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SAMENVATTING 

In dit proefschrift worden fasebeelden van kwadratische stelsels differentiaalverge­

lijkingen bestudeerd. 

Ten eerste wordt een classificatie gegeven van alle fasebeelden met een hogere orde 

singulier punt met twee eigenwaarden gelijk aan nul. Voor kwadratische stelsels blijkt 

dat er slechts vier types hogere orde singuliere punten met twee eigenwaarden gelijk 

aan nul voorkomen. Deze punten zijn de vierde orde zadelknoop. het derde orde punt 

met elliptische en hyperbolische sector, het derde orde zadelpunt en de tweede orde 

snavel. 

Vervolgens wordt een classificatie gegeven van alle fasebeelden met een derde of 

vierde orde singulier punt met één eigenwaarde gelijk aan nul. In dit geval is het een 

vierde orde zadelknoop, een derde orde zadelpunt of een derde orde knoop. 

In alle kwadratische stelsels, met een hogere orde singulier punt, die bekeken worden 

in dit proefschrift kan ten hoogste één grenskringloop voorkomen. 

In het tweede deel van dit proefschrift wordt een overzicht gegeven van alle types 

begrensde separatrixlussen, die voorkomen in kwadratische stelsels. Voor elk van de 

vijf types separatrixlussen, worden de volgende drie vragen bekeken: 

1. Hoeveel grenskringlopen kunnen worden omsloten door een separatrixlus? 

2. Welke typen spiralen kunnen binnen een separatrixlus liggen? 

3. Onder welke voorwaarden is een separatrixlus stabiel/instabiel? 



CHAPTER 1 

PHASE PORTRAITTFOR QUADRATIC SYSTEMsWITH 

A HIGHER ORDER SINGULARITY WITH TWO ZERO EIGENVALUES 
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I. INTRODUCTION 

In a survey paper [5] on general properties of quadratic systems of differential equations 

in the plane Coppel states that what remains to be done is to determine all possible phase 

portraits of such systems, this being of great practical value. The present paper aims at 

giving a contribution in this direction. By a quadratic system is meant the system 

J = a00 + a10 x + a 0 . y + a 2 0 x 2 + a l l x y + a02y2 = P ( x - y ) ' 

y = b00 + b10X + b 0 1 y + b 2 0 x 2 + b l l X y + b 0 2 y 2 H Q ( x ' y ) -

for the functions x = x(t), y = y(t), where • = - 7 - and a..,b.. G H. 

Since quadratic systems without singular points in the finite part of the plane have been 

classified by Gasull, Sheng Li-Ren and Llibre [8], we may assume that (I) has at least 

one singular point in the finite part of the plane and we may shift the origin into this 

point: an n = b». = 0. Two limiting cases are then also classified: the linear case 

(a20 = 31 1 = a02 = b20 = b l 1 = b02 = 0 ) a " d t h e h o m ° 8 e n e o u s c a s e < a i0
 = a0I = b10 = 

= b». = 0 ) [6], [8]. If both linear and quadratic terms are present a lot of work remains 

to be done. If one or both eigenvalues in the singularity are zero, yet at least one linear 

term remains after transformation to the origin, a higher order singularity or multiple 

equilibrium point exists. 

In this paper systems with a higher order singular with two zero eigenvalues are consid­

ered. Such higher order points were classified by Berlinskii [2], who makes use of other 

papers in Russian, which are not easily accessible. At present it is more convenient to use 

the classification of multiple equilibrium points for analytic systems as given by 

Andronov el al. in Chapter 9 of their book [I], of which an English translation is avail­

able. Also, the notion of order of a singular point (or multiplicity of an equilibrium 

point) as used in [2] may be improved somewhat by using that, implicitly present in the 

analysis given in [1]. The results of a renewed classification [10). however, agree with 



5 

those given by Berlinskii (see also [4]). 

If the higher order singular point is in the origin, the quadratic system may be brought 

into a normal form by an affine transformation. If both eigenvalues are zero this normal 

form reads [1, p. 346]. 

• 2 2 
x = y + ax + bxy + cy ■ P(x,y), 

2 2 ( 2 ) 

y = dx + exy + fy = Q(x,y). 

The order of the singular point in the origin may be defined as the maximum number of 

common zeros near the origin in the unfoldings of the functions P(x,y) and Q(x,y). This 

is the same as the maximum number of zeros of the unfolding of 0(x) ■ Q(x,0(x)), where 

tf(x) is defined by P<x,tf(x)) - 0, satisfying tf(0) - <t> '(0) = 0; thus if #x ) - anxn + , 

with a # 0. n is the order of the singular point. On the basis of Theorems 66 and 67, 

Chapter 9 of [1] there are for (2) the following cases: 

(i) a fourth order saddle node, if a * 0, d = e = 0, f * 0; index 0, 

(ii) a third order point, having an elliptic and a hyperbolic sector, if ae > 0, d ■ 0; 

index I, 

(iii) a third order saddle point, if ae < 0, d = 0; index - I , 

(iv) a cusp point; the phase portrait is the union of two hyperbolic sectors and two 

separatrices, both tangent to the x-axis, if d * 0, order 2; index 0. 

In all cases div (P(0,0),Q(0,0)) = 0. 

In the present paper the possible phase portraits are given for all quadratic systems with a 

higher order singularity having two zero eigenvalues. 

It should be noted that the classification in this paper is not complete in the sense that 

some global problems, such as the number of limit cycles and the relative position of 

separatrices, are not completely solved in all cases. The phase portraits are characterized in 

the usual way: by the number, position and character of the singular points; by the 

number and position of the periodic solutions; by the position of the separatrices and by 

the behaviour at infinity. Standard arguments will be used, such as local linearisation in 
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Figure 2: Phase porirails with a fourth order saddle node. 

3. QUADRATIC SYSTEMS WITH A THIRD ORDER SINGULAR POINT WITH AN 

ELLIPTIC AND A HYPERBOLIC SECTOR 

If (0,0) is a third order singular point with an elliptic and hyperbolic sector, (2), with 

d = 0, ae > 0, may be written, if necessary by applying an affine transformation and/or 

a scaling of t, in the form 

x = y + A x2 ♦ A xy ♦ A y2 = P(x,y), 
3 (5) 

y = xy = Q(x,y), 

with \{ > 0, A. e (0,1), A. € TR. 

As may be seen in Figure 3, the elliptic sector occurs in the lower half plane and the 

hyperbolic sector in the upper half plane. Obviously y = 0 consists of orbits of (5). and it 

seems that the horizontal axis separates the hyperbolic sector from the other sector, as 

sketched in Figure 3a. It appears, however, that the location of the separatrix needs a 

more detailed analysis and that a situation as in Figure 3b also must be taken into 

consideration. 



Figure 3: Third order point with elliptic sector. 

Blowing up the singularity in (0,0) by means of the transformation y ■ w x, x = x, 

yields, from (5) 

, 2 , 2 , 2 2 
x = A x + xw. + A_x w. + A.x w , 
w = ( l - A ) x w - w ' - A.xw - A xw 

(6) 

The behaviour of the integral curves of (5) in the first quadrant of the x,y-plane is 

reflected in that of the curves of (6) in the first quadrant of the x,w -plane, of which a 

qualitative sketch is given in Figure 4. It is not difficult to show, that except along the 

x- and w -axis, also in the direction w = — (I - 2A ) x integral path(s) are approching 

the singular point. Apart from a hyperbolic sector, a parabolic sector therefore exists in 

0<X,^'/2 
VasXjO 

Figure 4: x,w -plane in the neighbourhood of (0.0) of equation (6). 
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the first quadrant of the x,w -plane and the x,y-plane if 0 < A, < i and the separatrix 
dw ' l 

configuration is then as in Figure 3b. The 0-isocline [ . = 0] approaches the origin 

along the line w =(1 - A.) x, as a result of which it is not certain, for -s < A. < I. 

whether or not there is a parabolic sector in the first quadrant tangent to the x-axis. In 

order to answer this question a further 'blow up' is needed. By the transformation 

w. = wx, x = x, (6), becomes 

• v 2 2 , 3 , 4 2 
x = A x + x w + A.x w + A.x w , 

2 2 2 3 3 <7> 

w = (1 - 2A )xw - 2xw - 2A x w - 2 A . x W , 

or 
d w (1 - 2A!> w - 2w2 - 2A2xw2 - 2A3x2w2 

~dx = 2 T~2 ' <8) 

A.x + xw + A.x w + A.x w 

what shows that for A > -s, in the first quadrant there is -r— < 0 near the origin, as a 

result of which there will be no parabolic sector in the first quadrant of the x.w-plane, 

the x,w -plane and the x,y-plane for A. > -r, and the separatrix configuration is as in 

Figure 3a. 

System (5) has no limit cycles. In fact, it can be shown that for A, = 1 the system has no 
-2A -1 

periodic solutions, since B(x,y) - y is a Dulac function yielding 

£ ( B P ) + 1 ^ ( B Q ) = A2y~2Al 

which is of constant sign in a half plane y J 0. A periodic solution must then cross the 

x-axis, which is not possible since it consists of integral curves. For A = 0 the system is 

symmetric around the y-axis, which excludes limit cycles, since all possible singular 

points are on the y-axis and a limit cycle has to have a singular point in its interior. 

Another argumentation would be to use div (BP.BQ) ■ 0, when applying Green's theorem 

to an annulus with a limit cycle as one of the boundary curves [11]. For \^ = 0, the 
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Dulac function acts as an integrating factor to yield the solutions 

for A. # 4 , 1 : y s 0 and 2 A
2_ [ y + x2 + J - J J - y2 + A4 | y | ' = 0, A4 e JR, 

for A . - 4 : y s O a n d - 2 y In |y| + x - 2A3y2 + A.y = 0 , A. 6 3R, 

for Aj = I: y = 0 and 2y + x2 - 2Ajy2 In |y| + A4y2 = 0 , A4 6 ]R, 

which also include the periodic solutions of (5) for A < 0 (see also [ 12]). 

The character of the other finite singular point P . : (O.-Al ), (for A. # 0) may be 

analyzed by local linearization and using the symmetry for A. ■ 0. 

In order to determine the phase portraits of (5) we consider the cases A. = 0 and A- * 0 

separately. 

Case X, = 0. From (3) follows that the singular points at infinity are given by 

C2(9) = [(I - A,) cos2 8 - A3 sin2«] sin t. 

For A = 1, A = 0, all points on /> = I are singular, or, if the factor (1 - />) is divided 

out in (4), ordinary points. In the x,y-plane the integral curves are conies through P 

For (A.,A,) * (1,0), C2(0) = 0 shows that there is a singular point P , at 6 = 0(ir), and for 

A = A. (I - A.)" > 0, a point P . at 6 = arccot -v^A , and a point P- at 8 - arccot VT; 

these points coincide for A = 0 in point P, at 6 = -r [~^"J • 

The character of these points may be found by local linearization and using Theorems 65, 

66 and 67 of Chapter 9 of (1). The character of the singular points is listed in Table I 

and the phase portraits are indicated in the A. ,A.-parameter plane in Figure 5 and given 

in Figure 6. It may be seen, that for A, < 0, equation (5) has periodic solutions and the 

phase portraits may also be found in the classification of quadratic systems with a centre 

as given by Vulpe [12). 
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Figure 6: Phase portraits for the case A, = 0. 

Case X = 1. From (3) follows, that the singular points at infinity are given by 

CM) = [(I - X ) cos2* - sin 9 cos 9 - X sin2«] sin 9 = 0, 

so that there is a point P, at 9 = 0(]r), and, for X = I + 4A. (1 - A ) > 0, a point P . at 

$ = arccot - -x (1 + V^ )(A - 1)" and a point P? at « = arccot - -r (1 - / T )(A - 1)" ; 

these two points coincide for A = 0 at point P- at 0 = arccot - -= (A - 1)" . 

Moreover, for A. = I, the point P. coincides with P . , and point P, is situated in 

9 = arccot - A,. The character of these points may be found by local linearization and 

using Theorem 65 of Chapter 9 of [I]. The character of the singular points is listed in 

Table II and the phase portraits are indicated in the A ,A^-parameter plane in Figure 7 

and given in Figure 8. 
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4. QUADRATIC SYSTEMS WITH A THIRD ORDER SADDLE POINT AND 

TWO ZERO EIGENVALUES 

If (0,0) is a third order saddle point with two zero eigenvalues, (2), with d = 0, ae < 0, 

may be written, if necessary by applying an affine transformation and/or a scaling of t. 

in the form 

y + A x +A.xy+ A^y s P(x,y) , 

y = xy = Q(x,y), 
(9) 

with At < 0, A 2 e (0,1), A3 6 K. 

As illustrated in Figure 9, the saddle point 

in P . : (0,0) consists of four hyperbolic 

sectors separated by four separatrices: the 

positive *-axis and a curved separatrix 

tangent to it in P., and the negative x-axis 

and a curved separatrix tangent to it in P. ; 

both curved separatrices lying in the upper 

half plane. Figure 9: Third order saddle point. 

As for the previous case it can be shown that (9) has no limit cycles by using the same 

Dulac function B(x,y) ■ y 

factor to yield the solutions 

-2A,-I 
For A. = 0. this Dulac function acts as an integrating 

y = 0 and 2 A
 2_ | y + x2

 + - ^ - j - y2 + A4 1 y| ' = 0. A4 e TR, 

which includes also the periodic solution of (9). 

The other finite singular point P . : (0,-A~ ), (for A. * 0) may be analyzed by local 

linearization and using the symmetry for A = 0. 
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From (3) follows, that the singular points at infinity are given by 

C2(0) H [(1 - Aj) cos2» - A2 sin 6 cos e - X2 sin2*] sin 9 = 0, 

2 so that there is a point P . at 9 = 0(JT), and, for A s X. + 4A, (1 - A ) > 0, a point P at 

9 = arccot - -j (A, + Vx )(A - I ) " 1 , and a point P, at 0 = arccot - -^ (A2 - V~X )(X{ - \)~ '; 

these two points coincide for A = 0 in the point P, at arccot - -r A_ (A. - 1) . The 

character of these points may be found by local linearization and using Theorems 65, 66 

and 67 of Chapter 9 of [1]. The character of the singular points is listed in Table III and 

the phase portraits are given in Figure 10. Use should be made of the argument that 

9' < 0 on P P . and P.P. (and thereby on PQP,)-

It may be noted that a singularity with an elliptic and a hyperbolic sector occurs at 

infinity in phase portrait 2 of Figure 10. In the same way as in section 3 one may show, 

by blowing up the singularity, that the separatrices of the singular point with elliptic 

sector coincide with the equator of the Poincaré sphere. 

Figure 10: Phase portrait with a third order saddle point. 
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* higher order point 

5. QUADRATIC SYSTEMS WITH A CUSP POINT 

If (0,0) is a second order cusp point, system (2), with d # 0, may be written, if necessary 

by applying an affine transformation and/or scaling of t, in the form: 

-2 -2 
x » y + a20x +a n xya 0 2 y P(x,y). 

x + b n x y + b0 2y s Q(x,y), 
(10) 

w i t h a 2 0 . a n , « 0 2 , b n . b 0 2 e R . 

Figure II: Second order cusp 
poinl. 

As illustrated in Figure 1 I the cusp point PQ(0.0) 

consists of two hyperbolic sectors, separated by two 

separatrices. These two separatrices are both tangent 

to the positive x-axis in P.. In a neighbourhood of 

PQ the a-separatrix of P. lies in the first quadrant 

and the w-separatrix lies in the fourth quadrant. 

In order to determine the phase portraits of system 

(10), the cases A = b n - 4bQ2 < 0, A = 0 and 
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A > 0 will be considered separately. If A < 0 the curve Q(x,y) = 0 only consists of the 

point (0,0) and system (10) has no finite singular points besides P.. If A = 0 the curve 

Q(x.y) = 0 consists of two coinciding straight lines system (10) may have one second order 

singular point besides P In the last case the curve Q(x,y) = 0 consists of two straight 

lines and system (10) may have two first order singular points besides the point P.. 

THE CASE A < 0 

From (3) follows that the singular points at infinity for system (10) are given by 

C2(9) = cos3« + ( b | 1 - a20)cos2«sin 6 + (bQ2 - ay y) cos 6 sin20 - aQ2 sin3* - 0 (II) 

3 2 
or equivalents cot 6 + (b. . - a.Q) cot 9 + (b_2 - a. .) cot 0 - a», = 0. 

Now three different cases may be distinguished. Case a: there is just one real solution 

cot 6 of equation (II). Case b: there are two different real solutions of (I I); one of them 

is simple and the other one is double. Case c: equation (11) has three different real 

solutions. 

If the affine transformation x = x + ay, y = y, where a is a properly chosen constant, is 

applied to (10), there may be obtained 

x= y + A x + A2xy = P(x,y), 

2 2 ( l 2 ) 

y - x +A,xy+A.y a Q(x,y), 

where X \.,XyX. € R and A. - 4A. < 0. 

In fact we take the constant a = cot 6, where o is the unique solution of (11) in case a, a 

is the double solution in case b and the middle one of the three solutions in case c. From 
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(11) then follows that the singular points at infinity of (12) are given by 

CJ9) = [cos2» + (A - A ) cos 9 sin 9 + (A. - A.) sin2*] cos 9 = 0. (13) 

For A < 0 system (12) has just one singular point in the finite part of the plane: the 

second order cusp point P., in (0,0). Since there are no other singular points in the finite 

part of the plane, P . is the only possible candidate to be situated inside a limit cycle. 

However, in a quadratic system a limit cycle has to surround a focus [5]. Thus for A < 0 

there is no limit cycle. In order to investigate the singular points at infinity the cases a. b 

and c will be considered separately. 

Case a: Since there is one singular point at infinity (9 = -r ir) there should be satisfied 

either A, - A, - A^ - X. « 0 or (A, - A.) - 4 (A. - A,) < 0 as follows from (13). 

Case b: Since the double singular point at infinity is at 9 = -s x, it follows from (13) that 

A., = A Since there is a second singular point at infinity at 6 = arccot (A - A ) we know 

that A - A, # 0 and without loss of generality we may assume that A - A < 0. 

Case c: Since the middle one of the three singular points at infinity is at 9 = -r x. there 

follows from (13) that A. - A > 0. Without loss of generality we may assume that A. > 0. 

Besides the singular point at 6 = -r rr the system has two other singular points at infinity 

at 9 = arccot [-r (A. - A - -/x )] and at 9 = arccot {_-= (A - A ♦ v/T )] . where 

A = (A3 - A , ) 2 -4 (A 4 - A2). 

The character of the singular points at infinity may be found by local linearisation and 

using Theorems 65, 66 and 67 of [1]. The results of this analysis are listed in Table IV 

and the phase portraits are given in Figure 12. For the cases b and c use should be made 

of the argument that, as A. > 0, x = A A, on the line x = -A. . 
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TABLE IV:CASE A < 0 

Case 

a 
a 
b 
c 

V A 2 
+ 

0 

po 
CP* 

CP* 
CP* 
CP* 

P3 

N 
N* 
SN* 
S 

P4 

N 
N 

P5 

N 

CP = cusp point P3:»-ft 
P . : -r * < S < T 

A 2 
p • o < e < -j * 

* higher order point 

Figure 12: CASE A< 0. 

THE CASE A = 0 

The singular points at infinity of system (10) are given by (II) . Just as in the previous 

section we may apply the affine transformation x = x + ay, y = y where a is a properly 

chosen constant. System (10) then becomes 
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x = y + A x + A.xy ■ P(x,y), 

2 2 , 1 4 ) 

y - x + A3xy + A4y s Q(x,y), 

where A A-.A-.A. e R and A - 4A = 0. 

From (11) follows that the singular points at infinity of (14) are given by 

C-(0)= [cos29 + (A, - A )cos «sin 9 + (A - A.) sin2«] cos 9 = 0. (15) 

Now the cases A, - 0 and A. * 0 will be considered separately. 

CASE /.- X3 = 0 

In this case holds A = A. = 0. We may achieve, by applying an affine transformation and 

scaling of t that A] > 0. 

System (14) has just one finite singular point: the cusp point P. . Since a limit cycle has to 

surround a focus, it is obvious that the system has no limit cycles. 

Now the cases where system (14) has respectively one, two or three singular points at 

infinity, will be considered separately in la, lb and Ic. 

Case la: Since there is one singular point at infinity at 9 = -= r there should be satisfied 

either A = A. = 0 or A , + 4A < 0 as follows from (15). 

Case Ih: Since the double singular point at infinity is at 9 = -r ir. it follows from (15) 

that A. = 0. Because there is a second singular point at infinite at 9 = arccot (A.) it is 

clear that A > 0. 
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Case lc: Because the middle one of the three singular points at infinity is at 0 = -_- T, 

there follows from (15) that A, > 0. The two other singular points are at 

0 = arccot ("2*1 + ~? ^ ) a n d * = arccot (-_- A - -a v T ) where A - A . + 4A-. 

The character of the singular points at infinity may be found by local linearisation and 

using Theorems 65, 66 and 67 of [1]. The results of this analysis are listed in Table V 

and the phase portraits are given in Figure 13. 

For case lb we notice that the separatrix of P^ at 9 = -r T intersects the negative x-axis in 

a point A. It is easy to show that the separatrix remains below the straight line from point 

A to the singular point at infinity in the first quadrant and above the a- separatrix of 

PQ, and thus will tend to the singular point at infinity in the first quadrant. 

For case lc we notice that as A. > 0, along the line x = -A" holds x = A A" . 

Now it can easily been seen that the phase portraits are as given in Figure 13. 

TABLE V: CASE A = 0: la.b.c 

Case 

la 

la 

lb 

lc 

A ,=A 2 = 0 

A^ + 4A2 < 0 

A = 0, A > 0 

A2 > 0 

po 
CP 

CP 

CP 

CP 

P3 

N* 

N* 

SN* 

S* 

P4 

N 

N 

P5 

N 

higher order point 
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ia lb lc:X,=0 

Figure 13: CASE A = 0: lah.c. 

Ic \,>0 

CASE II: \3*0 

By a scaling of y and t system (10) may be put into the form 

x = y + AjX + A2xy ■ P(x,y), 

y - x - 2xy + y = Q(x,y). 
(16) 

Besides the cusp point P . system (16) has a second finite singular point P at 

((-A - A.) ,(-A. - A.) ) for A. + A. # 0 and no other finite singular point if 

A + A, = 0. The character of this point may be analysed by using Theorems 65. 66 and 

67 of [1). P. is a cusp point for 2A. + A. = 0 and a second order saddle node for 

2A + A * 0. The nodal part of this saddle node is stable for (2A + U A . + A ) > 0 

and unstable for (2A. + A.XA. + A-) < 0. 

Since a limit cycle has to surround a focus it is clear that system (16) has no limit cycles. 

Now the cases where system (16) has respectively one, two or three singular points at 

infinity, will be considered separately in Ila, lib and lie. 
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Case I la: Since there is one singular point P. at infinity there should be satisfied either 

A. + 2 = A. - 1 = 0 or (A + 2) + 4 (A. - I) < 0 as follows from (15). The character of 

the singular points and the phase portraits are given in Table VI and Figure 14. 

We note that in Figure 14, phase portrait 2 the relative position of the a-separatrix of P_ 

and the w-separatrix of P. can be found in the following way: For small positive values 

of A., the position of the a-separatrix of P. in phase portrait 2 is close to that for A = 0, 

as given in phase portrait 1. Therefore it should tend to the nodal part of P. . 

For small negative values of 2A + A. this position is close to that for 2A. + A. = 0 as 

given in phase portrait 3 and therefore the a-separatrix should tend to P^. From the 

continuity of the vector field it may be concluded that the case in which the a-separatrix 

of P„ and the w-separatrix of P coincide, also occurs. So all three relative positions of 

the separatrices, suggested in portrait 2 of Figure 14 occur. 

TABLE VI: CASE A = 0: Ila 

Portrait 

1 

1 

1 

2 

3 

4 

A + 2 = A, - 1 = 0 

(A | +2)2 ♦ 4(A2-I)< 0 

(A | +2)2 + 4(A2-I)< 0 

(A [+2)2 + 4(A 2 - I )<0 

(A )+2)2 + 4(A 2 - I )<0 

(Aj+2)2 + 4(A 2 - I )<0 

*1 

-

-

0 

+ 

+ 

+ 

2A]+A2 

-

-

-

-

0 

+ 

po 
CP* 

CP* 

CP* 

CP* 

CP* 

CP* 

p . 

SN* 

SN* 

SN* 

SN* 

CP* 

SN* 

P3 

N* 

N 

N 

N 

N 

N 

* higher order point. 
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Figure 14: CASE A * 0: lla. 

Case lib: Since the double singular point at infinity P3 is at 0 = -r *, it follows from 

(15) that A = 1. Since there is a second singular point P . at 0 = arccot (A +2) we know 

that A. # -2. The character of the singular points and all phase portraits are given in 

Table VII and Figure 15. 

We notice that the relative position of the a-separatrix of P. at 6 = \-r IT and the right 

w-separatrix of P. in phase portrait 6 cannot be found with standard arguments. Com­

paring phase portrait 6 with phase portrait 5 and 7, in the same way as in Case Ma. we 

may conclude that all three relative positions of the separatrices, suggested in phase 

portraits 6, occur. 

Figure 15 : CASE A = 0: lib. 
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TABLE Vil: CASE A = 0: lib 

Portrait 

1 

2 

3 

4 

5 

6 

7 

8 

A. 

A < -2 

-2 < X < -1 

v-1 

-»<v-i 
*i-4 

- 4 < A , < 0 

A j - 0 

0 < Aj 

P0 

CP* 

CP* 

CP* 

CP* 

CP* 

CP* 

CP* 

CP* 

p . 

SN* 

SN* 

SN* 

CP* 

SN* 

SN* 

SN* 

P3 

SN* 

SN* 

SN* 

SN* 

SN* 

SN* 

SN* 

SN* 

P4 

N 

N 

N* 

N 

N 

N 

N 

N 

* higher order point 

Case lie: Since there are three different singular points at infinity and P, at 9 = -= ir is 

the middle one, it follows from (15) that A. > I. Besides the point P3 there are two 

singular points P. and P , at 8 = arccot b J . + l t -r v T ) and at 6 = arccot (-^ A. +1 + 

- -= y/~X) where A = (A + 2) + 4(A, - 1). The character of the singular points and the 

phase portraits are given in Table VIII and Figure 16. 

Comparing phase portrait 5 with phase portraits 4 and 6 we notice that all three relative 

positions of the a-separatrix of P, and the w-separatrix of P suggested in phase portrait 

5 can occur. 
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TABLE VIII: CASE A = 0: lie 

Portrait 

1 

2 

3 

4 

5 

6 

7 

A. 

-
-
-
-
-
0 

+ 

V A 2 
-
0 

+ 

+ 

+ 

+ 

+ 

2>! + X2 

-
-
-
0 

+ 

+ 

+ 

po 
CP* 

CP* 

CP* 

CP* 

CP* 

CP* 

CP* 

p . 

SN* 

SN* 

CP* 

SN* 

SN* 

SN* 

P 3 

S 

s 
s 
s 
s 
s 
s 

P 4 

N 

N* 

N 

N 

N 

N 

N 

P 5 

N 

N 

N 

N 

N 

N 

N 

« higher order point 

Figure 16: CASE A = 0 : lie. 
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THE CASE A > 0 

The singular points at infinity of system (10) are given by (11). Just as in the last two 

sections we may apply the affine transformation x = x + ay, y = y where a is a properly 

chosen constant. Then by scaling of x,y and t system (4) may be put into the form 

x = y + A.x + A.xy 
(17) 

fm x2
 + 2A3xy + (A2

3- l)y2, 

where A e R* and A.,A e R. 

From (11) follows that the singular points at infinity of (17) are given by: 

C2(«) = [cos2* + (2A3 - Aj) cos $ sin 6 + (A2 - 1 - X^) sin2»] cos 0 = 0. (18) 

Besides the cusp point P . system (17) can have up till two other finite singular points. 

Let P, be «1 - A3) M j V j 1 ) for /», * 0 and let P2 be ((-1 - \J /ij ' .Mj') for n2 * 0, 

where p , = (1 - A ^ A , ^ - 1) - \£ and ^ = (-1 - A j X * , ^ ♦ 1) - XJ. The 

character of these points may be found by local linearisation as long as they are not a 

center in linear approximation. However, P. is a center in linear approximation for 

li. - 4/i. < 0 and M, = 0 where p , - ((1 - A.X2A - 2) + A.) ii' . For further inves­

tigation one may use the four focal values as given in [3]. It then follows that P, is a 

center for A + A. = 0, a stable first order fine focus for A. + A, > 0 and an unstable first 

order fine focus for A. + A. < 0. 

If point P. is a node or a focus it is stable for p. < 0 and unstable for n- > 0. If P. is a 

node it is stable for A. > -1 and unstable for A. < - 1 . The character of these points is 

listed in Table IX. 



JO 

TABLE IX 

Point P{ 

S 
N 
F 

C 
FF 

2 . 
" 3 - 4 " l 

+ 

+ ,0 

-

-

-

"3 

+, -

0 

0 

"l 

-

+ 

A , + A 3 

0 
+.-

According to [5] P. is the only candidate to be situated inside a limit cycle since this 

point is a (fine) focus for certain values of the parameters. It is known that exactly one 

limit cycle is generated out of P. if it is a stable (unstable) fine focus and the parameters 

are varied in such a way that P. becomes an unstable (stable) focus. Then, if the 

parameters are varied further in such a way that P becomes a node, the limit cycle must 

have been disappeared. In (6] Coppel proofs that a quadratic system with a cusp point has 

at most one simple limit cycle. This implies that the unique limit cycle generated out of 

P. remains the only one as long as it exists, and that the system has no limit cycles if P. 

is a fine focus. The only way this limit cycle may disappear is by vanishing in a 

separatrix cycle. Numerical calculations also indicate that the limit cycle disappears in a 

separatrix cycle, either formed by the separatrices of the saddle point P., (Case A > 0: 

a,b,c) or by the separatrices of two singular points at infinity (Case A > 0: b,c). 

Now the case where system (17) has respectively one, two or three singular points at 

infinity, will be considered separately in a, b and c. 

Case a: Since there is one singular point P^ at infinity at 9 = -r z there should be 

satisfied either A . - 4A.A + 4A. + 4 < 0 or 2A, - A = A. - A - 1 =0 . Although the 

phase portraits in the last case have one singular point at infinity, it will be treated in 

case b because the properties of system (1 7) are almost similar to the properties of system 

Point P, 

S 

N 

ft, 

+ 
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(17) in case b. The character of singular point P, at infinity is listed in Table X. For 

four different choices of A the (Aj,A_)-parameter plane is given in Figure 17. The 

phase portraits are indicated in Figure 17, listed in Table XI and drawn in Figure 18. 

TABLE X: CASE A > 0: a 

Point P.. 

S 
SN* 
N 

» } -

0 
+ 

We note that in the portraits 2c, 3c, 6c and 9c, P is a first order fine focus, which is 

stable in the portraits 2c, 3c and 6c and unstable in portrait 9c. If the parameters vary in 

such a way that P. becomes a focus and that the stability changes, exactly one limit cycle 

is generated out of P. (portraits 8, 12, 13 and 14). This limit cycle is stable in the 

portraits 12, 13 and 14 and is unstable in portrait 8. If the parameters are continued to 

vary in the same way, the limit cycle of portraits 8 and 12 seems to disappear in a 

separatrix cycle (portraits 7 and II), which is indicated in Figure 17 by the dashed 

curve A, = f (A ;A ). If the parameters are continued to vary in the same way in 

portraits 13 and 14 the limit cycle will also blow up. However, before the limit cycle 

disappear in a separatrix cycle, one or two singular points at infinity appear. So, the 

portraits with these limit cycles may be found in Figures 20 and 22. 
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2<A, 

| i , - O - A 3 XA,(A 3 - I ) - A2) 

P 2 « ( - l - A 3 ) (A, (A 3 + 1 ) - A2) 

i i 3 - ( ( l - A3)(2A, - 2) + A 2 ) .^ , 
-1 

Figure 17: CASE A > O: a. 
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TABLE XI: CASE A > 0: a 

Portrait 0 I 

1 

2a 

2b 

2c 

3a 

3b 

3c 

4 

5 

6a 

6b 

6c 

7 

8 

9a 

9b 

9c 

10 

] l 

12 

13 

14 

CP 

ri-
CP 
CP 
CP 
CP 
CP 
CP 
CP 
CP 
CP 
CP 
CP 
CP 
CP 
CP 
CP 
CP 
CP 
CP 
CP 
CP 

N 

N 

F 

FF 

N 

F 

FF 

S 

N 

F 

FF 

F 

I 

N 

F 

FF 

C 

F 

F 

F 

F 

N 

SN 

SN 

SN 

S 

s 
s 
SN 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

SN 

S 

A3<-1 

A 3 =- l 

v-1 

v-' 
-I<A <1 

-1<A,<1 

-1<A3<1 

V 
A.>1 

v-1 

A3<-1 

v-1 

A 3 <- l 

A3<-1 

A 3<-I 

A < - l 

A3<-1 

A 3 <- l 

A3<-1 

A3<-1 

v-1 

■1<A3<1 

A =0, A3<-

M3-4M,>0 

2 . ^ 3 - 4 / i 

2 . 
/ * 3 - 4 M 

2 . 
M 3 - 4 M 

2 . 
M3-4/i 

2 A 
P 3 - 4 p 

M3-4/»,>0 

M 3 -4 /J |<0 

M3-4/i j<0 

/ J 3 - 4 M , < 0 

Mj-4 / i j ïO 

M 3 -< *M,<O 

, ' 3 " 4 M 1 < 0 

' i 3 " 4 / i l < 0 

2 . A / i j - 4 / i ^ O 

M3-4/4j<0 

^ 3 - 4 ^ ! < 0 

<0 

<0 

>o 
<0 

<0 

/i3<0 

, 3 =o 

^3<o 

M3=o 

^ 3 < 0 A2<f(A3;A,) 

M3=0 Aj+A3>0 

M3<0 A2=f(A3;A,) 

^ 3 < 0 A2>f(A3;A,) 

/ i 3>0 A2>f(A3;A,) 

/ i3=0 A +A3<0 

M3=0 A ] +A 3=0 

/i3>0 A2-f(A3;A,) 

M3>0 A2<f(A3;A1) 

fy>0 

M3>O 

M | = ( 1 - A 3 KA,(A 3 - I ) . A2) 

p 2 = ( - l - A 3 ) (A, (A 3 + ! ) - A2) 

/ i 3 = ((l - A3)(2A, - 2 ) + A2).MÏ -1 
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13 i'. 

Figure 18: CASE A > 0: a. 

According to [6] the limit cycle in the portraits 8, 12, 13 and 14 is unique and 

numerical calculations strongly indicate that in all other phase portraits of Figure 18 the 

system has no limit cycles. Comparing phase portrait 6 with phase portraits 1 and 7, we 

notice that all three relative positions of the a-separatrix of P. and the u-separatrix of 

P., suggested in portrait 6, occur. Comparing phase portrait 12 with phase portraits 11 

and 1 3 we also may conclude that all three relative positions of the separatrices occur. 
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Case b: Since the double singular point at infinity P. is at 9 = -r T, it follows from (18) 

that A. = A. - I. Besides the singular point P, there is a second singular point P . at 

0 = arccot (A - 2AJ. It may be noticed that for A - 2A. = 0 P, and P. coincide. It is 

the second part of case a which should be treated in section b. 

The character of the singular points P3 and P. is listed in Table XII and the (A A )-

parameter plane is given in Figure 19. The phase portraits are indicated in Figure 19 

and given in Figure 20, and their portraits are listed in Table XIII. 

It should be noticed that in the portraits 4a, 8a and 12a, P. is a stable first order fine 

focus. If the parameters vary in such a way that P becomes an unstable focus (portraits 

3, 7 and II), exactly one stable limit cycle is generated out of P.. Numerical analysis 

strongly indicate that if the parameters are continued to vary in the same way, the limit 

cycle disappears in a separatrix cycle (portraits 2, 6 and 10), which is indicated in 

Figure 19 by the dashed curve A = f(A ). 

According to [6] the limit cycle in the portraits 3, 7 and 11 is unique. Numerical calcu­

lations strongly indicate that in all other phase portraits of Figure 20 the system has no 

limit cycles. Comparing phase portraits lb and Ic with phase portraits la and 2, we may 

conclude that all three relative positions of the a-separatrix of P. and the w- separatrix 

P . , suggested in portrait lb,c, occur. 

In the phase portraits 19, 22, 27, 28 and 29 P.. is a higher order singular point with an 

elliptic sector. Applying the Poincaré transformation x = —, y = — and the 'blow-up' 

transformation u = u, z = wu or u = u, z = wu , it is easy to show that in all portraits, 

except 28, the separatrix coincide with the circle p = I. 
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TABLE XII: CASE A > 0: b 

Point P^ 

N 

SN 
SN 

s 
Pwes 
Pwes 

S 
SN 

4.1 
+ 

+ 
0 

0 
0 

0 

-
-

V 2 A 3 

0 
-,+ 
0 

+ 

-

0 
- , + 

A3 

+ 
+ 

-

Order 

3 
2 
4 

3 

3 
3 

3 
2 

Point P 4 

N 
SN* 

S 

(A1-A3-1)(A |-A3+1) 

+ 

0 
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IX. 
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Figure 20: CASE A > 0 : b. 

Case c: There are three different singular points at infinity if A - 4A.A.+ 4A. + 4 > 0. 

Apart from P at 6 = -s x, (18) has a positive and a negative root if A. - A, + 1 > 0. 

Besides the point P, there are two singular points P. and P s at 

6 = arccot (-j A - A, + -=• V~\) and at 9 = arccot (^ A - A, - -s v T ) where 
2 

A = A - 4A A, + 4A. + 4. The character of these points is listed in Table XIV. 

TABLE XIV: CASE A > 0 : c 

Point P. 

S 
SN* 

N 

i j - i 
+ 

0 

-

Point P , 4 

N 

SN* 

S 

A2 > 0 v A 2 > Aj(A3 - 1) 

A3 < 1 A A2 = Aj(A3 - 1) 

A3 < 1 A A2 < X,(A- - 1) 



-to 

Point P j 

N 

SN* 

S 

SN* 

s 
N 

S 

V ' 

+ 

-

+ 

-

h ■ A , ( A 3 + 1) 

+ 

0 

-

-

-

-

-

A2 " VA3 " 
+ 

+ 

+ 

0 

0 

-

-

I) 

For four different values of X the (A^.A.J-parameter plane is given in Figure 21. The 

phase portraits are listed in Table XV and in Figure 22. 

It should be noticed that in the portraits 15a, 21a and 27a, P. is a stable first order fine 

focus. If the parameters vary in such a way that P becomes an unstable focus (portraits 

14, 20 and 26), exactly one stable limit cycle is generated out of P.. Numerical analysis 

strongly indicate that if the parameters are continued to vary in the same way, the limit 

cycle disappears in a separatrix cycle (portraits 13, 19 and 25), which is indicated in 

Figure 21 by the dashed curve \ , = f(A.;A.). 

According to (6] the limit cycle in the portraits 14, 20 and 26 is unique. Numerical 

calculations strongly indicate that in all other phase portraits of Figure 22 the system has 

no limit cycles. 

Comparing phase portrait 12 with phase portraits 11 and 13, we notice that all three 

relative positions of the separatrices, suggested in phase portrait 12, occur. 
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0<A,<2 

Figure 21: CASE A > 0: c. 
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Figure 22: CASE A-> 0: c 
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CHAPTER 2 

PHASE PORTRAITS FOR QUADRATIC SYSTEMS WITH 

A HIGHER ORDER SINGULARITY 

THIRD AND FOURTH ORDER POINTS WITH ONE ZERO EIGENVALUE 
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I. INTRODUCTION 

In a survey paper [3] on general properties of quadratic systems of differential equations 

in the plane Coppel states that what remains to be done is to determine all possible phase 

portraits of such systems, this being of great practical value. The present paper aims to 

give a contribution in this direction. By a quadratic system is meant the system 

x = a00 + a10 x + a 0 1 y + a 2 0 x 2 + a l l x y t a 0 2 y 2 ' . 

y * b00 + b10X + b 0 l y + b 20" 2 + b l l x y + b 0 2 y 2 , 

for the functions x = x(t), y = y(t), where o = -r— and a..,b.. e R. 

Since quadratic systems without singular points in the finite part of the plane have been 

classified by Gasull, Sheng Li-Ren and Llibre [5], we may assume that system (I) has at 

least one singular point in the finite part of the plane. Without loss of generality we may 

assume that one of the finite singular points is situated in the origin: a,. = b 0 0 = 0. Two 

limiting cases are classified: the linear case (a,„ = a. . = a . , = b. . . = b , , = b _ . = 0) and 
„u 11 \)z _u 11 u_ 

the homogeneous case (a._ = a . . = b._ = b 0 | = 0) [4], [9]. If both linear and quadratic 

terms are present a lot of work remains to be done. If one or both eigenvalues of the 

linear part of system (1) are zero the singular point in the origin is a higher order 

singular point. All phase portraits for quadratic systems with a singular point, having 

two zero eigenvalues, have been classified in [6], [7] and [8]. In the present report the 

possible phase portraits are given for quadratic systems with a third order or fourth order 

singular point, having one zero eigenvalue. They include the fourth order saddle node, 

the third order saddle point and the third order node (see [I], page 337 and [8]). 

If a singular point with one zero eigenvalue is situated in the origin, the quadratic system 

may be brought into a normal form by an affine transformation. According to [8] this 

normal form reads: 
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x= a2Qx + a i | x y + a0 2y , 
o 2 2 K ' 
y = y + b 2 0x + b n x y + b 0 2 y , 

where the singular point in the origin is a 

(i) fourth order saddle node, if a
2Q = a i i = ° a n d a02°b20 * ° ' ' " d e x ° ' 

(ii) third order saddle point, if a_. = 0 and a. . - b , . > 0; index-I , 

(iii) third order node, if a . . - 0 and a. , ' b 2 0 < 0; index I. 

It should be noted that the classification in this paper is not complete in the sense that 

some global problems, such as the number of limit cycles and the relative position of 

separatrices, are not completely solved in all cases. The phase portraits are characterized in 

the usual way: by the number, position and character of the singular points; by the 

number and position of the periodic solutions; by the position of the separatrices and by 

the behaviour at infinity. Standard arguments will be used, such as local linearisation in 

singular points, if possible Dulac functions, integrating factors, continuity and index 

arguments. For the investigation of singular points at infinity a slightly different 

transformation then given by Poincaré will be used, by putting x = p (1 - p) cos *, 

y = p (1 - p) sin * where 0 < p < I and 0 < 9 < 2*. System (2) then becomes, with 

xi-,>-£.£-. 

°P = P2(\ - p)2 B,(ö) + p3 (I -p)C,(«) . 

2 <3) 
« = />(! - p) B2(«) + p ' C2(0) 

where 
2 

B (*) = sin 9 cos 8, BJ6) = -sin 0, 

3 2 2 3 
CAB) =a,„cos $ + (a , . + b . J sin S cos 8 + (a_2 + b . , ) s i n $ cos 6 + b Q 2 sin 9, 

C2(«) = b 2 Q cos3* + (b , , - a2Q) sin » cos2* + (b 0 2 - a , , ) sin2* cos 0 - aQ2 sin3*. 



so 

Singular points at infinity are then represented on p = 1 and appear in diametrically 

opposed pairs and are indicated in the present report by the value of 0 in the interval 

[0,ir>. The singular point in the interval [0,x> is indicated by P. and the diametrically 

opposed point by P.'. 

If C.(0) + 0, p m I consists of integral curves and possibly of singular points. In order to 

include such a curve into considerations using index theory, an extension of the usual 

Poincaré index of a planar vector field will be adopted by regarding p = I as the 

limiting positions of a closed curve near it [10]. 

If C-(0) ^ 0, it can then be deduced that the sum of the indices of the singular points on 

P < I is equal to I, where for the index of a singular point on p = 1 only the vector field 

for p < I is considered. 
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2. QUADRATIC SYSTEMS WITH A FOURTH ORDER SADDLE NODE 

If (0,0) is a fourth order saddle node system (2), may be written, if necessary by apply­

ing on affine transformation and/or scaling of t, in the form 

S -2 
x = y . 
2 . -2 - - -2 ( 4 ) 

j r - y + x + b n x y + bQ2y , 

w i , h b n , b 0 2 E R . 

From (3) follows that the singular points at infinity for system (4) are given by 

C,(9) = cos30 + b . . cos2» sin 8 + b . . cos 8 sin2» - sin3» = 0, (5) 

or equivalenty by cot 8 + b . . cot 8 + bQ- cot 8 - 1=0 . 

Now three different cases may be distinguished. Case 2a: there is just one real solution 

cot 8 of equation (5). Case 2b: there are two different real solutions of (5); one of them is 

simple and the other one is double. Case 2c: equation (5) has three different real solutions. 

If the affine transformation x = x + ay, y ■ y, where a is a properly chosen constant, is 

applied to (4), there may be obtained, 

o 2 
x = A-(y + x + A xy) 
• 2 - 1 2 ( 6 ) 

y = y + x + A j x y - A 2 y , 

where A 6 R, A. e R\{0) and take values in the A A.-plane (Figure 2) depending on 

the choice of a. 

In fact we take the constant a ■ cot 8, where a is the unique solution of (5) in case 2a, a 

is the double solution in case 2b and the middle one of the three solutions in case 2c. 

From (3) then follows that the singular points at infinity of (6) are given by 
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C2(«) = cot3ff + (A[ - A2)cot29 + (-A"1 - A(A2)cot 0 = 0. (7) 

As illustrated in Figure 1, the fourth order saddle node P. consists of two hyperbolic 

sectors and a parabolic sector. 

The two separatrices which separate the parabolic sector from the hyperbolic sectors are 

tangent to the line x - A2y = 0 in P.. The third separatrix and the integral curves in the 

parabolic sector are tangent to the x-axis in P.. 

Figure 1: Fourth order saddle node. 

System (6) has just one singular point in the finite part of the plane: the fourth order 

saddle node P. in (0.0). Since there are no other singular points in the finite part of the 

plane, P . is the only possible candidate to be situated inside a limit cycle. However, in a 

quadratic system a limit cycle has to surround a focus [3]. Thus there is no limit cycle. In 

order to investigate the singular points at infinity the cases 2a, 2b and 2c will be con­

sidered separately. 

Case 2a: Since there is one singular point at infinity (0 = -r *) there should be satisfied 

either A. - A. = A- + A A = 0 (or equivalently A = A_ = - I) or (A. + A_) +4 A. < 0 as 

follows from (7). 
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Case 2b: Since the double singular point at infinity is at 6 = -=• x, it follows from (7) 

that A~ + A. A, = 0. Since there is a second singular point at infinity at 6 -arccot (A_ - A.) 

we know that A. - A. * 0. 

Case 2c: Since the middle one of the three singular points at infinity is at S = -r it there 

follows from (7) that A~' + A(A2 > 0. 

Besides the singular point at 6 ■ -= * the system has two other singular points at infinity 

at B = arccot (-| A2 - 4 X{ - -s V T ) and t = arccot (~^ x
2 ~ ~2 X\ + \ ^ ' w h e r e 

X-(Aj + A 2 ) 2
 + 4 A"2'. 

The character of the singular points at infinity may be found by local linearisation and 

using Theorems 65, 66 and 67 of [1]. The results of this analysis are listed in Table 1 and 

the phase portraits are indicated in the A A.-parameter plane in Figure 2 and given in 

Figure 3. 

TABLE 1: Case 2 

Case 

2a 

2a 
2b 
2b 
2b 

2c 
2c 

Portrait 

la 

lb 
2 
3 
4 

5 

6 

A 

-

A. +^|-*2 

0 

-
0 
0 
0 
+ 

+ 

A,-A2 

0 

+ 

-
-

A2 

-1 

-
-
+ 

-
+ 

P0 

SN* 
SN* 
SN* 

SN* 
SN* 

SN* 
SN* 

P . 

N* 
N 
SN* 
SN* 
SN* 

S 
N 

P2 

N 

N 

S 

P3 

N 
N 

N 
N 

* higher order point A = (A, + A2)2 + 4 A2' 

S = saddle point 
N = node 

SN = saddle node 

P,: • - . £ . 
P-: -x t < e < t 
P : 0 < 6 < - |)r 

P , P 2 and P. are the singular 
points at infinity. 
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For portrait 2 in Figure 3 use should be made of the argument that in the x.y-plane a 

straight line in the direction of P? may be drawn such that all integral curves in the 

parabolic sector of Pn, remain under this straight line. 

h 

6 

k 

Figure 3: Case 2. 
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3. QUADRATIC SYSTEMS WITH A THIRD ORDER SADDLE POINT 

If (0,0) is a third order saddle point system (2), may be written, if necessary by applying 

an aff ine transformation and/or a scaling of t, in the form 

o 
x = xy + aQ2y , 

-2 

-2 
!y ' 
-2 y = y + x + b n x y + bQ2y , 

(8) 

where a02-b02 e R a n d b i l 6 R 0 ' 

The cases a.., = 0 and a . . # 0 will be considered separately. "02 "02 

Case 31: aQ2 - 0. 

In this case system (8) may be rewritten in the form 

*" - " y 
° 2 2 
y = y + x + Ajxy + >2y , 

(9) 

where X. 6 R « and A. e R. 

As illustrated in Figure 4, the third order 

saddle point P„(0,0) consists of four hyper­

bolic sectors, which are separated by four 

separatrices. Two of the separatrices are 

tangent to the x-axis in P. and the two 

others coincide with the y-axis. 

Figure 4: Third order saddle point. 
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- l . local Apart from P. there is a second finite singular point P in (O.-A. ) if A. * 0. By 

linearisation one finds that P. is a stable node for A. > 0 and a saddle point for A < 0. 

It is clear that system (9) has no limit cycles since a limit cycle has to surround a (fine) 

focus [3J. 

From (3) follows that the singular points at infinity for system (9) are given by 

C2(«) = cos3« + A cos2» sin 9 + (A. - 1) cos e sin2» = 0, (10) 

so that there is exactly one singular point P . at 9 = — x for A = A. - 1 = 0 or A < 0 

where A = A j - 4 (A. - I). System (9) has two singular points if either A = 0 and A > 0 

or A = 1 and A > 0: P . at S = -_- t and P? at B = arccot (- -= A.). System (9) has three 

singular points if A > 0 and A. * 1: P at 0 = -= x, P at 8 = arccot (- -z A. - 4 v̂ A ) 

and P4 at 0 = arccot (- -j X{ + -^ v̂ A ). 

The character of these singular points is listed in Table 2 and the phase portraits are 

indicated in the A.,A.-parameter plane in Figure 5 and drawn in Figure 6. 

TABLE 2: Case 31: aQ2 = 0. 

Portrait 

la 
lb 
2 

3 

4 

5 

6 

7 

A 

-
0 

0 

+ 

+ 

+ 

+ 

+ 

A. 

o,+ 
0 

+ 

o,+ 
o,+ 
o,+ 

X2 

+ 

0 

-

V 

+ 

0 

-

po 
s* 
s* 
s» 
s» 
s» 
s* 
s* 
s» 

p . 

N 

N 

N 

N 

N 

N 

S 

P 2 

N 

N* 

N 

N 

SN» 

S 

SN* 

N 

P 3 

SN* 

N 

N 

N 

N 

N 

P4 

S 

N 

N 

N 

* higher order point \m\~ - 4 ( * 2 - l ) 
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A = A-j - 4 (A2 - 1) 

Figure 5: Case 31: a = 0. 

Figure 6: Case 31: a = 0. 
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Case ill: aQ2 * 0. 

From (3) follows that the singular points at infinity for system (8) are given by 

C.(0) = cos2 6 + b. cos2 6 sin 6 + ( b . , - 1) cos $ sin2« - a . , sin3* = 0. 
i I I , (I") 

or equivalently cot 6 + b . . cot S + ( b - , - 1) cot 0 - a . . = 0. 

Now three different cases may be distinguished. Case 3IIa: there is just one real solution 

cot 6 of equation (11). Case 3IIb: there are two different real solutions of (11); one of 

them is simple and the other one is double. Case 3IIc; equation (11) has three different 

real solutions. 

If the affine transformation x • ax + ay, y « y, where a is a properly chosen constant, is 

applied to (8), there may be obtained, if necessary by applying a scaling of x and y 

0 2 2 
x = x + A x + A xy + y , 
o 2 
y = x + A3xy + y , 

(12) 

where X., A- and A. e R and A. < Aj. 

Restrictions of the values of A., A, and Â  will follow depending on the choice of a. 

In fact we take the constant a = cot 9, where a is the unique solution of (11) in case 3IIa. 

a is the double solution in case 3IIb and the middle one of the three solutions in case 3IIc. 

From (3) follows that the singular points at infinity of (12) are given by 

C2(0) = [sin20 + (A2 - 1) sin «cos« + (A( - \J cos2»] sin S = 0. (13) 
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As illustrated in Figure 7, the 

third order saddle point P- of 

system (12) consists of four hyper­

bolic sectors, which are separated 

by four separatrices. Two of the 

separatrices are tangent to the y-

axis in P . and the other two are 

tangent to the line y = x in P.. Figure 7: Third order saddle point. 

Apart from the third order saddle point P. system (12) has one other finite singular point 

P , : (-(A2 - A3)2 A ^ ' A " 1 , ^ - A j ) A ~ ' A ~ ' ) if Aj«A4*0, where A4 = A [+A 3 (A3 - A2). 

The character of this point may be found by local linearisation as long as it is not a center 

in linear approximation. However, P. is a center in linear approximation for A - 4 A < 0 

and A, = 0 where A, = (A. - A.) A"| A" and 

A6 = [A2 - A[ (A3 - A2) (A3 - A2 + 2) - A3 (Aj - A2)2] A ' / A " 1 . 

For further investigation one may use the four local values as given in [2]. 

If then follows that P. is an unstable first order fine focus. 

If point P, is a node or a focus it is stable for A, < 0 and unstable for A, > 0. l o o 
The character of P. is listed in Table 3. 

TABLE 3. 

Point P 

S 
N 
F 

FF 

A6" 4 A5 

+ 

+,0 

-

-

A5 

-

+ 

+ 

+ 

X6 

+ , -

0 
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P, is the only candidate to be situated inside a limit cycle since this point is a (fine) focus 

for certain values of the parameters. It is known that exactly one unstable limit cycle is 

generated out of P. if the parameters are varied in such a way that P. becomes a stable 

focus. Then, if the parameters are varied further in such a way that P. becomes a node. 

the limit cycle must have disappeared. The limit cycle may have disappeared in two 

different ways: It is possible that another limit cycle surrounds the limit cycle that was 

generated out of P. and that the two limit cycles together formed a semi-stable limit 

cycle which disappeared before P. became a node. Another possibility is that the limit 

cycle was blown up until it disappeared in a separatrix cycle. 

Numerical calculations strongly indicate that the last possibility occurs. The limit cycle 

blows up until it disappears in a separatrix cycle, formed by the separatrices of the third 

order saddle point P.. It also seems that this limit cycle is unique. Now the cases where 

system (12) has respectively one, two or three singular points at infinity, will be consid­

ered separately in 3IIa, 3IIb and 3IIc. 

Case 31 la: Since there is one singular point at infinity, at 0 = 0 and indicated by P-

there should be satisfied either (A. - 1) - 4 (A. - A,) < 0 or A- - 1 ■ A. - A, - 0. 

Although the phase portraits in the last case have one singular point at infinity, it will be 

treated in case 3IIb because the properties of system (12) for A - 1 = A - A = 0 are 

similar to the properties of system (12) in case 3IIb. 

For all values of the parameters P. is a node. The character of the finite singular point 

P. follows from Table 3. 

For two fixed values of A. the (A.,A.)-parameter plane is given in Figure 8 and the 

phase portraits are indicated in this figure, listed in Table 4 and drawn in Figure 9. 
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, fy//////////// /////// / / / / / / / / / / / x7,y7 
la 

(V*&4lM3> 

,ƒ//////////////////////////////////,! 2 - A 3 

- ) ? « = * A, 6="5 

)?6=a5 

Figure 8: (\ ..\y)-parameter plane for constant A. fit case 31 la. 

We note that in portrait lc P. is an unstable first order fine focus. If the parameters 

vary in such a way that P becomes a stable focus exactly one unstable limit cycle is 

generated out of P. (portrait 2). If the parameters are continued to vary in the same way, 

this limit cycle seems to disappear in a separatrix cycle (portrait 3), which is indicated in 

Figure 8 by the dashed curve A, = f (A ;A.). 

Numerical analysis strongly indicates that the limit cycle in portrait 2 is unique and that 

in all other phase portraits of Figure 9 the system has no limit cycles. 
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TABLE 4: Case 311a: (>2 - 1) - 4 (Aj - A,) < 0. 

Portrait 

la 

lb 
lc 
2 
3 
4a 

4b 

X\-4X5 

+.0 
-
-

-
-

-
+.0 

A6 

+ 

+ 

0 
-
-

-

-

A2-f(A,;A3) 

+ 
0 

-

po 
s* 
s* 
s* 
s* 
s* 
s* 
s* 

p . 

N 
F 
FF 
F 
F 

F 
N 

P2 

N 

N 
N 
N 
N 

N 
N 

A4 = A, + A 3 ( A 3 - A2) A5 = (A 3 - A J ^ A - ' A ^ 

X6 = [X] -X\ ( ^ 3 - A 2 ) (A 3 - A2 + 2 ) - A 3 ( A 3 - A2)2]A- IA"4 ' . 

I O J * 

Figure 9: Case lila. 

Case 3lib: Since the double singular point at infinity P2 is chosen to be at 9 = 0 it 

follows from (13) that A = A3. Apart from the singular point P., there is a second 

singular point at infinity P3 at t = arccot (1 - AJ. We also allow 1 - A = 0, then P2 and 

P3 coincide. It is the second case of case 3IIa which was postponed to the present case. 

The character of the singular points P2 and Pj is listed in Table 5 and the (n /J,.)-

parameter plane is given in Figure 10 where fi. = A and \i- = A. - A.. 

The phase portraits are listed in Table 6 and are drawn in Figure 11. 
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It should be noticed that in the portraits 6a, 10a and 14a, P. is an unstable first order 

fine focus. If the parameter vary in such a way that P. becomes a stable focus (portraits 

5, 9 and 13), exactly one unstable limit cycle is generated out of P. . Numerical analysis 

strongly indicate that if the parameters are continued to vary in the same way, the limit 

cycle disappears in a separatrix cycle (portraits 4, 8 and 12), what is indicated in Figure 

10 by the dashed curve / J . = f (/*,)• 

Numerical analysis also indicates that the limit cycle in the portraits 5, 9 and 13 is unique 

and that the quadratic system has no limit cycles in all other portraits of Figure 11. 

Comparing phase portraits II with phase portraits 7 and 12, we may conclude that all 

three relative position of the a-separatrix of P, and the w-separatrix P., suggested in 

portrait 1 1, occur. 

In phase portrait 2 P. is a higher order singular point with an elliptic sector. Applying 

y 1 
the Poincaré transformation u = -~ , z - — and the 'blow-up' transformation u = u, 
z = wu it is easy to show that the separatrix coincides with the circle p = 1 (see Appendix 

1, also [7]). 

TABLE 5:Case3IIb 

Point P . 

Pwes* 
N* 
SN* 

"l 

0 

+ , -

Pj-Hj-l 

0 
+ , -

* higher order point 
Pwes = Point with elliptic sector 

Point P . 

N 

N* 

W1 

+ , -

0 
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TABLE 6: Case 311b: A * A. 

Portrait 

1 

2 

3a 

3b 

4 

5 

6a 

6b 

6c 

7 

8 

9 

10a 

10b 

10c 

11 

12 

13 

14a 

14b 

14c 

P 0 

s* 
s* 
s* 
s* 
s* 
s* 
s* 
s* 
s* 
s* 
s* 
S* 

s* 
s* 
s* 
s* 
s* 
s* 
s* 
s* 
s* 

p . 

N 

N 

F 

F 

F 

FF 

F 

N 

F 

F 

F 

FF 

F 

N 

F 

F 

F 

FF 

F 

N 

P 2 

SN* 

Pwes* 

SN* 

SN* 

SN* 

SN* 

SN* 

SN* 

SN* 

N* 

N* 

N* 

N* 

N* 

N* 

SN* 

SN* 

SN* 

SN* 

SN* 

SN* 

P 3 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

" l 

-

0 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

vv1 

-

-

-

-

-

-

-

-

-

0 

0 

0 

0 

0 

0 

+ 

+ 

+ 

+ 

+ 

+ 

X\-AX5 

+ 

+.0 

-

-

-

-

-

+.0 

-

-

-

-

-

+.0 

-

-

-

-

-

+.0 

X6 

+ 

-

-

-

0 

+ 

+ 

-

-

-

0 

+ 

+ 

-

-

-

0 

+ 

+ 

P 2 - f0* , ) 

-

0 

+ 

-

0 

+ 

-

0 

+ 

* higher order point 

A4 = X\ + A3 (A3 " V X5 = (A3 " A2* A"l A 4 Ml = A| 
X6 = [A^ - Aj (A3 - A 2) (A3 - A 2 + 2) - A3 (Aj - A2>2] A " ^ 1 ^2

 = A| " X2 



ÜUL Mi-jiri*o 

■77T77T777777777777777777 
Figure 10: Case 31'lb. 

Figure 11: Case 31 lb. 

liob.c 



66 

Case il Ie: According to (13) there are three different singular points at infinity for 

(A. - 1) - 4 (A. - A.) > 0 and A - Â  * 0. In order that P . at 6 = 0 is intermediate 

between a positive root P? and a negative root P. of equation (13), there should be satis­

fied A. - A. < 0. P, and P are situated at 9 = arccot (- -s - -x A- + -r v T ) and at 

6 = arccot (- -i - -i A2 - -_- Vx ) respectively, where A = (A. - l ) 2 - 4 (A - A,). 

The character of these points is listed in Table 7 and for A. < 0 and A > 0 the (A A )-

parameter plane is given in Figure 12. The phase portraits are listed in Table 8 and are 

drawn in Figure 13. 

TABLE 7: Case 3IIc 

Point P2 

N 

SN 
S 

A. 

0 
+ 

Point P . 

N 

Point ?q 

N 

SN 

S 

A4 = A, + A 3 

A. 

0 
+ 

(A3 - A2) 

It should be noticed that in portrait 8a P. is an unstable first order fine focus. If the 

parameters vary in such a way that P becomes a stable focus (portrait 7), exactly one 

unstable limit cycle is generated out of P.. 

Numerical analysis strongly indicates that if the parameters are continued to vary in the 

same way, the limit cycle disappears in a separatrix cycle (portrait 6), which is indicated 

in Figure 12 by the dashed curve A. = f (A ;A.). 

Numerical calculations also indicate that the limit cycle in portrait 7 is unique and that 

the quadratic system has no other limit cycles in all other portraits of Figure 13. 

Comparing phase portrait 5 with phase portraits 4 and 6, we may conclude thai all three 

relative positions of the separatrices, suggested in portrait 5, occur. 
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s/ss/s/sss////// S?./. 's///////;////////,\,- ^ /////////////////////%///////////////, 

X3<0 

.h 

/ 

->K 
V«J 

ü^_X,=X 

M i 

2-"3 

Figure 12: Case illc. 

TABLE 8:Case3IIc: A! - A3 < 0 

Portrait 

1 

2 

3 

4 

5a 

5b 

6 

7 

8a 

8b 

8c 

P 0 

S* 

s* 
s* 
s* 
s* 
s* 
s* 
s* 
s* 
s* 
s* 

p l 

N 

s 

N 

F 

F 

F 

FF 

F 

N 

P 2 

N 

N 

N 

SN* 

S 

S 

S 

S 

S 

S 

S 

P 3 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

P4 

S 

SN* 

N 

N 

N 

N 

N 

N 

N 

N 

N 

\ 

-
-
-
0 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

A4 

-
0 

+ 

A2
6-4A5 

+.0 

-
-
-
-
-
+ ,0 

A6 

-
-
-
-
0 

+ 

+ 

A2-f(A,,A3) 

-
0 

+ 

A ^ - A | + Aj (Aj - A2) A 5 = < V A 2 ) 3 A 1 1 A 4 ' 

A6 = [A2 - A, (A3 - A2) (A3 - A2 + 2) - A3 (>3 - A2)2] A"J'A~' 
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Figure 13: Case 311c. 
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4. QUADRATIC SYSTEMS WITH A THIRD ORDER NODE 

If (0,0) is a third order node system (2) may be written, if necessary by applying an 

affine transformation and/or a scaling of t, in the form 

2 . . -2 
x = -xy + aQ2y , 
y = y + x + b n x y + bQ2y , 

(14) 

where a
0 2 ' b 02 e R a n d b l 1 G R 0 ' 

The cases aQj - 0 and a ^ * 0 will be considered separately. 

Case 41: a, = 0. 

In this case system (14) may be rewritten in the form 

o 
x - - xy 
0 2 2 
y = y + x + A(xy + A2y , 

(15) 

where A e R and A. 6 R. 

As illustrated in Figure 14, the third order node 

PQ(0,0) is unstable. All trajectories that tend to P. 

are tangent to the x-axis in P., or coincide with 

the negative or positive point of the y-axis. 

Besides P„ there is a second finite singular point 

Pj in (O.-A^1) if >2 * °-

By local linearisation one finds that P. is a stable 

node for A < 0 and a saddle point for A. > 0. It is 

clear that system (15) has no limit cycles since a 

limit cycle has to surround a (fine) focus. 

Figure 14: Third order node. 
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From (3) follows that the singular points at inf inity for system (15) are given by 

C.(9) = cos30 + A cos2» sin * + (■*,+ I) cos $ sin2» = 0, (16) 

so that there is exactly one singular point P , at 8 = -r r if A = A + I = 0 or X < 0 

where X s X . - 4 (A. + 1). System (15) has two singular points if either A = 0 and A. > 0 

or A. = -1 and A > 0 : P, at 0 = -r ir and P- at 6 = arccot (- -s A.), System (15) has three 

singular points if A > 0 and A * - 1 : P at 6 = -r ir. P at 8 = arccot (- -^ A - — Vx) 

and P. at $ = arccot (- -=• A + -= V~X ). 

The character of these singular points is listed in Table 9 and the phase portraits are 

indicated in the A.,A,-parameter plane in Figure 15 and drawn in Figure 16. 

TABLE 9: Case 41: a . , - 0 

Portrait 

1 

2 

3a 

3b 

4 

5 

6 

7 

8 

9 

10 

1 1 

A 

-
-
-
0 

0 

0 

0 

+ 

+ 

+ 

+ 

+ 

A l 

0 

X2 

+ 

0 

-

+ 

0 

-
+ 

0 

-

A2+l 

+ 

0 

-

po 

N* 

N* 
N* 

N* 

N* 

N* 

N* 

N* 

N* 

N* 

N* 

N* 

P. 

S 

N 

N 

S 

N 

S 

N 

N 

N 

P 2 

N 

SN* 

S 

S* 

N 

SN* 

S 

N 

SN* 

S 

SN* 

N 

P 3 

SN* 

SN* 

SN* 

S 

S 

s 
s 
s 

P4 

N 

N 

N 

s 

* higher order point A = Aj - 4(A2 + 1) 
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A = A i - 4 ( A 2 + 1). Figure 15: Case 41: a = 0. 

Figure 16: Case 41: a = 0. 



7? 

Case 411: a # 0. 

From (3) follows that the singular points at infinity for system (14) are given by 

CJ6) = cos 8 + b . . cos2» sin 8 * ( b n , + 1) cos 8 sin 8 - a „ , sin 8 = 0 
l II Mi Mi ( | 7 ) 

or equivalently cot 8 + b . cot 0 + ( b - . + 1) cot 8 - a.., = 0. 

Now three different cases may be distinguished. Case 411a: there is just one real solution 

cot 8 of equation (17). Case 4Mb: there are two different real solutions of (I 7). one of 

them is simple and the other one is double. Case 4IIc: equation (17) has three different 

real solutions. 

If the affine transformation x = ax + ay, y = y, where a is a properly chosen constant. 

is applied to (14), there may be obtained, if necessary by applying a scaling x and y 

o 2 2 
x = x + A.x + A.xy + y , 

2 (18) 
y = x + A.xy + y , 

where X A and A. € R and A. > A^, and further restrictions on A.,A,,A. will 

follow depending on the choice of a. 

In fact we take the constant a = cot 6, where a is the unique solution of (17) in case 

4IIa, a is the double solution in case 4IIb and the middle one of the three solutions in 

case 4 He. 

From (3) then follows that the singular points at infinity of (18) are given by 

C.(8) m [s in2* + (A. - I) sin 8 cos 8 + (A { - Aj) cos 8} sin 8 = 0. (19) 
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As illustrated in Figure 17, the third order 

node P„(0,0) of system (18), is unstable. All 

trajectories that tend to PQ are tangent to the 

y-axis except two which are tangent to the 

line y = x. 

Apart from the third order node P., if 

A.-A. # 0 system (18) has one other finite Figure 17: Third order node. 

singular point: P in (-(A, - A.) A A . , (A. - A.) A A where A = A + A. (A. - A.). 

The character of this point may be found by local linearisation as long as it is not a center 

in linear approximation. However, P. is a center in linear approximation for 

A, - 4 A. < 0 and A, = 0 where Ac = (A, - A,) A , A . and 6 5 o 3 3 2 1 4 

A6 = [A2 - A, (A3 - A2) (A3 - A2 + 2) - A3 (A3 - Aj)2] A ~ ' A 4 ' . 

For further investigation one may use the four focal values as given in [2]. It then 

follows that P is a stable first order fine focus. 

If point P, is a node or a focus it is stable for A, < 0 and unstable for A, > 0. The i o o 
character of P. is listed in Table 10. 

TABLE 10 

Point P 

S 

N 
F 
FF 

A2-4A5 

+ 

+,0 

-
-

A5 

-
+ 

+ 

+ 

A6 

+,-
0 



7.1 

P is the only candidate to be situated inside a limit cycle since this point is a (fine) 

focus for certain values of the parameters. It is known that exactly one stable limit cycle 

is generated out of P. if P. is a stable fine focus and the parameters are varied in such 

a way that P. becomes an unstable focus. Then, if the parameters are varied further in 

such a way that P becomes a node, the limit cycle must have disappeared. The limit 

cycle may have disappeared in two different ways: It is possible that another limit cycle 

surrounds the limit cycle that was generated out of P. and that the two limit cycles 

together formed a semi-stable limit cycle which disappeared before P. became a node. 

Another possibility is that the limit cycle was blown up until it disappeared in a 

separatrix cycle. 

Numerical calculations strongly indicate that the last possibility occurs. The limit cycle 

blows up until it disappears in a separatrix cycle, formed by the separatrices of two 

singular points at infinity. It also seems that this limit cycle is unique. 

Now the case where system (18) has respectively one, two or three singular points at 

infinity, will be considered separately in 4IIa. 4Mb and 4IIc. 

Case 41 la: Since there is one singular point ? 2
 a t ' n f ' n i t y a t 9 ° ° , h e r e s n o u l d be 

satisfied either (A - I)2 - 4 (A. - A,) < 0 or A, - 1 = Aj - A3 = 0. 

Although the phase portraits in the last case have one singular point at infinity, it will 

be treated in case 4IIb because the properties of system (18) for A., - 1 = >^ - Â  = 0 

are similar to the properties of system (18) in case 4Mb. 

The character of the singular points is given in Table 11. For a fixed value of A^ the 

(A A.)-parameter plane is given in Figure 18 and the phase portraits are indicated in 

this figure, listed in Table 11 and drawn in Figure 19. 
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(X2-i}iicX,-X3' 

- l<A3<0 

7777777777ZT777^. 

(Aj-i&rfVOt?) 

W/^i^y^^////^/^^/^////^/////////// h'^3 

0«X * A 3 

F/^ure /«.- (XrX2)-parameter plane for constant X in case 4IIa. 

3ob.c 

Figure 19: Case 4lla. 



76 

TABLE 11: Case 4IIa: (A, - 1) - 4 (A - A ) < 0 

Portrait 

1 
2 

3a 
3b 

3c 
4 

Al 

+ 

0 

-
-
-
-

A2
6-4A5 

+ .0 

-
-
-

\ 

-
0 
+ 

po 

N* 
N* 
N* 
N* 

N* 
N* 

P . 

S 

N 
F 

FF 
F 

P2 

N 

SN* 
S 
S 

S 
S 

higher order point 

A4 = A, + A3 (A3 - A2) A5 = (A3 - A.,)3 A"1*"1 

A 6 = [ A J - A , ( A 3 - A 2 ) ( A 3 - A 2 + 2 ) - A 3 ( A 3 - A 2 ) 2 ] A " 1 ' A " 4
1 

We note that in portrait 3c P. is a stable first order fine focus. If the parameters vary in 

such a way that P. becomes an unstable focus exactly one stable limit cycle is generated 

out of P. (portrait 4). If the parameters are continued to vary in the same way. this limit 

cycle blows up. However, before the limit cycle disappears in a separatrix cycle, one or 

two singular points at infinity appear. So, the phase portraits with these separatrix cycles 

may be found in Figures 21 and 23. Numerical analysis strongly indicates that the limit 

cycle in portrait 4 is unique and that in all other portraits of Figure 19 the system has no 

limit cycles. 

Case 41Ih: Since the double singular point at infinity P., is at 9 = 0. it follows from 

(19) that A = Av Apart from the singular point P2 there is a second singular point P3 at 

9 = arccot (1 - A.) which coincides with P if A = I. It is the second part of case 4IIa 

which would be treated here. The character of the singular points P. and P3 is listed in 

Table 12 and the (/i ,/O-parameter plane is given in Figure 20 where /^ = X^ and 

/i- = A - A.. The phase portraits are listed in Table 13 and are drawn in Figure 21. 
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TABLE l2:Case4IIb 

Point P . 

S* 
SN* 

Pwes* 
N* 

S* 

SN* 

"l 

0 
0 

0 
+ 

-
+,-

w1 

-

0 
+ 

0 

0 
+,-

Point P, 

S 
SN» 
N 

V 

higher order point 

It should be noticed that in portrait 5c P is a stable first order fine focus. If the para­

meters vary in such a way that P. becomes an unstable focus (portrait 6) exactly one 

stable limit cycle is generated out of P.. 

Numerical analysis strongly indicate that if the parameters are continued to vary in the 

same way, the limit cycle disappears in a separatrix cycle (portrait 7), which is indicated 

in Figure 20 by the dashed curve /J-, = f (M,) . 

///////////s/;/////////////////////;//////////Y/////////////?///////////////////////V 

Mp-i 

M,-Pr'=° 

Figure 20: The (p ..n7)-parameter plane in case 4IIb. 
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Numerical analysis also indicates that the limit cycle in portrait 6 is unique and that the 

quadratic system has no limit cycles in all other portraits of Figure 21. 

In phase portraits 9 and 10 P . is a higher order singular point with an elliptic sector. 

y 1 

Applying the Poincaré transformation u = - i , z = — and the 'blow-up' transformation 

u = u, z = wu or u = u, z = wu , it is easy to show that only for /i., < -2 (phase portrait 

10) the separatrices coincide with the circle p - I (see Appendix 2 and also [7]). 

TABLE !3:Case4IIB: A, - A 

Portrait 

1 
2 

3 
4 

5a 

5b 
5c 

6 
7 

8 
9 

10 
11 
12 
13a 

13b 
14 

15 
16 
17 

P0 

N* 
N* 
N* 

N* 
N* 

N* 
N* 
N* 
N* 
N* 

N* 
N* 

N* 
N* 
N* 
N* 
N* 
N* 

N* 
N* 

P l 

S 

s 
s 

N 

F 
FF 
F 
F 

F 

F 
F 

F 
N 

S 

P2 

SN* 
N* 
SN* 

SN* 
SN* 
SN* 

SN* 
SN* 
SN* 

SN* 
Pwes* 

Pwes* 
SN* 
S* 
SN* 
SN* 
SN* 
SN* 

S* 
SN* 

P3 

N 

N 
SN* 

S 

S 
S 
S 

s 
s 
s 
s 
s 

s 
s 
SN* 

N 
N 

"l 

+ 

+ 

+ 
+ 

+ 

+ 
+ 

+ 

+ 

+ 

0 
0 

-
-
-
-
-
-
0 
0 

V 
+ 

+ 

+ 
0 

-
-
-
-
-
-
-
-
-
-
-
-
0 
+ 

+ 
0 

"rV1 

. 
0 
+ 

+ 

+ 
+ 

+ 

+ 
+ 

+ 

+ 

+ 
+ 
0 

-
-
-
-
-
0 

X6 

-
-
0 
+ 

+ 
+ 

-
-
-
-

A2
6-4A5 

+.0 

-
-
-
-
-

-
-
-
+ .0 

M2>f(/*,) 
*2=f<V 
M2<f(^,) 
-2<»»2<-l 

M2<-2 

* higher order point 

X4 = A, ♦ A3 (A3 - A2) A . - M A J - A / A - ' A ; 1 ^ - A, 

A6 = [A2 - A , (A3 - A2)(A3 - A2 + 2 ) - A 3 ( A 3 - A 2 ) 2 ] A" ( 'A~4 ' ^ = A, - A 
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Figure 21: Case 41 lb. 
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Case 4lic: According to (19) there are three different singular points at infinity for 

(A, - 1) - 4 (A, - A«) > 0 and A, - A- * 0. In order that P . at 0 = 0 is intermediate 

between a positive root P^ and a negative root P. of equation (13), there should be satis­

fied A - X < 0. P, and P are situated at 0 = arccot (- -r - -r A + ^ v^A) and at 

8 = arccot (- -r - -j A
2 ' "2 ^ ^ r e s P e c t i v e , y- where A = (A. - 1) - 4 (A - A ), 

The character of these points is listed in Table 14 and for A.. < 0. A. = 0 and A.. > 0 the 

(A A (-parameter plane is given in Figure 22. 

TABLE 14: Case 4IIc 

Point P, 

N 
SN» 

S 

Al 

-
0 

+ 

Point P , 

N 
N 
SN* 

S 

* higher or 

A. 

+ .0 
-
• 

ier point 

A4 

-
0 
+ 

Point P . 4 

S 

S 
SN* 
N 

A4 = A( + A 

A. 

-.0 
+ 

+ 

+ 

3<V" 

A4 

-
0 
+ 

9 
* 

>k//j / ///Arh ! 11111111 n /,•///1 /, 
k->=o 

' 

' 

M3 

U / ! ! \ 

^M<VX3> 

/////AfeM=*3 
Figure 22: Case 4I It: 



HI 

The phase portraits are listed in Table 15 and are drawn in Figure 23. 

It should be noticed that in phase portrait 8a P is a stable first order fine focus. If the 

parameters vary in such a way that P. becomes an unstable focus (portrait 7), exactly one 

stable limit cycle is generated out of P.. 

Numerical calculations strongly indicate that if the parameters are continued to vary in 

the same way, the limit cycle disappears in a separatrix cycle (portrait 6), which is 

indicated in Figure 22 by the dashed curve A. = f (A .;A-). 

Numerical calculations also indicate that the limit cycle in portrait 7 is unique and that 

the quadratic system has no limit cycles in all other portraits of Figure 23. 

Figure 23: Case 4 lie. 
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TABLE 15: Case 4IIc: X. - A, < 0 

Portrait 

1 

2 

3a 

3b 

4 

5a 

5b 

6 

7 

8a 

8b 

8c 
9 

10 

po 

N* 

N* 

N* 

N* 

N* 

N* 

N* 

N* 

N* 

N* 

N* 

N* 
N* 

N* 

P l 

S 

N 

F 

N 

F 

F 

F 

FF 

F 

N 

S 

P 2 

N 

N 

N 

N 

SN* 

S 

s 
s 
s 
s 
s 
s 
s 
s 

P 3 

N 

SN 

S 

S 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

P 4 

S 

S 

S 

S 

S 

S 

s 
s 
s 
s 
s 
s 
SN* 

N 

A . 

-
-
-
-

0 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

A 4 

_ 
0 

+ 

+ 

-
-
-
-
-
-
-
0 

+ 

\\-4X5 

+.0 

-

+,0 

-
-
-
-
-
+ .0 

X6 

-
-

+ 

+ 

+ 

+ 

0 

-
-

A2-f(A,;A3) 

+ 

0 

-

A4 = X[ + A3 (A3 " " V X5 = *A3 ' X2> Xl A 4 

A6 = [A,2 - A, (A3 - A 2 ) (A 3 - X2 + 2) - A3 (Aj - x/] X " 1 * ' 1 
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APPENDIX 1 

For system (12) in case 3IIb and the phase portrait for A. = /i = 0, A - A. = ji , > 0 

there should be determined whether the separalrices of the singular point with elliptic 

sector P. at infinity coincide with the equator of the Poincaré sphere (Figure 24a) or not 

(Figure 24b). 

Figure 24. 

To find out which one of the Figures 24a and 24b is the correct phase portrait a more 

detailed analysis of the singular point P . is needed. One may apply the Poincaré trans-

v 1 
formation u = - i , z = —. System (12) then becomes with A = 0. 

0 -1 2 
u ■ z (z + (1 - A.) u - uz 
z = z ( - A.uz - z - u2z). 

(Al.1) 

2 2 
dz - V 2 - z - u 2 

du . . . , 2 3 ' 
z + (1 - A.) u - uz - u 

(Al.2) 

where -A. = /*. > 0. 

The singular point P . of system (12) is transformed to the origin in system (Ai.2). The 



BS 

question which one of the phase portraits in Figure 24 is correct, is equal to the question 

whether the separatrices of the point with elliptic sector of system (Al.2), coincide with 

the positive and negative u-axis (Figure 25a) or not (Figure 25b). 

.— 

a 

Z 

V 
Figure 25. 

Blowing up the singularity in the origin by means of the transformation u = u, z = wu, 

yields, from (Al.2), 

dw 
du / i \ \ 2 3 2 

(I - A.) u + uw - u - u w 

(Al.3) 

The behaviour of the curves of (A1.2) in the 

first quadrant near the origin of the u,z 

plane is reflected in that of the curves of 

(Al.3) in the first quadrant of the u,w plane 

which is sketched in Figure 26. Because - j — 

is negative in the first quadrant near the 

origin, the singularity in (0,0) of system 

(Al.2) will not have a parabolic sector in the 

first quadrant as in Figure 25b. For the 

second quadrant of Figure 25b the same 
Figure 26. 
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argument may be used to exclude a parabolic sector. 

From the fact that the separatrices of the singularity in the origin of system (A 1.2) coin­

cide with the positive and negative u-axis (Figure 25a), one may conclude that the 

correct phase portraits of the original system (12) is given in Figure 24a. 
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APPENDIX 2 

For system (18) in case 4Mb the phase portrait for A = « = 0, A - A. = / J , < -1 cannot 

be found with standard arguments. It is not clear whether the separatrices of the singular 

point with elliptic sector P at infinity coincide with the equator of the Poincaré sphere 

(Figure 27a) or not (Figure 27b). 

Figure 27. 

To make a more detailed analysis of the singular point P . one may use the Poincaré 

y I 
transformation u = -^, z = —. System (18) then becomes with A = 0 

u = z (z + (l - A2)u2 - uz - u3), 

° -1 2 2 
z = z ( - A.uz - z - u z ), 

(A2.1) 

or 

. -A.uz - z - u z dz 2 
d u ~ „ . i, % \ 2 3 ' 

Z + ( I - A . ) U - U Z - U 

(A2.2) 

where -A. = n-< -I. 

The singular point P . of system (18) is transformed to the origin in system (A2.2). Just as 

in Appendix 1 the question that remains is: do the separatrices of the point with elliptic 
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sector in the origin of sysem (A2.2) coincide with the positive and negative u-axis 

(Figure 28a) or not (Figure 28b). 

Figure 28. 

Blowing up the singularity in the origin by means of the transformation u = u, z = wu. 

yields, from (A2.2) 

t -uw - w 
#. > \ 2 3 2 
(I - A.) u + u w - u - u w 

I A : . 3 ) 

The behaviour of the integral curves of (A2.2) in the fourth quadrant near the origin of 

the u,z-plane is reflected in that of the curves of (A2.3) in the fourth quadrant of the 

u,w-plane of which a qualitative sketch is given in Figure 29. 

a-z<u2<-i b U,<-2 

Figure 29. 
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It is not difficult to show for system (A2.3) that except along the u-axis and the w-axis, 

also in the direction w = (-1 - -= /»_) u integral path(s) are approaching the origin. 

Therefore, apart from the hyperbolic sector, a parabolic sector exists in the fourth 

quadrant of the u,w-plane and the u,z-plane if -2 < /*_ < - 1 . In the same way one can 

show that there is a parabolic sector in the third quadrant if -2 < /J . < -1 and thus the 

correct phase portrait for -2 < ft. < -I is Figure 27b. 

The O-isodine [-r- = 0] approaches the origin along the line u + w = 0 as a result of 

which it is not a priori certain, for / J . < -2 , whether or not there is a parabolic sector in 

the fourth quadrant tangent to the u-axis (Figure 29b). In order to answer this question a 

further 'blow up' is needed. By the transformation w = w u, u = u (A2.3) becomes 

dw (A, - 2) w. + uw. - 2w + uw 

~^~= , ' 2 L T - L • ' A 2 - 4 > 
( l - A . ) U - U + U W . - U W 

dw. 
Then it is easy to show that for ft. < -2 —-,— is positive in the fourth quadrant near the 

origin as a result of which there will be no parabolic sector in the fourth quadrant of the 

u,w-plane (Figure 29b) or in the u.z-plane (Figure 28a) for y.- < -2. In the same way 

one can show that there is no parabolic sector in the third quadrant of the u,z-plane for 

ft. < -2 and thus that Figure 27a gives the correct phase portrait if fi- < -2. 



QO 
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CHAPTER 3 

BOUNDED SEPARATRIX CYCLES IN QUADRATIC SYSTEMS 
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I. INTRODUCTION 

In this report bounded separatrix cycles in quadratic systems of differential equations 

x = a 0 0 + a 1 0 x + a 0 1 y + a 2 0 x 2 + a l l X y + a 0 2 y 2 H P(x-y»-

y = b00 + b 10 x + b 0 I y + b 2 0 x 2 + b l lXy + b 0 2 y 2 " Q f r ^ ' 

where • = —7- and a..,b.. € 3R, will be studied. In a survey paper [8] on general 

properties of quadratic systems Coppel states that what remains to be done is to deter­

mine all possible phase portraits of such systems. The present report aims to give a con­

tribution by giving several properties of bounded separatrix cycles in quadratic 

systems. 

First it will be proved that just five different types of bounded separatrix cycles can 

occur in a quadratic system. For (almost) each of these types conditions will be deduced 

to determine the stability of the separatrix cycle. 

Another question that will be answered is what types of singular points may be sur­

rounded by each type of separatrix cycle. 

The most difficult problem that will be treated is the question whether a separatrix 

cycle may surround one or more limit cycles. This question is related to the second part 

of Hubert's sixteenth problem [13]: find the maximum number of limit cylces in a 

polynomial system of differential equations of degree N. The question whether for a 

given polynomial system the number of limit cycles is finite, was taken up by Dulac 

[12], but some doubt has risen with respect to the validity of all of his proofs. 

Recently Bamón [4] gave a proof that the number of limit cycles in a given quadratic 

system is finite. The essence of the problem is to show that an accumulation of limit 

cycles towards a separatrix cycle is not possible. The first step was set by Chicone and 

Shafer [7], who showed that a bounded separatrix cycle in a quadratic system sur­

rounds at most finitely many limit cycles. This raises the question, also mentioned by 
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Chicone and Shafer [7], whether a separatrix cycle in a quadratic system at all can 

surround one or more limit cycles. An affirmate answer was given by Bamón [3] by 

giving an example of a class of quadratic systems, with a separatrix cycle with at least 

one limit cycle in its interior. In a paper by Drachman, van Gils and Zhang Zhi-fen 

[11] an example is given of a class of quadratic systems with exactly one limit cycle 

surrounded by a separatrix cycle. 

In the present report an example will be given of a separatrix cycle which surrounds 

at least two limit cycles. 

The presentation of this report is as follows. In section 2 some definitions and lemmas 

will be given that are needed in the following sections. In section 3 a survey will be 

given of all types of bounded separatrix cycles that possibly may occur in quadratic 

systems. In the sections 4, 5, 6 and 7 examples will be given of the five possible types 

of bounded separatrix cycles and for each type the questions mentioned in the begin­

ning of this section will be treated. In the last section also an example is given of an 

unbounded separatrix cycle which surrounds at least two limit cylces. 

2. SOME DEFINITIONS AND LEMMAS 

As a preparation for the lemmas given in this section it is necessary to give some 

definitions. 

According to [ 1 ] one may divide the neighbourhood of a singular point of a quadratic 

system in several regions each being of one of the following three types: parabolic, 

elliptic or hyperbolic. 

Definition 1. A separatrix is a trajectory, entering or leaving a singular point, which 

forms the boundary in the neighbourhood of the singular point of two regions of 

which one is hyperbolic. 
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Definition 2. A separatrix cycle is a simple closed curve composed of singular points 

and separatrices, which is the limit continuum for all trajectories in the neighbourhood 

of the separatrix cycle in the region surrounded by the separatrix cycle. 

The fact that a separatrix cycle is defined here as a limit continuum for trajectories 

inside the separatrix cycle excludes the possibility that a separatrix cycle can surround 

a center. The cycles surrounding a center can be found in Vulpe's classification of 

quadratic systems with a center [22J. 

Definition 3. A bounded separatrix cycle is a separatrix cycle situated in the finite 

part of the plane. 

It should be emphasized that in this report the word 'limit cycle' stands for a simple 

limit cyle. 

Lemma 1 (Tung's lemma [8]). 

For a quadratic system the total number of singular points and contact points on a 

straight line L is at most two. 

Proof. Let L be the line ( J = [ a J + ' X l b J wh*re *■ e R a n d consider a qua­

dratic system x = P(x,y), y = Q(x,y). If one substitutes x = a. + Ab. and y = a. + Ab., 

in the equation b--P(x,y) - b.»Q(x,y) = 0 to find the singular points and the contact 

points, the result is that an equation in A of at most second degree is obtained. So the 

total number of singular points and contact points is at most two. 

Lemma 2. 

A bounded separatrix cycle of a quadratic system contains either one, two or three 

singular points. 
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Proof. Since P(x,y) and Q(x,y) of equation (1) are conies, a quadratic system has at 

most four finite singular points. If a quadratic system has a bounded separatrix cycle, 

exactly one singular point is situated inside this separatrix cycle (see [7]). So the sepa­

ratrix cycle may contain at most three singular points. 

Lemma 3. 

In a quadratic system both the interior of a limit cycle and of a bounded separatrix 

cycle are convex regions. 

Proof. If the region R surrounded by the limit cycle or the bounded separatrix cycle 

is not convex, there are two points in R such that the line segment between them 

contains a point outside R. This implies that the line through these three points has at 

least three points of contact or singular points. That is in contradiction with lemma I. 

Lemma 4. 

If a bounded separatrix cycle of a quadratic system contains two singular points P. and 

P. then the line segment between P and P. is part of the separatrix cycle. 

Proof. According to lemma 3 the interior of a bounded separatrix cycle is convex. 

Hence, the line segment between P and P. is either a part of the separatrix cycle or 

lies in its interior. However, the line segment between P. and P, cannot be part of the 

interior of the separatrix cycle since that would imply that some trajectories inside the 

separatrix cycle intersect the line segment twice and that there is a point of contact on 

P .P . . That is in contradiction with lemma I. Thus the line segment P P . must be part 

of the separatrix cycle. 
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Lemma 5. 

If a quadratic system has finitely many finite singular points, the sum of the orders of 

these singular points is at most four. 

Proof. Trivial, since P(x,y) = 0 and Q(x,y) = 0 in equation (I) are conies. 

Lemma 6. 

A singular point on a bounded separatrix cycle of a quadratic system can only be one 
of the following types: 

(1) saddle point, order 1; 

(2) saddle node, order 2, one eigenvalue zero; 

(3) saddle point, order 3, one eigenvalue zero. 

Proof. According to definitions I and 2 a singular point on a bounded separatrix 

cycle must have at least one hyperbolic sector bounded by two separatrices. It is clear 

that a first order saddle point is the only first order point to satisfy this condition. 

A classification of higher order singular points in quadratic systems yields the 

following types of points [17]: 

If the divergence in the singular point is zero: 

(i) saddle point, order 4; 

(ii) saddle point, order 3; 

(iii) point with elliptic and hyperbolic sector, order 3; 

(iv) cusp point, order 2. 

If the divergence in the singular point is unequal to zero: 

(i) saddle node, order 4; 

(ii) saddle, order 3; 

(iii) node, order 3; 

(iv) saddle node, order 2. 
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Fourth order saddle nodes are excluded as singular points on a bounded separatrix 

cycle, since they are, according to lemma 5, the only singular point in a quadratic 

system and a separatrix cycle should contain another singular point in its interior. 

According to the classification of quadratic systems with a third order singular point 

with divergence zero, [17], [18], a bounded separatrix cycle will never contain a third 

order saddle point or a point with elliptic sector. 

The cusp point is also excluded because in its neighbourhood the behaviour of the 

separatrices is such that they cannot be part of a separatrix cycle since this needs to be 

convex (see [15]). Obviously the third order node will never be part of a separatrix 

cycle since it has no hyperbolic region. 

Lemma 7. 

Suppose a quadratic system has a bounded separatrix cycle. Suppose the parameters of 

the system can be varied in such a way that in every nonsingular point of the sepa­

ratrix cycle the vector field either does not rotate or rotates in either clockwise direc­

tion all along the cycle or anti-clockwise. Then the parameters of the system can be 

changed such that the separatrix cycle disappears and that at least one limit cycle is 

generated out of the separatrix cycle. 

Pnxif. Suppose a quadratic system has a bounded separatrix cycle S. Without loss of 

generality one may assume that S is stable and that the direction of the vector field is 

as given in Figure 1. Although the separatrix cycle S in Figure 1 contains exactly one 

singular point, which is a saddle point, it is not relevant for the proof, that holds for 

every bounded separatrix cycle. 
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Since S is stable it is clear that a closed 

curve T. may be drawn inside S, such that 

all trajectories that intersect T. do so from 

the inside of r to the outside. 

Now suppose that the parameters of the 

quadratic system are changed in such a 

way that the vector field on the non- Figure I. 

singular points of S either does not rotate or rotates to the right. Then the nonsingular 

points that formed S in the original system, form a curve V. such that all trajectories 

that intersect T. enter the region surrounded by T. (Figure 2). 

The separatrix cycle S has disappeared 

and, if the change of the parameters is 

small enough, the curve T. is still a curve 

without contact with flow from the inside 

towards the outside. 

Now according to the Poincaré-Bendixon 

theorem one may conclude that the region 

between T. and r . contains at least one limit cycle L. 

Figure 2. 

Lemma 8, 

Let P be a saddle point in a quadratic system and let L and M be the tangents to the 

separatrices in P. Then L and M are either a trajectory or a line without contact (i.e. 

all trajectories intersect the line either from left to right or from right to left). 

Proof. P may be taken in the origin, then the quadratic system can be brought into 

the normal form ([1], p. 134) 

1 0 
x * A | x + a 2 ( ) x * a | | x y + a 02 y = ^ x , y ' ' 
y = A2y + b2()x + b n x y + b0 2y = Q(x,y). 
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where the x-axis and the y-axis are the tangents to the separatrices in P. 

Along the y-axis holds P(0,y) - a-.y . So if a... ■ 0 the y-axis is a trajectory and if 

a». * 0 the y-axis is a line without contact. Similarly it can be shown that the x-axis 

is a trajectory if b . . = 0 and a line without contact if b~_ # 0. 

Lemma 9. 

For a quadratic system the following proposition holds. Consider a line segment PR 

and let Q be a point on PR. If the segment 

PR contains no singular points and the 

trajectories intersect segment PR in P and 

Q in the same direction but in R in 

opposite direction then all trajectories 

intersect segment PQ in the same direction 

(Figure 3). Figure 3. 

Proof. Suppose there is at least one point S on the segment PQ where the trajectory 

intersects segment PR in the same direction as in R. Because the vector field of the 

quadratic system varies continuously along segment PR, there must be at least one 

contact point on each of the segments PS, SQ and QR. However, this is in contra­

diction with lemma 1, so all trajectories intersect PQ in the same direction. 

Conjecture I. 

In a quadratic system a singular point may be surrounded by at most three limit cycles. 

Although a proof of this conjecture is not known it seems highly improbable that a 

quadratic system may have a nest of four or more limit cycles. In several papers this 

conjecture has been made (see [9], [24]). 

A more detailed form of this conjecture states that in a quadratic system a third order 

fine focus cannot be surrounded by limit cycles, a second order fine focus by at most 
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one limit cycle, a first order fine focus by at most two limit cycles and a strong focus 

by at most three limit cycles. However, until now the only thing that has been proved 

completely is that a third order fine focus is never surrounded by a limit cycle [19]. 

3. THE FIVE TYPES OF BOUNDED SEPARATRIX CYCLES 

Theorem 1. 

There are five types of bounded separatrix cycles which may occur in a quadratic 

system: 

S.: a separatrix cycle with one singular point: a first order saddle point; 

S-: a separatrix cycle with one singular point: a second order saddle node; 

S ■ a separatrix cycle with one singular point: a third order saddle with nonzero 

divergence; 

S.: a separatrix cycle with two singular points: two first order saddle points; 

S • a separatrix cycle with two singular points: a first order saddle point and a 

second order saddle node. 

Figure 4. 
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Proof. According to lemma 2 a bounded separatrix cycle contains either one, two or 

three singular points. In [10] Dong Jinzhu showed that a bounded separatrix cycle, 

according to the definition given in section 2, which contains three singular points 

does not occur in quadratic systems. So a bounded separatrix cycle contains either one 

or two singular points. 

If it contains just one singular point then, according to lemma 6, it can be only a first 

order saddle, a second order saddle node or a third order saddle. 

Since a separatrix cycle surrounds one first order singular point (see [7]) it is clear 

from the lemmas 5 and 6 that a separatrix cycle which contains two singular points, 

must contain either two first order saddle points or a first order saddle point and a 

second order saddle node. According to lemma 4 the line segment between the two 

singular points on the separatrix cycle is part of the separatrix cycle. 

That all types can be realized will be shown in the following sections by giving 

examples of quadratic systems with separatrix cycles of each type. 

4. BOUNDED SEPARATRIX CYCLES WITH ONE SINGULAR POINT: 

A FIRST ORDER SADDLE POINT 

Theorem 2. 

A quadratic system can have a bounded separatrix cycle with a first order saddle point 

(S,). 

(i) This S. surrounds either a strong focus, a first order fine focus or a second 

order fine focus. 

(ii) The region surrounded by the S. can contain at least uptil two limit cycles. 

(iii) A S. is stable (unstable) of the divergence of the saddle point on the Sf is 

negative (positive). 

(iv) On the condition that conjecture I is true, a S. cannot surround more than 

two limit cycles. 
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Proof. First part (i) and part (ii) will be proved by giving examples of such quadra­

tic systems. These quadratic systems are given in lemma 10. 

Lemma 10. 

Consider the system 

x = A x - y + (1 + A.) x + bxy + y s P(x,y), 

V = x + -^ x2 + (4b - 2) xy = Q(x,y). 
(2) 

For all A and A., with | A | << 1 and | A | « 1, there exist a value of b e [2-r,IO] 

such that system (2) has a S 

This lemma will be proved using the following five properties. 

Property I. 

System (2) has two singular points: P.(0,1) and P.(0,0). P is a saddle point and 

div (P(0,1),Q(0,1))>0. P . is a (fine) focus wherein the four focal values are given by 

div (P(0.0),Q(0,0)) = A 

V, = -A2(l - b ) 

- 7 - i b + 2 - i + A 2 ( ) *\ b + A2( ) 
2 = ,1 (-i + (2 + A2)2)2 \,(2* A2)2 

i ^ b + A2( ) 
- 5 

"4 ♦ (2 + A / 

V3 > 0 for b = 2j and A! = A2 = 0. 

Proof. It is easy to show that there are just two singular points and to find the topo-

logical structure of these points. With the expressions given in [5) the four focal values 

in P. may be calculated. 
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Properly 2. 

If b e <2-r ,10>, A. < 0, A. > 0 and | A | « | A.| « 1 system (2) has at least two 

small limit cycles, surrounding P. . 

Proof. If b, A and A satisfy the conditions mentioned above, then, according to 

property I, div (P(0,0),Q(0,0)) < 0, V. > 0 and V, < 0. These conditions are suffi­

cient to have at least two small limit cycles surrounding P. (see [5]). 

Properly 3. 

Let L. and L? be the tangents to the a-separatrix and the w-separatrix in P . , respec­

tively. Let L, be the line y = -= ; i . Let P, be the point of intersection of L. and 
5 I - 4b i I 

L, and let P. be the point of intersection of L. and L... Then the a-separatrix inter­

sects segment P->P, in point A and the m-separatrix intersects the segment P->P, in 

point B. Both points A and B lie within the triangle P ,P ,P d (Figure 5). 

Proof. It is easy to show that L and L . 

are not trajectories. From lemma 8 it 

follows that L and L . are lines without 

contact. 

Along the horizontal line L . holds 

Q(x, 2 ' ) = j x > 0. It may then 

easily be seen that the a-separatrix start­

ing at P into the triangle ?.?JP. must 

cross the y-axis on the interval 

< 2 . AU .0> and subsequently a point of 

segment P 2
P v Similarly it can be shown 

that the w-separatrix intersects P,P, . 
Figure 5. 
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Properly 4. 

If b = 2-4 and A. = A. = 0 then P^A > P-B 

(Figure 6). 

Proof. Instead of system (2) we will use the 

equivalent system 

x = - 108y + lOx2 + 25xy + 10y2 s P(x,y), 

y = 108x + 5x2 + 80xy 
(3) 

* Q(x,y). 

It is possible to construct a closed curve K. : Figure 6. 

P.Q.Q,Q,P. i n s u c n a w ay t n a t a " trajectories that intersect K move out of the 

region surrounded by K . for increasing values of t. 

Part I: P Q In system (3) Pj is in (0.107) and Qj is taken in (-105,9790000). The 

line segment P ,Q, is given by x = -10 p, y = 10 - 210000 n with ii € <0.1] and 

the vector field on the segment P.Q. by 

P = 109 (1066 fi2 - 46000/i). 

Q = I09 (1730 n1 - 90000/i). 

It is easy to show that all trajectories intersect 

line segment P.Q. from right to left. 

Part 2: Q,Q2- Q j ^ 'S a P^^onal arc with 

233 points where Q is the first point and Q2 

(1233854,4200646) is the last point. This 

polygonal arc will be constructed using the 

following algorithm: 

Let R be the vector in Q. which is obtained 
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by rotating the vector (P,Q) in Q. a small angle in counter-clockwise direction. Let L 

be the line x = x„ + nR with ) i e R . Then find a n and a p. (with 0 < /i. < / J . ) 

such that the trajectories intersecting L in the points where /* = 0 and ft = fi. do so in 

the same direction, and in the point where \i « /*« in opposite direction (Figure 7). 

The point on L where /i = n., is the second point of the polygonal arc and, according 

to lemma 9, all trajectories intersecting the segment of L corresponding to 0 < y. < p. 

do so in the same direction. This procedure is then repeated starting in the point where 

fi = ft. and continued till point Q. near L . is reached. For this calculation computer 

program 1 (appendix 1) is used which executes this algorithm in such a way, that all 

calculations are made with integers, so that rounding off errors will not occur. Thus in 

232 steps a polygonal arc with 233 vertices was constructed, such that all trajectories 

intersecting the polygonal arc do so in the same direction. 

Part 3: Q 2Q,. Let L . be the line through Q. given by x = 1233854 - 109 /i, 

y = 4200646 + 543 /i with /i e R. Let Q. be the point of intersection of L . with L . 

(for Q : n = 164674/35). Along L . the vector field is given by 

P= -98811778151580 - ^-6067978460 + /i2-1587625, 

Q = 545636088041300 - /M724083780 - / J 2 - 4 6 7 5 5 5 5 . 

It is easy to show that all trajectories intersect segment Q J Q T *"rom l e f l I 0 right. 

Part 4: Q^P.- Segment Q3P1 'S a part of line L-. In property 3 it has already been 

shown that all trajectories intersect L . from left to right. 

With the help of property 3 it can easily be shown that the oi-separatrix lies within 

the region surrounded by K and that the Q-separatrix lies outside this region, thus 

P2A > P2B. 
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Property 5. 

If b = 10 and X = A = 0 then P.A < P-B 

(Figure 8). 

Proof. Instead of system (2) we will use the 

equivalent system 

x = -108y + 10x2 + lOOxy + 10y2 s P(x,y), 

y = 108x + 5x2 + 380xy 
(4) 

= Q(x,y). 

It is possible to construct a closed curve K.: Figure 8. 

P .Q .Q .P .P in such a way that all trajectories that intersect K- move into the region 

surrounded by K, , for increasing values of t. 

Part 1: P Q In system (4) P. is in (0,107) and Q is taken in (50000,9349500). The 

line segment P.Q. is given by x = 50000 /i, y = 10 - 650500 \x with /J 6 <0.l] and 

the vector field on the segment P.Q. by 

P = 1 0 5 (10040025 fi2 - 150500000^), 

Q = 105 (-123470000 n2 + 1950000000/1). 

It is easy to show that all trajectories intersect line segment P.Q. from right to left. 

Part 2: Q.Q-,- Q iQi is a P°'y8°nal arc with 118 points. Just as is mentioned in 

property 4 a similar polygonal arc, starting in Q is constructed. In 1 I 7 steps a poly­

gonal arc was constructed, such that the last vertex lies below the line L,. The point 

Q, will be taken in the point of intersection of this polygonal arc and L.. For the 

calculation of the polygonal arc Q ,Q 2 computer program 2 is used (appendix I). It is 

obvious that all trajectories intersect Q i Q 2 ^ ro rn fight to left. 
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Part 3: Q .P . and P.P. . These two line segments are parts of the lines L^ and L. . In 

property 3 it has already been shown that all trajectories that intersect the segments 

Q .P . and P4P,. move into the triangle p . P 4 P i f° r increasing values of t. 

With the help of property 3 it can easily be shown that the a-separatrix lies within 

the region surrounded by K . and that the w-separatrix lies outside this region, thus 

P2A < P2B. 

Conclusion. If the parameters b, A. and A- vary then A and B shift continuously 

along the segment P 2
p v F r o m properties 4 and 5 it follows that if b increases from 

2-z to 10 (and A = A = 0 for b = 2-^ and b = 10) there must be at least one 

b e <2-_- ,10> where P. A = P.B and thus system (2) has a S . . 

Now it is easy to proof part (i) of theorem 2. If A = A. ■ 0 one may increase b from 

b = 2"2 to b = 10. For at least one value of b system (2) has a S.. During this varia­

tion of b the singular point P . is a second order fine focus (according to property I) 

and so an example is given of a S. which surrounds a second order fine focus. In the 

same way one may show that if b increases from b = 2-r to b = 10 and A. = 0, A < 0 

and | A | << 1 that for at least one value of b a S. appears which surrounds a first 

order fine focus. Finally an example of a S. which surrounds a strong focus may be 

given increasing b from b = 2-r tob = 10, while A. < 0, A. > 0, | A | « | A | « 1. 

To proof part (ii) of theorem 2 system (2) in lemma 10 may also be used since the 

example above of a S. which surrounds a strong focus satisfies the conditions mention­

ed in property 2. So at the same time it is an example of a quadratic system with a S( 

which surrounds (at least) two limit cycles. 

It may be noted that examples of systems with a S. which surrounds exactly one or no 

limit cycles are already known (see [3], [10]). 
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The proof of part (iii) of theorem 2 is simple since it is known (p. 304 in 12]) that, if 

the separatrices of a singular point form a separatrix cycle, it is stable (unstable) if the 

divergence in the singular point is negative (positive). 

A complete proof of part (iv) is not known. However, the following arguments indi­

cate strongly that part (iv) is true. 

Suppose that a quadratic system has a S. which surrounds three or more limit cycles. 

Then the parameters of the system may be changed, in such a way that the vector field 

rotates in every nonsingular point in the same direction. One way to achieve such a 

bifurcation is to take quadratic system (1) and to consider the system 

x * cos a . P(x,y) + sin a • Q(x,y), 

y - cos a • Q(x,y) - sin a • P(x,y). 

It is easy to check that for a = 0 system (5) equals system (1) and that a change of the 

parameter a gives a rotation of the complete vector field. According to lemma 7 the 

bifurcation of a may be done in such a way that the S. disappears and that at least one 

limit cycle appears. Since a small change of a does not change the number of limit 

cycles already surrounded by the S., it results in a nest of at least four limit cycles. 

This however is in contradiction with conjecture 1. 

Now one could ask the question whether a S. in a quadratic system can surround a 

third order fine focus. Although a complete proof is not known, it seems to be impos­

sible. First it may be noted that for a special class of quadratic systems the answer is 

no. Liang Zhao Jun proved in [20] that a quadratic system, with a third order fine 

focus, transformed into the normal form given in [23], p. 350, has no separatrix cycle 

surrounding the fine focus, for n - 0. 

Another indication is that a third order fine focus is never surrounded by a limit 

cycle, as has been proved independently by Cerkas [6] and Li [19]. Since a separatrix 
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cycle surrounding a third order fine focus can be seen as a limiting case of a quadratic 

system with a third order fine focus surrounded by a limit cycle, it seems to be 

impossible. 

A third argument that a S. would never surround a third order fine focus would be 

the following one. Suppose a quadratic system has a S. which surrounds a third order 

fine focus. Then one can change the parameters such that the singular point remains a 

third order fine focus. Within this class of parameter changes it seems to be possible 

that simultaneously the S. disappears generating at least one limit cycle (see lemma 7). 

However, the result would be a quadratic system with a third order fine focus, 

surrounded by at least one limit cycle. This is in contradiction with the proofs of 

Cerkas[6]and Li [19]. 

5. BOUNDED SEPARATRIX CYCLES WITH ONE SINGULAR POINT: 

A SECOND ORDER SADDLE NODE 

Theorem 3. 

A quadratic system can have a bounded separatrix cycle with one singular point: a 

second order saddle node (S_). 

(i) A S. can surround one limit cycle and it is highly improbable that it can 

surround more than one limit cycle. 

(ii) A S. can surround a strong focus or a first order fine focus. It seems impos­

sible that a S- surrounds a second order fine focus and it is impossible that it 

surrounds a third order fine focus. 

(iii) A S- is stable (unstable) if the divergence of the saddle node on the S- is 

negative (positive). 

Proof. In order to proof part (i) of theorem 3 one may consider the following 

quadratic system 
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x - Ax - y + A.x + 4xy + y , 
2 y - x - x - xy 

(6) 

where 0 < A « 1 and - -? < X. < - -r . 

System (6) has the following properties. There are three singular points in the finite 

part of the x,y-plane: a second order saddle node in PQ(0,1), a stable focus in 

P,((->, - 3X>2 " 3)~' . (*i + * 2
) ( A2 " 3 ) l ) a n d a ( f i n e ) f o c u s p 2 i n l h e o r ' 8 i n - 0 n e 

may use the focal values as given in [5] to show that P~ is an unstable focus if A. > 0, 

a stable first order fine focus if A = 0 and X. < - - r and an unstable second order 

fine focus if A. « 0 and A, - --_-. 

At infinity system (6) has just one singular point: a saddle point which is situated in 

the second and fourth quadrant. 

Now the proof of theorem 3 will be completed by using the lemmas 11 and 12. 

1 

Lemma II. 

For A. = 0 and A, = --_- the phase 

portrait of system (6) is as given in Figure 

9. It should be noted that it is not decided 

whether there are limit cycles surrounding 

P. and/or P . or not. Figure 9. 

Proof. Using the mentioned properties of system (6) and the general properties of 

quadratic systems one may draw the phase portrait in Figure 9 apart from the fact 

that it is still necessary to show that the left a-separatrix of P„ has the indicated posi­

tion relative to the u-separatrix of P„. 

It is also not known whether there are limit cycles surrounding P. and/or P.. 

The first problem may be solved by constructing a polygon without contact. This poly­

gon which begins on P.P 2 and ends at y = I - 4x consists of 47 vertices is constructed 



I l l 

in such a way that all trajectories which 

intersect the polygon do so in the same 

way (see Figure 10). Because the left 

a-separatrix of P„ can not intersect the 

polygon, it must intersect the line without 

contact y = 1 - 4x and then tend in the 

direction of P.. The list of the 47 vertices Y=1-4X 

Figure 10. 
of the polygon is given in Table 1. One 

may note that it is a lot of work to check by hand that all trajectories intersect the 

polygon as suggested in Figure 10. However, one may check the polygon easily by 

using a Computer Algebra System like for instance Macsyma. 

The second problem is to show that the phase portrait in Figure 9 has no limit cycles. 

Although a proof for the nonexistence of limit cycles cannot be given, there are 

several indications that there are no limit cycles. 

There is one numerical argument. Computer calculations strongly indicate that the left 

Q-separatrix of PQ tends to P. and that the w-separatrix tends to P. instead of tending 

to a limit cycle which surrounds P.. 

An analytic argument that there are no limit cylces surrounding P. is the following 

one. Suppose there are limit cycles surrounding P. . Since the left a-separatrix of PQ 

tends in the direction of P. and P. is a stable focus the number of limit cycles is even. 

Thus there are at least two limit cycles surrounding P.. Because P. is a second order 

fine focus one may bifurcate the parameters of the quadratic system (6) such that P, 

becomes a focus and generates two limit cycles. This would be an example of a 

quadratic system with a (2,2) limit cycle configuration (or even more limit cycles). 

But a quadratic system with a (2,2) limit cycle configuration seems highly improbable. 

In [24] an attempt has been made to proof the impossibility of the configuration. 

However, this proof is not complete (yet). 

One may use almost the same arguments for the nonexistence of limit cycles 
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TABLE 1. 

X 

0 
-.2149 
-.4919 
-.7252 
-.9087 

-1.0487 
-1.154 
-1.233 
-1.2923 
-1.3367 

-1.3696 
-1.393 
-1.4088 
-1.4181 
-1.4214 

-1.4189 
-1.4105 
-1.3955 
-1.3727 
-1.3406 

-1.2966 
-1.2374 
-1.1587 
-1.0547 
-.9193 

y 

.8 

.7763 

.7148 

.6356 

.5502 

.4655 

.3849 

.3096 

.2395 

.1738 

.1117 

.053 
-.0036 
-.059 
-.1138 

-.1686 
-.2241 
-.2816 
-.3419 
-.4054 

-.4733 
-.5462 
-.6243 
-.7073 
-.7932 

X 

-.7499 
-.5529 
-.3486 
-.1672 
-.0266 

.0731 

.1446 

.1964 

.235 

.2645 

.2882 

.3079 

.3246 

.3389 

.3513 

.3621 

.3713 

.3792 

.3849 

.3871 

.3813 

.3407 

y 

-.8765 
-.9481 
-.9981 

-1.0221 
-1.0253 

-1.0168 
-1.003 
-.9871 
-.9706 
-.9541 

-.9375 
-.9205 
-.9028 
-.8842 
-.864 

-.8416 
-.8162 
-.7851 
-.7459 
-.6911 

-.5999 
-.3628 
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surrounding P Suppose there are limit cycles surrounding P.. Since the w-separatrix 

of P„ tends in the direction of P. and P. is an unstable second order fine focus the 

number of limit cycles is even. This would be an example of a quadratic system with a 

second order fine focus which is surrounded by at least two limit cycles. Then one 

could change the parameters of the quadratic system such that the second order fine 

focus becomes a focus and generates two limit cycles. That would give a nest of at least 

four limit cycles. That is in contradiction with conjecture I. 

Lemma 12. 

For A. = 0 and A. = - -g the phase 

portrait of system (6) is as given in Figure 

11. The w-separatrix of P. coincides with 

the straight line y = 1 - 4x for x > 0 and 

the system has no limit cycles. 

Proof. Using the properties of system (6) and the straight line solution y « I - 4x it is 

easy to draw the phase portrait in Figure 11. From [23] it is known that a quadratic 

system with a first order fine focus and a straight line solution has no limit cycles. 

Using the lemmas 11 and 12 it is clear that if the parameters of system (6) are varied 

from A = 0 and A. = --r to A * 0 and A, = —j for at least one value of the para­

meters during this variation the left a-separatrix of P. and the w-separatrix of P„ 

coincide and form a S. since they shift continuously during the variation. The varia­

tion of the parameters may be performed in such a way that A becomes positive just 

before the separatrices of P. from the S . That implies that P . becomes an unstable 

focus and generates exactly one (small) (stable) limit cycle. Then, if the parameters are 

varied further, the separatrices of P. form a S. which surrounds the small limit cycle. 

So, for specific values of the parameters system (6) has a S. which contains a second 

Figure 11. 
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order saddle node and surrounds at least 

one limit cycle (see Figure 12). 

It may be noted that if A equals zero 

during the parameter variation from 

V ° ' A 2 - 2 . o A , = 0 , A 2 = - i P2 

is a first order fine focus and so an 

Figure 12. 

example is given of a S- which surrounds a first order fine focus. 

The question remains whether a S, may surround more than one limit cycle. Although 

a proof is not known it seems to be impossible. It is clear that this question is closely 

related to the question whether a S, may surround a second order fine focus. That 

however, seems to be impossible, according to part (ii) of theorem 3, which will be 

discussed now. 

The first part of the proof of part (ii) of theorem 3 is easy since examples of quadratic 

systems with a S, which surrounds a strong focus or a first order fine focus have 

already been given in the proof of part (i). 

The second part is harder to show. Firsi i( will be shown that a S. cannot surround a 

third order fine focus and then an indication will be given that it is most unlikely 

that a S- can surround a second order fine focus. 

Suppose a quadratic system has a S, which surrounds a third order fine focus. Without 

loss of generality one may assume that the saddle node is situated in the origin and that 

the quadratic system has the following form (see [17]) 

2 2 „, . 
x - a2Qx + a n x y + a0 2y = P(x,y), 

2 2 
y = y + b2Qx ♦ b n x y + b0 2y = Q(x.y), 

(7) 
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where a.Q e ]R/{0) and a i i 'a02 , b20*bl 1 , b02 G ** W i t h o u t 'oss of generality we may 

further suppose that the third order fine focus is situated in (1,1). The parameters 

have to satisfy the following conditions 

«1,1) = a 2 0 + a n + a 0 2 - °1 

0(1,1) = ' + b 2 0 + b l l + b 0 2 * 0 ; ( 8 ) 

Divergence (1,1)= 2a , . + a . . + 1 + b. . + 2bQ 2 = 0. 

Since the singular point in (1,1) is a fine focus it is possible to transform system (7) 

into the normal form, given in [5]. One has to apply the transformation x = 1 + y, 

y = 1 + Ax + y, where A is a positive parameter which satisfies the condition 

A2(2a20 + a n ) = - I (9) 

to yield this normal form. Then with a scaling of the variables and using the condi­

tions (8), the system can be put into the form 

x = - y + (A(b - a )) x - xy - - y , 
i . 2 - 2 1 - ( 1 0 ) 

y - x A aQ2x + -j xy 

It may be noted that there is always a value for the parameter A, satisfying condition 

(9), because it is known that the transformation to obtain the normal form can always 

be applied if the system has a fine focus (see [5)). Since the singular point in the 

origin of system (10) was supposed to be a third order fine focus, the first and second 

focal values have to be zero and the third one not. According to [5] these conditions 

give us the following relations between the parameters of system (10) 

-1 = 5A2a ; 
0 2 ( I I ) 

2- A 2 ( b 0 2 - a 0 2 ) . 
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Now from (11) it is clear that the para­

meter a . , in (7) must be negative. On the 

other hand it is known that the S, is con­

vex (as illustrated in Figure 13). Because 

the separatrices of the saddle node that are 

on S- are tangent to the x-axis and y-axis Figure 13. 

in the origin, the trajectories intersecting the positive y-axis do so as illustrated in 

Figure 13. That implies that P(0,y) = a . .y > 0. This is in contradiction with the fact 

that a . , must be negative, so the conjecture that a S. may surround a third order fine 

focus is false. 

The last part of the proof of theorem 3, part (ii) is the hardest. Suppose a quadratic 

system has a second order fine focus surrounded by a S-. Without loss of generality one 

may assume that the saddle node is situated in the origin, that the quadratic system has 

the normal form given in (7) and that the second order fine focus is situated in 

(l.l).Then the parameters have to satisfy the conditions given in (8). 

Since the singular part in (1,1) is a fine focus it is possible to transform system (7) into 

the normal form given in [5], by the transformation x = 1 + y, y = 1 + Ax + y, where 

A is a positive parameter which satisfies the condition 

" l " 2 a 2 0 + a l l : 

"2 = 2 b 20 + b i r 

(12) 

Then with a scaling of the variables and using the conditions (8) and (12) the system 

can be put into the form (10). 

It may be noted that there is always a value for A, satisfying condition (12), because it 

is known that the transformation to obtain the normal form (10) can always be applied 

if the system has a fine focus (see [5]). 
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Since the singular point in the origin of system (10) was supposed to be a second order 

fine focus, the first focal value has to be zero and the second one does not equal zero. 

According to (5] these conditions give us the following necessary condition 

1 - * 2 < b 0 2 - a 0 2 ) " A 4 * a 0 2 ( a l ! + 2 b 0 2 ) - (13) 

Since the saddle node is situated in the 

origin and the fine focus in (1,1) in 

system (7), the convex separatrix cycle is 

completely situated in the first quadrant 

of the x,y-plane, as illustrated in Figure 

14. Because the separatrices of the saddle Figure 14. 

node that form the S2 are tangent to the axis in the origin, the trajectories intersecting 

the y-axis do so as drawn in Figure 14. That implies that P(0,y) = a- .y > 0. 

Now one may find the stability of the second order fine focus by calculating the focal 

values as given in [5], By using the conditions (11), (12) and (13) one may compute 

that the second focal value L(2) equals 

L(2) = 
-, %5 3 - 2 A a Q 2 '20 

((A(b02 - aQ2) - \ )2 + (A2a02)"> ' v-20 •-,/ - ,-, - 0 2 v V 2 ( a ™ - M,) - /*, a 
.-ü.ri-0,0. 

"02 

Thus the second order fine focus is unstable as illustrated in Figure 14. 

Using part (iii) of theorem 3 it is clear that the S- in unstable and according to the 

Poincaré-Bendixon Theorem there is at least one limit cycle inside the S-. Altogether 

it means that if a quadratic system has a S, which surrounds a second order fine focus, 

it simultaneously surrounds at least one limit cycle.Now it is easy to show that if a 

quadratic system has a second order fine focus surrounded by a S-, it can be 

bifurcated such that a nest of at least four limit cycles appears. This bifurcation can be 

made in the following way. Suppose the quadratic system is put in the normal form 
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given in [5], 

First one can bifurcate the system such that the saddle node disappears. Of course the 

S. also disappears, generating one limit cycle. This bifurcation can be done in such a 

way that the second order fine focus remains a second order fine focus. 

Then one can change the parameters such that the second order fine focus becomes a 

strong focus generating exactly two small limit cycles. Together with the limit cycle(s) 

which was in the original system and the limit cycle which was generated out of the 

5 . the system has a nest of at least four limit cycles. 

However this is in contradiction with conjecture I, so it seems unlikely that a S? can 

surround a second order fine focus. 

The proof of part (iii) of theorem 3 is simple since the argument can be used (p. 304 

in [2)) that, if the separatrices of a singular point form a separatrix cycle, it is stable 

(unstable) if the divergence in the singular point is negative (positive). 

6. BOUNDED SEPARATRIX CYCLES WITH ONE SINGULAR POINT: 

A THIRD ORDER SADDLE POINT WITH NONZERO DIVERGENCE 

Theorem 4. 

A quadratic system may have a bounded separatrix cycle which contains a third order 

saddle point with one zero eigenvalue (SJ. 

(i) The region surrounded by a Sj cannot contain a limit cycle. 

(ii) A S.. is stable (unstable) if the divergence in the saddle point is negative 

(positive). 

(iii) A S. surrounds a strong focus. 

Proof. It is no problem to give an example of a quadratic system with a S.. In the 

classification of quadratic systems with a third order saddle point [16] several phase 

portraits are given with a S v 
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The first part of theorem 4 may be proved as follows. Suppose a quadratic system has a 

S? which surrounds at least one limit cycle. Then one can rotate the vector field in the 

same way as in (5). According to lemma 7 this rotation can be performed in such a 

way that the S. disappears and that at least one limit cycle is generated. It is clear 

that, under the condition that the change of the parameters is small enough, the limit 

cycles which were inside the S, in the original system, do not disappear. It can also be 

shown that the third order saddle does not disappear as a result of the bifurcation. 

Thus the bifurcated system has at least two limit cycles and a third order saddle point. 

However, this is in contradiction with the fact that a quadratic system with a third 

order saddle point has at most one limit cycle, as has been proved in [9J. 

The proof of part (ii) of theorem 4 is simple using the argument (p. 304 in [2]) that, 

if the separatrices of a singular point form a separatrix cycle, it is stable (unstable) if 

the divergence in the singular point is negative (positive). 

Part (iii) of theorem 4 may be proved as follows. According to [8] a separatrix cycle 

surrounds either a strong focus or a fine focus. In [16] it was shown that a quadratic 

system with a third order saddle point with one eigenvalue zero may have a fine focus 

of at most order one. Now it will be shown that such a quadratic system with a first 

order fine focus cannot have a Ŝ  around it. 

Suppose a quadratic system has a S. which surrounds a first order fine focus. One may 

put the system in the normal form as given in [5]. Without loss of generality one may 

assume that the third order saddle point is situated in (0,1). Since the system has no 

limit cycles (part (i) of theorem 4) one may assume that the fine focus is stable and 

that the S. is unstable. Then the system has the following form 

x = - y + A.x + A.xy + y s P(x,y), 

2 ( l 4 ) 

y = x - A.x - xy = Q(x,y), 
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where A < 0 and A. > 0. 

Now one may consider the system 

x = cos a • P(x,y) + sin a • Q(x,y), 
(15) 

y = cos o • Q(x,y) - sin a • P(x,y), 

where P(x,y) and Q(x,y) are given in equation (14). 

It is clear that for a = 0 system (14) equals system (15). Now system (15) may be 

bifurcated by making a positive. It is easy to check that this bifurcation causes an 

anti-clockwise rotation in all nonsingular points of the vector field. According to 

lemma 7 the S, disappears and at least one limit cycle is generated. 

The stable first order fine focus becomes an unstable focus (Höpf bifurcation) and 

generates one limit cycle. It also can be shown that the third order saddle does not dis­

appear as a result of the bifurcation. So the bifurcated system has a third order saddle 

point and more than one limit cycle. That is in contradiction with [9]. 

7. BOUNDED SEPARATRIX CYCLES WITH TWO SINGULAR POINTS 

Theorem 5. 

A quadratic system can have a bounded separatrix cycle with either two first order 

saddle points (S.) or a first order saddle point and a second order saddle node (S.). 

(i) Neither a S. nor a S. can surround a limit cycle. 

(ii) Both a S. and a S^ surround a strong focus. 

" l*2 (iii) A S. is stable (unstable) if E = 1 - , . is negative (positive), where /i. 4 A ( A 2 i 

and / i . are the positive eigenvalues of the saddle points on the S. and A and 

A. the negative ones. The case £ = 0 cannot occur. 

(iv) A S, is stable (unstable) if the divergence in the saddle node is negative 

(positive). 
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Proof. First an example of a S, and a S, will be given to show that quadratic systems 

can have such separatrix cycles. Consider the system 

x = 1 + 2y - x + Axy 
(15) 

2Ay + 2xy + 2Ay , 

where A e ( j , l ) . 

Both for A = -=• and A = 1 system (15) has the following properties. The x-axis and 

the parabola y = x - 1 are trajectories of (15) with the exception of the points (1,0) 

and (-1,0) which are singular points. The singular point (1,0) is a saddle point and 

(-1,0) is a saddle point for A = -s and a saddle node for A = 1. 

There is a singular point (--r- A, --s ) situated in the region bounded by the parts of 

the x-axis and the parabola between (-1,0) and (1,0). This singular point is a stable 

focus. Now it is clear that the parts of the x-axis and the parabola between (-1,0) and 

(1,0) form a S. for A « 4 and a S, for A - 1 (see Figures 15a and 15b). 

a:A = -2- b: A=» 1 

Figure 15. 



122 

Part (i) of theorem 5 may be proved as follows. Suppose a quadratic system has a S4 or 

a S,. Without loss of generality one may assume that the saddle point of the Ŝ  or S5 is 

situated in the origin, the other singular point in (0,1) and that the separatrix cycle is 

stable and situated left of the y-axis. Then from lemma 4 it is known that the y-axis 

must be a trajectory of the system since the line segment between (0,0) and (0,1) is 

part of the separatrix cycle (see Figure 16). 

Figure 16. 

After a scaling of t the system may be put in the following form 

x = a | Qx + a2Qx + a n x y = P(x,y), 

y = b1Qx + y + b , n x 2 + b, ,xy - y2 ■ Q(x,y), ' 20" 11 

(16) 

where a . . + a . > 0 if (0,1) is a saddle point and where a n + a ) 0 0 and 

"20 

' I I 
# b . Q + b . , if (0,1) is a saddle node and where a1Q e R~, a ( ( e R./(0) and 

a 2 0 - b i o - b i r b 2 0 6 ] R 

Now consider a small change of the parameter b , 0 . b 2 Q and b ( { then system (16) may 

be written as 

x = a ] 0x + a2Qx + a n x y = P(x,y). 

y = b ) ( )x + y + b2Qx + b , , x y - y s Q(x,y), 
(17) 
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and suppose that the condition that there is a k 6 E/(0) such that a . . = Mb.» - b . A 

a . . = k(b2 Q - b , . ) and a. = k ( b . . - b . . ) is satisfied. To find the direction of the 

rotation of the vector field from (16) to (17) in each nonsingular point of the x,y-

plane one may take the original system (16) and the bifurcated system (17) and calcu­

late the innerproduct W(x,y) = P(x,y)Q(x,y) - P(x,y)Q(x,y). After some calculations 

one may find that 

W(x,y) = (a1Qx + a2 Qx2 + a, ,xy)2 • k ' 1 . (18) 

It is clear that, with the exception of the oo-isocline P(x,y) = 0 where the vector field 

does not rotate, the vector field rotates in the same direction as a result of the bifurca­

tion. In which direction the vector field rotates, only depends on the sign of the 

constant k. It may be noted that since the vector field does not rotate on the oo-isocline 

P(x,y) = 0, the y-axis remains a trajectory of the bifurcated system. 

Now suppose that the separatrix cycle in system (16) surrounds one or more limit 

cycles. Obviously a small change of the parameters of the quadratic system will not 

cause the disappearance of these limit cycles. 

If the sign of k is choosen properly then, according to lemma 7, the separatrix cycle 

disappears and at least one limit cycle is generated. 

The result of this bifurcation is a quadratic system with a straight line solution (the 

y-axis) and at least two limit cycles. However, from [23] it is known that a quadratic 

system with a straight line solution has at most one limit cycle so a S. or a S, in a 

quadratic system will never surround a limit cycle. 

Part (ii) of theorem 5 may be proved as follows. According to [8] a separatrix cycle 

surrounds either a strong focus or a fine focus. If it should be a fine focus it must be a 

first order fine focus since a quadratic system with a straight line solution (see lemma 

4) may only have a fine focus of order one (see [23]). Now it will be proved that a S4 

or a S5 never surround a first order fine focus. 
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Suppose a quadratic system has a S. or a S. which surrounds a first order fine focus. 

Without loss of generality one may assume that (a) the two singular points on the sepa-

ratrix cycle are situated in (0,1) and 

(0,-1), (b) the separatrix cycle is stable, 

(c) the first order fine focus inside the 

separatrix cycle is situated in (1,0). As a 

result of these assumptions one knows that 

the y-axis is a trajectory (lemma 4) and 

that the first order fine focus is unstable Figure 17 

(theorem 5(i)), as illustrated in Figure (17). 

A quadratic system satisfying these conditions must have the following form 

a i o * - a 1 0 x - + anxy s P(x,y). 

y - boo + b i o x " ( b o o + V *2 * bu*y" booy2 s Q(x-y)-
(19) 

where a , 0 - b , , - 0 and a | 0 . a , j . b ^ . b , , € R and b 0 0 e R\ 

Now consider a small change of the parameters b ( 0 and b. .. Then system (19) may be 

written as 

a l 0 x " a 1 0 x - + a n x y P(x,y), 

2 Ti, 
(20) 

y = bflrt + b . -x - (b n n ♦ b , n ) x" + b, ,xy - bn ny S Q(x,y). 

and let the condition be satisfied that there is a k e R/(0) such that 

a i o = k ( b i o - b i o ) a n d a i i = k ( b n • b i i ) " 

Just as in the proof of part (i) of theorem 5 one may calculate the inner product 

W(x,y) = P(x,y)Q(x,y) - P(x,y)Q(x,y), to show that for a properly choosen k the 

vector field rotates clockwise with the exception of the oo-isocline P(x,y) = 0 where it 

does not rotate at all. According to lemma 7, the separatrix cycle in system (19) will 
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disappear as a result of the change of the parameters, and at least one limit cycle will 

be generated out of it. Using the direction of the vector field in a neighbourhood of 

the point (1,0) one may show that the unstable first order fine focus in system (19) 

becomes a stable strong focus in system (20), generating exactly one limit cycle (Höpf 

bifurcation). 

The total result of this is a quadratic system with a straight line solution and at least 

two limit cycles. However, from [23] it is known that a quadratic system with a 

straight line solution has at most one limit cycle so a S. or a S, will never surround a 

fine focus (see also [24]). 

The proof of part (iii) of theorem 5 may be given by using [21]. In that paper it has 

been proved that a S. is stable (unstable) if E = 1 - . . is negative (positive), where 4 A j A 2 

X and A. are the positive eigenvalues of the two saddle points on the S. and /i and 

/ i . the negative ones. The only case in which the stability of the S. is not determined, 

is when E = 0. However it will be shown that if E = 0, the quadratic system would 

not have a S.. 4 

Suppose a quadratic system has a S. for which holds that E = 0. Without loss of 

generality one may assume that the two saddle points on the S. are situated in (0,1) 

and (0,-1) and that the singular point inside the S. is situated in (1,0). According to 

lemma 4 the y-axis is a trajectory. A quadratic system satisfying these conditions has 

the following form 

x= a . .xy ■ P(x,y), 

2 2 ( 2 I ) 

y = boo + b i o x - ( b o o + b i o ) x + b n x y ~ b oo y sQ<x-y>-

where b , 0 , b , ( € R and a, , , b 0 0 e R+. 

Now the question remains whether system (21) has a S. for certain values of the para­

meters. 
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Suppose system (21) has a S. for the parameter set a. ., b . . , b . . , b (Figure 18a). 

Now one could change the parameter b. . from b. . = b. . to b . = 0. It is easy to 

show that this variation of the parameter b. . results in a rotation of the vector field, 

with the exception of the x-axis and the y-axis where the field does not rotate. For 

b. . = 0 system (21) has a center in (1,0) and the separatrices of the saddle points in 

(0,1) and (0,-1) form a closed curve surrounding the center (Figure 18b). 

It is clear that if system (21) has a S the rotation of the vector field will never yield 

a system with a closed curve formed by the separatrices of the two saddle points, as 

given in Figure I 8a. So the assumption that system (21) has a S. is false. 

Figure 18. 

The last part of theorem 5 may be proved in the following way. Suppose a quadratic 

system has a S-. Without loss of generality one may assume that the saddle node is 

situated in the origin and the saddle point in (0,1) and that the system has the form 

x = A.x 

y -

2 x + a, ,xy = P(x.y), 

y + (b-,0 + A,)x + ( b n +a J 1 A 1 )xy - y = Q(x,y), 
(22) 

where X = A. ■ 0, a . . £ R , b - . e R" and b. . e R (see Figure 19a). 

In this form the divergence of the system is one in the saddle node. Now a small posi­

tive change of the parameter X. results in a counter-clockwise rotation of the vector 
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field with the exception of the points on the oo-isocline P(x,y) = 0 where the field 

does not rotate. The result is that the S, disappears and that the separatrices are 

situated as drawn in Figure 19b. Analogously a small negative change of A results in 

the disappearance of the S, as drawn in Figure 19c. 

i 
I 

Figure 19. 

If the parameter A. becomes negative the singular point (0,0) becomes a saddle point 

and a node appears in a neighbourhood of the origin in the half plane x > 0. 

Taking into account the relative position of the separatrices of the singular points (0,0) 

and (0,1) in the half plane x < 0 it may be clear that if the parameters are varied 

along a curve in the A A.-plane from a value corresponding to Figure 19b to one of 

Figure 19c, there must be at least one point such that the two separatrices coincide 

(independent of the path in the parameter plane). 

Then if A, < 0 and | A,| sufficiently small, a S. is formed by the saddle points in 
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(0,0) and (0,1) as illustrated in Figure 19d for a point on a curve in the 

A.,A.-parameter plane, which is shown as a dashed curve. Thus a quadratic system 

with a S. may be bifurcated from a S_. 

Obviously the stability of the separatrix cycle does not change during such a bifurca­

tion. So the stability of the S, may be found by calculating the stability of the S,, 

according to theorem 5, part (iii). In system (22) one may calculate 

V<-0 
E - 1 - > 0 

l . (A 2 + a n ) 

if X2 < 0 and| A.| is small enough. So the S. is unstable Thus one may conclude that a 

S, is unstable if the divergence in the saddle node on the S,. is positive. Similarly it 

may be shown that a S, is stable if the divergence in the saddle node is negative. 

8. AN EXAMPLE OF A QUADRATIC SYSTEM WITH AN UNBOUNDED 

SEPARATRIX CYCLE SURROUNDING AT LEAST TWO LIMIT CYCLES 

In the previous sections a survey is given of all possible types of bounded separatrix 

cycles. For each type an example is given of a quadratic system having such a separa­

trix cycle. For some types of separatrix cycles a proof has been given how many limit 

cycles could be surrounded but for some other types just an indication of the maximum 

number of limit cycles could be given. 

Now the question raises whether the same questions may be answered for unbounded 

separatrix cycles in quadratic systems. Bamón has already given a survey of all possible 

types of unbounded separatrix cycles [4], although he did not give a concrete example 

of a quadratic system for each type. The question how many limit cycles may be 

surrounded by each type of unbounded separatrix cycle has not been considered at all. 

The only known example of a quadratic system with an unbounded separatrix cycle 

which surrounds a limit cycle is given by Holmes. In [14] she investigated quadratic 



129 

systems with an unbounded separatrix cycle which consists of a straight line path and 

the arc of the equator joining the ends of this line. According to [23] a quadratic 

system with a straight line solution has at most one limit cycle. So a separatrix cycle as 

investigated by Holmes may surround at most one limit cycle. She, however, also gave 

exact algebraic conditions for the existence and nonexistence of a limit cycle within 

the region surrounded by such a separatrix cycle. 

The question remains whether a quadratic system may have an unbounded separatrix 

cycle which surrounds two or more limit cycles. In this section an example of a 

quadratic system with at least two limit cycles, surrounded by an unbounded separa­

trix cycle, will be presented. 

Theorem 6. 

Consider the quadratic system 

x = Ax - y + ax + bxy + y z P(x,y), 

2 ( 2 3 ) 

y = x + dx + exy ■ Q(x,y), 

where | A | , | a + 4 | , | b - 5 | , | d - l | and | e + 7 | are sufficiently small. There exist 

values of these five parameters such that system (23) has an unbounded separatrix 

cycle with at least two limit cycles in its interior. 

Proof. This theorem will be proved using the following four properties of system 

(23). 

Properly 1. 

System (23) has two finite singular points: P.(0,1) and P.(0,0). P. is an unstable node 

and P, is a (fine) focus wherein the four focal values are given by 
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div (P(0,0),Q(0,0)) = A 

L ( l ) = - A 5 

L(2) = A2A4(A4 - 5) 

L(3) = - A ^ A 2 + U 3 - 1)(A3 -2) ) . 

A2 = A" 2 [-(e + lXa + I ) 2 d + b(a + 1) d2 + d 3 ] 

A3 = A~2 [a(a + I ) 3 + (d + b)(a + l )2 d + (e + 1 )(a + I) d2l 

A4 = A~' [(a + l){e + 2a) + bd) 

A = A"1 [-(a + 1) b + (e + 2a) d] 

where A = (a + 1) + d . 

Proof. It is easy to show that system (23) has just two finite singular points and to 

find the topological structure of these points. With the expressions given in [5] the 

four focal values in P. may be calculated. 

Property 2. 

System (23) has three singular points at infinity: two saddle points P^ and P, and a 

node P,. 

Proof. To determine the number of singular points at infinity one may use the 

Poincaré transformation [I]. Then it is easy to show that the third degree equation 

which must be solved to find the position of the singular points at infinity, has exactly 

three different solutions. The character of these three singular points may be found 

with the usual methods. 

Property 3. 

For A = a + 4 = b - 4,5 = d - 0.9 = e + 7 = 0 the phase portrait of system (23) is as 

given in Figure 20. 
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Proof. Using property 1 it is easy to find 

that P- is an unstable third order fine 

focus. From [19] it is known that a third 

order fine focus in a quadratic system is 

never surrounded by a limit cycle. There 

are also no limit cycles surrounding P Figure 20. 

since it is an unstable node (see [8]). With the help of property 2 and the general 

properties of quadratic system one may show that the phase portrait is as given in 

Figure 20. It may be noted that both the separatrix of Pi and the separatrix of P ' 

intersect the y-axis between P. and P. as shown in Figure 20. 

Properly 4. 

For \ = a + 4 = b - 5,5 = d - 1,1 = 

= e + 7 = 0 the phase portrait of system 

(23) is as given in figure 21. 

Proof. If the same way as in property 3 Figure 21. 

one may conclude that P is an unstable node, P . is a stable third order fine focus and 

that the system has no limit cycles. With the help of the usual methods one may draw 

the phase portrait. It may be noted that both the separatrices of Pi and of P * intersect 

the y-axis between P and P. as shown in Figure 21. 

Conclusion. Using the properties 1 , 2 , 3 

and 4 it is clear that if the parameters are 

varied from X = a + 4 = b - 4.5 - d - 0,9 ■= 

= e + 7 = 0 t o A = a + 4 = b - 5 , 5 = 

= d - l , l = e + 7 = 0 there must be at 

least one set of parameter values such that Figure 22. 
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the separatrices of PI and P ' intersect the y-axis between P and P- in the same point 

and this form an unbounded separatrix cycle. This variation of the parameters can be 

made in such a way that during the variation holds 

A = 0, (a + I) b = (e + 2a) d, b - 5d < 0. (24) 

According to property I this implies that during the whole parameter variation P, is a 

stable second order fine focus (see Figure 22). What is happening is that if the para­

meters are varied, starting from the conditions mentioned in properly 3 the unstable 

third order fine focus P. becomes a stable second order fine focus and exactly one 

limit cycle is generated out of it. During the parameter variation this limit cycle 

blows up until it disappears in the separatrix cycle (Figure 22). In this way an 

example is given of a quadratic system with an unbounded separatrix cycle surround­

ing a second order focus. 

To give an example of a quadratic system with an unbounded separatrix cycle 

surrounding at least two limit cycles, one may also use the parameter variation from 

A » a + 4 - b - 4,5 - d - 0,9 - e + 7 - 0 to A - a + 4 - b - 5,5 - d - 1,1 - e + 7 - 0 

in system (23). Again one may conclude that there is at least one set of parameter 

values during the parameter variation such that the separatrices of P! and P! in 
3 4 

system (23) form an unbounded separatrix cycle. Instead of the conditions mentioned 

in (24) the parameter variation can be made under the conditions 

A < 0, (e + 2a) d - b(a + I) < 0, b - 5d < 0, 
(25) 

I A| « |L(1) | « |L(2)| , A-L(1)<0. L(I).L(2)<0, 

where L(l) and L(2) are defined in property I. According to property I and [5), these 

conditions imply that during the parameter variation two small limit cycles surround 
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P. (besides the limit cycle which blows up 

until it disappears in the separatrix cycle). 

So, under the conditions mentioned in (25) 

there are sets of values of the parameters 

such that system (23) has an unbounded 

separatrix cycle surrounding at least two 

limit cycles (see Figure 23). 
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APPENDIX 1 

program 1 
10 SCREEN 2 : CLS : X 0 # = - 1 0 0 0 0 0 ! : Y0#=9790000! 
20 FOR Z=l TO 232 : X#=X0# : Y#=Y0# : GOSUB 160 
30 DDX#=DX#-18*INT(DY#/1000) : DDY#=DY#+18*INT(DX#/1000) 
40 DDX#=INT(DDX#/10) : DDY#=INT(DDY#/10) 
50 IF ABS(DDX#)>999 OR ABS(DDY#)>999 THEN GOTO 40 
60 G#=l 
70 G#=2#*G# : GOSUB 180 : IF P#>0 THEN GOTO 70 
80 Gl#=l : G2#=G#+1 
90 G#=INT((Gl#+G2#)12) : GOSUB 180 
100 IF P#>0 THEN G1#=G# 
110 IF P#<0 THEN G2#=G# 
120 IF G2#-G1#>2 THEN GOTO 90 
130 X0#=X0#+G1#*DDX# : Y0#=Y0#+G1#*DDY# 
140 PRINT X0#,Y0#,G1#,G2#,Z 
150 NEXT Z : STOP 
160 DX#=-100000000#*Y#+10#«X#*X#+25#*X#*Y#+10#*Y#*Y# 
170 DY#=100000000#*X#+5#*X#*X#+80#*X#*Y# : RETURN 
180 X#=X0#+G#*DDX# : Y#=Y0#+G#*DDY# : GOSUB 160 
190 DX#=INT(DX#/100) : DY#=INT(DYl/100) 
200 A#=DX#*DDY# : B#=DY#*DDX# : P#=A#-B# : RETURN 
program 2 
10 SCREEN 2 : CLS : X0#=50000! : Y0#=9349500! 
20 FOR Z=l TO 117 : X#=X0# : Y#=Y0# : GOSUB 160 
30 DDX#=DX#+15*INT(DY#/1000) : DDY#=DY#-15*INT(DX#/1000) 
40 DDX#=INT(DDX#/10) : DDY#=INT(DDY#/10) 
50 IF ABS(DDX#)>999 OR ABS(DDY#)>999 THEN GOTO 40 
60 G#=l 
70 G#=2#*G# : GOSUB 180 : IF P#>0 THEN GOTO 70 
80 Gl#=l : G2#=G#+1 
90 G#=INT((Gl#+G2#)/2) : GOSUB 180 
100 IF P#>0 THEN G1#=G# 
110 IF P#<0 THEN G2#=G# 
120 IF G2#-G1#>2 THEN GOTO 90 
130 X0#=X0#-G1#*DDX# : Y0(f=Y0#-Gl #*DDY# 
140 PRINT X0#,Y0#,G1#,G2#,Z 
150 NEXT Z : STOP 
160 DX#=-100000000#*Y#+10#*X#*X#+100#*X#*Y#+10#*Y#*Y# 
170 DY#=100000000#*X#+5#*X#*X#+380#*X#*Y# : RETURN 
180 X#=X0#-G#*DDX# : Y#=Y0#-G#*DDY# : GOSUB 160 
190 DX#=INT(DX#/100) : DY#=INT(DY#/100) 
200 A#=DX#*DDY# : B#=DY#*DDX# : P#=B#-A# : RETURN 
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