some of its literals. Additionally, we decided to only implement a subset of all possible primitive

operations. Both are for the same reason, namely that literals, on which primitive operations occur,

are largely redundant for analysis sake. Of course, for broad practical use, this does not suffice.

3.2 Supporting Material for Implementing
First and foremost, Agda already comes with several backends [Agda Team 2022], which serve as a

good starting point for a new implementation. In addition, our supervisor had prepared a repository

with an example implementation of a stand-alone backend which compiles to Scheme [Cockx 2022].

We took inspiration from both works, because the Agda documentation on internals is somewhat

lacking. Fortunately, our supervisor is an active contributor to the Agda code base.

On the other hand, the LLVM IR language is fully documented, accompanied by plenty exam-

ples [LLVM Team 2022e]. We suggest scanning this language reference to those who are unfamiliar

with LLVM IR. In addition, the Clang compiler can emit LLVM IR instead of machine code, and can

thus be used to inspect how Clang would translate a particular construct in C/C++ to LLVM IR.

3.3 Work Plan
The first preparatory block of work concerns devising reference implementation matter. Based on

simple programs, such as a constant value function containing a literal, or the identity function, we

manually wrote a .ll file with a working implementation. To aid this process, we wrote some parts

in C and viewed the IR emitted by Clang to get ideas about how to implement constructs such as

C-style structs and unions. During this manual process, most of the (re-usable) core functionality

can be determined already, including which parts may need to be abstracted into a separate runtime

support library.

Based on the experience gathered in the 1-2 weeks these tasks took to complete, we estimated

which features were feasible to implement. The majority of the remaining time was spent imple-

menting as many feature as possible in actual Haskell code.

3.4 Benchmark Procedure
To evaluate the performance of our backend with respect to other Agda backends or itself, we

establish a common benchmarking procedure. The procedure is straightforwardly divided into four

steps which are executed for each backend, for each fixture, for each input:

(1) Create a clean temporary working directory.

(2) Devise the input source code according to the input configuration, placing it in the fresh

temporary directory.

6 Jochem Broekhoff

(3) Compile the code with optimal configuration flags.

(4) Execute the output several times, collecting timings. Discard the first result, as this is a

warm-up. Take the median of all remaining points as the final measured value.

To ease the process of constructing inputs, a templating facility can be used to dynamically emit

the Agda sources to be compiled. Data points gathered from all executions of these steps can then

simply be plotted directly.

4 IMPLEMENTATION
Corresponding to the methodology, we will describe most relevant implementation details in

this section. Due to paper length constraints, we cannot cover every aspect, as this would also

require an extensive introduction into the preexisting Agda backend. We will instead describe

the transformation process on a high level, diving into more details and nuance where necessary.

Understanding the full transformations is also not essential to the interpretation of the results, but

can be helpful discussing the results. For those who want to read the full transformation, we refer

to the two main implementation files
4
in the repository

5
.

We start off by hooking into Agda’s backend plug-in mechanism, which requires a specification of

the backend’s steps and some meta data. In the latter, we specify the name and some command-line

options we want to expose, such as a strict/lazy flag or debug/release mode. The steps we implement

are compileDef, postModule and postCompile, where the results of a previous step are aggregated

and passed on to the next. All logic is implemented in the same programming language as Agda

itself, namely Haskell.

From the highest point of view, the pipeline that is formed by the steps corresponds approximately

to one divided in three stages, each of which we discuss in a separate subsection. First, the treeless

syntax is transformed into a mid-level intermediate representation (4.4), which is then immediately

transformed into LLVM IR itself (4.5). The last step is bundling all of this with a runtime library,

which is then fed into the Clang compiler, to produce the final executable (4.7).

Before we dive into the details, we first explain why an additional intermediate stage makes

sense (4.1). We follow this by giving some examples, as introduction (4.2).

4.1 Why an Intermediate Stage?
The two-stage design, transforming treeless into MLIR, and transforming that into LLVM IR, comes

into existence naturally. There are two reasons for this.

First, LLVM’s IR is notoriously verbose, as it lies in between C and an assembly language: there are

proper function calls and variables, but that is about it. Most expressions in, say C, will correspond

to numerous lines in LLVM IR. One of the reasons for this, is that memory access and transfer

must be stated explicitly, expressed in one operation per line. Thus, each subexpression in general

corresponds to at least one line. The verbosity of LLVM IR leads to the desire for abstraction, as

repeating patterns can be identified. Each concept that can be distilled from the total LLVM IR, can

correspond to a notion in the MLIR.

The second and most important reason, is that another intermediate language allows for better

reasoning about a program. MLIR introduces the concept of thunks, which are not conceptualized

in the treeless syntax. And for good reason: treeless just serves as a general enhanced _-calculus,

as a neutral carrier of Agda code. Since thunks form an essential concept, transforming treeless

into MLIR directly gives a different perspective on the program.

4src/Agda/Compiler/LLVM/ToAbstractIntermediate.hs and src/Agda/Compiler/LLVM/AbstracToLLVM.hs
5
https://github.com/jochembroekhoff/agda2llvm

https://github.com/jochembroekhoff/agda2llvm

Extracting LLVM Intermediate Representation from Agda 7

Fig. 4. Example: the identity function

Listing (3) Agda

1 id : Nat -> Nat
2 id x = x

Listing (4) Treeless

1 id = _ $0
2 -- = Lam (Var 0)

Listing (5) MLIR (optimized)

1 (Thunk "id" private=True
2 (Value
3 (Function "id.lam.0")))
4 (Direct "id.lam.0" push=True
5 (Apply (Record 0) []))

Fig. 5. Example: factorial function

Listing (6) Agda

1 fac : Nat -> Nat
2 fac zero = 1
3 fac n@(suc m) = n * fac m

Listing (7) Treeless

1 fac = _ case.nat $0
2 #0 -> #1
3 _ ->
4 let _-_ $0 #1
5 in _*_ $1 (fac $0)

4.2 Examples
To give an impression of what (simple) Agda programs and their treeless and MLIR equivalences

look like, we give some examples. The textual representation of the treeless syntax is not strictly

defined, but follows a general Haskell-esque style. Here, a hashtag (#𝑥) indicates a literal natural
number 𝑥 , and a dollar ($𝑛) refers to the 𝑛th-back variable in scope (de Bruijn index). Lambdas (_)

and let push a new variable in scope.

For the first example, an identity function (listings 3–5), the type signature is not fully represen-

tative of a real-world implementation. For brevity, we did not make the function polymorphic, but

instead constrained it to Nat only. The problem is, if we were to use a proper polymorphic signature,

such as id : {A : Set} -> A -> A, both the treeless code and the MLIR become needlessly complex

for these demonstration purposes. This is due to the fact that the {A : Set} named parameter is

implicit (this is what the curly braces indicate). To the programmer, it is in fact implicit, but from the

perspective of a backend, it really is a concrete parameter. In practice, its value is often a placeholder

(Erased), as the value is not used anywhere in the function, merely for type checking.

The second example, the factorial function (listings 6–7), might appear to have an unexpected

treeless form. In this case, Agda optimized the natural numbers into a case expression for literals.

Without this optimization, the case would switch on zero/0 and suc/1 data. However, because
the constructors are replaced with actual literals, no instances of the Nat data are passed around at

runtime. The full constructor names are only used to prove correctness to Agda, which, in turn—

apparently, lowers the implementation to literal numbers. Due to space constraints, we cannot list

the MLIR syntax here, as it is already very verbose. We have instead included it in appendix C.

4.3 The Record at Runtime
We often use the words record or current frame in relation to variables. More precisely, by means of

a numeric index, called a de Bruin index. The record can be viewed as a stack of frames, which can

only ever be appended to. Only implicitly, frames are popped as they are collected by the GC. In all

8 Jochem Broekhoff

calls, a record is present. Notably when allocating a delayed thunk, the record forms the context

for the thunk’s evaluator.

From the perspective of the treeless syntax, there are three occasions where frames are pushed

to the record: lambdas (_), let-expressions and in a successful case match. Matching on some data,

e.g., (a , b) first pushes the entire value, then a, then b, with respective de Bruijn-indices 2, 1, and

0.

4.4 From Agda’s Treeless Syntax to Mid-Level Intermediate Representation
The first stage is transforming Agda’s structure, primarily the treeless syntax, into the MLIR, of

which the grammar is given in figure 1b. Starting from the compileDef callback, which is invoked

for each Agda definition, the translation is started. In case any of the definitions is the main one,

an additional Main entry is emitted, referring to the particular definition.

As an Agda definition comprises all aspects of the language, we need to do different things, based

on the particular case. We handle the cases Function, Primitive and Constructor, which cover almost

all language features. A handful others are available, but simply skipped over.

Function definitions are only handed to us in Agda’s internal syntax. We instead operate on the

treeless syntax, which is why we ask Agda to transform it for us, if applicable at all. A function

is defined by its name and a treeless body term (T.Term), as listed in figure 1a. The goal is to map

the body to an MLIR body (M.Body), which is wrapped into a named entry (M.Entry). We achieve

this by applying a handful of transformation rules on the body term, which are described in full in

appendix A. This results in M.Ident, the full identifier of the current function, and some auxiliary

entries which are produced as by-products in each internal transformation step.

At the top-level, each function is emitted as a thunk. That means, from the perspective of MLIR,

if a function is called, it just returns a thunk, describing its actual body. Consequently, applying to

a function first requires the applier to force the thunk to which is applies. Similarly, when a case

analysis is done, the scrutinee (the variable which is matched on) must be forced.

Primitives are implemented in a comparable way. As primitives do not have a body
6
, their name

serves as the starting point for the transformation. The result of the transformation is merely an

alias entry, which requires an external definition that is later linked in. We implemented relevant

primitives in an auxiliary LLVM file.
7
Primitives that we did not implement will therefore cause a

link-time error, later down the line.

We regard Constructors as syntactic sugar for a function of a similar signature, which returns the

instance of the data type. There are however still two minor challenges in this regard.

First, a data instance captures the record to extract from at match-site, which we rather do not if

not necessary. This can be prevented only in case of zero-arity constructors. Thus, we dedicate a spe-

cial case for these, which is implemented as the followingM.Entry: Thunk𝑞 False (DelayData{. . . })
where 𝑞 is the base name of the constructor and {. . . } contains the constructor meta-data.

In all other cases, we need to progressively generate the curried lambda, which results in three

different entries that are emitted. The entry that is exported, which has the name of the constructor,

returns a thunk to the root lambda. The root lambda entry is part of the other lambda entries,

which are direct values which simply refer to the next level, while recording the argument. The

final lambda does not return another lambda, but the value instead, capturing the current argument

stack.

6
In practice they sometimes do, but this is only intended to be used to prove the program correct.

7
See data/AgdaPrim.ll, and data/gen/AgdaPrimWrap.ll which is generated by the gen_agda_prim.py script.

Extracting LLVM Intermediate Representation from Agda 9

Listing 8. Demonstration of constants, declarations and definitions in LLVM IR.

1 @str.Hello = private constant [i8 x 6] c"Hello\00"
2 declare %struct.my_struct* @get_from_my_stuff(%struct.my_stuff*, i64)
3 define %struct.my_struct* @example(%struct.my_stuff* %stuff) {
4 %v = call %struct.my_struct* @get_from_my_stuff(%struct.my_stuff* %stuff, i64 0)
5 ret %struct.my_struct* %v
6 }

4.5 Mid-Level Intermediate Representation to LLVM IR
Whereas the translation described in the previous subsection was relatively straightforward, the

translation from MLIR to LLVM IR requires a little more attention. This process is split into two,

first a small optimization pass, followed by the actual transformations. The latter would take too

much space in this paper to cover in detail, thus we only cover its essentials. Unfortunately, we also

cannot show any real pieces of emitted LLVM IR, as in practice the ratio of Agda code to LLVM IR

is in the order of 1 : 30.

4.5.1 A Small Optimization. We find one trivial optimization that can be applied to entries in the

MLIR, converting any value that is generated in a delayed thunk to a pre-evaluated thunk:

Opt-Entry-Thunk-Const

Thunk 𝑞 𝑝 (Delay (MakeValue 𝑣)) → Thunk 𝑞 𝑝 (Value 𝑣)

4.5.2 MLIR Entries to LLVM IR Entries. Now, each MLIR module, which is a list of entries, can

be transformed into one or more LLVM entries. For our intents and purposes, an LLVM entry is

one of the following: definition of a function, declaration of a function, definition of a constant

value. The naming difference between ‘definition’ and ‘declaration’ of a function is subtle, but

captures a significant difference: a definition contains an implementation, whereas a definition

is just information about a function. Only at link time, when the system linker links all objects
8
,

definitions and declarations are brought together. Listing 8 demonstrates the differences. For other

constructs that are relevant to the paper, we will give brief explanations, but for most details we

refer to the reference manual [LLVM Team 2022e].

All four kinds of entries in MLIR, Thunk, Direct, Main and Alias correspond to at least one

LLVM definition. As M.Thunk and M.Direct bear some body, additional entries may be generated if

necessary, because inner bodies are lifted out. The latter two, M.Main and M.Alias are simply short

wrappers for the reference they indicate. The main entry, of which only one may exist
9
, calls the

runtime library with a reference to the actual main implementation. Similarly, an alias calls the

function of which it is an alias, simply passing all arguments and the return value along.

Thunk entries can either be delayed (M.Delay) or immediate (M.Value). At runtime, any delayed

thunk will be replaced with an immediate thunk once it is forced. However, if we know in advance

that the value of a particular thunk is fixed, we can return a thunk which does not need forcing

(see Opt-Entry-Thunk-Const). In general, a thunk entry just returns a thunk pointer, which is

completely opaque to the caller: it must not care what the state of the thunk is.

Assuming a thunk is delayed, and thus includes a body, its body needs to be lifted into its own

definition. This auxiliary definition is the evaluator function for the thunk, i.e. the function that is

executed once the thunk is forced. LLVM does not implement any closure or lambda mechanisms,

8
An object, a .o file on Linux, is machine code that is yet to be bundled into either a library or a stand-alone executable.

9
Because the entry is exported globally as the standardized symbol main.

10 Jochem Broekhoff

Fig. 6. Thunk body lifting demonstrated.

Listing (9) MLIR

1 true = Thunk.Delay public
2 MakeValue Data true/0

Listing (10) MLIR (optimized)

1 true = Thunk.Value public
2 Data true/0

Listing (11) LLVM IR (simplified, from unoptimized MLIR)

1 define %thunk* @true(%frame* %record) {
2 %t = call @alloc.thunk.eval(@true--body)
3 ret %thunk* %t
4 }
5 define internal
6 %value* @true--body(%frame* %record, %thunk* %arg) {
7 %v = call @alloc.value.data("true", i64 0, %frame* %record)
8 ret %value* %v
9 }

Fig. 7. Pseudocode implementations for the remaining MLIR entries.

Listing (12) M.Apply

1 gather subject thunk
2 gather argument thunks
3 dispatch to runtime helper

Listing (13) M.Case

1 call case id helper
2 use llvm switch statement
3 continue exec to branch

Listing (14) M.Error

1 <print the error>
2 system exit(1)

which is why we need to implement it manually. The example from figure 6 demonstrates this

behavior. There, it is also shown that the creation of a thunk instance captures the current record

pointer.

In the same example, we show what the evaluation implementation looks like for a M.MakeValue
body. The signature of the function is identical for all implementations (M.MakeValue, M.Apply,
M.Case,M.Error), only the instructions leading up to the construction of %v differ. Figure 7 describes,
in pseudocode, the implementations for each of these three remaining constructs.

4.6 Dealing With or Without Laziness
For theoretical analysis, it is interesting to explore the effects of disabling laziness in a lazy language,

as in practice the popular functional languages are strict. Fortunately, we do not have to write two

complete separate transformation rules for each runtime approach. In fact, there is only a single

difference at one point in the entire process. Namely, at the point where normally a delayed thunk

would be returned, we instead call the evaluator right away and put its result into the thunk we

return. To the caller, a thunk is still returned. The caller may pass this thunk along, until at some

point it is forced in order to be used. As thunks are fully opaque to the program, they simply appear

as being already forced, and thus there is no need for any other modification elsewhere.

4.7 Final Assembly via Clang
Finally, from the postCompile backend callback, the final output binary can be assembled. Here,

all LLVM modules are collected and written to disk at an intermediate storage location. This is

achieved by pretty-printing the in-memory representation into the standardized format.

Extracting LLVM Intermediate Representation from Agda 11

In addition, we generate a auxiliary LLVM file. This contains alias definitions for built-ins
10
,

which are referenced by the runtime library. We need to delay this generation, because the built-ins

are dynamic, while the runtime library is static.

The runtime library is simply a collection of LLVM files, which are included as data files in the

compiler’s resources. These are passed along to Clang identically to how the locally emitted files

are. Depending on command line flags, different implementations may be selected. The signatures

of the functions found in the runtime library can be found in appendix B.

The paths to all emitted files are collected and passed to Clang as command-line arguments. We

need to configure Clang with some more arguments. First, as we use the Boehm GC library, we add

the flag -lgc, which tells Clang to link the gc library. Second, to enable all optimizations LLVM

has to offer us, we add the flags -flto and -O3. The former indicates the wish to enable link-time

optimization (LTO), the latter sets the optimization level to 3 (max). Last, in case the Agda compiler

is called with the explicit request to not output a binary, i.e. no main function, but a library instead,

we add the flag --shared, which requests Clang to generate a shared library
11
.

After the Clang process exits, we end up with either an executable binary (./out.bin) or a
shared library (out.so). These are the results of the compilation, and thus we are finished.

4.8 Static Allocation Optimization
At the top-level of each LLVM file, we end up with many public functions that allocate and return

delayed thunks. Generally speaking, the allocation and configuration of a delayed thunk includes

two steps: setting the reference to the evaluator, and capturing the current record. We observe that

capturing the current record does not have any benefit for these top-level thunks. It is impossible for

the evaluator of such thunks to reference anything, as there must always first be some instruction

that introduces variables in scope, whether this is explicitly done via a let construct, or implicitly

by a _. Thus, the current record can be nullified and stored that way.

Consequently, we observe that both values that are stored into the delayed thunk are in fact

constant: the reference to the evaluator is the memory address of the implementing function, and

the record pointer is null. Fortunately, it is possible to express static memory allocation in LLVM

IR. We leverage this feature by emitting such allocations for the type of thunks we observed earlier.

This optimization should have an effect on the amount of memory allocations done, and thus

should also affect the effective running time. Therefore, we analyze the effect of this particular

optimization in the benchmarks.

5 RESULTS & DISCUSSION
By means of the benchmark procedure outlined in section 3.4, we test our implementation against

several others
12
. We subject the implementations to three different fixtures. In ConsumePow2,

the input is given as a Peano number, to which power we raise 2, after which the resulting

number is traversed (consumed). InQuickSort, we run the quick sort algorithm [Hoare 1961] on

a list produced from the linear range [0, 𝑛] where 𝑛 is the input, then lookup the 𝑛th element

(effectively traversing the entire sorted list). Finally, in Triples, we compute the sum of the bag

{𝑥 + 𝑦 + 𝑧 | 𝑥,𝑦, 𝑧 ∈ {1 . . . 𝑛} ∧ 𝑥2 + 𝑦2 = 𝑧2}, where 𝑛 is again the input. For the full source of the

different benchmark fixtures, we refer to the repository
13
.

10
Built-ins are Agda definitions which are marked with a pragma to indicate a particular behavior, such as booleans.

11
E.g., .so or .dll files.

12
All benchmarks were run on the same machine: AMD Ryzen 5 1600 (6c/12t) with 8 GiB memory free, running Linux Zen

kernel 5.18.

13
https://gitlab.ewi.tudelft.nl/jcockx/agda-extractors, directory benchmarks/fixtures.

https://gitlab.ewi.tudelft.nl/jcockx/agda-extractors

12 Jochem Broekhoff

Fig. 8. Benchmark results comparing different backends with their default configuration.

(a) ConsumePow2 fixture.

0 10 20

input

10
−3

10
−2

10
−1

10
0

ru
nt
im

e
(s
ec
on

ds
)

llvm

MAlonzo

scheme

(b) QuickSort fixture.

0 50000 100000 150000 200000

input

10
−3

10
−2

10
−1

10
0

(c) Triples fixture.

0 50 100 150 200

input

10
−2

10
−1

10
0

10
1

Fig. 9. Benchmark results comparing strict evaluation with the default lazy evaluation.

(a) ConsumePow2 fixture.

0 10 20

input

10
−2

10
−1

10
0

10
1

ru
nt
im

e
(s
ec
on

ds
)

strict

lazy
0

50

100

150

(b) QuickSort fixture.

0 5 10 15 20

input

10
−2

10
−1

10
0

0

50000

100000

150000

(c) Triples fixture.

0 2 4

input

10
−2

10
−1

10
0

0

20000

40000

60000

80000

100000

st
ri
ct
ne
ss

eff
ec
t
(%
)

Fig. 10. Benchmark results for the effect of the static thunk allocation optimization.

(a) ConsumePow2 fixture.

0 10 20

input

10
−2

10
−1

10
0

10
1

ru
nt
im

e
(s
ec
on

ds
)

unopt.

opt.

−60

−40

−20

0

(b) QuickSort fixture.

0 50000 100000 150000 200000

input

10
−2

10
−1

10
0 −40

−30

−20

−10

0

(c) Triples fixture.

0 50 100 150 200

input

10
−2

10
−1

10
0

10
1

−40

−30

−20

−10

0 op
ti
m
iz
at
io
n
eff

ec
t
(%
)

Extracting LLVM Intermediate Representation from Agda 13

The first result set, is visualized in figure 8. Here, we compare three different backends: our

Agda2LLVM implementation, the Haskell one (‘MAlonzo’) and our supervisor’s Scheme one. Note

that all graphs have the left Y-axis in logarithmic scale, which allows better distinction for small

runtime differences. The ConsumePow2 fixture’s inputs are linearly increasing, but are effectively

exponential, as the benchmark consumes a number that is 2 to the power of the input.

Next, we analyze the relative effect on running time when switching to lazy evaluation, shown

in figure 9. It only makes sense to compare performance between different configurations of our

benchmark. Even though the Scheme backend can easily be configured to use strict evaluation, it is

not relevant to this paper. The input space has been severely reduced for the QuickSort and Triples
fixtures, otherwise it would take too long to run the benchmarks.

Finally, we measure the performance effect that the static thunk allocation optimization has.

This optimization was described in section 4.8. Both this and the previous set of measurements are

to be compared in relative terms only.

Aswe had relatively little time for the entirety of the research, the implementationwas kickstarted

by working out a minimal working example in C code. This, in turn, was compiled to LLVM IR and

formed the basis of our implementation. Although not completely unavailable, we expect this to

influence the implementation and results negatively. However, it is difficult to estimate to what

extent.

Furthermore, there are many optimizations left to be implemented. We have run all benchmarks

with the system stack set to unlimited size
14
. However, by default, stack-overflow errors would

occur before all benchmarks could be completed. Tail-call optimization (TCO) seems the most

promising solution to mitigate this, as it should largely prevent the unbounded stack growth in

many occasions for self-recursive, or even mutually-recursive functions.

6 CONCLUSIONS & FUTUREWORK
We implemented a new backend for the Agda language and evaluated its performance with respect

to the default backends and the new Scheme one. The main question in this regard was ‘Is LLVM

IR a practical compilation backend for Agda?’. In some aspects, the answer is yes, while in other

regards it is no. We answer the sub-questions in order.

Agda’s dependent type system has not posed any difficulty during implementation. We opted

for a fully type-erased runtime approach, ensuring that there is little common ground necessary

between Agda and LLVM, only for the primitive values. This was completely safe to do, as we can

rely on Agda’s analyzer that no runtime errors can occur unexpectedly.
The benchmarks we have run show that with the features we implemented, it is possible to

do meaningful comparisons. In fact, we implemented most Agda features. Notable exceptions are

support for a foreign-function interface and support for all primitive data types and operations

among them. In that aspect, we only implemented support for natural numbers. We observe that

many of Agda’s important features are in fact largely abstracted away by the treeless representation.

The introduction of a new auxiliary intermediate representation, the Mid-Level Intermediate

Representation (MLIR), served us well in adding conceptual support for thunks to Agda’s treeless

syntax. It allowed us to reason, albeit to a small extent, about optimizations withinMLIR. Otherwise,

our pipeline exists of four distinct stages: (1) Agda Treeless (2) to MLIR (3) to LLVM IR (4) Clang.

From the benchmarks, we observe that our backend in general does not outperform MAlonzo.

This is largely to be expected, as Agda is heavily inspired by Haskell’s syntax and thus largely maps

onto it cleanly. Consequently, most of the original meaning of the program is kept, which allows

GHC (Haskell’s compiler) to apply all of its optimizations, which are tailored for lazy functional

14
See manpages on setrlimit.2.

14 Jochem Broekhoff

languages. On the other hand, for small inputs our backend is in line with MAlonzo, namely

beating Scheme. This is, however, simply explained by the fact that Scheme has a large start-up

overhead. In strict evaluation setting, we observe that enabling strict evaluation almost always

leads to worse execution times. Only for very small inputs, there is a tiny speed-up noticeable.

Both were expected, because under small inputs, strict evaluation wins because it saves on calls to

thunk evaluators, while for large inputs, the program is evaluated more than actually is necessary.

Lastly, our optimization of static memory allocation made significant impact on running time: 40%

speed-ups are measured, or sometimes even higher, see figure 10. This is very promising, as this

was the only significant optimization.

Regarding the fact that we can answer all sub-questions positively, we must conclude that

it was practical to compile to LLVM IR. Unfortunately, the approach we took was perhaps too

straightforward, partially due to the constrained research time. Although we are already able to run

many programs with a relatively simple compilation pipeline, more generic efforts of compiling

functional languages to imperative languages seem more promising. In that regard, LLVM IR

is a very suitable target, as it is one of the lowest-level interfaces to compilers for imperative

languages. Its theoretical performance is extremely high, as it is the format used by state-of-the-art

C/C++ compilers. The challenge of mapping functional to imperative still remains.

The usage of an auxiliary intermediate format, MLIR, naturally came to existence in the first few

weeks of the project. When adding more optimizations, it appears logical that more intermediate

formats would arise. This leads to a more and more indirect path to LLVM, which largely is the

approach that related work takes (see section 7). Therefore, we must also note that an indirect path,

with numerous intermediate stages, seems very suitable.

We observe that more work could be put towards bringing existing imperative optimizations to our

pipeline, as the current state of implementation is by nomeans desired. Notably tail-call optimization

is an optimization that appears almost crucial. Furthermore, there are several optimizations in the

area of memory management that seem obvious: (1) move to a different memory model, reducing

the reliance on a garbage collector (2) leverage LLVM’s garbage collector primitives to gain more

insight into allocations (3) perform more static allocations.

7 RELATEDWORK
Agda has never had a native LLVM backend, however it has already been possible to obtain an

LLVM translation of any Agda code. In some related work, we notice two different approaches.

First, Agda compiles, to Haskell by default. In turn, Haskell can compile to LLVM [Terei and

Chakravarty 2010]. This LLVM backend for Haskell is still experimental. We also know that the

Haskell compiler is not well-known for its speed. In relation to Agda, this is even more relevant, as

Haskell will do a lot of redundant work, which has already been done by the Agda type checker.

Secondly, the older GRIN framework [Boquist and Johnsson 1997] has gotten support for LLVM

due to the Utrecht Haskell Compiler (UHC)
15
extending its GRIN-based pipeline to LLVM [Dijkstra

et al. 2008; van Schie 2008]. Slightly more recently, an Agda backend was written, which was able to

emit GRIN [Turk 2010]. In a similar line, Frederiksson and Gustafsson [2011] have implemented a

compiler from Agda to the Epic language. Not long ago, extensive efforts were made by Hausmann

[2015] to fully integrate Agda with UHC, inspired by the Epic backend. All of these appear very

promising, especially the UHC implementation, which solves some problems that plague MAlonzo.

Unfortunately, the UHC project is not actively maintained, contrary to GHC.

15
Previously known as Essential Haskell Compiler (EHC).

Extracting LLVM Intermediate Representation from Agda 15

8 RESPONSIBLE RESEARCH
Reproducibility of results and ethical considerations are of high priority in our research. Therefore,

we make the full source code of the project available open source, to be found at https://github.

com/jochembroekhoff/agda2llvm.

As described in the implementation (section 4), we mainly rely on the Agda and LLVM compiler

infrastructures. Both projects are publicly available as open source projects. Similarly, all our

(transitive) dependencies are licensed as open source and publicly available.

Part of this paper includes empirical results (section 5), which were obtained by the predetermined

method (section 3). This procedure has been implemented in the form of an ad-hoc framework,

separate from the project repository. Built in collaboration with the entire peer group, it is publicly

available at https://gitlab.ewi.tudelft.nl/jcockx/agda-extractors.

Finally, ethical concerns could not be identified. Our implementation is not intended for process-

ing of personal data, and, if used for that purpose, it is fully open source.

ACKNOWLEDGMENTS
To my supervisors, Jesper Cockx and Lucas Escot, for guiding me through this process and giving

me critical feedback on this paper. To my peer group, Hector, Louis, Lukas and Matteo, for providing

me insightful feedback in all aspects of this project. To some of my friends who reviewed this paper.

REFERENCES
Agda Team. 2022. Agda v2.6.2.1 documentation. Retrieved June 15, 2022 from https://agda.readthedocs.io/en/v2.6.2.1/

Agda2HS Team. 2021. GitHub Repository of agda/agda2hs. Retrieved May 19, 2022 from https://github.com/agda/agda2hs

Danil Annenkov, Mikkel Milo, and Bas Spitters. 2021. Code Extraction from Coq to ML-like languages. (2021).

Urban Boquist and Thomas Johnsson. 1997. The GRIN project: A highly optimising back end for lazy functional languages.

In Implementation of Functional Languages, Werner Kluge (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 58–84.

Jesper Cockx. 2022. GitHub Repository of jespercockx/agda2scheme. Retrieved June 18, 2022 from https://github.com/

jespercockx/agda2scheme

Atze Dijkstra, Jeroen Fokker, and S. Doaitse Swierstra. 2008. The Structure of the Essential Haskell Compiler, or Coping

with Compiler Complexity. In Implementation and Application of Functional Languages, Olaf Chitil, Zoltán Horváth, and

Viktória Zsók (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 57–74.

Olle Frederiksson and Daniel Gustafsson. 2011. A totaly Epic backend for Agda. Master’s thesis. Chalmers University of

Technology, University of Gothenburg.

Philipp Hausmann. 2015. The Agda UHC Backend. Master’s thesis. Universiteit Utrecht.

C. A. R. Hoare. 1961. Algorithm 64: Quicksort. Commun. ACM 4, 7 (jul 1961), 321. https://doi.org/10.1145/366622.366644

William A. Howard. 1980. The Formulae-as-Types Notation of Constructors. To H.B. Curry: essays on combinatory logic,
lambda calculus and formalisms 44 (1980), 479–490.

Idris2 Team. 2020. Documentation for the Idris 2 Language. RetrievedMay 19, 2022 from https://idris2.readthedocs.io/en/latest

Pierre Letouzey. 2008. Extraction in Coq: An Overview. In Logic and Theory of Algorithms, Arnold Beckmann, Costas

Dimitracopoulos, and Benedikt Löwe (Eds.). Springer, Berlin, Heidelberg, 359–369.

LLVM Team. 2022a. Clang: a C langauge family frontend for LLVM. Retrieved May 19, 2022 from https://clang.llvm.org

LLVM Team. 2022b. LLD - The LLVM Linker. Retrieved May 19, 2022 from https://lld.llvm.org

LLVM Team. 2022c. The LLDB Debugger. Retrieved May 19, 2022 from https://lldb.llvm.org

LLVM Team. 2022d. The LLVM Compiler Infrastructure. Retrieved May 19, 2022 from https://llvm.org

LLVM Team. 2022e. LLVM Language Reference Manual. Retrieved May 27, 2022 from https://llvm.org/docs/LangRef.html

Simon L. Peyton Jones. 1992. Implementing lazy functional languages on stock hardware: the Spineless Tagless G-machine.

Journal of Functional Programming 2, 2 (1992), 127–202. https://doi.org/10.1017/S0956796800000319

Simon L. Peyton Jones, Norman Ramsey, and Fermin Reig. 1999. C- -: A Portable Assembly Language that Supports Garbage

Collection. In Principles and Practice of Declarative Programming, Gopalan Nadathur (Ed.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 1–28.

Eric S. Raymond. 1991. The New Hacker’s Dictionary.

David A. Terei and Manuel M.T. Chakravarty. 2010. An LlVM Backend for GHC. SIGPLAN Not. 45, 11 (sep 2010), 109–120.

https://doi.org/10.1145/2088456.1863538

Remi Turk. 2010. A modern back-end for a dependently typed language. Master’s thesis. Universiteit van Amsterdam.

https://github.com/jochembroekhoff/agda2llvm
https://github.com/jochembroekhoff/agda2llvm
https://gitlab.ewi.tudelft.nl/jcockx/agda-extractors
https://agda.readthedocs.io/en/v2.6.2.1/
https://github.com/agda/agda2hs
https://github.com/jespercockx/agda2scheme
https://github.com/jespercockx/agda2scheme
https://doi.org/10.1145/366622.366644
https://idris2.readthedocs.io/en/latest
https://clang.llvm.org
https://lld.llvm.org
https://lldb.llvm.org
https://llvm.org
https://llvm.org/docs/LangRef.html
https://doi.org/10.1017/S0956796800000319
https://doi.org/10.1145/2088456.1863538

16 Jochem Broekhoff

Paul van der Walt. 2012. Reflection in Agda. Master’s thesis. Universiteit Utrecht.

John van Schie. 2008. Compiling Haskell to LLVM. Master’s thesis. Universiteit Utrecht.

A RULES FROM TREELESS TO MID-LEVEL INTERMEDIATE REPRESENTATION
This informational appendix contains all transformation rules that are used in practice to transform

Agda’s treeless syntax into our Mid-Level Intermediate Representation. To read and verify these

transformations, we suggest and note the following.

Each transformation rule reads as a logic statement, from a source type to a target type, which

should become clear from context. For ease of reading, please keep aside a copy of the full treeless

grammar from the Agda manual [Agda Team 2022], or the summarized version from figure 1a, and

the grammar of the MLIR in figure 1b. There are some preconditions above the line, which ensure

the transformation below the line applies. If there are no preconditions, i.e. there is nothing above

the dividing line, the transformation trivially applies. Above all, a transformation can only hold if

the left-hand side of the transformation rule successfully matches the value in question. If for some

input there is no rule that applies, it means that the feature is not supported.

Most transformation occurs in a given context, which is indicated by the variables in front of the

turnstile (⊢). Transformations which discard their context, simply do not list a variable. For other

variables, types should be unambiguous by the grammar, and are often inferable by their given

name. We overset ranged variables with a bar. On the ‘from-side’ of an arrow (the data destruction),

underscores are used to indicate that a data field is explicitly disregarded. We use the @-symbol to

give name to a destruction, e.g. 𝑥@Let 𝑦 means that 𝑥 represents Let 𝑦.
We introduce two symbols: ⋄ and ▲. ⋄ is an operator used to concatenate identifiers with a

magical character infixed, to prevent theoretical name clashes. We use ▲ to indicate the emission

of an MLIR entry, which are to be collected at the root transformation (the external interface). In

more technical terms, this is a monadic write operation.

Finally, we assume the existence of the functions: gets and modify. As their names imply, these

get and modify the value of an implicitly assumed counter. The updated counter values are only

propagated if calling transformations actually hold.

The transformations are separated in five clusters. The auxiliary helpers are there for convenience

and should be self-explanatory. The external interface are two rules which are the start rules for a

full conventional transformation, as used in the implementation, one for each Agda definition type.

The last three clusters contain the practical body rules, which are differentiated by their purpose,

as the name above the arrow suggests.

Auxiliary helpers:

Aux-Conv-QName-Ident

⊢ QName 𝑞 → Ident 𝑞
(implicit)

Aux-Monad-State-Next

𝑖 ← gets modify (+1)
next→ 𝑖

Aux-Desugar-Let

desugarLet (Let 𝑡 𝑏) → App (Let 𝑏) [𝑡]

liftArg 𝐾 𝑘 =

Aux-Lift-Arg

𝑛 ← next 𝑞′ = 𝑞 ⋄ lift ⋄ 𝑘 ⋄𝑛 𝑡 ′
Body

← 𝑞′ ⊢ 𝑡 ▲Thunk 𝑞′ True 𝑏′

𝑞 ⊢ 𝑡@𝐾 _→ Extern 𝑞′

Extracting LLVM Intermediate Representation from Agda 17

External interface:

Transform-Function

𝑡 ′
Body

← 𝑞 ⊢ 𝑡 ▲Thunk 𝑞 False (Delay 𝑡 ′)
𝑞 ⊢ 𝑡 → 𝑞

Transform-Primitive

𝑞3 = agda.prim. ⋄𝑞2 ▲Alias 𝑞1 𝑞3
𝑞1 ⊢ 𝑞2 → 𝑞1

Rules [QName ⊢ Term
Body

→ Entry]:

Body-App

𝑠′
Arg

← 𝑞 ⊢ 𝑠 𝑎′
Arg

← 𝑞 ⊢ 𝑎
𝑞 ⊢ App 𝑠 𝑎 → Apply 𝑠′ 𝑎′

Body-Lam

𝑛 ← next 𝑞′ = 𝑞 ⋄ lam ⋄𝑛
𝑏′ ← 𝑞′ ⊢ 𝑏 ▲Direct 𝑞′ False 𝑏′

𝑞 ⊢ Lam 𝑏 → MakeValue (Function 𝑞′)

Body-Lit

⊢ Lit 𝑙 → MakeValue (Literal 𝑙)

Body-Let

𝑡 ′ ← 𝑞 ⊢ desugarLet 𝑙
𝑞 ⊢ 𝑙@Let _→ 𝑡 ′)

Body-Coerce

𝑡 ′ ← 𝑞 ⊢ 𝑡
𝑞 ⊢ Coerce 𝑡 → 𝑡 ′

Body-Case-Data

𝑓 ′ ← 𝑞 ⊢ 𝑓 𝑎′
Alt← 𝑞 ⊢ 𝑎

𝑞 ⊢ Case 𝑖 Data 𝑓 𝑎 → Case 𝑖 (Data 𝑝) 𝑓 ′

Body-Case-Nat

𝑓 ′ ← 𝑞 ⊢ 𝑓 𝑎′
Alt← 𝑞 ⊢ 𝑎

𝑞 ⊢ Case 𝑖 Nat 𝑓 𝑎 → Case 𝑖 (Nat 𝑎′) 𝑓 ′

Body-Error-Unreachable

⊢ Error Unreachable→ Error unreachable

Body-Error-Meta

⊢ Error (Meta𝑚) → Error𝑚

Rules [QName ⊢ Alt Alt→ Alt]:
Alt-Con

𝑏′ ← 𝑞 ⊢ 𝑏
𝑞 ⊢ Con 𝑐 𝑛 𝑏 → (𝑐, 𝑛, 𝑏′)

Alt-Lit

𝑏′ ← 𝑞 ⊢ 𝑏
𝑞 ⊢ Lit (Nat 𝑛) 𝑏 → (𝑛,𝑏′)

Rules [QName ⊢ Term
Arg

→ Arg]:

Arg-Var

⊢ Var 𝑖 → Record 𝑖

Arg-Prim

𝑝′ ← primIdent 𝑝

⊢ Prim 𝑝 → Extern (agda.prim. ⋄ 𝑝′)

Arg-Def, Arg-Con

⊢ (Def |Con) 𝑞 → Extern 𝑞

Arg-Let

𝑡 ′ ← 𝑞 ⊢ desugarLet 𝑙
𝑞 ⊢ 𝑙@Let _→ 𝑡 ′

Arg-Erased

⊢ Erased→ Erased

Arg-Coerce

𝑡 ′ ← 𝑞 ⊢ 𝑡
𝑞 ⊢ Coerce 𝑡 → 𝑡 ′

Arg-App

liftArg App appl
Arg-Lam

liftArg Lam lam
Arg-Lit

liftArg Lit lit
Arg-Case

liftArg Case case

B RUNTIME HEADER
The following listing contains the actual source text that is prefixed to each file generated by the

compiler, before being fed into Clang. It contains all necessary type and function declarations to

link with the runtime library.

1 ;; Agda basic structures
2

18 Jochem Broekhoff

3 ; Evaluation Info
4 %agda.struct.eval =
5 type { %agda.struct.value* (%agda.struct.frame*, %agda.struct.thunk*)*, %agda.struct.frame* }
6

7 ; Value
8 %agda.struct.value = type { i64, [2 x i64] }
9 %agda.struct.value.fn = type { i64, %agda.struct.eval } ; tag=0
10 %agda.struct.value.data = type { i64, %agda.data.base* } ; tag=1
11 %agda.struct.value.lit_nat = type { i64, i64 } ; tag=2
12 %agda.struct.value.lit_w64 = type { i64, i64 } ; tag=3
13 %agda.struct.value.lit_f64 = type { i64, double } ; tag=4
14 %agda.struct.value.lit_str = type { i64, i8* } ; tag=5
15 %agda.struct.value.lit_chr = type { i64, i8 } ; tag=6
16

17 ; Thunks
18 %agda.struct.thunk = type { i64, [16 x i8] }
19 %agda.struct.thunk.eval = type { i64, %agda.struct.eval } ; evaluated=false
20 %agda.struct.thunk.value = type { i64, %agda.struct.value* } ; evaluated=true
21

22 ; Frame
23 %agda.struct.frame = type { %agda.struct.thunk*, %agda.struct.frame* }
24

25 ; Data base
26 %agda.data.base = type { i64, i64, %agda.struct.frame* }
27

28 ;; Agda allocators
29

30 declare
31 %agda.struct.value*
32 @agda.alloc.value()
33

34 declare
35 %agda.struct.thunk*
36 @agda.alloc.thunk()
37

38 declare
39 %agda.data.base*
40 @agda.alloc.data(i64)
41

42 ;; Agda evaluation
43

44 declare
45 %agda.struct.value*
46 @agda.eval.force(%agda.struct.thunk*)
47

48 declare
49 %agda.struct.value*
50 @agda.eval.appl.n(%agda.struct.thunk*, ...)
51

52 declare
53 i64
54 @agda.eval.case.data(%agda.struct.thunk*)
55

56 declare
57 i64
58 @agda.eval.case.lit_nat(%agda.struct.thunk*)

Extracting LLVM Intermediate Representation from Agda 19

59

60 declare
61 %agda.struct.value*
62 @agda.eval.main(%agda.struct.thunk*(%agda.struct.frame*)*)
63

64 ;; Agda stack
65

66 declare
67 void
68 @agda.record.push_replace(%agda.struct.frame**, %agda.struct.thunk*)
69

70 declare
71 %agda.struct.thunk*
72 @agda.record.get(%agda.struct.frame*, i64)
73

74 declare
75 %agda.struct.frame*
76 @agda.record.extract(%agda.struct.frame*, i64, %agda.struct.thunk*)

C MLIR OF THE FACTORIAL FUNCTION
The listing below contains the MLIR corresponding to the factorial function example, as given in

figure 5. Note that this MLIR is not optimized, i.e. all thunks are delayed, even though some could

be optimized to be immediate.

1 (Thunk "fac.lift.appl.3" private=True
2 (Delay
3 (Appl
4 (Ext "fac")
5 [Record 0]))
6 (Direct "fac.lam.2" push=True
7 (Appl
8 (Ext "agda.prim.mul")
9 [
10 Record 1,
11 Ext "fac.lift.appl.3"
12]))
13 (Thunk "fac.lift.lam.1" private=True
14 (Delay
15 (MakeValue (Function "fac.lam.2")))
16 (Thunk "fac.lift.lit.5" private=True
17 (Delay
18 (MakeValue (Lit 1)))
19 (Thunk "fac.lift.appl.4" private=True
20 (Delay
21 (Appl
22 (Ext "agda.prim.sub")
23 [
24 Record 0,
25 Ext "fac.lift.lit.5"
26])))
27 (Direct "fac.lam.0" push=True
28 (Case subj=0
29 (Nat [
30 (0, MakeValue (Lit 1))
31])

20 Jochem Broekhoff

32 (Appl
33 (Ext "fac.lift.lam.1")
34 [
35 Ext "fac.lift.appl.4"
36])))
37 (Thunk "fac" private=False
38 (Delay
39 (MakeValue (Function "fac.lam.0"))))

	Abstract
	1 Introduction
	2 Background
	2.1 Compiler backends
	2.2 Quick Intro to Agda and its Syntaxes
	2.3 Theory Recap: Thunks & Laziness

	3 Method
	3.1 Scope
	3.2 Supporting Material for Implementing
	3.3 Work Plan
	3.4 Benchmark Procedure

	4 Implementation
	4.1 Why an Intermediate Stage?
	4.2 Examples
	4.3 The Record at Runtime
	4.4 From Agda's Treeless Syntax to Mid-Level Intermediate Representation
	4.5 Mid-Level Intermediate Representation to LLVM IR
	4.6 Dealing With or Without Laziness
	4.7 Final Assembly via Clang
	4.8 Static Allocation Optimization

	5 Results & Discussion
	6 Conclusions & Future Work
	7 Related Work
	8 Responsible Research
	Acknowledgments
	References
	A Rules From Treeless To Mid-Level Intermediate Representation
	B Runtime Header
	C MLIR of the Factorial Function

