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Preface

Project

This is the master thesis submitted to the Faculty of Mechanical, Maritime and Materials Engineering
of the Delft University of Technology (TUD) in the partial fulfillment of the requirements for the degree
of Master of Science in Mechanical Engineering. The graduation is under supervision of the division
Engineering Dynamics of the Faculty of Mechanical, Maritime and Materials Engineering and of the
division Construction Mechanics of the Faculty of Civil Engineering. It has a duration of six months,
rewarded with 45 European credits (EC) when completed succesfully.

The graduation was carried out at the DSM branch in Geleen, at the department Performance Ma-
terials. DSM, or Royal DSM N.V. in full, is a Dutch multinational company specialized in life sciences
and materials sciences. The purpose of the project is to predict the fiber orientation in fiber filled injec-
tion molded thermoplastics. The code Matlab, provided by Mathworks, is used for the implementations.

The committee for the examimation of this master thesis consists of

prof.dr.ir. L.J. Sluys TUD, faculty Civil Engineering, division Construction Mechanics,
prof.dr.ir. D.J. Rixen TUD, faculy Mechanical Engineering, division Engineering Dynamics,
dr.ir. M.J.B.M. Pourquie TUD, faculty Mechanical Engineering, division Process and Energy,
prof.dr. J.J.M. Slot DSM, department Performance Materials and
dr.ir. H. van Melick DSM, department Performance Materials.

Outline

The purpose of this master project is to implement the Wang-O’Gara-Tucker model to simulate the
fiber orientation in fiber filled injection molded thermoplastics. A part of the extensive fundamental
theory behind this model, and the implementations are treated in Part I of the thesis, the theory part.
This part consists of the first eight chapters.

In Chapter 1 an introduction to the thesis is given. Certain preliminaries to understand the scope
and purpose of the project are treated. These preliminaries include the process of injection molding,
the use of fiber filled thermoplastics, fiber orientation, past research, available commerical software,
the interest of DSM in the subject of fiber orientation, the research method and approach and the
contribution of this thesis. In Chapter 2 the notation and conventions used throughout this report are
treated. As is a selection of the mathematical preliminaries. Chapter 3 starts off with the theory behind
Jeffery’s equation, a deterministic model for the fiber orientation of a single ellipsoidal particle in a fully
viscous/Stokes flow. This model is extended by Folgar and Tucker with the addition of a fiber-fiber
interaction term, using a probability density function. In Chapter 4 an approach using only partial
information of the computationally inefficient Folgar-Tucker model is introduced. Chapter 5 treats the
model that is the focus of this thesis, the Wang-O’Gara-Tucker model. It slows down the kinetics of
the Folgar-Tucker model to adapt the theoretical results to the experimental results. In Chapter 6 the
closure problem of the Folgar-Tucker tensor form is explained. Chapter 7 thoroughly treats the Fokker-
Planck equation that stems from the Folgar-Tucker probability density form. A numerical scheme is
derived to obtain a solution. In Chapter 8 a numerical scheme for solving the tensor form of the Folgar-
Tucker model is derived.

Should one not be interested in mathematical details, then proofs can be skipped easily. The idea
of the models can be understood even without such details. If one is merely interested in the results of
the implementation of the model, then Part I can be skipped entirely. The results are contained in Part
II.

Part II uses the implementations of Chapters 7 and 8 to model the fiber orientation for a simple
shear flow field in Chapter 9 and for a uniaxial elonational flow in Chapter 10. Results of the proba-
bility density are interpreted for different parameter sets. The approximations of the tensor form are
compared to the solutions of the probability density, using several closure relations.

Part III concludes the theory and test models with conclusions and recommendations for future research.



xvi LIST OF TABLES

Part IV consists of some ’classical’ proofs, instructions for the codes that were used to obtain the
results in the thesis, the bibliography and the nomenclature. The classical proofs were put in the
appendix to make sure that only information specific to the modeling of fiber orientation with the
Wang-O’Gara-Tucker model is included in the main parts. With the addition of the instruction of the
implementations to the thesis, it is intended to make the thesis offer an integrated approach to the
Wang-O’Gara-Tucker model: the theory is presented, two test cases as examples are considered and the
usage of the implementations is explained.
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Chapter 1

Fiber orientation in fiber filled injection
molded thermoplastics

1.1 Introduction

In this chapter we give a introductive description of the modeling of fiber orientation in fiber filled
injection molded thermoplastics. The process of injection molding is treated. We explain the material
properties of fiber filled thermoplastics and why it is important to control the fiber orientation. The
interest of DSM in modeling fiber orientation is illuminated. There are already several commercial soft-
ware packages available on the market for modeling fiber orientation. Their contributions are explained.
The various researchers that have contributed to the modeling of fiber orientation are named. We define
the problem that will be handled in this report and explain our goals.

1.2 Injection molding

Figure 1.1: injection molding schematic.

Injection molding is the process of injecting a mold with a thermoplastic material, confer Figure 1.1.
Thermoplastic granules material is added to the funnel or hopper of the injection molding machine.
This granules can be either fiber filled or unfilled. Considering Figure 1.2, one can get an idea of the
size of the granules. Sliding down the hopper, the granules comes in an initially closed barrel with a
heated screw. The material melts and the barrel fills with melt. When the barrel is full, pressure is
maintained and the nozzle is opened so that the mold cavity is injected with the melt. This is called the
injection phase. When the injection is complete, the pressure is maintained on the melt by the screw and
the packing phase begins. The purpose of the packing phase is to add further material to compensate
for shrinkage of material as it cools in the cavity. After some time of packaging, the gate freezes and
the cavity is effectively isolated from the pressure applied by the melt in the barrel. This marks the
beginning of the cooling phase in which the material continues to cool until the component has sufficient
mechanical stiffness to be ejected from the mold. During cooling, the screw starts to rotate and moves
back. The rotation assists plastification of the material and a new charge of melt is created in front
of the screw. After ejection, the mold closes and the cycle restarts. In summary, injection molding is
characterized by the following steps.

1. Mold closing.

2. Injection.
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Figure 1.2: unfilled thermoplastic granules.

3. Packing.

4. Cooling.

5. Plastification and returning the screw.

6. Ejection.

In this report, the injection phase is considered. The injected thermoplastic is filled with fibers which
will ultimately be frozen in a certain spatial configuration. The purpose is to model certain aspects of
these configurations, as explained in Section 1.4.

A substantial part of the production of thermoplastic products is done by an injection molding ma-
chine, confer Figure 1.3. Many everyday items are injection molded. Some examples are mobile phone
housings, automobile bumpers, television cabinets, compact discs and lunch boxes. A mobile phone
housing is depicted in Figure 1.4.

Figure 1.4: an injection molded phone housing.

1.3 Fiber filled thermoplastics

In this report we focus merely on fiber filled thermoplastic materials, confer Figure 1.5. Thermoplastic
materials are plastics without crosslinking and thus have a melting point. The used thermoplastic
granules are either filled or unfilled. Herewith, it is meant that the material is filled with fibers or
not. The fibers can be of various different materials, occuring in various volume or weight fractions and
length to diameter ratios. Common values for the volume fraction are 8-30% and for the weight fraction
15-60%. Also the length to diameter ratios in the granules vary. In addition, the fibers break with the
injection molding, decreasing the length to diameter ratios. The final product typically contains fibers
with lengths of 200-300[µm] and 10[µm] diamater. This results in typical length to diameter ratios
20-30.
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Figure 1.3: an injection molding machine.

Figure 1.5: diagram of the types of materials used with injection molding. This report treats the red
boxes.
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1.4 Fiber orientation

In contrast with the isotropic or quasiisotropic character of unfilled plastics, fiber filled plastics have an
anisotropic character. Many material properties are inherent to the distribution of the fibers in the final
product, confer Figure 1.6. In liquid phase it affects the viscosity. In the solid phase it affects the elastic

Figure 1.6: fiber orientation made visible by burning away the matrix material.

modulus and thermal expansion. In both the liquid and solid phase it affects the thermal and electrical
conductivity [15]. All these properties can vary throughout the spatial dimensions of the thermoplastic
part. This complicates the control of the production process. Depending on the distribution of the
fibers, the viscosity has a certain distribution which influences the injection phase. It determines the
stress distribution in the cooling phase. Before the ejection of the part, the forces of the product and
the mold are in balance. In effect, the part has a certain shape, namely that of the mold. Ejecting the
part from the mold changes the boundary condition. As a result, the final product may show warpage.
The strength properties can be as intended or have local weak spots. The quality of the product is
inherent to all the beforementioned properties. It is therefore in the interest of DSM to investigate the
factors that determine the distribution of fibers.

The distribution of the fibers in the final product can be divided into two separate distributions. One
is the distribution of the centers of mass of the fibers, the other is the orientation with respect to these
centers of mass. In this report, the focal point is the distribution of the fiber orientation.

The research on fiber orientation is covered by several disciplines. As the orientation of the solid fibers
is highly dependent on the dynamics of the fluid it is immersed in, it is a fluid-structure interaction
(FSI) problem. Another relevant discipline is rheology. It is the study of the flow of all materials that
’lie between’ two extremes, being an linear elastic solid and a fully viscous fluid.

1.5 Past research

The are several authors that have contributed to the modeling of fiber orientation. The author that
stands out the most, is C.L. Tucker III [15, 19, 13, 7, 2, 18, 14]. In 1984, he published an article together



1.6. Commercial software 7

with F. Folgar [7]. In this article, they extended Jeffery’s model, which models the fiber orientation of
a single ellipsoidal fiber in viscous/Stokes fluid deterministically, with a isotropic fiber-fiber interaction
term by the use a probability density function (PDF). This is described in Chapter 3. Due to the compu-
tational inefficiency of the 1984 Folgar-Tucker model, research was done to construct a computationally
more efficient approach. This resulted in the publication [18] of S.G. Advani and C.L. Tucker III in
1987, wherein the use of tensors to describe fiber orientation was explained. This approach is described
in Chapter 4. A phd student of C.L. Tucker III, R. Bay, published his thesis in 1991 [2], giving a
comparison of the theory and experiments of injection molding. Due to the closure problem of the 1987
tensor approximation, research was also spent on how to construct an adequate closure approximation.
This resulted in the publications [19] of S.G. Advani and C.L. Tucker III in 1989 and [15] by J.S, Cintra
and C.L. Tucker III in 1995, constructing an approximation for the fourth order tensor by the use of
physical arguments such as fiber alignment and orthotropy. The theory hereof is treated in Chapter 6.
More than a decade later, in 2008, the Folgar-Tucker model from 1984 is extended by J. Wang, J.F.
O’Gara and C.L. Tucker III. The Folgar-Tucker model displays a too fast transient response, which is
solved in [13]. The Wang-O’Gara-Tucker model is treated in Chapter 5. The latest publication [14]
by J.H. Phelps and C.L. Tucker III dates from 2009. In this article, the isotropic rotary diffusion is
replaced by an anisotropic rotary diffusion.

Besides the publications mentioned above, wheron the emphasize is in this thesis, contributions to
the modeling of fiber orientation were made by various other researchers. Some examples are L.G. Leal
and E.J. Hinch, who contributed to the construction of fourth order tensor closure approximations.
M.C. Altan and B.N. Rao, who made comparisons of theory and experimental results. D.A. Jack and
D.E. Smith, who investigated sixth order tensor closure approximations [3]. And A. Redjeb and A.
Megally, for research in two way coupling of the velocity field and the fiber orientation.

1.6 Commercial software

There are several commercial software packages available on the market to simulate the process of
injection molding. Some examples are

• Moldflow,

• Moldex 3D,

• Sepran,

• Polyflow,

• and REM 3D.

At the moment, DSM uses the software package Moldflow to simulate injection molding processes. The
producer of this software is Autodesk, also known for producing AutoCAD. It is the industry standard,
in particular for the automotive industry.

Moldflow solves the conservation of mass, momentum, energy and the fiber orientation as a coupled
set of equations using FEM. The pressure, velocity and temperature are solved monolithically. A pos-
teriori, the fiber orientation is solved as a function of the velocity field. I.e. the velocity and fiber
orientation are one way coupled.

For thin products, a ’two and a half’ dimensional approach can be used. For the thicker products,
a full three dimensional approach is used. The former approximates the thickness direction with 12-20
integration point and uses triangular shell elements. The pressure is only solved in the midplane, the
velocity and temperature are also solved in the thickness direction. The three dimensional approach
solves all three types of unknowns in all three dimensions.

The procedure of the modeling is as follows. First, the product is constructed, using either the two
and a half or three dimensional approach. Subsequently, the injection locations have to be defined.
The materials are chosen from a database. Several aspects of the injection molding can be modeled:
the filling, packing and cooling phases, warpage and fiber orientation. Examples of the latter two are
depicted in Figure 1.7. The results of the former three seem to be good. The results of the latter two
are found to be poor and too uncontrollable. The parameters that can be varied are

• strength of the fiber-fiber interaction,
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Figure 1.7: fiber orientation and warpage analyses in Moldflow [1].

• injection locations,

• injection velocities,

• mold surface temperature

• and melt temperature.

When the two and a half dimensional approach is used, there is also a thickness parameter that can
be varied. Despite the possible variation of the beforementioned parameters, DSM is unable to obtain
proper results from the warpage and fiber orientation modules. Investigating the influence of the strength
of the fiber-fiber interaction and thickness parameter was in vain. In addition, Autodesk is persistent in
appealing to company secrecy when asked for details on the used methods and the Wang-O’Gara-Tucker
and Phelps-Tucker models have not been implemented yet.

1.7 Interest

As DSM does not only deliver the thermoplastics, but also the technology for the production, knowl-
edge on the processing of the thermoplastics is of interest. Production must be as cheap and as fast as
possible, without loss of quality of the product.

An intrinsic property of injection molding is that the amount of variable process conditions is marginal.
The point and velocity of the injection can be varied, but the influence hereof is often insufficient for
correcting production problems. Adaption of the mold requires some trial and error and is expensive.
Simulations can be performed relatively cheap in the early stages of the part and mold design and offers
the ability to evaluate different design options in terms of part, material and mold design. Avoiding
problems in the design phase is superior to fixing them in the production phase.

DSM has the commercial tool Moldflow in place to simulate injection molding. A dominating dis-
advantage of commercial tools is that the implementation of the code is unavailable due to company
secrecy. And although there is sometimes theory available on the algorithms used by the code, there
are still demanding cases of injection molding where such literature is insufficient for an intensive anal-
ysis. It is therefore in the interest of DSM to, besides simulating with commericial tools, study these
demanding cases.

An example of a demanding case is where substantial warpage arises. To understand the develop-
ment of warpage simulation, it is important to appreciate that warpage results from inhomogeneous
polymer shrinkage. While all polymers shrink on cooling from the melt to the solid phase, processing
causes variation in shrinkage and it is this variation that results in part deformation. One can break the
problem into two parts: prediction of isotropic shrinkage and prediction of anisotropic effects. The for-
mer is influenced greatly by the pressure and temperature history of the part. Consequently the packing
phase is important. Development of anisotropic shrinkage effects is related to structural development of
the material as it solidifies. It follows that warpage simulation rests on the ability to model the filling,
packing and cooling phases of the injection molding process [16].
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In any of the former cases, accurately predicting the fiber configurations in injection molded filled
thermoplastics contributes to the quality of the material and the cost savings of the production. Error
margins for the design decrease and can thus suffice to more strict demands.

1.8 Research method and approach

The purpose of the project is to gain knowledge on the fiber orientation during the injection phase
in a computationally efficient way. The Wang-O’Gara-Tucker model is appropriate for this. The con-
sideration of the latest Phelps-Tucker model is omitted as such an effort would force us to exceed the
designated time schedule.

To understand the process of simulating fiber orientation, we will treat a substantial part of the funda-
mental theory behind the Wang-O’Gara-Tucker model. A schematic of the Wang-O’Gara-Tucker and
preceding models is depicted in Figure 1.8. This includes the treatment of Jeffery’s equation for the
modeling of a single ellipsoidal particle, immersed in a viscosity dominated or Stokes fluid. A simplified
derivation of Jeffery’s equation is given. Subsequently, Jeffery’s equation is extended with a fiber-fiber
interaction term by the use of a probability density function. The resulting equation is of a Fokker-
Planck form. Herewith, the fiber orientation in concentrated suspensions can be modeled. The resulting
model is referred to as the Folgar-Tucker model. This concludes Chapter 3.

Due to the computational ineffiency of solving the probability density of the Folgar-Tucker model,
an alternative approach is constructed in Chapter 4. This alternative approach exists of considering the
lower order terms of an expansion of the PDF in spherical harmonics, and neglecting the higher order
terms. This approach is far more efficient. The lowest order term comes in the form of a second order
tensor. Several useful properties of this tensor are deduced. The physical interpretation of the tensor is
explained.

In Chapter 5, the Folgar-Tucker tensor form is adapted to obtain longer transient times. Herewith,
the phenomenological model has more freedom to be adjusted to the results of experiments. The result-
ing model is referred to as the Wang-O’Gara-Tucker model, the focal model of the report. An equivalent
kinetic theory is deduced.

The Wang-O’Gara-Tucker tensor form is not closed since a fourth order tensor occurs in the rate
equation of the second order tensor. This closure problem is solved by approximating the fourth order
tensor in terms of the components of the second order tensor, motivated by physical arguments. The
class orthotropic closures is treated thoroughly, as in the literature it is often recognized as the best
type of closure available. This is done in Chapter 6.

To solve the Fokker-Planck equation of the Wang-O’Gara-Tucker model, an explicit numerical scheme
is constructed. It is proven that the scheme conserves the properties inherent to the PDF in question:
nonnegativity, conservation of probability and the odd function character. Initial and boundary condi-
tions are given. The consistency and stability of the numerical scheme are considered, to obtain a proof
of convergence. This concludes Chapter 7.

For the sake of comparison, also the tensor form of the Wang-O’Gara-Tucker model has to be solved.
In accordance, a numerical scheme is constructed, conserving the properties mentioned in Chapter 4.
Both the intact and the eigenpair decomposition of the second order tensor are treated. This is done in
Chapter 8.

Having treated the theory and implemented the Wang-O’Gara-Tucker model, we can consider flow
fields and interpret the results. We limit ourselves to the treatment of homogeneous flow fields, so
that the computation time of the kinetic theory remains acceptable. The used flow fields herefore are
simple shear and uniaxial elongation flow, considered in Chapters 9 and 10 respectively. The flow fields
are analyzed, expectations of the fiber orientation are mentioned. We begin with the simplest case,
Jeffery’s equation for a single fiber, add the fiber-fiber interaction term and subsequently treat the
full nonlinear Wang-O’Gara-Tucker model. We compare the solution stemming from the kinetic theory
and the tensor approximation. In this way, the quality of the used closure approximations can be judged.

In Chapter 11 we draw conclusions and make recommendations. The conclusions are drawn with
respect to the numerical schemes used to solve the equations and to the results of the test models.
Recommendations are made for future research and improvements.
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Figure 1.8: diagram of fiber orientation models.
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Gaining knowledge on the fiber orientation in homogeneous flow fields is, in particular, enforced by
the provision of the implementation of the Wang-O’Gara-Tucker model to DSM personnel. In accor-
dance, Appendix B is dedicated to a thorough user instruction of the implementation in question. In
this way, an integrated approach of the Wang-O’Gara-Tucker model is realized: the theory is presented,
two test cases are considered as examples and the usage of the implementation is explained.

DSM will gain insight in the modeling of fiber orientation in homogeneous flow field. Different approx-
imations can be compared. DSM will be able to discuss the results of fiber orientation in homogeneous
flow fields with the injection molding software industry. The warpage and fiber orientation analyses can
be improved. The process of injection molding can then be predicted more accurately. The quality of
the products that DSM will offer will be of an even higher order.

1.9 Contribution

The contribution of this thesis exists of the reproduction of literature material, the construction of proofs
and derivations, the generation and interpretation of output and the instructions to the implementations
of the Wang-O’Gara-Tucker model. With the reproduction of literature material, we maintain our own
vision in what is clear. Hopefully, this offers a perspective that is more clear and complete than the
perspective that is offered in the literature.

In Chapter 2, we introduce our own notation, repeat some ’classical’ mathematical preliminaries. We
define the constrained gradient and proof some important properties.

Chapter 3 we construct a derivation that results in a particular case of Jeffery’s equation, but is much
simpler than the complete proof of the complete model. In this way, the idea is straightforward without
a cumbersome argumentation. The introduction of the probability density function to model fiber-fiber
interaction, the derivation of its properties and the corresponding kinetic theory is reproduction of lit-
erature material. Subsequently, we interpret the kinetic theory.

In Chapter 4 we start with the different argumentations behind the tensor form of the kinetic the-
ory. We show that these different argumentations are actually analogous. We derive the various the
properties of the tensor form and repeat some classical proofs. The deduction of the Folgar-Tucker
model is a reproduction of literature material.

Chapter 5 starts with the reproduction of the derivations of the rate equations for the eigenpairs of
the tensor form. The modification and reassembly of these equations is done conform literature [13].
The notion of objectivity is repeated and the equivalent kinetic theory is reproduced.

In Chapter 6, theory from [15] is reproduced.

Chapters 7 and 8 does not contain any form of reproduction of literature material. We interpret
the kinetic theory and tensor form of the Wang-O’Gara-Tucker model. We deduce useful properties,
construct numerical schemes and their consistency and stability conditions.

In Chapters 9 and 10 we model the fiber orientation for the simple shear and uniaxial elongation
flow fields. Characteristics and expectations of the flow fields are motivated. Results from Jeffery’s
equation, the Folgar-Tucker and the Wang-O’Gara-Tucker models are discussed. Comparisons of the
exact and approximative tensor forms are made.

In Chapter 11 we draw conclusions and make recommendations with respect to the preceding ma-
terial.

The contribution of the master project is dominated by the provision of the implementation of the
Wang-O’Gara-Tucker model to DSM personnel. To enforce the usage of this implementation, Appendix
B is dedicated to giving the reader instructions in the usage of the code.
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Chapter 2

Notation, conventions and mathematical
preliminaries

2.1 Introduction

Before we discuss the fundamentals of the modeling of the fiber configurations in injection molded filled
plastics, we will, for the sake of clarity, explain the notation and conventions used. Also the nontrivial
mathematical preliminaries that will occur throughout the report are explained.

2.2 Notation and conventions

Throughout the report, certain notation and convenctions will be used. Often, when a notation or
convention is used for the first time, we will explain it. The other are explained here.

For scalar quantities we use symbols with a regular thickness. For higher dimensional quantities we
use bold notation. First order tensors, or vectors, are denoted in small letters, so a, b, . . .. Second order
tensors are denoted by capital letters in bold, so A,B, . . .. Third order tensor are denoted caligraphi-
cally, capital and bold, so A,B, . . .. Fourth order tensors are denoted by capital bold letters, A,B, . . ..
We also denote the classes of numbers traditionally with N,Z,Q,R,C and probability with P and thus
try to avoid these letters when denoting fourth order tensors. We do not use tensors of orders higher
than four. The scalar components of first or higher order tensors are denoted in regular thickness, with
the letter, capital or not, corresponding with the tensor. The order of the corresponding tensor can be
determined by the number of indices the scalar component of the tensor in question has.

Formally, when a basis is chosen and the components of a tensor are denoted, we use the notation
[a]E , where a is the tensor and E is the chosen basis. It is however, not often that we switch bases
and thus we omit the [. . .]E notation for the sake of notation. When we want to emphasize a change or
choice of basis, we will use the formal notation.

When we speak of eigenvectors, we, traditionally, mean right eigenvectors.

With · we denote a single contraction between two tensors. The last dimension of the tensor to the left
of · is contracted with the first dimension of the tensor to the right of the ·. For example

(A · B)ijklmn =
∑
p

AijkpBplmn.

This operation is also called the dot, inner or scalar product. Analogously, the : operation is a double
contraction. It contracts the last dimension of the tensor to the left of the : with the first dimension of
tensor on the right of the : and the second to last dimension of the tensor to the right of the : with the
second dimension of the tensor to the right of the :. For example

(A : B)ijkl =
∑
m,n

AijmnBnmkl.

When using the summation sign
∑

, we denote the index over which is summed, but not the values it
takes as these are often trivial and most of the time {1, 2, 3}. In nontrivial cases, we do denote the
values. Components of matrices are denoted between brackets [. . .] and so are dimensions of quantities.
In particular, [] means dimensionless or dimension one. The := means that we define a quantity. With
. . .T , we denote transposition. We omit the tensor product ⊗ in our notation, as its occurence is always
trivial. In certain integrals we use the notation d1p or d2p. Herewith, we emphasize the dimension of
the manifold with the superscript and the variable of which the arguments are integrated over.

Throughout the thesis, the symbol δ is used in several ways. When it is denoted in combination
with subscripts, it represents the Kronecker delta. I.e.

δij =

{
1 if i = j
0 if i 6= j

. (2.1)
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When it is denoted in combination with an argument, it represents the Dirac delta function, i.e.

δ(u) =

{
∞ if u = 0
0 if u 6= 0

(2.2)

such that ∫
U

δ(u)dU = 1.

The last type of use of δ is explained in Subsection 2.3.2.

2.3 Mathematical preliminaries

2.3.1 Change of basis

Consider the second order tensor A and two bases E1 = {e1
1, e

1
2, e

1
3} and E2 = {e2

1, e
2
2, e

2
3}. The

components of A with respect to basis E1 are known and the two bases are known. We will determine
the components with respect to the basis E2. We have

A =
∑
i,j

A1
ije

1
ie

1
j =

∑
i,j

A2
ije

2
ie

2
j .

Component A2
i′j′ follows from

A2
i′j′ =

∑
i,j

A2
ijδii′δjj′

=
∑
i,j

A2
ije

2
ie

2
j · e2

j′ · e2
i′

=
∑
i,j

A1
ije

1
ie

1
j · e2

j′ · e2
i′

=
∑
i,j

A1
ij(e

1
i · e2

i′)(e
1
j · e2

j′)

=
∑
i,j

A1
ij(E

T
1 ·E2)ii′(E

T
1 ·E2)jj′

=
∑
i,j

(ET
1 ·E2)Ti′iA

1
ij(E

T
1 ·E2)jj′

=
∑
i,j

(ET
2 ·E1)i′iA

1
ij(E

T
1 ·E2)jj′

wherewith it follows that the matrices with components of A with respect to bases E1 and E2 are
related by

A2 = ET
2 ·E1 ·A1 ·ET

1 ·E2.

The operations in the latter are optimized in programs such as Matlab. There is no need for the inter-
pretation of loops in this case, which is computationally more efficient.

In a similar way, the components of the fourth order matrices with respect to bases E1 and E2, stemming
from a fourth order tensor A, are related to each other by

A2
i′j′k′l′ =

∑
i,j,k,l

A1
ijkl(e

1
i · e2

i′)(e
1
j · e2

j′)(e
1
k · e2

k′)(e
1
l · e2

l′) (2.3)

which can, in general, not be written in a form involving only matrices and matrix operations. However,
if the tensor possesses certain symmetries in the sense of permutations of the indices, it is possible.
Motivated, again, by computational efficiency, we will show this here. We consider a fourth order tensor
with the symmetries

Aijkl = Ajikl = Aijlk.

Considering the pairs (i, j) and (k, l) that are subjected to swapping, there are for each pair six unique
combinations and thus 6 · 6 = 36 for A. Using the Voigt index notation conform Table 2.1



2.3. Mathematical preliminaries 15

Contracted notation Tensor notation
m or n ij or kl

1 11
2 22
3 33
4 23 or 32
5 31 or 13
6 12 or 21

Table 2.1: Voigt index notation.

we can write
Aijkl = Amn,

which will be used in a moment.

Introducing

E = ET
1 ·E2 =

 eT1 · e1 eT1 · e2 eT1 · e3

eT2 · e1 eT2 · e2 eT2 · e3

eT3 · e1 eT3 · e2 eT3 · e3


(2.3) can be written as

A2
i′j′k′l′ =

∑
i,j,k,l

A1
ijklEii′Ejj′Ekk′Ell′ .

Introducing a sort of Kronecker delta

δi′j′m′ =

{
1 if regular index pair (i′, j′) corresponds with Voigt index m′

0 if regular index pair (i′, j′) does not correspond with Voigt index m′

we can write

A2
i′j′k′l′δi′j′m′δk′l′n′ = δi′j′m′δk′l′n′

∑
i,j,k,l

A1
ijklEii′Ejj′Ekk′Ell′

A2
m′n′ = δi′j′m′δk′l′n′

∑
i,j,k,l

A1
ijklEii′Ejj′Ekk′Ell′

A2
m′n′ = δi′j′m′δk′l′n′

∑
m,n

∑
i,j,k,l

δijmδklnA
1
mnEii′Ejj′Ekk′Ell′

A2
m′n′ =

∑
m,n

δi′j′m′∑
i,j

Eii′Ejj′δijm

A1
mn

δk′l′n′∑
k,l

Ekk′Ell′δkln


A2
m′n′ =

∑
m,n

δi′j′m′∑
i,j

(ET )i′iδimj(E)jj′

A1
mn

δk′l′n′∑
k,l

(ET )k′kδknl(E)ll′


Say we introduce a third order 3× 6× 3 matrix I with components δimj , then we can write

A2
m′n′ =

∑
m,n

[
(δi′j′m′(E

T · I ·E)i′mj′)A
1
mn(δk′l′n′(E

T · I ·E)k′l′n′)
]
.

Constructing a 6× 6 matrix S with components Sm′m = δi′j′m′(E
T · I ·E)i′mj′ we can write

A2
m′n′ =

∑
m,n

Sm′mA1
mnSn′n =

∑
m,n

(S)m′mA1
mn(ST )nn′ ⇔ A2 = S · A1 · ST .

2.3.2 Spherical coordinates

Besides the ’regular’ Cartesian coordinates, also spherical coordinates will be used thoroughly in this
report. In particular, the radius is equal to one. The unit vectors representing the radial and tangential
components are

p :=

 sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)

 , q :=

 cos(θ) cos(φ)
cos(θ) sin(φ)
− sin(θ)

 , s :=

 − sin(φ)
cos(φ)

0

 (2.4)
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where θ ∈ [0;π] is the elevation and φ ∈ [0; 2π] the azimuth. In accordance with the notation in [2],
the vectors p, q and s are also referred to by δr, δθ and δφ respectively. The spherical coordinates are
depicted in Figure 2.1. For the angles we have the relations

θ = arctan

√
p2

1 + p2
2

p3

φ = arctan
p2

p1
. (2.5)

The tensor products of the three vectors are also used often throughout the report. The are as follows.

pp = δrδr =

 sin2(θ) cos2(φ) sin2(θ) sin(φ) cos(φ) sin(θ) cos(θ) cos(φ)
sin2(θ) sin(φ) cos(φ) sin2(θ) sin2(φ) sin(θ) cos(θ) sin(φ)
sin(θ) cos(θ) cos(φ) sin(θ) cos(θ) sin(φ) cos2(θ)


=

 sin2(θ) cos2(φ) sin2(θ) sin(2φ)
2

sin(2θ) cos(φ)
2

sin2(θ) sin(2φ)
2 sin2(θ) sin2(φ) sin(2θ) sin(φ)

2
sin(2θ) cos(φ)

2
sin(2θ) sin(φ)

2 cos2(θ)

 . (2.6)

pq = δrδθ =

 sin(θ) cos(θ) cos2(φ) sin(θ) cos(θ) sin(φ) cos(φ) − sin2(θ) cos(φ)
sin(θ) cos(θ) sin(φ) cos(φ) sin(θ) cos(θ) sin2(φ) − sin2(θ) sin(φ)

cos2(θ) cos(φ) cos2(θ) sin(φ) − sin(θ) cos(θ)


=


sin(2θ)(cos(2φ)+1)

4
sin(2θ) sin(2φ)

4
(cos(2θ)−1) cos(φ)

2
sin(2θ) sin(2φ)

4
sin(2θ)(1−cos(2φ))

2
(cos(2θ)−1) sin(φ)

2
(cos(2θ)+1) cos(φ)

2
(cos(2θ)+1) sin(φ)

2 − sin(2θ)
2

 . (2.7)

ps = δrδφ =

 − sin(θ) sin(φ) cos(φ) sin(θ) cos2(φ) 0
− sin(θ) sin2(φ) sin(θ) sin(φ) cos(φ) 0
− cos(θ) sin(φ) cos(θ) cos(φ) 0


=

 − sin(θ) sin(2φ)
2

sin(θ)(cos(2φ)+1)
2 0

− sin(θ)(1−cos(2φ))
2

sin(θ) sin(2φ)
2 0

− cos(θ) sin(φ) cos(θ) cos(φ) 0

 . (2.8)

Figure 2.1: spherical coordinates for the unit sphere.
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2.3.3 Projection

Figure 2.2: projections of u with respect to e [8].

Consider any vector u and a unit vector e. With reference to Figure 2.2, we write u = u‖ + u⊥, with
u‖ and u⊥ characterizing the projection of u onto the line spanned by e and onto the plane normal to
e, respectively. We deduce that

u‖ = (u · e)e = (ee) · u = P ‖eu

and
u⊥ = u− u‖ = u− (ee) · u = (I − ee) · u = P⊥e u (2.9)

where P
‖
e = ee and P⊥e = I−ee are projection tensors of order two. The projection tensor P

‖
e applied

to any vector u maps u into the direction of e, while P⊥e applied to u gives the projection of u onto
the plane normal to e, confer Figure 2.2.

Definition 2.1. A tensor P is a projection if P is symmetric and P n = P , n ∈ Z+.

A projection has the properties

P ‖e + P⊥e = I

P ‖e · P ‖e = P ‖e

P⊥e · P⊥e = P⊥e

P ‖e · P⊥e = O.

2.3.4 Constrained differentiation on the surface of the unit sphere

2.3.4.1 Definition

We want to define the gradient of a unit vector p ∈ R3 on the surface S of the unit sphere. As a unit
vector is subjected to the constraint

||p||2 = 1 ⇔ p2
1 + p2

2 + p2
3 = 1, (2.10)

the components of the unit vector p depend on each other. This seemingly small detail changes the
gradient of a unit vector on S drastically. The differentiation is also constrained due to (2.10). We
denote this ’constrained’ gradient by

∇̃⊗ =
∂̃

∂p
⊗, or ∇̃ =

∂̃

∂p

in short, where the ∼ emphasizes the constraint. We note that because p is a unit vector and thus
dimensionless by convention, that also the gradient is dimensionless. To define the constrained gradient
we first introduce the set of orthonormal vectors as depicted in Figure 2.1

p =

 sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)

 , q =

 cos(θ) cos(φ)
cos(θ) sin(φ)
− sin(θ)

 , s =

 − sin(φ)
cos(φ)

0


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where spherical coordinates are used. Note that (2.4) spans R3 and can thus be used as a basis of
vectors in R3. The ’regular’ gradient with respect to basis (2.4) is defined by

∇ = p
∂

∂r
+ q

1

r

∂

∂θ
+ s

1

r sin θ

∂

∂φ
(2.11)

where r is the length of the vector. The target space of ∇̃ is tangent to its domain space, which is the
surface of the unit sphere. The ∇̃ operator will therefore contain the projection tensor P⊥p = I − pp,
confer (2.9). Say

∇̃ = P⊥p · ∇

= P⊥p ·
(
p
∂

∂r
+ q

1

r

∂

∂θ
+ s

1

r sin θ

∂

∂φ

)
= q

1

r

∂

∂θ
+ s

1

r sin θ

∂

∂φ
, (2.12)

then the units of left hand side (LHS) and right hand side (RHS) are [1] and [ 1
m ] respectively. This is

impossible as the units on both sides should match. We recall that

∇̃ =
∂̃

∂p
,

and that thus the unit of the LHS of (2.12) is correct. To conclude the definition of ∇̃, we multiply the
RHS of (2.12) by r, which corrects the unit to [1].

Definition 2.2. The constrained gradient operator on S, denoted by ∇̃, is defined as

∇̃ = r(I − pp) · ∇ = rP⊥p · ∇ = q
∂

∂θ
+ s

1

sin θ

∂

∂φ

as r = 1 for S, and has a target space that is tangential to S.

2.3.4.2 Properties

The constrained gradient operator ∇̃ as defined in Definition 2.2 results in certain properties which will
be used throughout the report. These properties will be treated here.

Property 2.1. The constrained gradient operator on the first order tensor p results in

∇̃p = P⊥p

and has components
(∇̃p)ij = δij − pipj .

Proof. Consider the constrained gradient operator on p

∇̃p = q
∂p

∂θ
+ s

1

sin θ

∂p

∂φ
.

Note that due to (2.4) we have that

∂p

∂θ
= q,

∂p

∂φ
= s sin θ.

Furthermore, since (2.4) forms an orthonormal basis, the unit second order tensor is by definition

pp+ qq + ss = I.

Herewith,

q
∂p

∂θ
+ s

1

sin θ

∂p

∂φ
= qq + ss = I − pp = P⊥p .

with components
(∇̃p)ij = (I − pp)ij = Iij − pipj = δij − pipj .

This result can also be written as
˜∂pi
∂pj

= δij − pipj .
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Property 2.2. The constrained gradient operator on the second order tensor pp has components

(∇̃(pp))ijk = δijpk + δikpj − 2pipjpk.

Proof. Consider the components of ∇̃(pp), using Definition 2.2

(∇̃(pp))ijk =
∂̃

∂pi
(pjpk)

=
˜∂pj
∂pi

pk + pj
˜∂pk
∂pi

= (δji − pjpi)pk + pj(δki − pkpi)
= δijpk + δikpj − 2pipjpk.

Property 2.3. The constrained Laplacian operator on the second order tensor pp has the result

∇̃ · ∇̃(pp) = 2(I − 3pp).

Proof. The second order tensor ∇̃ · ∇̃(pp) has components

(∇̃ · ∇̃(pp))ij =
∑
k

∂̃

∂pk

∂̃

∂pk
(pipj)

=
∑
k

∂̃

∂pk
(δkipj + δkjpi − 2pkpipj)

=
∑
k

[
δki

˜∂pj
∂pk

]
+
∑
k

[
δkj

˜∂pi
∂pk

]
− 2

∑
k

∂̃

∂pk
(pkpipj)

=
˜∂pj
∂pi

+
˜∂pi
∂pj
− 2

∑
k

[
˜∂pk
∂pk

(pipj) +
˜∂pi
∂pk

pkpj +
˜∂pj
∂pk

pkpi

]

= δij − pipj + δij − pipj − 2
∑
k

[(δkk − pkpk)pipj + (δik − pipk)pkpj + (δjk − pjpk)pkpi]

= 2(δij − pipj)− 2(3pipj − pipj + pipj − pipj + pipj − pjpi)
= 2(δij − pipj)− 4pipj

= 2(δij − 3pipj)

which results in the tensor form 2(I − 3pp), which concludes the proof.

Property 2.4. Consider the two scalar vector fields A(p) and B(p), both functions of p and π and 2π
periodic in θ and φ respectively. Then∫

S

B∇̃ · ∇̃A d2p =

∫
S

A∇̃ · ∇̃B d2p.

Proof.

∇̃ · ∇̃ =

(
q
∂

∂θ
+ s

1

sin θ

∂

∂φ

)
·
(
q
∂

∂θ
+ s

1

sin θ

∂

∂φ

)
=

(
q
∂

∂θ

)
·
(
q
∂

∂θ

)
+

(
q
∂

∂θ

)
·
(
s

1

sin θ

∂

∂φ

)
+

(
s

1

sin θ

∂

∂φ

)
·
(
q
∂

∂θ

)
+

(
s

1

sin θ

∂

∂φ

)
·
(
s

1

sin θ

∂

∂φ

)
= q · ∂q

∂θ

∂

∂θ
+

∂2

∂θ2
+ q · ∂s

∂θ

1

sin θ

∂

∂φ
+ s · ∂q

∂φ

1

sin θ

∂

∂θ
+ s

∂s

∂φ

1

sin2 θ

∂

∂φ
+

1

sin2 θ

∂2

∂φ2
.(2.13)

From (2.4) it follows that

∂q

∂θ
= −p, ∂q

∂φ
= s cos θ,

∂s

∂θ
= 0,

∂s

∂φ
= −p sin(θ)− q cos(θ)
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wherewith, in combination with orthogonality, (2.13) becomes

∇̃ · ∇̃ =
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

=
1

sin θ

∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

=
1

sin θ

(
∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1

sin θ

∂2

∂φ2

)
. (2.14)

As a result, we get

∫
S

B∇̃ · ∇̃A d2p =

2π∫
φ=0

π∫
θ=0

B
1

sin θ

(
∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1

sin θ

∂2

∂φ2

)
A sin(θ)dθdφ

=

2π∫
φ=0

π∫
θ=0

B

(
∂

∂θ

(
sin(θ)

∂A

∂θ

)
+

1

sin θ

∂2A

∂φ2

)
dθdφ

=

2π∫
φ=0

π∫
θ=0

B
∂

∂θ

(
sin(θ)

∂A

∂θ

)
dθdφ+

2π∫
φ=0

π∫
θ=0

B

sin θ

∂2A

∂φ2
dθdφ

=

2π∫
φ=0

[B sin(θ)
∂A

∂θ

]π
θ=0

−
π∫

θ=0

sin(θ)
∂A

∂θ

∂B

∂θ
dθ

 dφ
+

π∫
θ=0

1

sin θ

[B∂A
∂φ

]2π

φ=0

−
π∫

θ=0

∂A

∂φ

∂B

∂φ
dφ

 dθ
= −

2π∫
φ=0

π∫
θ=0

[
sin(θ)

∂A

∂θ

∂B

∂θ
+

1

sin θ

∂A

∂φ

∂B

∂φ

]
dφdθ (2.15)

where we used the periodicity properties of B and integration by parts. Using integration by parts and
the periodicity properties of A, we obtain

π∫
θ=0

sin(θ)
∂A

∂θ

∂B

∂θ
dθ =

[
sin(θ)A

∂B

∂θ

]π
θ=0

−
π∫

θ=0

A
∂

∂θ

(
sin(θ)

∂B

∂θ

)
dθ

= −
π∫

θ=0

A
∂

∂θ

(
sin(θ)

∂B

∂θ

)
dθ

and

2π∫
φ=0

∂A

∂φ

∂B

∂φ
dφ =

[
A
∂B

∂φ

]2π

φ=0

−
2π∫

φ=0

A
∂2B

∂φ2
dφ

= −
2π∫

φ=0

A
∂2B

∂φ2
dφ.
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simplifying (2.15) as

−
2π∫

φ=0

π∫
θ=0

[
sin(θ)

∂A

∂θ

∂B

∂θ
dθdφ+

1

sin θ

∂A

∂φ

∂B

∂φ

]
dθdφ = −

2π∫
φ=0

π∫
θ=0

sin(θ)
∂A

∂θ

∂B

∂θ
dθdφ−

2π∫
φ=0

π∫
θ=0

1

sin θ

∂A

∂φ

∂B

∂φ
dθdφ

= −
2π∫

φ=0

π∫
θ=0

sin(θ)
∂A

∂θ

∂B

∂θ
dθdφ−

π∫
θ=0

2π∫
φ=0

1

sin θ

∂A

∂φ

∂B

∂φ
dφdθ

=

2π∫
φ=0

π∫
θ=0

A
∂

∂θ

(
sin(θ)

∂B

∂θ

)
dθdφ+

π∫
θ=0

2π∫
φ=0

1

sin θ
A
∂2B

∂φ2
dφdθ

=

2π∫
φ=0

π∫
θ=0

A
1

sin θ

[
∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1

sin θ

∂2

∂φ2

]
Bsin(θ)dθdφ

=

∫
S

A∇̃ · ∇̃B d2p,

which concludes the proof.
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Chapter 3

Jeffery’s equation and the Folgar-Tucker
model

3.1 Introduction

In our progression towards the Wang-O’Gara-Tucker model, the preceding attempts to model fiber ori-
entation can not be skipped. The two most important attempts, which are also the fundament of the
Wang-O’Gara-Tucker model, were made by G.B. Jeffery in 1922 and, more than half a century later,
by F. Folgar and C.L. Tucker in 1984.

We explain the idea’s behind Jeffery’ equation, including the assumptions and a derivation of the
equation in one particular case. The extension of Jeffery’s equation, made by F. Folgar and C.L. Tucker
III is considered subsequently. This gives rise to partial differential equation (PDE). A derivation is
included. This kinetic theory, as it is called, is computationally expensive, which leads us to the next
chapter wherein a more computationally attractive alternative is introduced.

3.2 Jeffery’s equation

3.2.1 Description in space and assumptions

The modeling of fiber orientation starts with the construction of a quantitative description in space.
Self evidently, there a many possibilities in doing so. Considering a flexible fiber as a finite pathline
∈ R3, functions describing the set of the infinite amount of points of the line in space can be constructed.
Such a description is in our case overly detailed and cumbersome, as making some plausible assumptions
simplifies the modeling and gives rise to a spatial description.

In 1922, G.B. Jeffery published an article describing the motion of prolate ellipsoidal particles im-
mersed in a viscosity dominated fluid [9]. Herein, he considers particles with an ellipsoidal shape with
two unique axes, confer Figure 3.1. He assumes that the particles do not bend, but are rigid and straight.

Figure 3.1: a prolate ellipsoid: the short axes are equal, the long axis is unique.

When the long axis is much larger than the short axis of the ellipsoid, l
d � 1, torque about the long

axis is neglected as it is small in comparison with the torque about the short axis. Furthermore, the
immersing fluid is assumed to be fully viscous, and so inertial and body forces can be neglected. The
velocity field is treated as homogeneous at length scales comparable to the particle size. In other words,
the velocity field does not change in space, so

∇v = O.

The velocity field can thus be expressed as

v = K · x+ c (3.1)

with K = (∇v)T constant in space x, but not necessarily constant in time t. Furthermore, K is
subjected to the condition ∇ · v = 0 as we assume that the flow is incompressible. As a consequence,
we must have that

tr (K) =
∑
i

(
(∇v)T

)
ii

=∇ · v = 0.
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Vector c in (3.1) is a vector that is constant in space, but also not necessarily constant in time.

The beforementioned gives rise to a spatial decription. The orientation of the ellipsoid can be de-
scribed by a unit vector p with its coordinates with respect to a Cartesian basis on the surface of the
unit sphere. The latter space will be used frequently throughout this report, and we thus define

S = {p ∈ R3 : ||p||2 = 1},

as depicted in Figure 2.1. Note that since p is a unit vector and thus merely a direction, it is dimen-
sionless. This description is used often in the literature concerning fiber orientation. The unit vector
p can be parametrized using generalized coordinates θ, φ with respect to a Cartesian basis. Doing so
decreases the number of degrees of freedom (#DOF) [4] and yields

p =

 sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)

 . (3.2)

The path of p on the surface of the unit sphere is called a Jeffery’s orbit.

With the above assumptions, a derivation of Jeffery’s equation for a particular case will be made.
A complete derivation is cumbersome and redundant as the following derivation suffices in explaining
the ideas behind the equation.

3.2.2 Derivation

Consider a massless fiber in a fully viscous fluid with its two end points located at positions r1 and
r2 with respect to a chosen origin O, as depicted in 3.2. We assume free draining between the end

Figure 3.2: particle immersed in a viscous dominated / Stokes flow.

points. This means that the fluid flow between the end points is not subjected to stresses by the fiber.
Say q = r2 − r1. The length ||q||2 is fixed as the fiber is considered rigid. Because we consider only
homogeneous flows, we can write v = K ·x with K in [ 1

s ]. The viscous force on the particles is described
by

Fi = −ζ(ṙi − vi) = −ζ(ṙi −K · ri), i ∈ {1, 2}

where ζ = 6πηa [kgs ] is the friction of a sphere with radius a [m] in Stokes flow with viscosity η [ kgms ]
under no slip conditions. Say we call the internal force in the fiber, enforcing the constraint of the fixed
length ||q||2 =constant, by Fc. Then we must have

F1 + Fc = 0

F2 − Fc = 0.

Subtracting the first equation from the second we obtain

F2 − F1 − 2Fc = 0

−ζ((ṙ2 − ṙ1)−K · (r2 − r1))− 2Fc = 0

−ζ(q̇ −K · q)− 2Fc = 0.

Because q and Fc have the same direction, namely p, we can write

q = lp, Fc = Fcp
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resulting in
−ζ(lṗ− lK · p)− 2Fcp = 0.

Taking the inner product with p gives, due to ||p||2 = 1⇒ p · p = 1, ṗ · p = 0, that

ζlp ·K · p− 2Fc = 0

Fc =
ζl

2
p ·K · p.

Filling this in in the original subtraction, we get

−ζ(lṗ− lK · p)− 2

(
ζl

2
p ·K · p

)
p = 0

ṗ−K · p+ p ·K · pp = 0

ṗ = K · p− p ·K · pp.

Splitting K into its symmetric and antisymmetric part

D =
1

2
(K +KT ), W =

1

2
(K −KT )

respectively, K = D +W , we get the ordinary differential equation (ODE)

ṗ = (D +W ) · p− p · (D +W ) · pp
ṗ = W · p+D · p− p ·D · pp
ṗ = W · p+D · p−D : ppp,

where we used the property x ·W · x = 0 ∀x for an antisymmetric tensor. The first two terms stem
from the difference in velocity of the end points of the fiber. This gives rise to a rotation generated by
W · p and a strain generated by D · p. The last term stems from the internal force in the fiber, also
generating a strain.

A complete derivation of Jeffery’s equation would lead to

ṗ = W · p+ ξ(D · p−D : ppp) (3.3)

where

ξ =
r2
e − 1

r2
e + 1

, re =

√
−ξ + 1

ξ − 1
, re =

l

d
,

with l the length of the long axis of the ellipsoid and d the length of the short axis. Note that

lim
ξ↑1

re = ∞

lim
ξ↓−1

re = 0

so that −1 < ξ < 1 is realistic. Describing (3.3) by the use of generalized coordinates we get

θ̇ = (λ−KT + λ+K) : δrδθ

φ̇ sin θ = (λ−KT + λ+K) : δrδφ (3.4)

where

λ− =
ξ − 1

2
λ+ =

ξ + 1

2

and (δr, δθ, δφ) = (p, q, s) confer [2]. This description is obtained by taking the inner product of (3.3)
with δθ or δφ respectively.

With this result, Jeffery determined that center of such a particle translates with the bulk motion
of the fluid, and that the particle rotates with a period that depends on its shape. The speed of rotation
is not constant. The particle rotates slower when aligned with the flow direction.

The length of the fibers used in injection molding is small in comparison with the variation of the
streamlines of the main flow. Jeffery’s equation therefore suffices to describe the motion of a single
fiber immersed in a viscous fluid. However, even dilute suspensions of filled plastics used with injection
molding contain an amount of fibers that calls for the consideration of interaction among the fibers, so
called fiber-fiber interaction (FFI). This leads us to the Folgar-Tucker model.
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3.3 Folgar-Tucker model

3.3.1 Fiber-fiber interaction

F. Folgar and C.L. Tucker III recognized that Jeffery’s equation needed to be extended, as it does not take
the effects of high concentrations of fibers into account [7]. The interaction among the fibers influences
the orientation of the fibers. Even in dilute suspensions, the interaction is substantial, and so it would
not be logical to attempt to describe it deterministically. A stochastic description is more obvious.
Folgar and Tucker therefore introduced a probability density function (PDF) ψ(p, t) as a function of
orientation p and time t, which describes the probability density of the fiber having a certain direction
on S. Subsequently, the FFI can be described in terms of ψ. The definition is as follows.

Definition 3.1. Let P be a continuous random variable with realizations p in event space S, then
ψ : S × R→ R is defined such that

P(P ∈ S
′
, t) =

∮
S′

ψ(p, t)d2p,

under the conditions that

∀p, t ψ(p, t) ≥ 0 ∧ ∀t
∮
S

ψ(p, t)d2p = 1 ∧ ∀p, t ψ(p, t) = ψ(−p, t).

The P(P ∈ S′ , t) denotes the probability of a fiber lying in a direction represented by S
′ ⊂ S. Such a

representation stems from the end point of a fiber being enclosed by the surface element S
′
.

As S is not a space with a physical interpretation but merely a mathematical notion, we can choose the
dimension of the infinitesimal elements d2p. For the sake of simplicity, we choose d2p to be dimension-
less. Because probability is also dimensionless, also ψ must be dimensionless.

The first two conditions are intrinsic to the definition of a PDF. The third condition stems from the
spherical symmetry of p. It states that, because p represents a fiber orientation, it is invariant under
the ’labeling’ of its ends as head or tail. In terms of the generalized coordinates, this is described by

ψ(θ, φ) = ψ(π − θ, φ+ π)⇔ ψ(p, t) = ψ(−p, t).

The term modeling the FFI phenomenologically is

− CI γ̇∇̃ lnψ = −CI γ̇∇̃ψ
ψ

. (3.5)

The coefficient CI is called the interaction coefficient, which determines how strong the FFI is present
in the flow. It is typically of the order O(10−3)−O(10−1). The γ̇ does not have a unique definition. It
depends on which flow field is considered. In case of a simple shear flow field for instance we have

v = K · x, K =

 0 γ̇ 0
0 0 0
0 0 0

 (3.6)

so that

D =
1

2
(K +KT ) =

γ̇

2

 0 1 0
1 0 0
0 0 0

⇔ γ̇ =
√

2D : D.

The γ̇ is merely to make the FFI proportional to the deformation rate. When γ̇ = 0, there is no FFI.
The ∇̃ is as defined in Definition 2.2.

The origin of (3.5) stems from a derivation analogous to the derivation of the Fokker-Planck equation.
It is similar to the way thermal effects cause a rotary diffusion in molecular theories [2], in particular in
kinetic theory. The derivation will not be treated here.

Besides the assumptions made for the derivation of Jeffery’s equation, for the derivation of (3.5) it
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is additionally assumed that the flow is incompressible. This implies a solenoidal velocity field v, so
that

0 =∇ · v =
∑
i

∇ivi =
∑
i

Kii = tr (K)

=
∑
i,j

Kijδji = K : I. (3.7)

By adding the FFI (3.5) to Jeffery’s equation (3.3), we obtain the extended equation

ṗ = W · p+ ξ(D · p−D : ppp)− CI γ̇∇̃ lnψ. (3.8)

As (3.3) is an equation for p(t) under the condition that the flow field v is given, so is (3.8), under the
additional condition that ψ(p(t), t) is known. The latter is, however, not the case. The PDF ψ is solved
by a PDE, which is treated in the next subsection.

3.3.2 Conservation of probability

The PDE for ψ originates from a conservation law for ψ. It has the same form as the conservation of
mass. When an amount of fibers or directions p ’leave’ an area S1 ⊂ S, they have to ’enter’ another
area S2 ⊂ S\S1, confer Figure 3.3. This can be considered as a convective effect, inducing a change of

Figure 3.3: flux of probability.

ψ in time t. Considering S1 ⊂ S, the net amount of fibers that leave the area is denoted as∮
p∈C1

ψvp · nd1p,

where C1 is the circumference of area S1 and vp the velocity at which the fibers enter and leave S1.
Note that with the divergence theorem we obtain∮

p∈C1

ψvp · nd1p =

∫
p∈S1

∇̃ · (ψvp)d2p. (3.9)

The change of ψ in time induced by the convection is

d

dt

∫
p∈S1

ψd2p =

∫
p∈S1

ψ̇d2p (3.10)
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where we used the independence of S1 and t. Combining (3.9) and (3.10) leads to the equation∫
p∈S1

ψ̇d2p = −
∫

p∈S1

∇̃ · (ψvp)d2p.

Since S1 is arbitrary, it follows that
ψ̇ = −∇̃ · (ψvp). (3.11)

The LHS is independent of the chosen basis and thus so is the RHS. Say we choose the spherical
coordinates to write out the RHS. We then have, maintaining the notation used in [2],

∇̃ = δr
∂

∂r
+

1

r
δθ

∂

∂θ
+

1

r sin θ
δφ

∂

∂φ
= δθ

∂

∂θ
+

1

sin θ
δφ

∂

∂φ

vp = vrδr + vθδθ + vφδφ = θ̇δθ + φ̇ sin(θ)δφ.

From the latter and Figure 3.4 it stands out that vp = ṗ. Substitution in (3.11) gives

Figure 3.4: angular velocities representing ṗ.

ψ̇ = −∇̃ · (ψṗ). (3.12)

As ṗ is known from (3.8), we can write out (3.12) further to obtain the so called kinetic theory.

3.3.3 Kinetic theory

Kinetic theory is the theory that gases are made up of atoms, all of which are in constant, random
motion. The rapidly moving particles constantly collide with each other and with their surroundings.
This is often described with the use of Brownian motion. Kinetic theory explains properties of gases on
macroscale by microscale effects. As the FFI term has similarities with kinetic theories, one often refers
to kinetic theory when considering the differential equation for ψ, which will be derived here.

Recall (3.8)
ṗ = W · p+ ξ(D · p−D : ppp)− CI γ̇∇̃ lnψ.

We again maintain the notation as used in [2], so (p, q, s) = (δr, δθ, δφ), Dr = CI γ̇, λ = ξ and

λ− =
λ− 1

2
, λ+ =

λ+ 1

2
.
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We write

ṗ =
1

2
(K −KT ) · δr + λ(

1

2
(K +KT ) · δr −

1

2
(K +KT ) : δrδrδr)−

Dr

ψ

(
δθ
∂ψ

∂θ
+ δφ

1

sin θ

∂ψ

∂φ

)
=

λ− 1

2
KT · δr +

λ+ 1

2
K · δr − λ

K +KT

2
: δrδrδr −

Dr

ψ

(
δθ
∂ψ

∂θ
+ δφ

1

sin θ

∂ψ

∂φ

)
= λ−KT · δr + λ+K · δr − λK : δrδrδr −

Dr

ψ

(
δθ
∂ψ

∂θ
+ δφ

1

sin θ

∂ψ

∂φ

)
where we used K : δrδr = KT : δrδr to obtain the last equivalence. Taking the left single contraction
with the unit tensor δ = δrδr + δθδθ + δφδφ we obtain

ṗ = λ−
(
KT : δrδrδr +KT : δrδθδθ +KT : δrδφδφ

)
+ λ+(K : δrδrδr +K : δrδθδθ +K : δrδφδφ)

−λK : δrδrδr −
Dr

ψ

(
δθ
∂ψ

∂θ
+ δφ

1

sin θ

∂ψ

∂φ

)
= λ−

(
KT : δrδθδθ +KT : δrδφδφ

)
+ λ+ (K : δrδθδθ +K : δrδφδφ)− Dr

ψ

(
δθ
∂ψ

∂θ
+ δφ

1

sin θ

∂ψ

∂φ

)
=

(
λ−KT : δrδθ + λ+K : δrδθ −

Dr

ψ

∂ψ

∂θ

)
δθ +

(
λ−KT : δrδφ + λ+K : δrδφ −

Dr

ψ sin θ

∂ψ

∂φ

)
δφ.

(3.13)

Filling the latter in in (3.12)

ψ̇ = −
(
δθ

∂

∂θ
+ δφ

1

sin θ

∂

∂φ

)
· (ψ

((
λ−KT : δrδθ + λ+K : δrδθ −

Dr

ψ

∂ψ

∂θ

)
δθ+(

λ−KT : δrδφ + λ+K : δrδφ −
Dr

ψ sin θ

∂ψ

∂φ

)
δφ

)
).

Using K : δrδr = KT : δrδr again, (3.7), the product rule and

∂δr
∂r

= 0,
∂δθ
∂r

= 0,
∂δφ
∂r

= 0,
∂δr
∂θ

= δθ,
∂δθ
∂θ

= −δr,
∂δφ
∂θ

= 0

∂δr
∂φ

= δφ sin θ,
∂δθ
∂φ

= δφ cos θ,
∂δφ
∂φ

= −δr sin(θ)− δθ cos(θ)

it follows that the kinetic theory is

ψ̇ = Dr
∂2ψ

∂θ2
+

Dr

sin2 θ

∂2ψ

∂φ2
+
∂ψ

∂θ

(
Dr

cos θ

sin θ
− λ−KT : δrδθ − λ+K : δrδθ

)
+

1

sin θ

∂ψ

∂φ

(
−λ−KT : δrδφ − λ+K : δrδφ

)
+ ψ(3λK : δrδr)

= Dr
∂2ψ

∂θ2
+

Dr

sin2 θ

∂2ψ

∂φ2
+
∂ψ

∂θ

(
Dr

cos θ

sin θ
− λ−KT : δrδθ − λ+K : δrδθ

)
+

1

sin θ

∂ψ

∂φ

(
−λ−KT : δrδφ − λ+K : δrδφ

)
+ ψ(3λD : δrδr) (3.14)

where in the last step we used W : δrδr = 0 due to the antisymmetry of W .

As θ ∈ [0, π], the PDE has two singularities, namely at θ ∈ {0, π}. At these two coordinates there
is a division by sin 0 = sinπ = 0. Letting θ ↓ 0 or θ ↑ π we have

ψ̇ → Dr

sin2 θ

∂2ψ

∂φ2

which is a one dimensional instationary diffusion equation. Herewith, ψ can be solved with the method
of separation of variables. As these are just two points of S, such a solution is not interesting. We
will omit the derivation. This observation is however, important for the stability criteria, treated in
Subsection 7.4.6.

Equation (3.14) is a PDE, linear in ψ. The domain space is the unit sphere S. At each location
on S, described by the generalized coordinates θ and φ, the basis vectors δr, δθ and δφ are known. The
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probability density can thus be calculated. Its value represents the probability of fibers having their
long axis in this particular direction. Unfortunately, the available asymptotic and exact solutions of
(3.14) do not provide all the information that is required [2]. Numerical methods provide an alternative,
in particular in case of instationarity. Nonetheless, the available asymptotic and exact solutions can be
useful to verify the adequacy of the numerical methods used to solve (3.14).

The finite difference method (FDM) looks appropriate for the treatment of (3.14) on structured grid, but
for the sake of the conservation of

∮
S
ψd2p = 1 we use the finite volume methode (FVM). A thorough

description of the approach can be found in Chapter 7.

In practical applications of injection molding, the flow field is clearly not homogeneous. A proba-
bility density ψ as a function of the generalized coordinates θ and φ for the unit sphere and time t is
insufficient in such cases. A proper approach would exist of a PDF that is also a function of space x.
In case of a one way coupling between the velocity field and the fiber orientation on a finite grid, the
velocity field is calculated and a posteriori the fiber orientation per mesh element, both per element.
The PDF values of the elements influence each other by convection. Hence, the partial time derivative
as used in (3.14) is substituted with a material or total derivative. In case of a two way coupling, the
velocity field and fiber orientation are calculted per time step and per element. This can be done with
either weak or strong coupling [11].

Calculating ψ from (3.14) involves a high computational cost when used for practical applications.
For example, an injection molding would require 5000 nodes, using 500 locations on the midplane with
10 nodes through the thickness at each location. Describing ψ(θ, φ) requires at least 10 increments for θ
and 40 for φ, giving a total of 400 DOFs per node. That totals 5000 ·400 = 2 ·106 DOFs to describe the
orientation in a single molding. As such calculations take an unacceptably long time, research was done
to construct a computationally more attractive approach. An alternative description was constructed,
as described in the next chapter.
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Chapter 4

The orientation tensor description

4.1 Introduction

Having derived the kinetic theory to model the fiber orientation is an elegant result. Nonetheless, obtain-
ing solutions numerically for practical cases is unattractively expensive and the known asymptotic and
analytic solutions do not represent the cases that we are interested in. An alternative, computationally
less expensive description would be attractive. S.G. Advani and C.L. Tucker III managed to formulate
such a description in 1987 [18]. This description implies the use of the so called orientation tensors. The
motivation and interpretation are explained, as are the important properties of the orientation tensors.
The rate equation for the second order tensor is derived.

4.2 Partial information

The idea behind the kinetic theory is to obtain information about the fiber orientation. This information
is contained in ψ. But perhaps a description containing less information than ψ, that is less computa-
tionally expensive, contains sufficient information on the fiber orientation. To this end, we consider a
certain series expansion of ψ.

In [6], E.T. Onat and F.A. Leckie show that the PDF can be expanded as

ψ(p, t) = f0V0 +
∑
i,j

[fij(p)Vij(t)] +
∑
i,j,k,l

[fijkl(p)Vijkl(t)] + . . . (4.1)

where

f0 = 1

fij = pipj −
1

3
δij

fijkl = pipjpkpl

−1

7
(pipjδkl + pipkδjl + piplδjk + pkplδij + pjplδik + pjpkδil)

+
1

35
(δijδkl + δikδjl + δilδjk)

...

are the traceless basis functions and

Vij...(t) =
1

4π

1

N !

N∏
x=0

(2x+ 1)

∮
S

ψ(p, t)fij...d
2p

are the corresponding Fourier coefficients, with N representing the number of subindices of the Fourier
coefficient in question. The basis functions do not change in time and thus only need to be calculated
∀p ∈ S. When solving the PDF numerically, this increases the efficiency as the basis functions only
need to be calculated once in space and not per time step. The Fourier coeffcients vary with time and
need to be calculated every time step. By neglecting the higher order terms in (4.1) we approximate
the ψ and increase the computational efficiency of numerical solving methods even further.

It can be seen that the integrals ∮
S

ψ(p, t)fij...d
2p

in the Fourier coefficients are the components of the deviatoric versions of the tensors

1 =

∮
S

ψ(p, t) d2p, A(t) =

∮
S

ψ(p, t)pp d2p, A(t) =

∮
S

ψ(p, t)pppp d2p, . . . .

From the latter it stands out that the tensors of odd order are not present. This is because they are
equal to zero due to ψ being an even function on S by Definition 3.1. It follows that by calculating A
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and A, we can approximate ψ. The tensors thus contain a substantial amount of information on the
fiber orientation. In addition, the tensors A and A turn out to possess several useful properties, which
leads us into the next section.

The expansion (4.1) turns out to be identical to the expansion of ψ in spherical harmonics [3]. Spherical
harmonics are orthogonal basis functions for the unit sphere S. They are of importance in the analysis
of the linear Fokker-Planck equation (3.14) [12]. Integrating the analysis of the spherical harmonics in
this thesis would certainly be a substantial contribution. Nontheless, such an analysis is omitted as it is
beyond the time schedule set for this thesis.

4.3 Definitions and interpretation

We introduce the following two definitions.

Definition 4.1. The second order moment tensor is defined as

A(t) =

∮
S

ψ(p, t)pp d2p.

Definition 4.2. Analogously, the fourth order moment tensor is defined as

A(t) =

∮
S

ψ(p, t)pppp d2p.

Tensors A and A contain information about the orientation of the fibers. For this reason they are also
often in the literature referred to as the orientation tensors.

The tensors A and A can be seen as a sum of ψ times the weights pp sin θ and pppp sin θ respec-
tively, where all the three quantities vary in space. Depending on the position on the sphere, the
probability density is represented with a certain ’strength’ in A and A. To get an idea of this strength
in the case of A, we consider

pp sin θ =

 sin2(θ) cos2(φ) sin2(θ) sin(2φ)
2

sin(2θ) cos(φ)
2

sin2(θ) sin(2φ)
2 sin2(θ) sin2(φ) sin(2θ) sin(φ)

2
sin(2θ) cos(φ)

2
sin(2θ) sin(φ)

2 cos2(θ)

 sin θ

=

 sin3(θ) cos2(φ) sin3(θ) sin(2φ)
2 (1− cos2(θ)) cos(θ) cos(φ)

sin3(θ) sin(2φ)
2 sin3(θ) sin2(φ) (1− cos2(θ)) cos(θ) sin(φ)

(1− cos2(θ)) cos(θ) cos(φ) (1− cos2(θ)) cos(θ) sin(φ) sin(θ) cos2(θ)

 .
(4.2)

It follows that the diagonal components have strictly nonnegative contributions, as ψ ≥ 0 and pipi sin θ ≥
0. The components are depicted in Figures 4.1-4.6 to indicate where the PDF is represented stronger
or weaker, per component of A. The strength of pppp sin θ follows in an analogous way.

An alternative way to obtain the physical interpretation of A is to consider its eigenpairs. Say we
consider A with respect to its eigenvectors or principal axes, then [A]pb is a diagonal matrix with its
eigenvalues on the diagonal. From the beforementioned, we recall that for all time t

A11(t) =

2π∫
φ=0

π∫
θ=0

ψ(θ, φ, t) sin3(θ) cos2(φ)dθdφ = λ1(t)

A22(t) =

2π∫
φ=0

π∫
θ=0

ψ(θ, φ, t) sin3(θ) sin2(φ)dθdφ = λ2(t)

A33(t) =

2π∫
φ=0

π∫
θ=0

ψ(θ, φ, t) sin(θ) cos2(θ)dθdφ = λ3(t),

which are all ∈ [0, 1]. Recalling Figures 4.1, 4.4 and 4.6, the A11, A22 and A33 represent the PDF
stronger or weaker depending on the location on the sphere S. Due to the locations of the extrema of
the diagonal components of pp sin θ, the eigenvalues of [A]pb are measures for the ’strength’ of the fiber
orientation in the direction of the corresponding eigenvector. Some examples will be clarifying.
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Figure 4.1: p1p1 sin θ. Figure 4.2: p1p2 sin θ.

Figure 4.3: p1p3 sin θ.
Figure 4.4: p2p2 sin θ.

Figure 4.5: p2p3 sin θ. Figure 4.6: p3p3 sin θ.
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1. If the λi = 1, then all the fibers lie in the ei direction. I.e., the length axes of the fibers are aligned
with the ei direction.

2. If λi = λj = 1
2 , the fibers have, in an average sense, equal components in the ei and ej direction.

As
∑
i

λi = 1, the last direction has zero strength and thus the fibers lie in the i − j plane. This

set of eigenpairs includes random orientation in the i− j plane.

3. If λ1 = λ2 = λ3 = 1
3 , the fibers have, in an average sense, equal components in all three directions.

This set of eigenpairs includes random orientation in R3.

More examples are depicted in Figure 4.7. If the off diagonal components of A are nonzero, then the
principal axes do not coincide with the axes of the chosen basis.

While drawing conclusions from A one should keep the nonunique relation between ψ and A in mind.
Namely, the PDF ψ can change in a sense of its moments other than the second, without A changing.
This implies the possibility of more distributions {ψ1, ψ2, . . .} corresponding to the same orientation
tensor state A.

4.4 Properties

It turns out that the orientation tensors have some useful properties. These properties will be used
throughout the report and are thus explained here.

Property 4.1. For the orientation tensors A and A we have

∀i, j (A)ij : R→ [−1

2
; 1] ∧ ∀i, j, k, l (A)ijkl : R→ [−1

8
; 1].

Proof. The elements of the second order orientation tensor are defined by

Aij := (A)ij =

∮
S

ψpp d2p


ij

=

∮
S

ψpipj d
2p.

As pi ≤ 1,∀i and
∫
S
ψd2p = 1 it follows that∮

S

ψpipj d
2p ≤

∮
S

ψ d2p = 1

with equality occuring when pipj = 1 in combination with ψ = δ(p−u) and u such that uiuj = 1. The
δ is as defined in Section 2.2. Similarly, pipjpkpl is maximal if pipjpkpl = 1 so that

Aijkl := (A)ijkl =

∫
S

ψpppp d2p


ijkl

=

∫
S

ψpipjpkpl d
2p ≤

∮
S

ψ d2p = 1

with equality occuring when pipjpkpl = 1 in combination with ψ = δ(p − u) and u such that
uiujukul = 1.

The minimum of Aij is achieved by minimizing the product pipj . It is clear that i 6= j at the minimum
because the square of a real scalar is nonnegative. Taking pk = 0, k 6= i, k 6= j gives us the most ’space’
to minimize the product. Due to the unit length of p we have p2

i + p2
j = 1 which represents the unit

disk. The minimum of the product is found by taking pi = −pj , pi = ± 1
2

√
2, which gives pipj = − 1

2 . It
follows that

∀i, j − 1

2
≤ Aij ≤ 1.

By minimizing pipjpkpl we will find the minimum of Aijkl. The minimum of pipjpkpl is found by using
Lagrange multipliers. Define

L(p, λ) = p2
1p2p3 + λ(p2

1 + p2
2 + p2

3 − 1).
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Figure 4.7: two dimensional examples of fiber orientation corresponding with second order matrices [20].
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Investigating the latter is sufficient as one of the indices i, j, k and l will occur twice, resulting in the
square, and due to the invariance of pipjpkpl under permutation. Then

∂L

∂p1
= 0 ⇔ 2p1p2p3 + 2λp1 = 0

⇔ p1(2p2p3 + 2λ) = 0

⇔ p1 = 0 ∨ p2p3 = −λ
∂L

∂p2
= 0 ⇔ p2

1p3 + 2λp2 = 0

∂L

∂p3
= 0 ⇔ p2

1p2 + 2λp3 = 0

∂L

∂λ
= 0 ⇔ p2

1 + p2
2 + p2

3 = 1.

The case p1 = 0 results in a value of zero for p2
1p2p3. The case p2p3 = −λ gives

p2
1p3 + 2λp2 = 0 ⇔ p2

1p3 − 2p2
2p3 = 0

⇔ p3(p2
1 − 2p2

2) = 0

⇔ p3 = 0 ∨ p1 = ±
√

2p2
2

p2
1p2 + 2λp3 = 0 ⇔ p2

1p2 − 2p2p
2
3 = 0

⇔ p2(p2
1 − 2p2

3) = 0

⇔ p2 = 0 ∨ p1 = ±
√

2p2
3.

The cases p2 = 0 and p3 = 0 give the value zero to p2
1p2p3, which was already achieved. The case

p1 = ±
√

2p2
2 results in

p2
1p2 + 2λp3 = 0 ⇔ 2p3

2 − 2p2p
2
3 = 0

⇔ 2p2(p2
2 − p2

3) = 0

⇔ p2 = 0 ∨ p2 = ±p3.

The normalization condition gives p2 = ± 1
2 and so p3 = ± 1

2 , p1 = ± 1√
2

resulting in p2
1p2p3 = 1

8 . In

effect,

∀i, j, k, l − 1

8
≤ Aijkl ≤ 1.

with the equality for the lower bound when pipjpkpl = 1
8 in combination with ψ = δ(p− q) and q such

that qiqjqkql = 1
8 .

Note that in a similar way, an alternative argument for the lower bound of Aij can be constructed.

An important property of A is that it is a symmetric positive definite tensor.

Property 4.2. The second order orientation tensor A is symmetric positive semidefinite (SPSD) by
definition.

Proof. We start with proving the symmetry of A

AT =

∫
S

ψpp d2p

T

=

∫
S

(ψpp)
T
d2p =

∫
S

ψpp d2p = A

where we used the invariance of scalars under transposition and (uv)T = vu.

Positive definiteness follows from

x ·A · x = x ·
∫
S

ψpp d2p · x

=

∫
S

ψx · pp · x d2p

=

∫
S

ψ︸︷︷︸
≥0 ∀p∈S

(x · p)2︸ ︷︷ ︸
≥0 ∀p∈S,x∈R3\{0}

d2p

≥ 0.
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Note that as A ∈ R3×3 and A = AT , A is also Hermitian, which we denote by A = A∗.

The fact that tensor A is SPSD, has some useful implications which are used later on in this report.

Property 4.3. Tensor A only has nonnegative eigenvalues ∈ R.

Proof. See Section A.2.

Property 4.4. The eigenvectors of A are real, ∀i ei ∈ R3.

Proof. See Section A.3.

Property 4.5. Unit eigenvectors of A corresponding to different eigenvalues are orthonormal.

Proof. See Section A.4.

Property 4.6. Eigenvectors of tensor A are never generalized, only genuine.

Proof. See Section A.5.

It is concluded that A does not have a Jordan canonical form. All the eigenvectors of A are genuine.
As A ∈ R3×3, the three genuine eigenvectors have to span R3×3 and thus the equality of two or three
eigenvectors is excluded.

Property 4.7. There exists a spectral decomposition for A.

Proof. See Section A.6.

Note that at some time t, equality of two or three of the eigenvalues may occur. Say we consider the
case that equality of two eigenvalues, say λ1 = λ2 = λ, λ3 6= λ, occurs, then we have

A =
∑
i

λieiei

= λ(e1e1 + e2e2) + λ3e3e3

= λ(I − e3e3) + λ3e3e3

= λP⊥e3
+ λ3P

‖
e3
. (4.3)

It follows from (4.3)2 that e1 and e2 are not determined uniquely, but element of Eob|e3
with

Eob = {E : ei · ej = δij} (4.4)

where the subscript ob stands for orthonormal basis. In other words, e1 and e2 can be chosen arbitrarily
in the plane perpendicular to e3, provided that they are orthonormal.

When we consider the case that three of the eigenvalues are equal to λ, we have

A =
∑
i

λieiei

= λ
∑
i

eiei

= λI (4.5)

where E ∈ Eob. In other words, all three eigenvectors can be chosen arbitrarily, under the condition
that they are mutually orthogonal and normalized to length one.

Property 4.8. We have ∑
i

λi = 1 ∧ 0 ≤ λi ≤ 1 ∀i
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Proof. Using Definition 4.1 and Property 4.7 we have∫
S

ψpp d2p =
∑
i

λieiei.

Taking the trace on both sides gives

tr

∫
S

ψpp d2p

 = tr

(∑
i

λieiei

)
∫
S

ψtr (pp) d2p =
∑
i

λitr (eiei)∫
S

ψp · p d2p =
∑
i

λiei · ei∫
S

ψ d2p =
∑
i

λi

1 =
∑
i

λi.

Since Property 4.2 states that λi ≥ 0 ∀i it immediately follows that

0 ≤ λi ≤ 1 ∀i.

Property 4.9. For an even function ψ(−p, t) = ψ(p, t) the second order tensor can be rewritten as

A(t) = 2

∫
Sup

ψ(p, t)pp d2p

where Sup is the surface of the upper hemisphere.

Proof. Say we consider the components of A in combination with generalized coordinates,

Aij(t) =

2π∫
φ=0

π∫
θ=0

ψ(θ, φ, t)pi(θ, φ)pj(θ, φ) sin(θ) dθdφ,

with pi(θ, φ, t) = pi(π− θ, φ+ π, t). We recall (4.2) and note that the substitution θ := π− θ, φ = φ+ π
gives the same result. We can thus write

Aij(t) =

2π∫
φ=0

π∫
θ=0

ψpipj sin(θ) dθdφ

=

2π∫
φ=0

π
2∫

θ=0

ψpipj sin(θ) dθdφ+

2π∫
φ=0

π∫
θ=π

2

ψpipj sin(θ) dθdφ

=

2π∫
φ=0

π
2∫

θ=0

ψpipj sin(θ) dθdφ+

π∫
φ=−π

0∫
θ=π

2

ψpipj sin(θ) · −dθdφ

=

2π∫
φ=0

π
2∫

θ=0

ψpipj sin(θ) dθdφ+

π∫
φ=−π

π
2∫

θ=0

ψpipj sin(θ) dθdφ

= 2

2π∫
φ=0

π
2∫

θ=0

ψpipj sin(θ) dθdφ

= 2

∫
Sup

ψpipjd
2p



4.5. Rate equation for the second order tensor 39

As scalars are independent of the chosen basis we have

A(t) = 2

∮
Sup

ψ(p, t)pp d2p.

From (4.2) we see that the diagonal components of A are always nonnegative.

The fourth order tensor A also has certain symmetric properties.

Property 4.10. The fourth order tensor A has 4! = 24 indical symmetries and 15 independent compo-
nents.

Proof. We recall that the components of A are defined as

Aijkl :=

∫
S

ψpipjpkpl d
2p.

Due to commutivity of scalars, we can permute the four indices as we want, resulting in 4! = 24 permu-
tation symmetries.

To determine the number of independent components we assume that we choose the indices such that
i ≤ j ≤ k ≤ l. This does not result in a loss of generality, as the indices can be permuted in any of the
24 ways. As i, j, k, l ∈ {1, 2, 3}, we introduce two separators | to indicate where in the sequence i, j, k, l
the number increases by one or two. Herewith, the total number of ’positions’ becomes 4+2 = 6, where

the two separators can be chosen in

(
6
2

)
= 15 ways. Ergo, the number of independent components

of A is 15.

To clarify the latter we give some examples. The sequence 1111 is represented by 0000||. The first four
positions, all equal to zero, represent the number of ones. The next position is a separator. If after this
separator we have positions with zeros, they will represent the number of occurences of two. However,
there are not any zero positions after the first separator. Instead, there is another separator implying
the ’jump’ to three. Again, there are no zeros after this separator and thus the sequence has ended. The
sequence 1123 is represented by 00|0|0, and so on. It stands out that the number of possible sequences
is determined by in how many ways the two separators can be chosen in the six positions. Indeed, if
we know the positions of the separators, we know the original sequence. Therefore, the total amount of

possibilities is

(
6
2

)
= 15.

4.5 Rate equation for the second order tensor

Although we have defined A in Definition 4.1, there is still no equation available wherefrom A should
be solved. Such an equation is derived by combining Definitions 4.1 and 4.2 with (3.8) and (3.12), as
proven in the following theorem.

Theorem 4.1. The system

ṗ = W · p+ ξ(D · p−D : ppp)− CI γ̇∇̃ lnψ

ψ̇ = −∇̃ · (ṗψ)

implies the relation

Ȧ = W ·A−A ·W + ξ(D ·A+A ·D − 2A : D) + 2CI γ̇(I − 3A).

Proof. From Definition 4.1, it follows that

Ȧ =
d

dt

∫
S

ψpp d2p.

Because the integration domain S is independent of t, the derivative and integral can be interchanged

Ȧ =

∫
S

∂

∂t
[ψpp] d2p.
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Since p is in this case the integration variable and thus independent of t we obtain

Ȧ =

∫
S

∂ψ

∂t
pp d2p.

Using the conservation equation for ψ (3.12), the latter becomes

Ȧ = −
∫
S

∇̃ · (ṗψ)pp d2p.

We proceed by introducing a splitting of (3.8)

ṗ = W · p+ ξ(D · p−D : ppp)︸ ︷︷ ︸
:=ṗJ

−CI γ̇∇̃ lnψ︸ ︷︷ ︸
:=ṗFT

so that

Ȧ = −
∫
S

∇̃ · ((ṗJ + ṗFT )ψ)pp d2p = −
∫
S

∇̃ · (ṗJψ)pp d2p−
∫
S

∇̃ · (ṗFTψ)pp d2p.

The indices J and FT stand for Jeffery and Folgar-Tucker respectively. We consider the ’Jeffery’ term

−
∫
S

∇̃ · (ṗJψ)pp d2p.

Omitting the index J for the sake of notation, ∇̃ · (ṗJψpp) has components

(∇̃ · (ṗJψpp))ij =
∑
k

∂̃

∂pk
(ṗkψpipj)

=
∑
k

[
∂̃

∂pk
(ṗkψ)pipj + ṗkψ

∂̃

∂pk
(pipj)

]

=
∑
k

[
∂̃

∂pk
(ṗkψ)pipj

]
+
∑
k

[
ṗkψ

∂̃

∂pk
(pipj)

]

from which it follows that

∇̃ · (ṗJψpp) = ∇̃ · (ṗJψ)pp+ ṗJψ · ∇̃pp.

Herewith, the Jeffery term becomes

−
∫
S

∇̃ · (ṗJψ)pp d2p = −
∫
S

[
∇̃ · (ṗJψpp)− ṗJψ · ∇̃pp

]
d2p

=

∫
S

ṗJψ · ∇̃pp d2p

where we used the closedness of S in the latter step to make the integral of the first term on the RHS
vanish. A proof hereof uses a variant of the divergence theorem and spherical coordinates for p. A
formal proof is rather cumbersome and will be omitted. To proceed, we recall Property 2.2 which gives∫

S

ṗJψ · ∇̃pp d2p


ij

=

∫
S

ψ
∑
k

[
ṗk

∂̃

∂pk
(pipj)

]
d2p

=

∫
S

ψ
∑
k

[ṗk(δkipj + δkjpi − 2pipjpk)] d2p

=

∫
S

ψ
∑
k

[ṗkδkipj + ṗkδkjpi − ṗk2pipjpk)] d2p

=

∫
S

ψ

[
ṗipj + ṗjpi − 2pipj

∑
k

ṗkpk

]
d2p
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Because p is a unit vector, we have

∑
k

p2
k = 1⇒

˙(∑
k

p2
k

)
= ˙(1)⇔

∑
k

2pkṗk = 0⇔
∑
k

pkṗk = 0

and thus the last term vanishes, leaving

∫
S

ψ [ṗipj + ṗjpi] d
2p.

Using the Jeffery term ṗJ in component form, we find

∫
S

ψ [ṗipj + ṗjpi] d
2p =

∫
S

ψ

∑
k

[Wikpk] + ξ

∑
k

[Wikpk]−
∑
k,l

[Dklplpkpi]

 pj

+

∑
k

[Wjkpk] + ξ

∑
k

[Djkpk]−
∑
k,l

[Dklplpkpj ]

 pi

 d2p

=
∑
k

Wik

∫
S

ψpkpj d
2p

+ ξ
∑
k

Dik

∫
S

ψpkpj d
2p

− ξ∑
k,l

Dkl

∫
S

ψplpkpipj d
2p


+
∑
k

Wjk

∫
S

ψpkpi d
2p

+ ξ
∑
k

Djk

∫
S

ψpkpi d
2p

− ξ∑
k,l

Dkl

∫
S

ψplpkpjpi d
2p


=

∑
k

Wik

∫
S

ψpkpj d
2p

+ ξ
∑
k

Dik

∫
S

ψpkpj d
2p

− ξ∑
k,l

Dkl

∫
S

ψplpkpipj d
2p


−
∑
k

∫
S

ψpkpi d
2pWkj

+ ξ
∑
k

∫
S

ψpkpi d
2pDkj

− ξ∑
k,l

Dkl

∫
S

ψplpkpipj d
2p


where in the last step the symmetry of D, the antisymmetry of W and commutivity of scalars were
used. This gives rise to the tensor form

W ·A−A ·W + ξ(D ·A+A ·D − 2A : D) (4.6)

which concludes the Jeffery term.

For the ’Folgar-Tucker’ term, we have

−
∫
S

∇̃ · (ṗFTψ)pp d2p = −
∫
S

∇̃ · ((−CI γ̇∇̃ ln(ψ))ψ)

= CI γ̇

∫
S

(∇̃ · ∇̃ lnψ)ψpp d2p.

The factor ∇̃ lnψ has components

(∇̃ lnψ)i =
∂̃

∂pi
lnψ =

1

ψ

∂̃ψ

∂pi

and thus

∇̃ lnψ =
1

ψ
∇̃ψ.
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Using the latter and Properties 2.4 and 2.3, the Folgar-Tucker term is

CI γ̇

∫
S

(∇̃ · (ψ∇̃ lnψ))pp d2p = CI γ̇

∫
S

(∇̃ · ∇̃ψ)pp d2p

= CI γ̇

∫
S

ψ(∇̃ · ∇̃pp) d2p

= CI γ̇

∫
S

ψ(2(I − 3pp)) d2p

= 2CI γ̇

∫
S

ψ d2p · I − 3

∫
S

ψpp d2p


= 2CI γ̇(I − 3A) (4.7)

Adding the Jeffery and Folgar-Tucker terms (4.6) and (4.7), we obtain the rate equation for A

Ȧ = W ·A−A ·W + ξ(D ·A+A ·D − 2A : D) + 2CI γ̇(I − 3A) (4.8)

which conludes the proof.

Note that for practical injection molding processes, we have that ψ is a function of the space x and thus
A is a function of x. The implication has been proven, but the A makes finding a solution impossible.
Deriving a rate equation for A would lead to the introduction of a sixth order tensor. Deriving a rate
equation for the sixth order tensor would lead to the introduction of a eight order tensor, and so on.
Such a strategy is cumbersome and futile. This closure problem can be solved by approximating A as
a function of A. In the literature, several of these closure approximations are available. In particular,
orthotropic closure approximations stand out [15]. The Wang-O’Gara-Tucker model does not imply a
closure approximation and thus this issue will not be discussed here, but in Chapter 6.
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Chapter 5

Wang-O’Gara-Tucker model

5.1 Introduction

Although (4.8) has been widely used in academia and industries, it displays an orientational relaxation
rate that is too fast. Steady state situations are reached too quickly in comparison with experiments.
J. Wang, J.F. O’Gara and C.L. Tucker III have attempted to correct this rate of kinetics, which was
published in 2008 in [13]. Their model is derived, its objectivity is proven and the equivalent kinetic
theory is constructed.

5.2 Rate equations for the eigenpairs

A straightforward way to slow the dynamics down is demonstrated by the strain reduction factor (SRF)
model [13]. The RHS of (4.8) is multiplied with a strain reduction factor κ < 1, resulting in

Ȧ = κ (W ·A−A ·W + ξ(D ·A+A ·D − 2A : D)− 2CI γ̇(I − 3A)) .

The argument of using the former is that the fibers are concentrated into clusters that experience less
strain than the bulk. It, however, does not obey the condition of objectivity for time derivatives [8]

Ȧ+ = Q̇AQT +QȦQT +QA ˙(QT )

and can thus give different answers in different coordinate systems. Note that the + refers to an observer
O+ different from O, in the sense of the Euclidean transformation

x+ = c(t) +Q(t) · x, t+ = t− α

where
c(t) = x+

0 −Q(t) · x0, α = t+0 − t0.

The Q(t) represents a rotation, the c(t) a translation. This variance under change of basis originates
from the multiplication of W with κ, which introduces a variance under rigid body rotation. The SRF
model does not suffice. The notion of objectivity is treated more thoroughly in Section 5.4.

The strategy used in [13] to resolve the issue of the orientational relaxation rate is decomposing the
equation for Ȧ into rate equations for the eigenpairs of A, modifying the equation for the eigenvalues
and reassembling the equations for the eigenpairs to obtain a equation for Ȧ again.

5.2.1 Rate equation for the eigenvalues

Theorem 5.1. The rate equation (4.8) for the second order tensor A implies the rate equation

λ̇j = 2ξ (λjD : ejej − ejej : A : D) + 2CI γ̇(1− 3λj)

for the eigenvalues of A.

Proof. We start with the derivation of the rate equation for the eigenvalues. For this, we recall Property
4.7

A =
∑
i

λieiei

and substitute it in in (4.8). For the LHS we get

Ȧ =

˙(∑
i

λieiei

)
=
∑
i

λ̇ieiei + λiėiei + λieiėi.

For the RHS, substitution is trivial. The equation with the spectral expansion used is∑
i

λ̇ieiei + λiėiei + λieiėi =
∑
i

[λiW · eiei − λieiei ·W + ξ(λiD · eiei + λieiei ·D)

+2CI γ̇(1− 3λi)eiei]− 2ξA : D. (5.1)



44 5. Wang-O’Gara-Tucker model

To obtain separate equations for the rates of change of the eigenvalues, we apply ej · (. . .) · ej on both
sides of the latter equation. Moreover, we use the properties ei · ej = δij and ej · ėj = 0, where the
latter follows from orthonormality

ej · ej = 1 ⇒ ˙(ej · ej) = 0 ⇔ ėj · ej + ej · ėj = 0 ⇔ ⇔ ej · ėj = 0.

We obtain for the LHS

ej ·
(∑

i

λ̇ieiei + λiėiei + λieiėi

)
· ej =

∑
i

[
λ̇iej · eiei · ej + λiej · ėiei · ej + λiej · eiėi · ej

]
=

∑
i

[
λ̇iδijδij + λiej · ėiδij + λiδij ėi · ej

]
= λ̇j + λjej · ėj + λj ėj · ej
= λ̇j .

For the RHS, we get

ej ·
(∑

i

[λiW · eiei − λieiei ·W
∑
i

[λiej ·W · eiei · ej − λiej · eiei ·W · ej

+ξ(λiD · eiei + λieiei ·D) = +ξ(λiej ·D · eiei · ej + λiej · eiei ·D · ej)
+2CI γ̇(1− 3λi)eiei]− 2ξA : D) · ej +2CI γ̇(1− 3λi)ej · eiei · ej ]− 2ξej · A : D · ej

which simplifies to∑
i

[δij (λiej ·W · ei − λiei ·W · ej + ξ(λiej ·D · ei + λiei ·D · ej) + 2CI γ̇(1− 3λi))]− 2ξej · A : D · ej =

λjej ·W · ej − λjej ·W · ej + ξ(λjej ·D · ej + λjej ·D · ej) + 2CI γ̇(1− 3λj)− 2ξej · A : D · ej =

2ξλjej ·D · ej + 2CI γ̇(1− 3λj)− 2ξej · A : D · ej .

Note that
ej ·D · ej = D : ejej ∧ ej · A : D · ej = ejej : A : D

which concludes the derivation of both the left and RHS to get

λ̇j = 2ξλjD : ejej + 2CI γ̇(1− 3λj)− 2ξejej : A : D

= 2ξ (λjD : ejej − ejej : A : D) + 2CI γ̇(1− 3λj). (5.2)

5.2.2 Rate equation for the eigenvectors

Theorem 5.2. The rate equation (4.8) for the second order tensor A implies the rate equation

ėi = W · ei + ξ
λ2 + λ1 − 4Ā1212

λ2 − λ1
(D : e1e2)(δ2ie1 − δ1ie2)

+ξ
λ3 + λ2 − 4Ā2323

λ3 − λ2
(D : e2e3)(δ3ie2 − δ2ie3)

+ξ
λ1 + λ3 − 4Ā3131

λ1 − λ3
(D : e3e1)(δ1ie3 − δ3ie1)

for the eigenvectors of A.

Proof. Recall (5.1)∑
i

λ̇ieiei + λi(ėiei + eiėi) =
∑
i

[λiW · eiei − λieiei ·W + ξ(λiD · eiei + λieiei ·D)

+2CI γ̇(1− 3λi)eiei]− 2ξA : D.

We reorder the equation as∑
i

λi(ėiei + eiėi) =
∑
i

[λiW · eiei − λieiei ·W + ξ(λiD · eiei + λieiei ·D)

+2CI γ̇(1− 3λi)eiei]− 2ξA : D −
∑
i

λ̇ieiei. (5.3)
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The term ee ·W has components ∑
j

eiejWj ⇔ ei
∑
j

Wjej

and can thus be written as e(W · e) = eW · e. Moreover, with the use of (5.2), we can write∑
i

λ̇ieiei =
∑
i

(2ξ (λiD : eiei − eiei : A : D) + 2CI γ̇(1− 3λi)) eiei

=
∑
i

[2ξλiD : eieieiei]−
∑
i

[2ξeiei : A : Deiei] +
∑
i

[2CI γ̇(1− 3λi)eiei] .

Substitution in (5.3) results in the cancellation of the interaction terms and∑
i

λi(ėiei + eiėi) =
∑
i

[λi(W · eiei − eiW · ei) + λiξ(D · eiei + eiei ·D − 2D : eieieiei)]

−2ξ

(
A : D −

∑
i

eiei : A : Deiei

)
. (5.4)

The last term can be simplified by writing

A : D =
∑
i,j,k,l

ĀijklD̄kleiej .

where we use the notation ([A]E)ab... = Āab... to emphasize that the components are taken with respect
to basis E. Also

A =
∑
j,k,l,m

Ājklmejekelem ⇒ eiei : A = eiei :
∑
j,k,l,m

Ājklmejekelem =
∑
j,k,l,m

Ājklmeiei : ejekelem.

Note that

eiei : ejek =
∑
n,p

(ei)n(ei)p(ej)n(ek)p =
∑
n

(ei)n(ej)n
∑
p

(ei)p(ek)p = (ei · ej)(ei · ek) = δijδik

so that ∑
j,k,l,m

Ājklmeiei : ejekelem =
∑
l,m

Āiilmelem.

Writing

D =
∑
j,k

D̄jkejek

and taking the left double contraction with eiei : A gives

eiei : A : D =

∑
l,m

Āiilmelem

 :
∑
j,k

D̄jkejek

=
∑
j,k,l,m

ĀiilmD̄jkelem : ejek

=
∑
j,k,l,m

ĀiilmD̄jkδjlδkm

=
∑
j,k

ĀiijkD̄jk.

Because we can choose the indices arbitrarily, we rewrite the latter as∑
k,l

ĀiiklD̄kl
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for the sake of clarity in the addition

A : D −
∑
i

eiei : A : Deiei =
∑
i,j,k,l

[
ĀijklD̄kleiej

]
−
∑
i,k,l

[
ĀiiklD̄kleiei

]

=
∑
i

∑
j

∑
k,l

[
ĀijklD̄kleiej

]
−
∑
k,l

[
ĀiiklD̄kleiei

] .

From the latter it is clear that the terms with i = j are cancelled. The terms with

(i, j) ∈ {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}

remain. Furthermore, Aijkl = Ajikl so the remaining terms are

∑
k,l

[
Ā12klD̄kl(e1e2 + e2e1)

]
+
∑
k,l

[
Ā23klD̄kl(e2e3 + e3e2)

]
+
∑
k,l

[
Ā31klD̄kl(e3e1 + e1e3)

]
.

If the fourth order orientation tensor is replaced by an orthotropic closure, as explained in Chapter 6,
then all components of Ā are zero except for Ā1212, Ā2323, Ā3131 and their symmetric counterparts. This
leaves us with

A : D −
∑
i

eiei : A : Deiei = 2
(
Ā1212D̄12(e1e2 + e2e1) + Ā2323D̄23(e2e3 + e3e2)

+Ā3131D̄31(e3e1 + e1e3)
)
. (5.5)

In constructing the rate equation for the eigenvectors, we continue with the assumption that a solution
of the form

ėi = Wn · ei (5.6)

exists, where Wn is unknown. Furthermore, we assume skew or anti symmetry Wn = −W T
n . A skew

symmetrix tensor in an ODE generates a proper orthogonal tensor in the solution, which guarantees
that ei has a constant length and that all eis remain orthonormal. Again, we use the components with
respect to the principal axes of A and denote them with overbars. We take

Wn =

 0 W̄n12 −W̄n31

−W̄n12 0 W̄n23

W̄n31 −W̄n23 0


and a similar expression for W , without the ns. Note that

Wn · e1 = −W̄n12e2 + W̄n31e3

Wn · e2 = −W̄n23e3 + W̄n12e1 (5.7)

Wn · e3 = −W̄n31e1 + W̄n23e2

and el ·Wn ·em = (W̄n)lm. With the latter, we will find the components of Wn if possible and construct
a solution of the form (5.6).

We substitute (5.5), (5.6), (5.7) and

D =
∑
j,k

D̄jkejek

in (5.4) and take el · (. . .) · em to obtain expressions for (W̄n)lm. For the LHS we get

el ·
(∑

i

λi(ėiei + eiėi)

)
· em =

∑
i

λi(el · (Wn · ei)ei · em + el · ei(Wn · ei) · em)

=
∑
i

[λiel · (Wn · ei)ei · em] +
∑
i

[λiel · ei(Wn · ei) · em]

=
∑
i

[λiel · (Wn · ei)δim] +
∑
i

[λiδil(Wn · ei) · em]

= λmel · (Wn · em) + λl(Wn · el) · em
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where the factors Wn · em and Wn · el follow from (5.7). The RHS is rather large and we thus treat
the terms separately.

el ·
(∑

i

[λi(W · ei)ei]
)
· em =

∑
i

[λiel · (W · ei)ei · em]

=
∑
i

[λiel · (W · ei)δim]

= λmel · (W · em)

el ·
(∑

i

[λiei(W · ei)]
)
· em =

∑
i

[λiel · ei(W · ei) · em]

=
∑
i

[λiδil(W · ei) · em]

= λl(W · el) · em

el ·

∑
i

λi(
∑
j,k

D̄jkejek) · eiei

 · em =
∑
i,j,k

[
λiD̄jkel · (ejek · eiei) · em

]
=

∑
i,j,k

[
λiD̄jkδikδjlδim

]
= λmD̄lm

el ·

∑
i

λieiei · (
∑
j,k

D̄jkejek)

 · em =
∑
i,j,k

[
λiD̄jkel · (eiei · ejek) · em

]
=

∑
i,j,k

[
λiD̄jkδijδilδkm

]
= λlD̄lm

el ·

∑
i

λi(
∑
j,k

D̄jkejek) : eieieiei

 · em =
∑
i,j,k

[
λiD̄jkel · (ejek : eieieiei) · em

]
=

∑
i,j,k

[
λiD̄jkδijδikδilδim

]
= λlD̄llδlm

= λmD̄mmδlm

In the last term of (5.4), the kernels

e1e2 + e2e1, e2e3 + e3e2, e3e1 + e1e3

merely change to
δ1lδ2m + δ2lδ1m, δ2lδ3m + δ3lδ2m, δ3lδ1m + δ1lδ3m.

Herewith, the final result is

λmel · (Wn · em) + λl(Wn · el) · em = λmel · (W · em) + λl(W · el) · em + ξλmD̄lm + ξλlD̄lm

−2ξλmD̄mmδlm − 4ξ(Ā1212D̄12(δ1lδ2m + δ2lδ1m)

+Ā2323D̄23(δ2lδ3m + δ3lδ2m) + Ā3131D̄31(δ3lδ1m + δ1lδ3m))

(5.8)

which, in combination with (5.7), gives us the elements of Wn. We construct Wn via its expansion

Wn =
∑
i,j

(W̄n)ijeiej

= W̄n12(e1e2 − e2e1) + W̄n23(e2e3 − e3e2) + W̄n31(e3e1 − e1e3) (5.9)
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where we used the the skew symmetry of Wn, implying zero diagonal terms and the three independent
elements W̄n12, W̄n23, W̄n31. We find the latter by taking (l,m) ∈ {(1, 2), (2, 3), (3, 1)} in (5.8).

λ2e1 · (Wn · e2) + λ1(Wn · e1) · e2 = λ2e1 · (W · e2) + λ1(W · e1) · e2 + ξλ2D̄12 + ξλ1D̄12

−2ξλ2D̄22δ12 − 4ξ(Ā1212D̄12(δ11δ22 + δ21δ12)

+Ā2323D̄23(δ21δ32 + δ31δ22) + Ā3131D̄31(δ31δ12 + δ11δ32))

λ2W̄n12 − λ1W̄n12 = λ2W̄12 − λ1W̄12 + ξλ2D̄12 + ξλ1D̄12 − 4ξĀ1212D̄12

(λ2 − λ1)W̄n12 = (λ2 − λ1)W̄12 + ξ(λ2 + λ1 − 4Ā1212)D̄12

W̄n12 = W̄12 + ξ
λ2 + λ1 − 4Ā1212

λ2 − λ1
D̄12

λ3e2 · (Wn · e3) + λ2(Wn · e2) · e3 = λ3e2 · (W · e3) + λ2(W · e2) · e3 + ξλ3D̄23 + ξλ2D̄23

−2ξλ3D̄33δ23 − 4ξ(Ā1212D̄12(δ12δ23 + δ22δ13)

+Ā2323D̄23(δ22δ33 + δ32δ23) + Ā3131D̄31(δ32δ13 + δ12δ33))

λ3W̄n23 − λ2W̄n23 = λ3W̄23 − λ2W̄n23 + ξλ3D̄23 + ξλ2D̄23

−4ξĀ2323D̄23

(λ3 − λ2)W̄n23 = (λ3 − λ2)W̄n23 + ξ(λ3 + λ2 − 4Ā2323)D̄23

W̄n23 = W̄n23 + ξ
λ3 + λ2 − 4Ā2323

λ3 − λ2
D̄23

λ1e3 · (Wn · e1) + λ3(Wn · e3) · e1 = λ3e3 · (W · e1) + λ3(W · e3) · e1 + ξλ1D̄31 + ξλ3D̄31

−2ξλ1D̄11δ31 − 4ξ(Ā1212D̄12(δ13δ21 + δ23δ11)

+Ā2323D̄23(δ23δ31 + δ33δ21) + Ā3131D̄31(δ33δ11 + δ13δ31))

λ1W̄n31 − λ3W̄n31 = λ3W̄31 − λ3W̄31 + ξλ1D̄31 + ξλ3D̄31 − 4ξĀ3131D̄31

(λ1 − λ3)W̄n31 = (λ1 − λ3)W̄31 + ξ(λ1 + λ3 − 4Ā3131)D̄31

W̄n31 = W̄31 + ξ
λ1 + λ3 − 4Ā3131

λ1 − λ3
D̄31

Herewith, (5.9) becomes

Wn =

(
W̄12 + ξ

λ2 + λ1 − 4Ā1212

λ2 − λ1
D̄12

)
(e1e2 − e2e1)

+

(
W̄n23 + ξ

λ3 + λ2 − 4Ā2323

λ3 − λ2
D̄23

)
(e2e3 − e3e2)

+

(
W̄31 + ξ

λ1 + λ3 − 4Ā3131

λ1 − λ3
D̄31

)
(e3e1 − e1e3).

Using an expansion similar to (5.9) for W and

D : eiej =

∑
k,l

D̄klekel

 : eiej

=
∑
k,l

D̄klδikδjl

= D̄ij

we get

Wn = W + ξ
λ2 + λ1 − 4Ā1212

λ2 − λ1
(D : e1e2)(e1e2 − e2e1)

+ξ
λ3 + λ2 − 4Ā2323

λ3 − λ2
(D : e2e3)(e2e3 − e3e2)

+ξ
λ1 + λ3 − 4Ā3131

λ1 − λ3
(D : e3e1)(e3e1 − e1e3)
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which leads to the rate equation for the eigenvectors (5.6), denoted as

ėi = Wn · ei

=

(
W + ξ

λ2 + λ1 − 4Ā1212

λ2 − λ1
(D : e1e2)(e1e2 − e2e1)

+ξ
λ3 + λ2 − 4Ā2323

λ3 − λ2
(D : e2e3)(e2e3 − e3e2)

+ξ
λ1 + λ3 − 4Ā3131

λ1 − λ3
(D : e3e1)(e3e1 − e1e3)

)
· ei

= W · ei + ξ
λ2 + λ1 − 4Ā1212

λ2 − λ1
(D : e1e2)(δ2ie1 − δ1ie2)

+ξ
λ3 + λ2 − 4Ā2323

λ3 − λ2
(D : e2e3)(δ3ie2 − δ2ie3)

+ξ
λ1 + λ3 − 4Ā3131

λ1 − λ3
(D : e3e1)(δ1ie3 − δ3ie1). (5.10)

Note that for any choice i, always one of the last three terms will vanish.

5.2.3 Equivalence

The system (5.2), (5.10)

λ̇i = 2ξ (λiD : eiei − eiei : A : D) + 2CI γ̇(1− 3λi)

ėi = W · ei + ξ
λ2 + λ1 − 4Ā1212

λ2 − λ1
(D : e1e2)(δ2ie1 − δ1ie2)

+ξ
λ3 + λ2 − 4Ā2323

λ3 − λ2
(D : e2e3)(δ3ie2 − δ2ie3)

+ξ
λ1 + λ3 − 4Ā3131

λ1 − λ3
(D : e3e1)(δ1ie3 − δ3ie1)

is equivalent to (4.8)

Ȧ = W ·A−A ·W + ξ(D ·A+A ·D − 2A : D) + 2CI γ̇(I − 3A).

The eigenvectors affect the rates of change of the eigenvalues, as they appear in the first two terms of
λ̇i. Similarly, the eigenvalues affect the rates of change of the eigenvectors. The fourth order tensor A
affects both the eigenvalues and the eigenvectors. In contrast, the rotary diffusion term appears only in
the eigenvalue equation, because this term is isotropic.

5.3 Modification and reassembly

In this section we conclude the Wang-O’Gara-Tucker model. The concept is to modify the growth rates
of the eigenvalues of the orientation tensor by an empirical factor 0 < κ ≤ 1, but to leave the rate
expressions for the eigenvectors unchanged. The new model is called the reduced strain closure (RSC)
model, for reasons that will become apparent. In cases where both the standard and RSC model are
considered, superscripts RSC and std are used for clarity.

The essence of the RSC model is

λ̇RSC
i = κλ̇std

i ∧ ėi
RSC = ėi

std.

Indeed, the growth rates of the eigenvalues are multiplied with a factor κ < 1 and the eigenvectors
remain unchanged. Note that λ̇RSC

i = 0⇔ λ̇std
i = 0 so that the steady state values for the eigenvalues,

in case there are any, remain the same. It follows that the steady state values of the eigenvectors, which
depend on the steady state values of the eigenvalues, also remain the same.

To obtain a rate equation for tensor A, we write

ȦRSC =
∑
i

λRSC
i eRSC

i eRSC
i =

∑
i

κλstd
i estd

i estd
i = Ȧstd − (1− κ)

∑
i

λ̇std
i estd

i estd
i . (5.11)
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The last term can be rewritten using (5.2)∑
i

λ̇ieiei =
∑
i

(2ξ (λiD : eiei − eiei : A : D) + 2CI γ̇(1− 3λi)) eiei

= 2ξ
∑
i

[λiD : eieieiei − eiei : A : Deiei] + 2CI γ̇
∑
i

[eiei − 3λieiei] .

Introducing, for the sake of notation,

L =
∑
i

λieieieiei ∧ M =
∑
i

eieieiei

and recalling

I =
∑
i

eiei

we can write ∑
i

λ̇ieiei = 2ξ(L−M : A) : D + 2CI γ̇(I − 3A). (5.12)

Combining (5.11), (5.12) and (4.8) gives

ȦRSC = W ·A−A ·W + ξ(D ·A+A ·D − 2A : D) + 2CI γ̇(I − 3A)

−(1− κ) (2ξ(L−M : A) : D + 2CI γ̇(I − 3A))

= W ·A−A ·W + ξ{D ·A+A ·D − 2[A + (1− κ)(L−M : A)] : D}+ 2κCI γ̇(I − 3A)

(5.13)

Equation (5.13) is the primary result of [13]. Comparing (4.8) with (5.13) we see two differences. We
see that the diffusion term is multiplied with a scalar factor κ < 1. Herewith, the amount of rotary
diffusion decreases, making the inclination to a random orientation state smaller. The other difference
is that the closure term A is replaced with

A + (1− κ)(L−M : A).

Herein, the κ serves as a decrease of the elements of A, inducing a decrease in the effect of the strain
term

(A + (1− κ)(L−M : A)) : D

on the orientation. Herein lies the origin of the name RSC for the model.

When using a closure approximation for A, it depends on A and is thus calculated for every time
step and will display slow kinetics that match those of A.

5.4 Objectivity

Now that we have formulated the RSC model, it is important to check if it is objective. To formulate
objectivity, or invariance under change of basis, or frame indifferent, we recall some notions [8].

The description of a physical process is related directly to the choice of an observer, which we de-
note by O. An arbirarily chosen observer in three dimensional Euclidean space and in time is equipped
to measure

1. relative positions of points in space, with a ruler, and

2. instants of time, with a clock.

An event is noticed by an observer in terms of position, place x, and time t.

Consider two arbitrary events in the Euclidean space characterized by the pairs (x0, t0) and (x, t).
We assume that (x0, t0) is ’frozen’ as long as the event (x, t) occurs. An observer records that the pair
of points in space is seperated by the distance |x−x0|, and that the time interval, or lapse, between the
events under observation is t−t0. In the following we let the pairs (x0, t0) and (x, t) map to (x+

0 , t
+
0 ) and

(x+, t+) so that both the distance |x−x0| and t−t0 are preserved, confer Figure 5.1. A spatial mapping
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Figure 5.1: map of two points preserving distance and time interval.

that satisfies the requirements above may be represented by the time dependent transformation

x+ − x+
0 = Q(t) · (x− x0) (5.14)

where Q a proper orthogonal tensor, so Q−1 = QT and det(Q) = 1. For our convenience, we rewrite
(5.14) as

x+ = c(t) +Q(t) · x, t+ = t− α (5.15)

where
c(t) = x+

0 −Q(t) · x0, α = t+0 − t0.

Relation (5.15) is often referred to as an Euclidean transformation and it denotes the most general time
dependent change of observer from O to O+.

In order to describe a physical process in the three dimensional Euclidean space and on the real time
axis we assign to each of the observers O and O+, a rectangular Cartesian coordinate system, charac-
terized by the bases {ei} and {e+

i } respectively. Hence, any points x and x+ may be represented by
the position vectors x =

∑
i xiei and x+ =

∑
i x

+
i e

+
i . The shift in time scale between the observers

remain t+ = t+α. Furthermore, we identify Q(t) as the relative rotation of the reference frames of the
observers, so e+

i = Q(t) · ei.

The condition for objectivity for a vector is constructed as follows. Consider two arbitrary points
of a continuum body identified by their position vectors x and y at time t. The events (x, t) and (y, t)
are recorded by an observer O with the reference frame {ei}. A second observer O+ with the reference
frame {e+

i } records the same events at the associated points x+ and y+ at time t+. Then for the vectors
u = x− y and u+ = x+ − y+ we have the relation

u+ = x+ − y+ = (c(t) +Q(t) · x)− (c(t) +Q(t) · y) = Q(t) · u.

A vector is thus objective is we have
u+ = Q(t) · u. (5.16)

For higher order tensors constructed as dyads, the condition extends to

(u1u2 . . .un)+ = (Q · u1)(Q · u2) . . . (Q · un). (5.17)

In particular, for a second order tensor A = u1u2 we have

A+ = (u1u2)+ = (Q · u1)(Q · u2) = (Q · u1)(u2 ·QT ) = Q ·A ·QT . (5.18)

Using the chain rule, it follows that for a time derivative to be objective we must have

Ȧ+ =
˙

Q ·A ·QT = Q̇ ·A ·QT +Q · Ȧ ·QT +Q ·A · ˙
QT (5.19)

where we used the bar to emphasize whereof the time derivative is taken. This is the condition that
must hold for (5.13) to be objective.

Theorem 5.3. The RSC equation (5.13) is objective.
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Proof. When we move the vorticity terms on the RHS of (5.13) to the LHS, the LHS becomes

◦
A := ȦRSC −W ·A+A ·W . (5.20)

The latter is known as the Jaumann derivative, or Jaumann-Zaremba rate or co-rotational rate. A
rather trivial, but cumbersome proof exists that (5.20) is objective [8]. We will omit such a proof. It
remains to prove the objectivity of the remaining terms on the RHS of (5.13)

ξ{D ·A+A ·D − 2[A + (1− κ)(L−M : A)] : D}+ 2κCI γ̇(I − 3A).

With the existence of a spectral decomposition of A proven in Property 4.7, the proof of the objectivity
of the tensors A and D is rather simple. We can write A as

A =
∑
i

λieiei.

Considering tensor A from two different observers O and O+ we have

A+(t+) =
∑
i

λ+
i (t+)e+

i (t+)e+
i (t+)

=
∑
i

λi(t)Q(t) · ei(t)Q(t) · ei(t)

=
∑
i

λi(t)Q(t) · ei(t)ei(t) ·Q(t)

= Q(t) ·
(∑

i

λi(t)ei(t)ei(t)

)
·Q(t)

= Q(t) ·A(t) ·Q(t).

Note that as D and I are also symmetric, thus also have a spectral decomposition and are objective.

From the property QT = Q−1 it follows that

(D ·A)+ = D+ ·A+ = Q ·D ·QT ·Q ·A ·QT = Q ·D ·Q−1 ·Q ·A ·QT = Q ·D ·A ·QT

so that the product D ·A is objective. The proof of the objectivity of A ·D is similar.

For A : D we have

A+ : D+ =
∑
i,j,k,l

A+
ijklf

+
i f

+
j f

+
k f

+
l :

∑
m,n

D+
mnf

+
mf

+
n

=
∑
i,j,k,l

A+
ijklD

+
lkf

+
i f

+
j

=
∑
i,j,k,l

AijklDlkQ · fiQ · fj

=
∑
i,j,k,l

AijklDlkQ · fifj ·QT

= Q · A : D ·QT .

The former does not only hold for A double contracted with D, but for any fourth order tensor double
contracted with D. Thus also for (L−M : A) : D. This concludes the proof.

5.5 Equivalent kinetic theory

The RSC model (5.13) is developed at the level of the moment tensor equation. In contrast, most other
models are initially developed at the level of kinetic theory. Kinetic theories contain explicit expressions
for the fiber motion and provide a Fokker-Planck equation that can be solved for ψ. These solutions
are much more expensive to compute than solutions to the moment tensor equation, so moment tensor
equations are typically used in the process modeling. However, moment tensor equations always require
a closure approximation, while kinetic theories do not. Thus, kinetic theory equations provide important
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information for the formation and testing of closure approximations.

It is interesting to ask if there is a kinetic theory that corresponds to the RSC model (5.13). Find-
ing such an extended kinetic theory would give more insight in how the kinetics are slowed down. It
appears that the new RSC terms can not be reproduced by an additional term for fiber orientstion ṗ,
nor by an additional rotary diffusion term [13]. Adding an additional flux density q does the job, as
proved in Theorem 5.4. This flux is added to the fluxes due to Jeffery motion and rotary diffusion, so
the continuity equation (3.12) is modified to read

ψ̇ = −∇̃ · (ψṗ+ q) . (5.21)

where, again, the ∼ emphasizes the presence of the constraint ||p||2 = 1.

Because q is a ’flux of probability’ on the unit sphere, three requirements have to be met.

1. The flux vector is always tangent to the surface of the unit sphere, since this is the direction in
which fibers ’enter’ and ’leave’ a infinitesimal surface dS on the unit sphere. Thus, we must have

q · p = 0.

2. If the sign of p changes, then the sign of q changes according to

q|−p = −q|p.

One can think of this as a vector p with a vector q attached to its end on the unit sphere, making
a 180[◦] rotation in the plane containing p, so that both vectors get opposite directions, confer
Figure 5.2.

Figure 5.2: change of q under change of sign of p.

3. Eigenvectors are determined up to a constant. Normalized eigenvectors or unit eigenvectors are
thus determined up to their sign. The flux vector should be invariant under the change of this
particular sign, so

q|−ei = q|ei ∀i,p.

These three constraints for q restrict the space from which q can be chosen. Nevertheless, the flux
vector q is certainly not determined uniquely. A suitable form is

q =
∑
i

βi(ei · p)(ei − (ei · p)p), (5.22)

where the scalar coefficients βi are yet to be determined. Note that (5.22) suffices to the three constraints.
The proof the latter is trivial. Flux vector q is, in this case, chosen such that it ’draws’ fibers toward,
or ’pushes’ them away from, the eigenvectors ei of A. This is done with ’strength’

βiei · p = βi||ei||2||p||2 cos θ = βi cos θ
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in the direction
ei − (ei · p)p

which points from vector (ei · p)p to ei. Here, θ is the angle between vectors ei and p.

In the following theorem, the coefficients βi and equivalent kinetic theory are derived.

Theorem 5.4. The kinetic theory

ψ̇ = −∇̃ · (ψṗ+ q)

ṗ = W · p+ ξ(D · p−D : ppp)− CI γ̇∇̃ lnψ

q =
∑
i

βi(eiei · p− eiei : ppp)

βi = −5(1− κ)

4π
[ξ(λiD : eiei − eiei : A : D) + CI γ̇(1− 3λi)] (5.23)

implies the relation

ȦRSC = W ·A−A ·W + ξ{D ·A+A ·D − 2[A + (1− κ)(L−M : A)] : D}+ 2κCI γ̇(I − 3A).

Proof. We consider (5.21) and take the right tensor product with p twice and integrate it over the unit
sphere ∫

S

ψ̇ppd2p =

∫
S

−∇̃ · (ψṗ+ q)ppd2p

The LHS and first term on the RHS have already been proven to be equivalent with the Folgar-Tucker
tensor model (4.8) in Section 4.5. This leaves us to consider only the term containing q on the RHS.

Because we have (5.11), it follows that∫
S

−(∇̃ · q)ppd2p = −(1− κ)
∑
i

λ̇std
i estd

i estd
i . (5.24)

The LHS can be rewritten as follows. Consider the components

(∇̃·(qpp))ij =
∑
k

∂̃

∂pk
(qkpipj)

=
∑
k

[
∂̃

∂pk
(qk)pipj

]
+
∑
k

[
qk

∂̃

∂pk
(pipj)

]

=
∑
k

[
∂̃

∂pk
(qk)pipj

]
+
∑
k

[qk(δjkpi + δikpj − 2pipjpk)]

=
∑
k

[
∂̃

∂pk
(qk)pipj

]
+ qjpi + qipj − 2pipj

∑
k

qkpk

=
∑
k

[
∂̃

∂pk
(qk)pipj

]
+ qjpi + qipj

where we used, in order, the product rule, Property 2.1 and q · p = 0. This results in

∇̃·(qpp) = ∇̃·(q)pp+ pq + qp

−∇̃·(q)pp = −∇̃·(qpp) + qp+ pq∫
S

−∇̃·(q)ppd2p = −
∫
S

∇̃·(qpp)d2p+

∫
S

(qp+ pq)d2p

−(1− κ)
∑
i

λ̇std
i estd

i estd
i =

∫
S

(qp+ pq)d2p.

In the third step we used the closedness of S.
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Filling in (5.22) in the RHS of the latter integral gives

∫
S

[(∑
i

βi(eiei · p− eiei : ppp)

)
p+ p

(∑
i

βi(eiei · p− eiei : ppp)

)]
d2p =

∑
i

βi

∫
S

[eiei · pp− eiei : pppp+ peiei · p− peiei : ppp] d2p.

Note that

peiei · p = pei(ei · p) = p(ei · p)ei = p(p · ei)ei = pp · eiei

and

peiei : ppp = p(eiei : pp)p = (eiei : pp)pp = eiei : pppp

so that the integral becomes

∑
i

βi

∫
S

[eiei · pp+ pp · eiei − 2eiei : pppp] d2p. (5.25)

The eigenvectors ei are independent of S. Herewith, the eigenvectors can be taken out of the integrals
and we get the integrals ∫

S

ppd2p ∧
∫
S

ppppd2p.

Using generalized coordinates, the former is calculated to take the value 4π
3 I. The latter integral is

harder to solve. We note that

∑
i

eiei :

∫
S

ppppd2p =

∫
S

∑
i

(ei · p)2ppd2p =

∫
S

ppd2p =
4π

3
I.

Say we assume that the components have a part dependent of ei and a part independent of ei

eiei :

∫
S

ppppd2p = αI + βeiei. (5.26)

Thus, to solve the fourth order integral, we need two equations for the two unknowns α and β. The
first equation is found by recalling the sum over i

∑
i

[αI + βeiei] =
∑
i

eiei :

∫
S

ppppd2p

∑
i

[αI + βeiei] =
4π

3
I

3αI + β
∑
i

eiei =
4π

3
I

(3α+ β)I =
4π

3
I

3α+ β =
4π

3
.
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The second equation stems from taking the left or right double contraction with eiei,

eiei :

eiei :

∫
S

ppppd2p

 = eiei : (αI + βeiei)∫
S

eiei : (eiei : pppp)d2p = αeiei : I + βeiei : eiei

∫
S

(ei · p)4d2p = αeiei :

∑
j

ejej

+ β

∫
S

p4
i d

2p = α+ β ∀i

2π∫
φ=0

π∫
θ=0

cos4(θ) sin θdθdφ = α+ β

2π

[
−1

5
cos5 θ

]π
θ=0

= α+ β

4π

5
= α+ β.

where we chose pi = p3 = cos θ and recall the Jacobian for spherical coordinates J = sin θ. This results
in

(α, β) = (
4π

15
,

8π

15
).

Apparently assumption (5.26) was sufficient to determine the unique integral

eiei :

∫
S

ppppd2p =
4π

15
I +

8π

15
eiei

making (5.25) ∑
i

βieiei ·
4π

3
I +

4π

3
I · eiei − 2(

4π

15
I +

8π

15
eiei).

Noting that

eiei · I = eiei ·
∑
j

ejej = ei
∑
j

δijej = eiei ∧ I · eiei =

∑
j

ejej

 · eiei =
∑
j

ejδijei = eiei

we get ∑
i

βi
8π

15
(3eiei − I).

Getting back to (5.24), we get ∑
i

βi
8π

15
(3eiei − I) = −(1− κ)

∑
i

λ̇std
i eiei

∑
i

(
8π

5
βi + (1− κ)λ̇std

i

)
eiei −

8π

15
βiI = O(∑

i

(
8π

5
βi + (1− κ)λ̇std

i

)
eiei −

8π

15
βiI

)
: ejej = O

8π

5
βj + (1− κ)λ̇std

j −
8π

15

∑
i

βi
∑
k

ekek : ejej = O

8π

5
βj + (1− κ)λ̇std

j −
8π

15

∑
i

βi = O

leading to

βj =
5

8π
(κ− 1)λ̇std

j +
1

15

∑
i

βi (5.27)
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Summing over j we get ∑
j

βj =
5

8π
(κ− 1)

∑
j

λ̇std
j +

3

15

∑
i

βi(
1− 3

15

)∑
j

βj =
5

8π
(κ− 1)

∑
j

λ̇std
j

∑
j

βj =
25

32π
(κ− 1)

˙∑
j

λstd
j


∑
j

βj = 0

where we used Property 4.8 for the sum of eigenvalues of A. Equation (5.27) becomes

βj =
5

8π
(κ− 1)λ̇std

j +
1

15

∑
i

βi

=
5

8π
(κ− 1)λ̇std

j

=
5

8π
(κ− 1) [2ξ (λjD : ejej − ejej : A : D) + 2CI γ̇(1− 3λj)]

= −5(1− κ)

4π
[ξ (λjD : ejej − ejej : A : D) + CI γ̇(1− 3λj)] (5.28)

which concludes the proof of the equivalence of the kinetic theory and moment tensor form.

Interpreting this physically, each βi denotes the rate at which fibers are attracted to, or repelled from,
the corresponding eigenvector ei. The λiD : eiei term on the RHS of (5.28) shows that fibers are
being repelled from eigenvectors along which the stretching rate D : eiei is positive, and attracted to
eigenvectors along which the stretching rate is negative. This slows the growth rates of the eigenvalues by
partially counteracting the Jefferey term, which rotates fibers towards directions of positive stretching.
One can regard this as the main kinetic effect of the RSC model, with the A : D term serving to preserve
tr (A) = 1. The effect of the rotary diffusion term is also partially counteracted, by the term containing
CI .



58 5. Wang-O’Gara-Tucker model



59

Chapter 6

Closure approximations

6.1 Introduction

At this point, attempting to solve the derived RSC model is futile. The cause hereof is the fact that
the RSC model is, at least not yet, closed. The fourth order tensor A is the origin of this closure
problem. In this chapter, this closure problem is considered and solved by the use of so-called closure
approximations or closure in short. The main focus lies on the, in the literature dominating, orthotropic
closure approximations. The fundamentals behind the closures are discussed.

6.2 The closure problem

To solve the rate equation for A (5.13)

Ȧ = W ·A−A ·W + ξ{D ·A+A ·D − 2[A + (1− κ)(L−M : A)] : D}+ 2κCI γ̇(I − 3A)

we first need to determine A as defined by Definition 4.2

A =

∫
S

ψpppp d2p.

Deriving a rate equation for A in an attempt to solve A would lead to the introduction of a sixth order
tensor. Deriving a rate equation for the sixth order tensor would lead to the introduction of an eight
order tensor. This sequence goes to infinity and thus, the equation can not be closed by such an ap-
proach. This is called the closure problem.

The sequence of orientation tensors essentially represents the coefficients in a series expansion of ψ
in terms of Legendre polynomials [15, 10]. Thus A and A contain only partial information about ψ.
An attempt to reconstruct the missing information comes in the form of a closure approximation, or
closure in short. In our case, we make an attempt to reconstruct the missing information with A. In
other words, we approximate A in terms of A.

A variety of forms has been proposed to approximate A in terms of A. The majority works well
only for specific flows but not for all flows. Exceptions are the class of orthotropic and natural closures.
Our focus will be on the former.

6.3 Quadratic closure

For the sake of simplicity, we start with the treatment of the quadractic closure (QC). It was introduced
by E.J. Hinch and L.G. Leal in 1976. It is formulated as

A = AA. (6.1)

No physical or mathematical arguments have been used in its construction. Nonetheless, it results in
an approximation of A that is able to follow the tendency of the real A. In addition, we have for an
alternative observer O+

A+A+ =

(∑
i

λ+
i e

+
i e

+
i

)∑
j

λ+
j e

+
j e

+
j


=

∑
i,j

λ+
i λ

+
j e

+
i e

+
i e

+
j e

+
j

=
∑
i,j

λiλjQ · eiQ · eiQ · ejQ · ej ,

which, because of the distributive property of the tensor product, can be written in the form (5.17) and
is thus objective.

The quadratic closure is easy to implement, computed efficiently and thus provides a good check for
programs.
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6.4 Orthotropic closures

6.4.1 Orthotropy

With approximating A in terms of A, we are looking for a relation

∃ F : A = F(A).

A valid closure should be objective, which requires F to take all of its directional information from A.
To explain the name orthotropic closure we introduce the definition of orthotropy.

Definition 6.1. Orthotropy is a geometric property specifying the state of having three orthogonal
symmetry axes or alternately three orthogonal planes of symmetry.

Recalling Property 4.5, tensor A has three orthogonal eigenvectors. As it is required that F takes all of
its directional information from A, F must have the same principal axes as A. The principal axes are
in this case orthogonal and thus F has three orthogonal symmetry axes. Hence the name orthotropic
closure.

6.4.2 Reduction of degrees of freedom

For determining F, we are interested in how many degrees of freedom (DOF) we have to describe. Tensor
A ∈ R3×3×3×3 and thus has 34 = 81 DOFs. Recalling Definition 4.2, the components of A are

Aijkl =

∫
S

ψpipjpkpl d
2p.

Due to the commutivity of scalars, A has 4! = 24 symmetries. The sequence ijkl can thus be ordered
in twentyfour ways. These symmetries reduce the #DOF. Say we first consider the two symmetries

Aijkl = Ajikl = Aijlk.

Considering the pairs (i, j) and (k, l) that are subjected to swapping, there are for each pair six unique
combinations and thus 6 · 6 = 36 for A. Using the Voigt index notation conform Table 2.1 we replace

Aijkl = Amn.

When we denote A with respect to the principal axes, many elements are equal to zero

Ā =


Ā11 Ā12 Ā13 0 0 0
Ā21 Ā22 Ā23 0 0 0
Ā31 Ā32 Ā33 0 0 0
0 0 0 Ā44 0 0
0 0 0 0 Ā55 0
0 0 0 0 0 Ā66

 (6.2)

where the ¯ emphasizes the principal basis. This leaves us with twelve DOFs. Recalling the symmetry
Aijkl = Aklij it follows that Amn = Anm which gives the upper triangular part of (6.2) including the
diagonal and thus nine DOFs. The symmetries

Aijkl = Akjil = Aljki = Aikjl = Ailkj

give us
A12 = A66 ∧ A23 = A44 ∧ A13 = A55

reducing the #DOF to six. Furthermore∑
k

Aijkk =
∑
k

∫
S

ψpipjpkpk d
2p =

∫
S

ψpipj
∑
k

p2
k d

2p =

∫
S

ψpipj d
2p = Aij

so ∑
k

A11kk = A1111 +A1122 +A1133 = A11 + A12 + A13 = A11 + A66 + A55 = A11

∑
k

A22kk = A2211 +A2222 +A2233 = A21 + A22 + A23 = A66 + A22 + A44 = A22

∑
k

A33kk = A3311 +A3322 +A3333 = A31 + A32 + A33 = A55 + A44 + A33 = A33
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reducing the #DOF to three. In the principal axes form (6.2) this leaves us with

Ā11 = F̄11(A)

Ā22 = F̄22(A)

Ā33 = F̄33(A)

and thus three functions Fii to construct, to approximate A as good as possible. Tensor A is completely
determined by its eigenpairs (λi, ei). Due to Property 4.8, we have a dependence between the eigenvalues
and thus knowing two of them is sufficient to determine all the eigenvalues. Say we choose λ1 and λ2 for
this. Furthermore, the Fii are already in the principal axes form. With these arguments, we can state

Ā11 = F̄11(λ1, λ2)

Ā22 = F̄22(λ1, λ2)

Ā33 = F̄33(λ1, λ2) (6.3)

or

F̄(λ1, λ2) ≡

 Ā11

Ā22

Ā33


in short.

6.4.3 Domain of the eigenvalues

Recalling Property 4.8 we have ∑
i

λi = 1.

Say we choose the numbering of the eigenvalues such that

λ1 ≥ λ2 ≥ λ3. (6.4)

Since this numbering (6.4) is arbitrary, it does not imply a loss of generality. We construct a domain for
λ1 and λ2, confer Figure 6.1. The green region represents (6.4). The corners and edges of this region

Figure 6.1: feasible area for the eigenvalues.

have significant physical meaning. The point labeled U corresponds to uniaxial orientation, where all
fibers are aligned in a single direction, parallel to e1. Point B contains all biaxial orientation states,
where fibers are evenly divided between to perpendicular axes, in this case e1 and e2. Random-in-
plane orientation, with fibers evenly distributed in the e1 − e2 plane, also falls on point B. Point
T corresponds to triaxial orientation, with fibers equally divided among all three coordinate axes.
Isotropic, or random-in-space, orientation also falls on point T . In addition, the edge BU contains all
planar orientation states, where λ3 = 0 and all the fibers lie in the e1−e2 plane. The edges TU and TB



62 6. Closure approximations

contain all of the transversely isotropic states, where the orientation is cylindrically symmetrixc about
a single axis. Along TU , the axis of symmetry is e1 and the dominant orientation is parallel to that
axis, while along TB the symmetry axis is e3 and the dominant orientation is normal to the axis.

6.4.4 Orthotropic smooth closure

One way to form an orthotropic closure is to choose specific values for the three functions (6.3) at fixed
points in Figure 6.1 and interpolate between them for all the remaining points of the domain. One
simple choice is to fix values at the corner points U,B and T and use linear interpolation over the
interior of the shaded triangle. This particular case will be explained below.

We consider point U defined by (λ1, λ2, λ3) = (1, 0, 0) which represents the state of uniaxial orientation,
where all fibers are aligned in a single direction, namely parallel to e1. Using spherical coordinates with
unit radius, direction e1 corresponds with (θ, φ) = (π2 , 0) which gives rise to the PDF

ψU (θ, φ) = δ(θ − π

2
)δ(φ)

where δ is the Dirac delta function. Note that the integral of ψU over the surface of the unit sphere S
is equal to one. It follows that

Ā11 = Ā1111

=

∫
S

ψp4
1d

2p

=

2π∫
φ=0

π∫
θ=0

δ(θ − π

2
)δ(φ)(sin(θ) cos(φ))4 sin(θ)dθdφ

=

2π∫
φ=0

π∫
θ=0

δ(θ − π

2
)δ(φ) sin5(θ) cos4(φ)dθdφ

= sin5(
π

2
) cos4(0)

= 1,

Ā22 = Ā2222

=

∫
S

ψp4
2d

2p

=

2π∫
φ=0

π∫
θ=0

δ(θ − π

2
)δ(φ)(sin(θ) sin(φ))4 sin(θ)dθdφ

=

2π∫
φ=0

π∫
θ=0

δ(θ − π

2
)δ(φ) sin5(θ) sin4(φ)dθdφ

= sin5(
π

2
) sin4(0)

= 0,

Ā33 = Ā3333

=

∫
S

ψp4
3d

2p

=

2π∫
φ=0

π∫
θ=0

δ(θ − π

2
)δ(φ) cos4(θ) sin(θ)dθdφ

= cos4(
π

2
) sin(

π

2
)

= 0,
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or  Ā11

Ā22

Ā33

 =

 1
0
0

 ≡ F̄U

in short. Note that the latter gives the only possible fourth order tensor at point U , due to the unique-
ness of the state. In contrast, there are many possible sets of (Ā11, Ā22, Ā33) for points B and T , as they
certainly do not imply unique states.

We consider point B defined by (λ1, λ2, λ3) = ( 1
2 ,

1
2 , 0) which represents all biaxial orientation states,

where fibers are evenly divided between to perpendicular axes, in this case e1 and e2. Random-in-
plane orientation, with fibers evenly distributed in the e1 − e2 plane, also falls on point B. The latter
corresponds with the PDF

ψB(θ, φ) =
1

2π
δ(θ − π

2
).

The latter implies, in a similar manner as for point U , that Ā11

Ā22

Ā33

 =

 3
8
3
8
0

 ≡ F̄B .

We consider point T defined by (λ1, λ2, λ3) = (1
3 ,

1
3 ,

1
3 ) which represents triaxial orientation, with fibers

equally divided among all three coordinate axes. Isotropic, or random-in-space, orientation also falls on
point T . The latter implies

ψT (θ, φ) =
1

4π
giving rise to  Ā11

Ā22

Ā33

 =

 1
5
1
5
1
5

 ≡ F̄T .

Using linear interpolation, we can define F̄ on the rest of the domain. Say

F̄(λ1, λ2) = F̄0 + λ1F̄1 + λ2F̄2

with

F̄|U = F̄0 + F̄1 = F̄U

F̄|B = F̄0 +
1

2
F̄1 +

1

2
F̄2 = F̄B

F̄|T = F̄0 +
1

3
F̄1 +

1

3
F̄2 = F̄T .

These nine equations for nine unknowns determine

F̄(λ1, λ2) = (−2F̄B + 3F̄T ) + λ1(F̄U + 2F̄B − 3F̄T ) + λ2(−F̄U + 4F̄B − 3F̄T ) (6.5)

as a common form, and explicitely

F̄(λ1, λ2) =

 −0.15 + 1.15λ1 − 0.1λ2

−0.15 + 0.15λ1 + 0.9λ2

0.6− 0.6λ1 − 0.6λ2

 (6.6)

which is called the orthotropic smooth closure (OSC).

6.4.5 Fitted closures

As mentioned before, the orientation tensors are essentially the coefficients in a series expansion of ψ
in terms of Legendre polynomials, so A contains only partial information about ψ. Any closure is an
attempt to reconstruct the higher order information [15, 10]. In this reconstruction the fiber orientation
problem presents the oppurtunity to calculate ψ for specific flow histories. It would be prohibitively
expensive to calculate ψ for every point in an injection molded part, but it is certainly possible to
calculate ψ for a single material point in a few well defined flow fields. The fourth order components
calculated this way can be used to form a closure in the same manner that the values U,B and T were
used in the previous section. This is the basis of the orthotropic fitted closures (OFC). In this approach
the closure is chosen to match the fourth order tensor values that are generated by the dynamics of fiber
orientation. In effect, the closure is ’tuned’ to a particular fiber orientation model.

The procedure for setting up an orthotropic fitted closure is as follows.
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1. Analyze the flow field. What kind of effects are the fibers expected to be subjected to? Shear,
elongation, compression? In what ratio’s? Is there a dominating effect?

2. Choose homogeneous flow fields that suit the expected effects.

3. Choose a parameter set.

4. Find the solution of (5.23) for each of the chosen homogeneous flow fields, preferrably for the
chosen parameter set.

5. Choose an interpolation function. It depends how many points of the ’exact’ solution of A you
need to calculate to obtain the coefficients in the interpolation function.

6. Choose a set of points in the green domain of Figure 6.1 where the exact A should be calculated.
These points will determine the coefficients in the chosen interpolation function.

7. Calculate the values of the corresponding fourth order tensor A at the chosen points.

8. Determine the coefficients of the interpolation function, such that the difference between the exact
solution and the approximation is mininmal in some norm.

This concludes the construction of an orthotropic fitted closure. The QC, OSC and OFC will be used
in Part II to compare the approximations with the exact solutions.
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Chapter 7

The Fokker-Planck equation

7.1 Introduction

As mentioned before, the analysis of the equation for the PDF was somewhat postponed so that the final
form can be analyzed thoroughly in coincidence with the construction of solution strategy. In Section
7.2 we interpret the system of equations. We check if the system conserves the intrinsic properties of
the PDF. In Section 7.3 we make the system dimensionless to gain more information on the character
of the system. Subsequently, we construct a numerical scheme to solve the system in Section 7.4. We
discretize in both space and time and check if the properties of the PDF are conserved by the scheme.
Initial and boundary conditions are formulated to close the system. We do a modified equation analysis
to obtain the local truncation error (LTE) and its character. Stability analysis completes the conditions
for convergence of the numerical solution to the exact solution.

7.2 Interpretation

We recall the system of equations (5.23)

ψ̇ = −∇̃ · (ψṗ+ q)

ṗ = W · p+ ξ(D · p−D : ppp)− CI γ̇∇̃ lnψ

q =
∑
l

βl(elel · p− elel : ppp)

βl = −5(1− κ)

4π
[ξ(λlD : elel − elel : A : D) + CI γ̇(1− 3λl)] (7.1)

and Definition 3.1. System (7.1) solves the PDF ψ, which ’lives’ on the surface of the unit sphere, also
denoted with S, and takes values in {R+ ∪ 0}. In notation, ψ : S×R→ R+ ∪ 0. By definition, the PDF
has to suffice to certain conditions, as mentioned in Definition 3.1. We recall

∀p, t ψ(p, t) ≥ 0 ∧ ∀t
∮
S

ψ(p, t)d2p = 1 ∧ ∀p, t ψ(p, t) = ψ(−p, t). (7.2)

The condition
∀p, t ψ(p, t) = ψ(−p, t)

stems from the fact that it does not matter for the probability density which end of a fiber is the head
and which is the tail. The condition should be a property inherent to (7.1).

Property 7.1. The system (7.1) satisfies

∀p, t ψ(p, t) = ψ(−p, t). (7.3)

Proof. We recall

∇̃ =
∂̃

∂p

so that
p := −p ⇒ ∇̃ := −∇̃.

Herewith,

ṗ(−p, t) = W ·−p+ ξ(D ·−p−D : (−p)(−p)(−p))− CI γ̇ · −∇̃ lnψ(−p, t)
= −(W · p+ ξ(D · p−D : ppp)− CI γ̇∇̃ lnψ(−p, t))

so that

d

dt
ψ(−p, t) = −(−∇̃) · (ψ(−p, t)ṗ(−p, t) + q(−p, t))

d

dt
ψ(−p, t) = ∇̃ ·

(
ψ(−p, t) ·

(
−(W · p+ ξ(D · p−D : ppp)− CI γ̇∇̃ lnψ(−p, t))

)
(p)− q(p)

)
ψ̇ = −∇̃ · (ψṗ+ q)
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where in the last line we merely supressed the arguments to emphasize that the PDE remains the same.
We conclude that (7.1)1 indeed satisfies (7.3) and is thus invariant under the labeling of the ends.

Property 7.2. The system (7.1) satisfies ∮
S

ψ(p, t)d2p = 1 (7.4)

provided that ψ0 is such that ∮
S

ψ0d
2p = 1.

Proof. Condition (7.4) holds by Definition 3.1. Integrating (7.1)1 over its complete domain gives∮
S

ψ̇d2p =

∮
S

−∇̃ · (ψṗ+ q)d2p

d

dt

∮
S

ψd2p = 0

where the latter follows immediately from the closedness of S. Hence, the quantity
∮
S
ψd2p does not

change with time. If the initial density ψ0 is such that
∮
S
ψ0d

2p = 1, it remains at one.

Note that Property 7.2 is equivalent with

∀t P(P ∈ S, t) = 1,

which simply states that a fiber must have a direction at any time t. If a fiber is not probable to a
have direction represented by S

′ ⊂ S, it is probable to have a direction represented by the complement
(S
′
)c = S\S and taking all possible directions into account sums up to a probability equal to one.

The condition
ψ ≥ 0 (7.5)

stems from the notion of probability in the sense that probability is defined to be ∈ [0; 1] and thus
nonnegative, so

∀S
′
, t P(P ∈ S

′
, t) ≥ 0.

A proof of the inherence of (7.5) to (7.1) in the general sense is cumbersome and will be omitted. In
the particular case that Dr = 0, κ = 1, the proof is managable.

Property 7.3. The solution of (7.1) with Dr = 0, κ = 1 is nonnegative, provided that ψ0 ≥ 0 every-
where.

Proof. Consider

ψ̇ = −∇̃ · (ψṗJ)

ṗJ = W · p+ ξ(D · p−D : ppp)

and write

ψ̇ = −∇̃ · (ψṗJ)

= −ṗJ∇̃ψ − ψ∇̃ · ṗJ
= −ṗJ∇ψ + ψξD : pp.

In the last term on the RHS we, recalling Subsection 3.2.2, recognize D : pp = K : pp = 2
ζlFc, a

measure for the internal stress of the fiber. If the flow field depends on time t, then so does this term.

Say we consider p along an observer moving in time, or characteristic, then p = p(p0, t) so that
all quantities dependent of p become dependent of p0 and t. The PDE can be rewritten as

dψ

dt
=
∂ψ

∂t
+
∂ψ

∂p
· ∂p
∂t

=
∂ψ

∂t
+∇(ψ) · ṗJ = ξD : ppψ

so that

ψ(p(t), t) = ψ(p0, t0)e

ξ
t∫

t
′
=t0

D(t
′
)dt
′
:p(t)p(t)
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if D depends on time. If this is not the case, the latter simplifies to

ψ(p(t), t) = ψ(p0, t0)eξD:p(t)p(t)(t−t0).

As it is given that ψ0 ≥ 0 everywhere and an exponential is never negative, the solution ψ is nonnegative
for all choices p0, t. In notation,

∀p0, t ψ(p0, t) ≥ 0

which concludes the proof.

If q = 0, (7.1)1

ψ̇ = −∇̃ · (ψṗ+ q)

is a three dimensional Fokker-Planck equation, which is very similar to an advection-diffusion equation.
A Fokker-Planck equation has the form

∂f

∂t
=

N∑
i=1

 ∂

∂xi

d1
i (x1, x2, . . . , xN ) +

N∑
j=1

∂

∂xj
D2
ij(x1, x2, . . . , xN )

 (f) (7.6)

where d1 is called the drift vector and D2 the diffusion tensor. The latter results from the presence of
stochastic force, which is different from the advection-diffusion equation. The other difference is that
the (7.6) form contains mixed derivatives, whereas the advection-diffusion equation does not.

Integration over S
′ ⊂ S and using the divergence theorem makes the occurence of convection induced

by a flux out of S
′

even more clear:

d

dt

∫
S′

ψd2p =

∫
S′

ψ̇d2p = −
∫
S′

∇̃ · (ψṗ+ q) d2p = −
∫
C′

(ψṗ+ q) · nd1p. (7.7)

Note that this form was originally the concept wherefrom (7.1)1 was derived in Subsection 3.3.2.

The change of the variable ψ in time at a position p ∈ S depends on what the initial state of ψ at
this position was and how the convection of ψ has behaved there, after the initial state. The rate of
convection is determined by ṗ and q

ψ . Considering the simplified case that CI = 0 ∧ κ = 1, hence no
FFI or additional rotation counteraction, the convection is determined by

ṗ = W · p+ ξ(D · p−D : ppp)

and thus only by the rotation induced by the lift and drag (LD) of the flow field v on the fibers.
Alternatively, one could say by the change of the velocity field in space, ∇v. Adding the FFI term

−CI γ̇∇̃ lnψ = −CI γ̇
ψ
∇̃ψ,

when CI 6= 0, to ṗ makes the convection of ψ dependent on ψ itself. Considering an orientation p,
the local convection will be large if ψ is small, ψ(p, t) < 1, and its surroundings take larger values,
i.e. ∇̃ψ(p, t) > 0. The local convection will be small if ψ takes large values, ψ(p, t) > 1, and its
surroundings take smaller values, so ∇̃ψ(p, t) < 0. Note that the sign of the FFI is the opposite of
the convection stemming from the flow field. Therefore, these two types of convection counteract each
other. By writing

ψ̇ = −∇̃ · (ψṗ+ q)

= −∇̃ ·
(
ψ (W · p+ ξ(D · p−D : ppp))− CI γ̇∇̃ψ + q

)
one can alternatively consider the −CI γ̇∇̃ψ term as convection of ∇̃ψ or diffusion of ψ instead of con-
vection of ψ.

Interpreting the convection of (7.1)3 in combination with (7.1)4 when κ 6= 1 was already done in
Section 5.5. In addition, we recall that it merely stems from decreasing the eigenvalues of

A =

∫
S

ψppd2p

to slow down the kinetics, as derived in Sections 5.3 and 5.5. Therefore, this term also counteracts the
LD induced rotation.
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7.3 Dimensional analysis

For the dimensional analysis of (7.1)1 we first consider (7.1)2

ṗ = W · p+ ξ(D · p−D : ppp)− CI γ̇∇̃ lnψ. (7.8)

The dimensions of ṗ,W ,D, γ̇ are [ 1
s ]. The rest of the dimensions is [1]. The dimension [ 1

s ] in the
beforementioned variables and parameters all stem from the strain and shear rates E and G respectively.
These rates determine the ’strength’ ofK and it is thus interesting to scale the equation to this strength.
However, this strength, represented by γ̇, is not uniquely determined, as mentioned in Subsection 3.3.1.
Alternatively, we describe the strength of K with the sum of the absolute values of the elements of K:

m =
∑
i,j

|κij | (7.9)

in [ 1
s ]. Introducing

˙̄p =
∂p

∂(tm)
=

1

m

∂p

∂t
=
ṗ

m
, W̄ =

W

m
, D̄ =

D

m
, ˙̄γ =

γ̇

m
,

equation (7.8) divided by m becomes

˙̄p = W̄ · p+ ξ(D̄ · p− D̄ : ppp)− CI ˙̄γ∇̃ lnψ. (7.10)

The scaling also forces (7.1)1 to be scaled with m. Introducing

¯̇
ψ =

∂ψ

∂(tm)
=

1

m

∂ψ

∂t
=
ψ̇

m
, q̄ =

q

m

we obtain
¯̇
ψ = −∇̃ ·

(
ψ ˙̄p+ q̄

)
. (7.11)

For the sake of notation, we shall omit the bars in the rest of the report.

7.4 Numerical approach

7.4.1 Discretization in space

The Fokker-Planck equation for ψ (7.1)1 is

ψ̇ = −∇̃ · (ψṗ+ q) (7.12)

or with ṗ written out and κ = 1 (3.14)

ψ̇ = Dr
∂2ψ

∂θ2
+

Dr

sin2 θ

∂2ψ

∂φ2
+
∂ψ

∂θ

(
Dr

cos θ

sin θ
− λ−KT : δrδθ − λ+K : δrδθ

)
+

1

sin θ

∂ψ

∂φ

(
−λ−KT : δrδφ − λ+K : δrδφ

)
+ ψ(3λK : δrδr). (7.13)

The latter is a PDE linear in ψ, where ψ is a function of the three variables θ, φ and t. The additional
flux

q =
∑
l

βl(elel · p− elel : ppp) (7.14)

βl = −5(1− κ)

4π
[ξ(λlD : elel − elel : A : D) + CI γ̇(1− 3λl)] (7.15)

however, makes the PDE more difficult. It is a function of ψ in the sense that (λl, el) are the eigenpairs
of

A =

∫
S

ψppd2p

and that it contains the fourth order tensor

A =

∫
S

ψppppd2p.
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The eigenvalues λl can be expressed explicitely and nonlinearly in terms of A, which in turn can be
expressed in terms of ψ. This is also possible for the eigenvectors [5]. Doing so is rather cumbersome.
The nonlinearities ask for an explicit time integration or methods like Newton-Raphson. To prevent
the cumbersome calculations of Jacobian matrices, we maintain explicit time integration to solve the
nonlinearity.

Although (7.13) seems suitable for FDM in the structured space S, writing (7.12) again as (7.7)

d

dt

∫
S′

ψd2p = −
∫
C′

(ψṗ+ q) · nd1p (7.16)

calls for the FVM1 for S. Say we mesh S as depicted in Figure 7.1 and consider one element

Sij = [θi− 1
2
; θi+ 1

2
]× [φj− 1

2
;φj+ 1

2
]

with closed boundary Cij in spherical coordinates confer Figures 7.2 and 7.3. We can then approximate

Figure 7.1: meshed surface of the unit sphere.

(7.16) using the FVM. Let us consider the LHS

d

dt

∫
Sij

ψd2p.

If we take Sij small, we can assume that ψ is constant for across Sij and so

d

dt

∫
Sij

ψd2p ≈ d

dt

ψi,j ∫
Sij

d2p

 =
dψi,j
dt

∫
Sij

d2p = ψ̇i,j

φ
j+1

2∫
φ=φ

j− 1
2

θ
i+1

2∫
θ=θ

i− 1
2

sin(θ)dθdφ = ψ̇i,j∆φ·(cos(θi− 1
2
)−cos(θi+ 1

2
)),

where the subindices i, j refer to the partitioned elements Sij with cell centers θi, φj . In addition,
∆φ = φj+ 1

2
− φj− 1

2
. In short, we denote

d

dt

∫
Sij

ψd2p ≈ ψ̇i,j |Si|,

1As we are actually dealing with surface elements, the name finite volume method can be somewhat confusing. It is
illuminating to know that this name merely stems from the approach of considering the average value of a quantitiy over
a cell, be it a line, surface, volume of higher dimensional cell element.
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Figure 7.2: spherical coordinates.

Figure 7.3: fluxes for an arbitrary mesh element Sij .
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where we denote the size of the mesh element Si with |Si|, giving

|Si| = ∆φ · (cos(θi− 1
2
)− cos(θi+ 1

2
))

= ∆φ

( ∞∑
q=0

[(
−∆θ

2

)q
1

q!

(
dq

dθq
cos θ

)
i

]
−
∞∑
q=0

[(
∆θ

2

)q
1

q!

(
dq

dθq
cos θ

)
i

])

= ∆φ · −2
∑

q∈{1,3,...}

[(
∆θ

2

)q
1

q!

(
dq

dθq
cos θ

)
i

]

= −2∆φ
∑

q∈{1,3,...}

[(
∆θ

2

)q
1

q!
(1q∈{3,7,...} − 1q∈{1,5,...}) sin θi

]
= ∆φ∆θ sin(θi) +O(∆φ(∆θ)3).

For reasons that will become apparent in Subsection 7.4.5, we will omit the higher order terms and take

|Si| = ∆φ∆θ sin θi.

Note that we omit the subindex j as |Si| is independent of it. In accordance, we also write |Cij | = |Ci|.

Let us consider the RHS

−
∫
Cij

(ψṗ+ q) · nd1p.

Considering a finite element as depicted in Figure 7.3 we can write∫
Cij

(ψṗ+ q)·nd1p =

∫
CNij

(ψṗ+ q)·nd1p+

∫
CWij

(ψṗ+ q)·nd1p+

∫
CSij

(ψṗ+ q)·nd1p+

∫
CEij

(ψṗ+ q)·nd1p. (7.17)

Element Sij was taken small, which implies that the edges CNij , C
W
ij , C

S
ij and CEij are also small. The inte-

grand can be assumed constant over the edges we can thus approximate the north flux fNij corresponding
with cell Sij as

fNij :=

∫
CNij

(ψṗ+ q) · nd1p = ((ψṗ+ q) · n)Nij

∫
CNij

d1p = ((ψṗ+ q) · n)Nij |CNi |.

We choose the midpoint of the north side to represent the flux, so N = (θi− 1
2
, φj). At this point,

nN = (−δθ)i− 1
2 ,j

. The north flux becomes

fNij = −(ψṗ · δθ + q · δθ)i− 1
2 ,j

∆φ · sin θi− 1
2
.

Recalling (3.13), we get

ṗ · δθ = λ−KT : δrδθ + λ+K : δrδθ −
Dr

ψ

∂ψ

∂θ
.

Recalling (7.14) and recalling that p = δr, we get

q · δθ =
∑
l

βl(el · δr)(el · δθ).

Eventually, the north flux becomes

fNij = −

(
ψ
(
λ−KT : δrδθ + λ+K : δrδθ

)
−Dr

∂ψ

∂θ
+
∑
l

βl(el · δr)(el · δθ)
)
i− 1

2 ,j

∆φ · sin θi− 1
2
.

Note that the flux is still not uniquely determined, as we did not state how we will approximate ψi− 1
2 ,j

and
(
∂ψ
∂θ

)
i− 1

2 ,j
. This is a key issue in the conservation of probability and will be discussed after deter-

mining the rest of the fluxes and the time integration method.
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The south flux differs from the north flux in the sense that the midpoint of the south side of cell
Sij is S = (θi+ 1

2
, φj), resulting in nS = δθ instead of −δθ. The south flux is thus

fSij :=

(
ψ
(
λ−KT : δrδθ + λ+K : δrδθ

)
−Dr

∂ψ

∂θ
+
∑
l

βl(el · δr)(el · δθ)
)
i+ 1

2 ,j

∆φ · sin θi+ 1
2
.

The west and east fluxes differ slightly. The normals at the west and east sides are nW = −δφ
and nE = δφ respectively. The midpoints on these sides are represented by W = (θi, φj− 1

2
) and

E = (θi, φj+ 1
2
). The contributions from ṗ and q are

ṗ · δφ = λ−KT : δrδφ + λ+K : δrδφ −
Dr

ψ sin θ

∂ψ

∂θ
.

and

q · δφ =
∑
l

βl(el · δr)(el · δφ).

respectively. Hence, the fluxes are determined by

fWij := −

(
ψ
(
λ−KT : δrδφ + λ+K : δrδφ

)
− Dr

sin θ

∂ψ

∂θ
+
∑
l

βl(el · δr)(el · δφ)

)
i,j− 1

2

∆θ

and

fEij :=

(
ψ
(
λ−KT : δrδφ + λ+K : δrδφ

)
− Dr

sin θ

∂ψ

∂θ
+
∑
l

βl(el · δr)(el · δφ)

)
i,j+ 1

2

∆θ.

Thusfar, the approximation looks like

ψ̇i,j |Si| = −(fN + fW + fS + fE)ij

=

(
ψ
(
λ−KT : δrδθ + λ+K : δrδθ

)
−Dr

∂ψ

∂θ
+
∑
l

βl(el · δr)(el · δθ)
)
i− 1

2 ,j

∆φ · sin θi− 1
2

+

(
ψ
(
λ−KT : δrδφ + λ+K : δrδφ

)
− Dr

sin θ

∂ψ

∂θ
+
∑
l

βl(el · δr)(el · δφ)

)
i,j− 1

2

∆θ

−

(
ψ
(
λ−KT : δrδθ + λ+K : δrδθ

)
−Dr

∂ψ

∂θ
+
∑
l

βl(el · δr)(el · δθ)
)
i+ 1

2 ,j

∆φ · sin θi+ 1
2

−

(
ψ
(
λ−KT : δrδφ + λ+K : δrδφ

)
− Dr

sin θ

∂ψ

∂θ
+
∑
l

βl(el · δr)(el · δφ)

)
i,j+ 1

2

∆θ. (7.18)

7.4.2 Discretization in time

Conform [2], we use Euler forward to approximate the time derivative:

ψk+1
i,j = ψki,j +

tk+1∫
t′=tk

ψ̇ij(t
′
)dt
′
≈ ψki,j + ∆tψ̇ki,j ⇔ ψ̇ki,j ≈

ψk+1
i,j − ψki,j

∆t
. (7.19)

The numerical scheme is now

ψk+1
i,j = ψki,j −

∆t

|Si|
(fN + fW + fS + fE)k. (7.20)

This immediately gets rid of the nonlinearities and the need to express the eigenpairs of A explicitely.
Although the scheme is extremely simple, explicit time integration ı́s infamous for its need of small
time steps. In [15], the authors speak of a time step of 10−5. In comparison with more stable time in-
tegration methods, it is thus more important for the calculations made for space discretization to be fast.

The following quantities all have to be determined at each midpoint of the sides of the cells, and
at each time step.
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1. Probability density ψ.

2. Derivatives ∂ψ
∂θ and ∂ψ

∂φ .

3. Eigenpairs λl, el of A.

4. Fourth order tensor A.

5. Double contractions to calculate βl.

Concerning (7.20), we have to assure that the conditions as mentioned in Definition 3.1 and Section 7.2
are satisfied.

7.4.3 Conditions of the probability density function

7.4.3.1 Heads or tails

Let us check if the conditions of the PDF ψ are satisfied by the numerical scheme (7.20), maintaining
the same order as in Section 7.2. The first condition is (7.3)

∀p, t ψ(p, t) = ψ(−p, t),

which in spherical coordinates results in

∀θ, φ, t ψ(θ, φ, t) = ψ(π − θ, φ+ π, t).

In the discrete case, this condition ’translates’ to an alternative expression.

Say we partition the θ domain [0;π] and φ domain [0; 2π) in nθ and nφ parts respectively. Furthermore,
let us denote ψ =

(
ψki,j

)
with i ∈ {1, 2, . . . , nθ}, j ∈ {1, 2, . . . , nφ}. Then the condition is represented by

ψk+1
i,j = ψ(θi, φj , tk+1)

= ψ(π − θi, φj + π, tk+1)

= ψ(θnθ − θi, φj + φnφ
2
, tk+1)

= ψ(θnθ−i, φj+nφ
2
, tk+1)

= ψk+1

nθ−i,j+
nφ
2

(7.21)

given that ψ0
i,j = ψ0

nθ−i,j+
nφ
2

. Notice that (7.20) already fails to satisfy the condition if nφ is odd

because it does not give a integer when divided by two. The partition number nφ is obliged to be even,
which we assume from hereon.

Property 7.4. The scheme (7.20) conserves the discrete analogue (7.21) of (7.3).

Proof. We prove the satisfaction of this condition by induction. It is given that

ψ0
i,j = ψ0

nθ−i,j+
nφ
2

.

The LHS propagates to ψ1
i,j , so also the RHS has to. The RHS becomes

ψ1
nθ−i,j+

nφ
2

= ψ0
nθ−i,j+

nφ
2

− ∆t

|Snθ−i|
(fN + fW + fS + fE)0

nθ−i,j+
nφ
2

= ψ0
i,j −

∆t

|Snθ−i|
(fN + fW + fS + fE)0

nθ−i,j+
nφ
2

.

We have

|Snθ−i| = ∆φ∆θ sin θnθ−i

= ∆φ∆θ sin(θnθ − θi)
= ∆φ∆θ sin(π − θi)
= ∆φ∆θ sin(θi)

= |Si|.
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For the north fluxes we get

fN
nθ−i,j+

nφ
2

=

(
ψ
(
λ−KT : δrδθ + λ+K : δrδθ

)
−Dr

∂ψ

∂θ
+
∑
l

βl(el · δr)(el · δθ)
)
nθ−i− 1

2 ,j+
nφ
2

∆φ · sin θnθ−i− 1
2
.

We can not fully determine fN
nθ−i,j+

nφ
2

, as the approximations of ψ and ∂ψ
∂θ have not yet been determined.

Recalling (2.4), it follows that

(δr)nθ−i− 1
2 ,j+

nφ
2

= −(δr)i+ 1
2 ,j
, (δθ)nθ−i− 1

2 ,j+
nφ
2

= (δθ)i+ 1
2 ,j

The sinus becomes

sin θnθ−i− 1
2

= sin θnθ−(i+ 1
2 ) = sin θi+ 1

2
.

For the south fluxes we get analogously

(δr)nθ−i+ 1
2 ,j+

nφ
2

= −(δr)i− 1
2 ,j
, (δθ)nθ−i+ 1

2 ,j+
nφ
2

= (δθ)i− 1
2 ,j
, sin θnθ−i+ 1

2
= sin θi− 1

2
.

For the west and east fluxes we obtain

(δr)nθ−i,j+
nφ
2 −

1
2

= −(δr)i,j− 1
2
, (δφ)

nθ−i,j+
nφ
2 −

1
2

= −(δφ)i,j− 1
2
, sin θnθ−i = sin θi.

and

(δr)nθ−i,j+
nφ
2 + 1

2
= −(δr)i,j+ 1

2
, (δφ)

nθ−i,j+
nφ
2 + 1

2
= −(δφ)i,j+ 1

2
, sin θnθ−i = sin θi.

respectively. Filling these observations in in (7.18) we conclude that (7.21) is satisfied and

ψ1
nθ−i,j+

nφ
2

= ψ0
i,j −

∆t

|Si|
(fN + fW + fS + fE)0

i,j = ψ1
i,j .

if for the north fluxes we have

ψ
nθ−i− 1

2 ,j+
nφ
2

= ψi+ 1
2 ,j
,

(
∂ψ

∂θ

)
nθ−i− 1

2 ,j+
nφ
2

= −
(
∂ψ

∂θ

)
i+ 1

2 ,j

,

for the south fluxes

ψ
nθ−i+ 1

2 ,j+
nφ
2

= ψi− 1
2 ,j
,

(
∂ψ

∂θ

)
nθ−i+ 1

2 ,j+
nφ
2

= −
(
∂ψ

∂θ

)
i− 1

2 ,j

,

for the west fluxes

ψ
nθ−i,j+

nφ
2 −

1
2

= ψi,j− 1
2
,

(
∂ψ

∂φ

)
nθ−i,j+

nφ
2 −

1
2

=

(
∂ψ

∂φ

)
i,j− 1

2

,

and the east fluxes

ψ
nθ−i,j+

nφ
2 + 1

2
= ψi,j+ 1

2
,

(
∂ψ

∂φ

)
nθ−i,j+

nφ
2 + 1

2

=

(
∂ψ

∂φ

)
i,j+ 1

2

.

Looking carefully at the indices on the RHSs, we conclude that by considering (θnθ−i, φj+nφ
2

) instead

of (θi, φj), the north and south fluxes are interchanged and the west and east fluxes remain the same.
The analytic analogue (7.17) results in the same interchange and conservations.

Now having obtained criteria on how to choose the ψ and its derivatives in space at the sides of the
cells, it is logical to approximate these quantities by using their two closest cell values in the direction
in question. This means

ψi− 1
2 ,j

=
ψi,j + ψi−1,j

2
,

(
∂ψ

∂θ

)
i− 1

2 ,j

=
ψi,j − ψi−1,j

∆θ

for the north sides,

ψi+ 1
2 ,j

=
ψi+1,j + ψi,j

2
,

(
∂ψ

∂θ

)
i+ 1

2 ,j

=
ψi+1,j − ψi,j

∆θ
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for the south sides,

ψi,j− 1
2

=
ψi,j + ψi,j−1

2
,

(
∂ψ

∂φ

)
i,j− 1

2

=
ψi,j − ψi,j−1

∆φ

for the west sides and last

ψi,j+ 1
2

=
ψi,j+1 + ψi,j

2
,

(
∂ψ

∂φ

)
i,j+ 1

2

=
ψi,j+1 − ψi,j

∆φ

for the east sides. These approximations suffice to the beforementioned conditions and we thus have

ψ1
nθ−i,j+

nφ
2

= ψ1
i,j .

To complete the proof of induction, we assume that

ψk
nθ−i,j+

nφ
2

= ψki,j

and must prove that the relation also holds for the subsequent time step. We have

ψk+1

nθ−i,j+
nφ
2

= ψk
nθ−i,j+

nφ
2

− ∆t

|Snθ−i|
(fN + fW + fS + fE)k

nθ−i,j+
nφ
2

= ψki,j −
∆t

|Si|
(fN + fW + fS + fE)k

nθ−i,j+
nφ
2

.

As the basis of the surface of the unit sphere S is Eulerian, the procedure to obtain

(fN + fW + fS + fE)k
nθ−i,j+

nφ
2

= (fN + fW + fS + fE)ki,j

is exactly the same as for time zero. We conclude

ψk+1

nθ−i,j+
nφ
2

= ψk+1
i,j ,

and thus (7.20) satisfies (7.21) for all time and space.

Perhaps the proof of the satisfaction of the condition is somewhat cumbersome, but it is definitely worth
it. Since we now know that

∀p, t ψ(−p, t) = ψ(p, t),

only half of S is interesting, as the other half is just a copy. Herewith, the #DOF is reduced by a
factor two. This results in a vast decrease in calculation time. That is, if (7.20) suffices to the rest of
the conditions.

7.4.3.2 Conservation of probability

The conservation of probability is represented by

∀t
∮
S

ψ(p, t)d2p = 1.

Its discrete analogue is

∀k 2
∑
i,j

ψki,j |Si| = 1. (7.22)

The factor two originates from the fact that we only consider half of S. This implies that from now on
θ ∈ [0; π2 ], θnθ = π

2 . A proof hereof will again by of inductive form. We assume

2
∑
i,j

ψ0
i,j |Si| = 1

and must first prove that

2
∑
i,j

ψ1
i,j |Si| = 1.

Property 7.5. The scheme (7.20) conserves probability in the discrete sense (7.22).
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Proof. It follows that

2
∑
i,j

ψ1
i,j |Si| = 2

∑
i,j

[(
ψ0
i,j −

∆t

|Si|
(fN + fW + fS + fE)0

i,j

)
|Si|
]

= 2
∑
i,j

[
ψ0
i,j |Si|

]
− 2∆t

∑
i,j

(fN + fW + fS + fE)0
i,j

= 1− 2∆t
∑
i,j

(fN + fW + fS + fE)0
i,j

and so proving that ∑
i,j

(fN + fW + fS + fE)0
i,j = 0

is sufficient. The latter states that the sum of the fluxes must vanish at time zero.

We consider ∑
i,j

(fN + fS)0
i,j

with

fNi,j=−

ψi,j + ψi−1,j

2
(λ−KT+λ+K):(δrδθ)i− 1

2 ,j
−Dr

ψi,j − ψi−1,j

∆θ
+

(∑
l

βl(el · δr)(el · δθ)
)
i− 1

2 ,j

∆φ·sin θi− 1
2

and

fSi,j=

ψi+1,j + ψi,j
2

(λ−KT+λ+K):(δrδθ)i+ 1
2 ,j
−Dr

ψi+1,j − ψi,j
∆θ

+

(∑
l

βl(el · δr)(el · δθ)
)
i+ 1

2 ,j

∆φ·sin θi+ 1
2
.

We notice that fN and fS only differ in the first index and in their sign. Therefore

∑
i,j

(fN + fS)0
i,j =

∑
j

[
nθ∑
i=1

[
fNi,j
]

+

nθ∑
i=1

[
fSi,j
]]

=
∑
j

[
nθ∑
i=1

[
fNi,j
]

+

nθ∑
i−1=1

[
fSi−1,j

]]

=
∑
j

[
nθ∑
i=1

[
fNi,j
]
−
nθ+1∑
i=2

[
fNi,j
]]

=
∑
j

[
fN1,j − fNnθ+1,j

]
For i = 1 we get

∀j sin θi− 1
2

= sin θ 1
2

= sin 0 = 0

and thus only ∑
j

[
fNnθ+1,j

]
remains. Considering fNnθ+1,j , we obtain(

ψi,j + ψi−1,j

2

)
nθ+1,j

=
ψnθ+1,j + ψnθ,j

2
=
ψ
nθ,j+

nφ
2

+ ψnθ,j

2

and for the basis vectors

(δr)nθ+ 1
2 ,j

=

 sin(θnθ+ 1
2
) cos(φj)

sin(θnθ+ 1
2
) sin(φj)

cos(θnθ+ 1
2
)

 =

 sin(π2 ) cos(φj)
sin(π2 ) sin(φj)

cos(π2 )

 =

 cos(φj)
sin(φj)

0


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and

(δθ)nθ+ 1
2 ,j

=

 cos(θnθ+ 1
2
) cos(φj)

cos(θnθ+ 1
2
) sin(φj)

− sin(θnθ+ 1
2
)

 =

 cos(π2 ) cos(φj)
cos(π2 ) sin(φj)
− sin(π2 )

 =

 0
0
−1


so that

(δrδθ)nθ+ 1
2 ,j

= −(δrδθ)nθ+ 1
2 ,j+

nφ
2
.

Say we call the right factor in the first term unθ+ 1
2 ,j

. We then have

unθ+ 1
2 ,j

= −u
nθ+ 1

2 ,j+
nφ
2

and the first term becomes∑
j

ψ
nθ,j+

nφ
2

+ ψnθ,j

2
unθ+ 1

2 ,j
=

1

2

∑
j

[
ψ
nθ,j+

nφ
2
unθ+ 1

2 ,j
+ ψnθ,junθ+ 1

2 ,j

]
=

1

2

∑
j

[
−ψ

nθ,j+
nφ
2
u
nθ+ 1

2 ,j+
nφ
2

+ ψnθ,junθ+ 1
2 ,j

]

=
1

2

− nφ∑
j=1

[
ψ
nθ,j+

nφ
2
u
nθ+ 1

2 ,j+
nφ
2

]
+

nφ∑
j=1

[
ψnθ,junθ+ 1

2 ,j

]
=

1

2

− nφ∑
j−

nφ
2 =1

[
ψnθ,junθ+ 1

2 ,j

]
+

nφ∑
j=1

[
ψnθ,junθ+ 1

2 ,j

]
=

1

2

− nφ+
nφ
2∑

j=1+
nφ
2

[
ψnθ,junθ+ 1

2 ,j

]
+

nφ∑
j=1

[
ψnθ,junθ+ 1

2 ,j

]
=

1

2

− nφ∑
j=1

[
ψnθ,junθ+ 1

2 ,j

]
+

nφ∑
j=1

[
ψnθ,junθ+ 1

2 ,j

]
= 0,

where we used the periodicity of ψ, sinφ and cosφ in φ with a period of 2π and thus also periodicity in
j with a period of nφ. Note that again it is obliged that nφ is even to result in an integer when divided
by two.

For the term

−Dr
ψi,j − ψi−1,j

∆θ
∆φ · sin θi− 1

2

we get

−Dr∆φ · sin(θnθ+ 1
2
)

∆θ

∑
j

[ψnθ+1,j − ψnθ,j ] =
−Dr∆φ · sin(θnθ+ 1

2
)

∆θ

∑
j

[
ψ
nθ,j+

nφ
2
− ψnθ,j

]

=
−Dr∆φ · sin(θnθ+ 1

2
)

∆θ

 nφ∑
j=1

[
ψ
nθ,j+

nφ
2

]
−

nφ∑
j=1

[ψnθ,j ]


=
−Dr∆φ · sin(θnθ+ 1

2
)

∆θ

 nφ∑
j−

nφ
2 =1

[
ψ
nθ,j+

nφ
2

]
−

nφ∑
j=1

[ψnθ,j ]


=
−Dr∆φ · sin(θnθ+ 1

2
)

∆θ

 nφ+
nφ
2∑

j=1+
nφ
2

[ψnθ,j ]−
nφ∑
j=1

[ψnθ,j ]


= 0

where we used periodicity in j with period nφ in the last step.

The last term of the north fluxes are represented by(∑
l

βl(el · δr)(el · δθ)
)
i− 1

2 ,j

∆φ · sin θi− 1
2
.
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We thus get

∑
j

(∑
l

βl(el · δr)(el · δθ)
)
nφ+ 1

2 ,j

∆φ · sin θnφ+ 1
2

 =
∑
l

βl(el · (δθ)nφ+ 1
2 ,j

)

el ·∑
j

(δr)nφ+ 1
2 ,j

∆φ

=
∑
l

βl(el · (δθ)nφ+ 1
2 ,j

)

el ·∑
j

 cosφj
sinφj

0

∆φ

=
∑
l

βl(el · (δθ)nφ+ 1
2 ,j

)

el ·∑
j

 0
0
0

∆φ

= 0.

We conclude that ∑
i,j

(fN + fS)0
i,j = 0,

which leaves us to prove that ∑
i,j

(fW + fE)0
i,j = 0

to prove that the sum of the fluxes is zero at time zero. We recall

fWij=−

ψi,j + ψi,j−1

2
(λ−KT + λ+K):(δrδφ)i,j− 1

2
− Dr

sin θi

ψi,j − ψi,j−1

∆φ
+

(∑
l

βl(el · δr)(el · δφ)

)
i,j− 1

2

∆θ

and

fEij=

ψi,j+1 + ψi,j
2

(λ−KT + λ+K):(δrδφ)i,j− 1
2
− Dr

sin θi

ψi,j+1 − ψi,j
∆φ

+

(∑
l

βl(el · δr)(el · δφ)

)
i,j+ 1

2

∆θ.

Similar as in the case of the north and south fluxes we have∑
i,j

(fW + fE)i,j =
∑
i,j

[
fWi,j
]

+
∑
i,j

[
fEi,j
]

=
∑
i

 nφ∑
j=1

[
fWi,j
]

+

nφ∑
j=1

[
fEi,j
]

=
∑
i

 nφ∑
j=1

[
fWi,j
]

+

nφ∑
j−1=1

[
fEi,j−1

]
=

∑
i

 nφ∑
j=1

[
fWi,j
]
−
nφ+1∑
j=2

[
fWi,j
]

=
∑
i

[
fWi,1 − fWnφ+1,1

]
We notice that

ψi,0 = ψi,nφ , ψi,nφ+1 = ψi,1, (δr)i, 12 = (δr)i,nφ+ 1
2
, (δφ)i, 12 = (δφ)i,nφ+ 1

2

wherewith

fWi,1 = fWnφ+1,1 ⇒
∑
i

[
fWi,1 − fWnφ+1,1

]
= 0

and thus the sum of the fluxes at time zero is indeed zero. As the beformentioned procedure is inde-
pendent of time, it immediately follows that

∀k
∑
i,j

(fN + fW + fS + fE)ki,j = 0
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and so

2
∑
i,j

ψk+1
i,j |Si| = 2

∑
i,j

[
ψki,j |Si|

]
− 2∆t

∑
i,j

(fN + fW + fS + fE)ki,j = 1

given that

2
∑
i,j

[
ψki,j |Si|

]
= 1,

which concludes our induction proof. The only condition that remains to be satisfied is the nonnegativity
of ψ.

7.4.3.3 Nonnegativity

Constructing a proof that the solutions of (7.20) are nonnegative is rather cumbersome. Such a proof
will be omitted. In the particular case that Dr = 0, as also treated analytically in Section 7.2, such
a proof is constructed by proving the convergence of the numerical solution to the analytic solution.
Convergence of (7.20) is in this case proven by consistency, stability and the fundamental theorem of
numerical methods for differential equations. These issues are treated thoroughly in Subsections 7.4.5
and 7.4.6.

For now, we assume that the nonnegativity is conserved and thus (7.20) suffices to all the conditions as
long as nφ is even. However, to solve the scheme uniquely we still need initial and boundary conditions.

7.4.4 Initial and boundary conditions

To solve

ψk+1
i,j = ψki,j −

∆t

|Si|
(fN + fW + fS + fE)kij

uniquely we need an IC ψ0 and BCs for fNij when i = 1, for fSij when i = nθ, for fWij when j = 1 and

for fEij when j = nφ. The boundaries are depicted in Figure 7.4.

Figure 7.4: boundaries of the domain in question.

In practical situations of injection molding, one can assume that the fibers are initially more or less
randomly distributed in the flow. This means that the probability density is the same for each direction,
which implies that ψ = constant. We obtain∫

S

ψd2p = ψ

∫
S

d2p = ψ4π = 1

which implies that ψ = 1
4π . Dividing S into finite elements, the discrete analogue is (7.22)

∀k 2
∑
i,j

ψki,j |Si| = 1.
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As in the continuous case, we must have that P(P ∈ Sij , t) is proportional to the size of Sij , so

∀k P(P ∈ Sij , tk) = ψki,j |Si| ∝ |Si|.

This is already the case, so that taking ψ0
i,j constant yields

2
∑
i,j

ψ0
i,j |Si| = 1 ⇔ ψ0

i,j · 2
∑
i,j

|Si| = 1 ⇔ ψ0
i,j =

1

4π
,

wherewith we have obtained the uniform initial condition.

To study the effect of the initial condition on the progression of the probability density in both space
and time, it is also interesting to consider alternative, nonuniform ICs. To this end we construct an IC
of the form

ψ0
i,j = a · (sin(θi − b))2d(cos(φj − c))2e + f, a > 0, b ∈

[
0,
π

2

]
, c ∈ [0, 2π), d, e ∈ Z+, f ≥ 0. (7.23)

Note that the constants a, b, c, d, e and f are certainly not unbounded. We must still have that (7.22)
holds. This IC sets a lower bound f , an upper bound f + a, minima at θ = b, φ ∈

{
π
2 + c, 3π

2 + c
}

and
the maxima at θ = π

2 + b and φ ∈ {c, π + c}.

For the boundary conditions we consider the fluxes

fNi,j=−

ψi,j + ψi−1,j

2
(λ−KT + λ+K):(δrδθ)i− 1

2 ,j
−Dr

ψi,j − ψi−1,j

∆θ
+

(∑
l

βl(el · δr)(el · δθ)
)
i− 1

2 ,j

∆φ sin θi− 1
2

(7.24)

fSi,j=

ψi+1,j + ψi,j
2

(λ−KT + λ+K):(δrδθ)i+ 1
2 ,j
−Dr

ψi+1,j − ψi,j
∆θ

+

(∑
l

βl(el · δr)(el · δθ)
)
i+ 1

2 ,j

∆φ sin θi+ 1
2

(7.25)

fWi,j=−

ψi,j + ψi,j−1

2
(λ−KT + λ+K):(δrδφ)i,j− 1

2
− Dr

sin θi

ψi,j − ψi,j−1

∆φ
+

(∑
l

βl(el · δr)(el · δφ)

)
i,j− 1

2

∆θ

(7.26)

fEi,j=

ψi,j+1 + ψi,j
2

(λ−KT + λ+K):(δrδφ)i,j+ 1
2
− Dr

sin θi

ψi,j+1 − ψi,j
∆φ

+

(∑
l

βl(el · δr)(el · δφ)

)
i,j+ 1

2

∆θ

(7.27)

At the boundary i = 1 we have that the north fluxes (7.24) contains the factor sin θ1− 1
2

= sin θ 1
2

=

sin 0 = 0 and therefore fN1,j = 0.

At the boundary i = nθ the south fluxes (7.25) uses

sin θnθ+ 1
2

= sin
π

2
= 1, ψnθ+1,j = ψ

nθ,j+
nφ
2
.

These are element of the interior domain and thus we have obtained the BC for the south fluxes at the
south boundary.

The BCs for the west and east fluxes (7.26) and (7.27) respectively, follow from periodicity in j

ψki,0 = ψki,nφ , ψki,nφ+1 = ψki,1.

Herewith, a unique solution of (7.20) can be calculated.

7.4.5 The modified equation, local truncation error and consistency

It remains to prove the convergence of the numerical solution to the analytic solution. According to the
fundamental theorem of numerical methods for differential equations, it suffices to prove consistency
and stability of (7.20).
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Theorem 7.1. The fundamental theorem of numerical methods for differential equations states

consistency + stability ⇔ convergence.

The proof of this theorem differs per context and will be omitted. The proof for the test equation
can be found in [21]. The theorem’s reference also differs per context. For linear PDEs it is referred
to as the Lax equivalence theorem and for ODEs it is referred to as Dahlquist’s equivalence theorem [17].

It thus remains to prove the conistency and stability of (7.20). We will begin with proving consis-
tency for the linear case κ = 1. A proof of consistency for the case κ 6= 1 is omitted as its construction
is rather cumbersome. Stability will be proven in Subsection 7.4.6.

By doing the modified equation analysis [17] we recover the local truncation error (LTE) and can deter-
mine if the numerical scheme (7.20) is consistent with the exact form (7.1). In addition, the modified
equation reveals information on how the numerical solution will behave, as we will show.

Property 7.6. The numerical scheme (7.20) is consistent with (3.14) of the orders one and two for t
and θ, φ respectively. The LTE is O(∆t) +O((∆θ)2) +O((∆φ)2).

Proof. Recall (7.20)

ψk+1
i,j = ψki,j −

∆t

|Si|
(fW + fN + fS + fE)kij (7.28)

with the fluxes according to (7.26), (7.24), (7.25) and (7.27). The modified equation is the equation is
satisfied exactly by the solution constructed by (7.28). To this end, we widely use Taylor expansions,
starting with

ψk+1
i,j =

∞∑
p=0

(∆t)p

p!

(
∂pψ

∂tp

)k
i,j

.

We can now write

∞∑
p=0

(∆t)p

p!

(
∂pψ

∂tp

)k
i,j

= ψki,j −
∆t

|Si|
(fW + fN + fS + fE)kij

−|Si|
∞∑
p=1

(∆t)p−1

p!

(
∂pψ

∂tp

)k
i,j

= (fW + fN + fS + fE)kij (7.29)

For the sake of notation, we introduce

ai,j± 1
2

:=
(λ−KT + λ+K) : (δrδφ)i,j± 1

2
∆θ

2

bi :=
Dr∆θ

∆φ sin θi

ci,j± 1
2

:=
(λ−KT + λ+K) : (δrδθ)i± 1

2 ,j
∆φ sin θi± 1

2

2

di± 1
2

:=
Dr∆φ sin θi± 1

2

∆θ
.

Note that these coefficients already contain either ∆θ, ∆φ or both, which will be important in a moment
for determining the order of accuracy. With this notation and Taylor expansions around (θi, φj) we can



82 7. The Fokker-Planck equation

now write the addition of the fluxes as

(fW + fN + fS + fE)kij = −ai,j− 1
2
(ψi,j + ψi,j−1) + bi(ψi,j − ψi,j−1)

−ci− 1
2 ,j

(ψi,j + ψi−1,j) + di− 1
2 ,j

(ψi,j − ψi−1,j)

+ci+ 1
2 ,j

(ψi+1,j + ψi,j)− di+ 1
2 ,j

(ψi+1,j − ψi,j)
+ai,j+ 1

2
(ψi,j+1 + ψi,j)− bi(ψi,j+1 − ψi,j)

= −ai,j− 1
2

(
2ψi,j +

∞∑
p=1

[
(−∆φ)p

p!

(
∂pψ

∂φp

)k
i,j

])
− bi

( ∞∑
p=1

[
(−∆φ)p

p!

(
∂pψ

∂φp

)k
i,j

])

−ci− 1
2 ,j

(
2ψi,j +

∞∑
p=1

[
(−∆θ)p

p!

(
∂pψ

∂θp

)k
i,j

])
− di− 1

2 ,j

( ∞∑
p=1

[
(−∆θ)p

p!

(
∂pψ

∂θp

)k
i,j

])

+ci+ 1
2 ,j

( ∞∑
p=1

[
(∆θ)p

p!

(
∂pψ

∂θp

)k
i,j

]
+ 2ψi,j

)
− di+ 1

2 ,j

( ∞∑
p=1

[
(∆θ)p

p!

(
∂pψ

∂θp

)k
i,j

])

+ai,j+ 1
2

( ∞∑
p=1

[
(∆φ)p

p!

(
∂pψ

∂φp

)k
i,j

]
+ 2ψi,j

)
− bi

( ∞∑
p=1

[
(∆φ)p

p!

(
∂pψ

∂φp

)k
i,j

])
.

For the sake of comparison with (7.1) or more preferably (3.14), we will consider the coefficients per
derivative of ψ. Let us start with the original, the zeroth derivative. The coefficient hereof is

2(ai,j+ 1
2
− ai,j− 1

2
+ ci+ 1

2 ,j
− ci− 1

2 ,j
) = 2

2
∑

q∈{1,3,...}

[
(∆φ)q

2

1

q!

(
∂qa

∂φq

)
i,j

]
+ 2

∑
q∈{1,3,...}

[
(∆θ)q

2

1

q!

(
∂qc

∂θq

)
i,j

]
= 2

(
∆φ

∂a

∂φ
+ ∆θ

∂c

∂θ

)
i,j

+O(∆θ(∆φ)3) +O((∆θ)3∆φ)

= 2

(
−3∆θ∆φ sin(θ)K : δrδr

2

)
i,j

+O(∆θ(∆φ)3) +O((∆θ)3∆φ)

= −|Si|3K : (δrδr)i,j +O(∆θ(∆φ)3) +O((∆θ)3∆φ)

which is the coefficient for ψ in (3.14) multiplied by −|Si|, which stems from the LHS of (7.29). It stands
out that although the conservation of psi has already been proven for (7.28), there is still an error

O(∆θ(∆φ)3) +O((∆θ)3∆φ)

−|Si|
= O((∆φ)2) +O((∆θ)2)

in the coefficient for ψki,j . This is still possible because the error is in the local sense, and the conserva-
tion of probability is in the global sense. Constructing the modified equation has now determined that
(7.28) contains a source or sink error for ψ. Locally, there is a source or sink for the probability density
of order O((∆φ)2) +O((∆θ)2), which vanishes in the global sense.

We proceed with considering the derivatives in the θ direction. We have

∞∑
p=1

(
−ci− 1

2 ,j
(−1)p − di− 1

2
(−1)p + ci+ 1

2 ,j
− di+ 1

2

) (∆θ)p

p!

(
∂pψ

∂θp

)k
i,j

.

For p = 1 we thus have

ci− 1
2 ,j

+ di− 1
2

+ ci+ 1
2 ,j
− di+ 1

2
=

2
∑

q∈{0,2,...}

[(
∆θ

2

)q
1

q!

∂qc

∂θq

]
− 2

∑
q∈{1,3,...}

[(
∆θ

2

)q
1

q!

∂qd

∂qθ

]
i,j

=

(
2c−∆θ

∂d

∂θ

)
i,j

+O((∆θ)2∆φ) +O((∆θ)2∆φ)

= (λ−KT + λ+K) : (δrδθ)i,j∆φ sin(θi)−Dr∆φ cos θi +O((∆θ)2∆φ).

Multiplying with ∆θ
−|Si| = −1

∆φ sin θi
we obtain

−(λ−KT + λ+K) : (δrδθ)i,j +Dr
cos θi
sin θi

+O((∆θ)2)
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which resembles the coefficient in (3.14). We conclude that there is also an error of order O((∆θ)2) with
convective behavior in the θ direction.

Taking p = 2 results in

(−ci− 1
2 ,j
− di− 1

2
+ ci+ 1

2 ,j
− di+ 1

2
)
(∆θ)2

2
=

2
∑

q∈{1,3,...}

[
(∆θ)q+2

2q+1

1

q!

∂qc

∂θq

]
−2
∑

q∈{0,2,...}

[
(∆θ)q+2

2q+1

1

q!

∂qd

∂qθ

]
i,j

= (−(∆θ)2d)i,j +O((∆θ)3∆φ) +O((∆θ)3∆φ)

= −Dr∆θ∆φ sin θi +O((∆θ)3∆φ).

Division by −|Si| gives

Dr +O((∆θ)2).

A diffusion error of O((∆θ)2) is made.

Say we consider the derivatives in the φ direction. We have

∞∑
p=1

(
−ai,j− 1

2
(−1)p − bi(−1)p + ai,j+ 1

2
− bi

) (∆φ)p

p!

(
∂pψ

∂φp

)k
i,j

.

Say we take p = 1, then

(
ai,j− 1

2
+ bi + ai,j+ 1

2
− bi

)
∆φ =

2
∑

q∈{0,2,...}

[(
∆φ

2

)q
1

q!

∂qa

∂φq

]
i,j

∆φ

= 2∆φai,j +O(∆θ(∆φ)3)

= ∆θ∆φ(λ−KT + λ+K) : (δrδθ)i,j +O(∆θ(∆φ)3).

Division by −|Si| gives

− (λ−KT + λ+K) : (δrδθ)i,j
sin θi

+O((∆φ)2).

It can be concluded that there is a convective error of order O((∆φ)2).

Finally, we consider p = 2 and obtain the coefficient

(
−ai,j− 1

2
− bi + ai,j+ 1

2
− bi

) (∆φ)2

2
=

2
∑

q∈{1,3,...}

[(
∆φ

2

)q
1

q!

∂qa

∂φq

]
− 2bi


i,j

(∆φ)2

2

=

 ∑
q∈{1,3,...}

[
(∆φ)q+2

2q
1

q!

∂qa

∂φq

]
− Dr∆θ∆φ

sin θ


i,j

= −Dr∆θ∆φ

sin θi
+O(∆θ(∆φ)3).

Division by −|Si| gives
Dr

sin2 θi
+O((∆φ)2)

resulting in a O((∆φ)2) diffusive error in the φ direction.

It can be concluded that the LTE is O(∆t) + O((∆θ)2) + O((∆φ)2) and that (7.28) is consistent with
(3.14) of the orders one and two for t and θ, φ respectively. The modified equation analysis shows
that the scheme induces errors of four different types, namely acceleration, production or vanishing,
convection and diffusion. This can help us explain the behavior of the numerical solutions that will be
considered in Part II.

To prove the convergence of the numerical solution to the analytic solution, we need stability besides
the now proved consistency. The stability is considered in the following subsection.
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7.4.6 Stability

7.4.6.1 Analytic stability analysis

To complete the proof of convergence of (7.28) we have to proof the stability. We will construct such
a proof for the linear case κ = 1 in combination with diffusion, so Dr 6= 0. A proof for the stability
of the nonlinear case κ 6= 1 will be omitted. Empirical results of the scheme seem to confirm that the
stability demands of the nonlinear case are weaker than the for the linear case. This is justifiable as the
additional RSC term slows the process down, decreasing the gradients of ψ in time. In general, smaller
gradients allow larger time steps. In other words, the stability demands are weakened.

In Subsection 9.4.1 and Section 10.4, examples of flow fields are given wherefore it is impossible to
obtain a solution on a finite grid as ψ is diverges to infinity. It is thus impossbile to prove stability of
the numerical scheme with Dr = 0 for all flow fields. The case Dr = 0 is therefore not considered.

Both Von Neumann and Gershgorin stability analyses were used. The latter proves to give the most
results without too much effort, in contrast with the, in this case, cumbersome Von Neumann stability
analysis. Indeed, the Von Neumann analysis is omitted.

For the sake of clarity, we recall Gershgorin’s circle theorem.

Theorem 7.2. Say we consider C ∈ Cn×n with unknown eigenpairs (λl, el), l ∈ {1, 2, . . . , n}. We then
have that

∀l ∃k : |λl − Ckk| ≤
n∑

j 6=k,j=1

|Ckj |. (7.30)

Proof. For the eigenpairs we have

∀l λlel = C · el ⇔ ∀i, l λl(el)i =

n∑
j=1

Cij(el)j . (7.31)

We know that

∀l ∃k : |(el)k| ≥ |(el)i|, (el)k 6= 0

otherwise el = 0 which is not allowed for an eigenvector. Taking i = k, it follows from (7.31) that

∀l λl − Ckk =

n∑
j 6=k,j=1

Ckj
(el)j
(el)k

.

Taking the absolute value on both sides and applying the triangle inequality on the RHS we obtain
(7.30)

Gershgorin’s circle theorem states that every eigenvalue λl ∈ σ(C) is contained in at least one Gershgorin
disc with its center at Ckk and a radius

Rk :=

n∑
j 6=k,j=1

Ckj

in the complex plane. For stability, we need that ∀l |λl| ≤ 1 for the eigenvalues of the system matrix
C. If in addition Ckk ∈ R, only the real line matters and (7.30) reduces to

Ckk −Rk ≥ −1 ∧ Ckk +Rk ≤ 1. (7.32)

Property 7.7. The scheme (7.28) is stable under the condition

∆t

(∆θ)2(∆φ)2
≤ 1

8Dr
(7.33)

when Dr = O((∆θ)m),m < 2.

Proof. When considering the case that Dr 6= 0, Dr = O((∆θ)m),m < 2, the stability criterium is domi-
nated by the singularity of the analytical equation for ψ̇ as mentioned in Subsection 3.3.3. Considering
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the top ’ring’ of cells wherefore (θi, φj) = (∆θ
2 , φj), the terms with a sine in the denominator dominate

the equation. Herewith, the scheme reduces to

ψk+1
i,j = ψki,j −

∆t

∆θ∆φ sin ∆θ
2

(
Dr

sin ∆θ
2

ψki,j − ψki,j−1

∆φ
∆θ − Dr

sin ∆θ
2

ψki,j+1 − ψki,j
∆φ

∆θ

)

≈ ψki,j +
4Dr∆t

(∆θ)2

ψki,j+1 − 2ψki,j + ψki,j−1

(∆φ)2

where we used sin ∆θ
2 ≈

∆θ
2 . Using Gershgorin’s circle theorem with Ckk ∈ R we get the inequalities

1− 8Dr∆t

(∆θ)2(∆φ)2
+

∣∣∣∣ 8Dr∆t

(∆θ)2(∆φ)2

∣∣∣∣ ≤ 1

1 ≤ 1

and

1− 8Dr∆t

(∆θ)2(∆φ)2
−
∣∣∣∣ 8Dr∆t

(∆θ)2(∆φ)2

∣∣∣∣ ≥ −1

∆t

(∆θ)2(∆φ)2
≤ 1

8Dr
.

The former is always satisfied so the latter is the stability condition in question.

It can be seen from (7.33) that increasing Dr makes the stability criterium more strict. As the space
steps are both raised to the power two, it is easier to make a compromise by increasing the space steps
than it is by decreasing the time step. However, a fine grid is also preferred as the LTE should not be
too large.

If Dr = O((∆θ)m),m ≥ 2, also other terms of Rk become significant. The reason hereof is that

Dr

∆θ sin θi
=
O((∆θ)m)

O((∆θ)2)
= O((∆θ)m−2), m− 2 ≥ 0

if θi = ∆θ
2 . It is now of the same order as other terms in the sum and is thus not dominating anymore.

As the sum merely contains absolute values, the right inequality in (7.30) can not be satisfied anymore.
This does not imply that stability is impossible, but it does imply that it is impossible for the Gershgorin
discs to be contained within the unit circle. In turn, this is an indication that stability is difficult to
achieve.

The Von Neumann and Gershgorin stability analyses fail give a sufficient result whenDr = O((∆θ)m),m ≥
2. We therefore do simulations with m < 2 so that the stability criterium from Property 7.7 can be
used.

7.4.6.2 Numerical stability analysis

Aside from the analytical argument we have obtained in the previous section, the stability can also be
determined by calculating the largest absolute eigenvalue of the system matrix C. This can be done
efficiently by the use of the power method and inverse power method to determine the largest and
smallest eigenvalue respectively.

The power method works as follows. Say we consider a matrix C ∈ Cn×n with unknown eigenpairs
(λl, el), l ∈ {1, 2, . . . , n}. The eigenvectors are normalized and span Cn×n. Say we choose an initial
vector z0 ∈ Cn. This vector can be written as

z0 =

n∑
i=1

αi(el)i

as the eigenvectors span the space in question. We have

zj = Cj · z0

= Cj ·
n∑
i=1

αi(el)i

=

n∑
i=1

αiλ
j
i (el)i.
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Say λ1 = λ2 = . . . = λm,m < n are the largest eigenvalues of C. Then

zj =

m∑
i=1

[
αiλ

j
i (el)i

]
+

n∑
i=m+1

[
αiλ

j
i (el)i

]

= λj1


m∑
i=1

[αi(el)i] +

n∑
i=m+1

αi
(
λi
λ1

)j
︸ ︷︷ ︸

<1

(el)i


 .

If j ↑ ∞ then zj → λj1

(
m∑
i=1

[αi(el)i]

)
and zj+1 → λj+1

1

(
m∑
i=1

[αi(el)i]

)
so that any component of the

quotient
zj+1

zj
→ λ1. To avoid excessive increases or decreases between two successive iterates, the new

vector is normalized each iteration.

The largest eigenvalue is now obtained. The smallest eigenvalue is still unknown. The inverse power
method solves this problem. It merely applies the power method to the inverse of C, denoted by
C−1 ∈ Cn×n. It works as follows. We know that

C = V DC−1

where D is a matrix with the eigenvalues as the only nonzero components on the diagonal. Matrix V
contains the corresponding eigenvectors. Consequently, we have for the inverse

C−1 = (V DC−1)−1 = V D−1V −1

wherefrom it follows that the eigenvalues of C−1 are the reciprocals of the eigenvalues of C. Thus
applying the power method to C−1 gives the largest eigenvalue of C−1 which is the smallest eigenvalue
of C. In every iteration, C−1 is applied on a vector. Calculating the LU decomposition of C, or the
Cholesky decomposition when C is symmetric, and subsequently doing a forward backward substitution
increases the efficiency of the process.

The smallest and largest eigenvalues of C can now be found. If the largest absolute eigenvalue is
smaller or equal to one, the numerical scheme is stable.
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Chapter 8

The RSC tensor form

8.1 Introduction

In this chapter we analyze the tensor form of the RSC model [13] as constructed in Chapter 5. We
analyze both the intact as well as the decomposed form. We consider the different contributions of
the equations in Section 8.2. Dimensional analysis gives some information about the characters of the
equations in Section 8.3. In a particular case of the RSC model, there is a known analytical solution in
Section 8.4. In Section 8.5 we construct the numerical scheme to solve the RSC equation. The scheme
is checked for the conservation of the important properties of A. Consistency is proven and a stability
analysis is made to imply convergence under certain conditions.

8.2 Interpretation

We recall the tensor RSC model in intact form (5.13)

Ȧ = W ·A−A ·W + ξ{D ·A+A ·D − 2[A + (1− κ)(L−M : A)] : D}+ 2κCI γ̇(I − 3A). (8.1)

and in decomposed form (5.2), (5.10)

λ̇i = 2ξ (λiD : eiei − eiei : A : D) + 2CI γ̇(1− 3λi)

ėi = W · ei + ξ
λ2 + λ1 − 4Ā1212

λ2 − λ1
(D : e1e2)(δ2ie1 − δ1ie2)

+ξ
λ3 + λ2 − 4Ā2323

λ3 − λ2
(D : e2e3)(δ3ie2 − δ2ie3)

+ξ
λ1 + λ3 − 4Ā3131

λ1 − λ3
(D : e3e1)(δ1ie3 − δ3ie1). (8.2)

In this equation, tensors D and W and scalar γ̇, as defined in Subsections 3.2.2 and 3.3.1 are functions
of the velocity field v, in particular on its gradient ∇v. In general, the velocity field depends on both
space and time. We restrict ourselves to the consideration of flow fields that only depend linearly at
most on the space variables and on time in any order. These flows are also referred to as homogeneous
flow fields. As a consequence, ∇v is constant in space, and thus so are D,W and γ̇. The fourth order
tensors L and M depend merely on A by definition. Due to the closure relation, A also depends only
on A. The ξ, κ and CI are constants. Equation (8.1) is thus an ordinary differential equation (ODE)
for A(t) when considering homogeneous flow fields. It is not linear in A though. The fourth order
tensor L depends on the eigenvalues of A. The eigenvalues λ originate from the cubic characteristic
polynomial of A. Using Cardano’s formula gives solutions for λ, which are nonlinear in the components
of A. Moreover, the closure relation for A does not have to depend linearly on A. In combination with
an initial condition (IC)

A(t0) = At0 (8.3)

we have an initial value problem (IVP). In short, we write

Ȧ(t) = F (A(t), t), A(t0) = At0 . (8.4)

The intact form (8.1) can be split up in three different contributions.

• LD: W ·A−A ·W + ξ{D ·A+A ·D − 2A : D}.

• FFI: 2CI γ̇(I − 3A).

• RSC: 2(κ− 1)(L−M : A) : D + 2(κ− 1)CI γ̇(I − 3A).

Doing this for the eigenvalues of the decomposed form (8.2) gives the following.

• LD: 2ξ (λiD : eiei − eiei : A : D)

• FFI: 2CI γ̇(1− 3λi)

• RSC: 2ξ(κ− 1) (λiD : eiei − eiei : A : D) + 2CI γ̇(κ− 1)(1− 3λi)
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Considering the LD contribution we see from the intact form that the vorticity and strain has been
’inhereted’ from Jeffery’s equation. The straining is proportional to ξ. With the exception of the last
term, it is linear in A. This is certainly not the case for the LD contribution to the eigenvalues. It
depends linearly on the eigenvalue that is considered but also on the tensor product eiei which depends
nonlinearly on all the eigenvalues. This sets the tendency that solving the intact form will be easier
than solving the decomposed form. In addition, it stands out that the vorticity is only present in the
eigenvectors. This has an interesting consequence, as we will see in Section 8.4. We see again that the
straining is proportional to ξ and D.

The FFI contribution ’pulls’ the tensor component component in question to zero if it is a off diag-
onal component, and to one third if it is a diagonal component. The A → I

3 represents the random
distribution. The strength of the FFI is proportional to CI γ̇. A similar effect is observed for the
eigenvalues: they are pulled to one third. As a consequence, the eigenvectors are not uniquely defined
anymore, as explained in Section 4.4 after Property 4.7.

The RSC contribution reduces the LD and FFI with its first and second term respectively. Thses
reductions are proportional to κ. The effect in the eigenvalues is similar.

8.3 Dimensional analysis

For the dimensional analysis of (8.1) we recall the quantities

m =
∑
i,j

|κij |, W̄ =
W

m
, D̄ =

D

m
, ˙̄γ =

γ̇

m
, t̄ = m · t

from Section 7.3. Substitution gives

mȦ = mW̄ ·A−A ·mW̄ + ξ{mD̄ ·A+A ·mD̄−2[A+ (1−κ)(L−M : A)] : mD̄}+ 2κCI ¯̇γm(I−3A)

which after division of m gives

Ȧ = W̄ ·A−A · W̄ + ξ{D̄ ·A+A · D̄ − 2[A + (1− κ)(L−M : A)] : D̄}+ 2κCI ¯̇γ(I − 3A).

From the latter we see that if we consider A as a function of the scaled time m · t instead of the regular
time t, the solution varies less under the strength of the flow field. In particular, if K contains merely
diagonal or off diagonal components, then m = γ̇ so that ¯̇γ = 1. This makes the solution invariant
under the change of the shear or stress rate.

In an analogous way, the decomposed form becomes

λ̇i = 2ξ
(
λiD̄ : eiei − eiei : A : D̄

)
+ 2CI ¯̇γ(1− 3λi)

ėi = W̄ · ei + ξ
λ2 + λ1 − 4Ā1212

λ2 − λ1
(D̄ : e1e2)(δ2ie1 − δ1ie2)

+ξ
λ3 + λ2 − 4Ā2323

λ3 − λ2
(D̄ : e2e3)(δ3ie2 − δ2ie3)

+ξ
λ1 + λ3 − 4Ā3131

λ1 − λ3
(D̄ : e3e1)(δ1ie3 − δ3ie1).

Similar results hold: setting out the eigenpairs against the scaled time m ·t instead of against the regular
time t makes the solution less variant under the strength of the flow field and invariant if K contains
only diagonal or off diagonal components.

8.4 Analytically solvable case

In a certain case, the IVP (8.4) is analytically solvable. Such a solution provides insight in the behavior
of the ODE and a check for numerical approaches.

Say the length to diameter ratio of the fibers is re = l
d = 1, then ξ =

r2e−1
r2e+1 = 0. Filling this in in

(8.2) gives

λ̇i = 2CI γ̇κ(1− 3λi)

ėi = W · ei.
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Assuming furthermore that the velocity field v is stationary makes W and γ̇ independent of t and thus
constant. Rewriting the rate equation for λi we get

λ̇i + 6CI γ̇κλi = 2CI γ̇κ

e6CI γ̇κt(λ̇i + 6CI γ̇κλi) = e6CI γ̇κt2CI γ̇κ
t∫

t′=t0

d

dt′

(
e6CI γ̇κt

′
λidt

′
)

= 2CI γ̇κ

t∫
t′=t0

e6CI γ̇κt
′
dt′

e6CI γ̇κtλi(t)− e6CI γ̇κt0λi(t0) =
1

3

(
e6CI γ̇κt − e6CI γ̇κt0

)
λi(t) =

1

3
+

(
λi(t0)− 1

3

)
e6CI γ̇κ(t0−t). (8.5)

Note that

lim
t→∞

λi(t) =
1

3

since CI , γ̇, κ > 0. Also, the eigenvalues never cross each other in this particular case when their initial
values differ, since the diminishing factor e6CI γ̇κ(t0−t) is the same for every eigenvalue.

In a similar way, we obtain from the rate equation for the eigenvector ei

ėi −W · ei = 0

e−W t · (ėi −W · ei) = 0

V · e−Dt · V −1 · ėi − V · e−Dt · V −1 · V ·D · V −1 · ei = 0

e−Dt · ḟi − e−Dt ·D · fi = 0

d

dt

(
e−Dt · fi

)
= 0

t∫
t′=t0

d

dt′

(
e−Dt′ · fi

)
dt′ = 0

e−Dt · fi(t) = e−Dt0 · fi(t0)

V −1 · ei(t) = eD(t−t0) · V −1 · ei(t0)

ei(t) = V · eD(t−t0) · V −1 · ei(t0)

ei(t) = eW (t−t0) · ei(t0). (8.6)

Note that eW (t−t0) is an orthogonal tensor, say Q(t), due to the antisymmetry of W :

(Q(t))
T

=
(
eW (t−t0)

)T
= eW

T (t−t0) = e−W (t−t0) =
(
eW (t−t0)

)−1

= (Q(t))
−1
.

Tensor Q(t) is thus a periodic rotation induced by the spin tensor W , rotating ei(t0) with a constant
rate to obtain ei.

Taking (8.5) and (8.6) for the eigenpairs we get for A

A(t) =
∑
i

λi(t)ei(t)ei(t)

=
∑
i

(
1

3
+

(
λi(t0)− 1

3

)
e6κCI γ̇(t0−t)

)
(Q(t) · ei(t0))(Q(t) · ei(t0)).

Note that

lim
t→∞

A(t) = lim
t→∞

∑
i

(
1

3
+

(
λi(t0)− 1

3

)
e6κCI γ̇(t0−t)

)
(Q(t) · ei(t0))(Q(t) · ei(t0))

=
∑
i

[
lim
t→∞

(
1

3
+

(
λi(t0)− 1

3

)
e6κCI γ̇(t0−t)

)
lim
t→∞

((Q(t) · ei(t0))(Q(t) · ei(t0)))

]
=

1

3
lim
t→∞

∑
i

[((Q(t) · ei(t0))(Q(t) · ei(t0)))]

=
I

3
.
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The limit of the products and product of the limits are equal since they both converge as we just
proved. This justifies the third step. Since Q(t) is orthogonal and {ei(t0)}i∈{1,2,3} is an orthonormal
basis, {Q(t) · ei(t0)}i∈{1,2,3} is an orthonormal basis, which justifies the equality

I =
∑
i

[(Q(t) · ei(t0))(Q(t) · ei(t0))] .

8.5 Numerical approach

8.5.1 Time discretization

The system (8.2) is, with the exception of FFI term in the rate equation for the eigenvalues and the
vorticity term in the rate equation for the eigenvectors, nonlinear. The fourth order tensors L and M
need not to be calculated for this system. The fourth order tensor A however, needs to be calculated in
both the chosen and prinicpal basis. In particular, these bases can coincide.

The form (8.1) has a larger linear part and needs the tensors L, M and A in the chosen basis. Expe-
rience with implementations of both approaches has the tendency that the form (8.1) is more efficient.
In accordance, we will only treat the numerical approach of this form.

As the nonlinear part of ODE (8.1) is substantial, our choice for time integration goes to Euler for-
ward,

A(tk+1) = A(tk) +

tk+1∫
t′=tk

Ȧ(t
′
)dt
′

≈ A(tk) + ∆tȦ(tk) (8.7)

for the equidistant partition {t0, t1, . . . , tend} and A(t0) given.

8.5.2 Conservation of properties of second order tensor

Chapter 4 is dedicated to the orientation tensors. It includes many useful properties of the second order
orientation tensor A. To summarize, these properties are

1. domain and target space of tensor A : R→ [− 1
2 , 1],

2. symmetry A = AT ,

3. positive semidefiniteness x ·A · x ≥ 0,

4. target space of eigenvalues ∀i 0 ≤ λi ≤ 1,

5. real eigenvectors ∀i ei ∈ R3,

6. orthonormality of eigenvectors ei · ej = δij ,

7. unit trace tr (A) = 1.

These properties have to be conserved by the numerical scheme in order to be adequate. Points one, four,
five and six follow from the depiction of the solution. We thus omit the treatment of these properties.
The remaining properties are symmetry, positive semidefiniteness and the unit trace. These properties
will be treated in the following subsubsections.

8.5.2.1 Symmetry

Property 8.1. The numerical scheme (8.7) conserves symmetry.

Proof. Checking the conservation of symmetry by (8.7) is formulated as

∀k (A(tk+1))T = A(tk+1) given (A(tk))T = A(tk).
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We see that

(A(tk+1))T = (A+ ∆tȦ)T

= A+ ∆t(W ·A−A ·W + ξ{D ·A+A ·D − 2[A + (1− κ)(L−M : A)] : D}
+2κCI γ̇(I − 3A))T

= A+ ∆t(−A ·W +W ·A+ ξ{A ·D +D ·A− 2([A + (1− κ)(L−M : A)] : D)T }
+2κCI γ̇(I − 3A))

where we have omitted the indication of time tk on the RHS. We will treat the term that includes the
fourth order terms separately. For A we have to check if

(A : D)T = A : D ⇔
∑
k,l

AjiklDlk =
∑
k,l

AijklDlk.

The latter holds, by construction, for the orthotropic closure as treated in Chapter 6. The proof for the
QC is trivial. The symmetry of L : D and M : A : D follow immediately from the definitions of L and
M from Section 5.3.

We conclude that symmetry of A is conserved by the numerical scheme (8.7).

8.5.2.2 Positive semidefiniteness

Property 8.2. The numerical scheme (8.7) does not conserve positive semidefiniteness.

Proof. Checking the conservation of positive semidefiniteness by (8.7) is formulated as

∀k x ·A(tk+1) · x ≥ 0 given x ·A(tk) · x ≥ 0.

We see that
x ·A(tk+1) · x = x ·A(tk) · x︸ ︷︷ ︸

≥0

+ ∆t︸︷︷︸
>0

x · Ȧ(tk) · x.

Furthermore,

x ·
∫
S

ψ̇ppd2p · x =

∫
S

ψ̇ (x · p)2︸ ︷︷ ︸
≥0

d2p

which can be negative. An example hereof is if ψ̇ is such that it is negative somewhere on S where
the ’weight’ (x · p)2 is stronger than where ψ̇ ≥ 0 on S. Note that the latter must hold to conserve∫
S
ψ̇d2p = 0. It can be concluded that ∆t must be such that

x ·A(tk) · x ≥ ∆tx · Ȧ(tk) · x if x · Ȧ(tk) · x < 0.

To formulate a condition for ∆t herefrom is difficult and perhaps impossible, as it must hold ∀ x 6= 0.

If x · Ȧ(tk) · x ≥ 0, the positive semidefiniteness is conserved ∀∆t.

It is concluded that (8.7) does not necessarily conserve positive semidefiniteness.

8.5.2.3 Unit trace

Property 8.3. The numerical scheme (8.7) conserves the unit trace of A.

Proof. Checking the conservation of the unit trace by (8.7) is formulated as

∀k tr (A(tk+1)) = 1 given tr (A(tk)) = 1.

We see that

tr (A(tk+1)) = tr
(
A(tk) + ∆tȦ(tk)

)
= 1 + ∆t · tr

(
Ȧ(tk)

)
which reduces the question to if

tr
(
Ȧ(tk)

)
= 0.
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Substitution of Ȧ gives

tr
(
Ȧ(tk)

)
= tr (W ·A−A ·W + ξ{D ·A+A ·D − 2[A + (1− κ)(L−M : A)] : D}+ 2κCI γ̇(I − 3A)) .

We have that

tr (W ·A) = tr (A ·W ) = tr (I − 3A) = 0, tr (L : D) = tr (D ·A) = tr (A ·D) = A : D.

If we would have the exact A, we would also have

tr (A : D) = tr (M : A : D) = A : D.

Instead we are using closure approximations for A, which must suffice to the latter. The more explicit
conditions stem from the following,

tr (A : D) =
∑
i,j,k

AiijkDkj

=
∑
j,k

AjkDkj

= A : D.

Thus, we must have that
∑
i

Aiijk = Ajk. The orthotropic fitted closures and QC satisfy this condition

by construction.

For tr (M : A : D) we have

tr (M : A : D) =
∑

i,j,k,l,m

MiijkAkjlmDml

=
∑

j,k,l,m,n

(en)j(en)k(A : D)kj

=

(∑
n

(en)(en)

)
: A : D

= I : A : D

=
∑
i,j,k,l

δijAijklDlk

= A : D.

In the latter procedure we used

I =

(∑
n

(en)(en)

)
∧

∑
i

Aiijk = Ajk.

The former is satisfied up to machine precision and the latter was already discussed. We conclude that
the unit trace of A is conserved.

8.5.3 Consistency, stability and convergence

As we used Euler forward it follows that the LTE is O((∆t)2) and is thus consistent. The LTE has an
accelerative character.

We rewrite the scheme as
ȧ = B · a+ f + g

with

a =


A11

A22

A33

A12

A13

A23


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and

B =


2ξD11 − 6CI γ̇κ 0 0

0 2ξD22 − 6CI γ̇κ 0
0 0 2ξD33 − 6CI γ̇κ

−W12 + ξD12 W12 + ξD12 0
−W13 + ξD13 0 W13 + ξD13

0 −W23 + ξD23 W23 + ξD23

2W12 + 2ξD12 2W13 + 2ξD13 0
−2W12 + 2ξD12 0 2W23 + 2ξD23

0 −2W13 + 2ξD13 −2W23 + 2ξD23

ξD11 + ξD22 − 6CI γ̇κ W23 + ξD23 W13 + ξD13

−W23 + ξD23 ξD11 + ξD33 − 6CI γ̇κ W12 + ξD12

−W13 + ξD13 −W12 + ξD12 ξD22 + ξD33 − 6CI γ̇κ


and

f = 2CI γ̇κ


1
1
1
0
0
0


and g containing the linear terms.

As in Chapter 7, we limit ourselves to the stability analysis of the linear part. Recalling Theorem
7.2 we must have

1 + ∆t

Bmm +
∑

n,n6=m

|Bmn|

 ≤ 1 ∧ 1 + ∆t

Bmm − ∑
n,n6=m

|Bmn|

 ≥ −1

Bmm +
∑

n,n6=m

|Bmn| ≤ 0 ∧ Bmm −
∑

n,n6=m

|Bmn| ≥ −
2

∆t
.

The left condition is satisfied if CI and κ are large, hence if the diffusion and the strain reduction are
strong. The only way to satisfy the right condition is to take ∆t sufficiently small, as K is arbitrary.

Besides the use of Gershgorin’s circle theorem to get an indication on the stability, the eigenvalues
of C := I + ∆tB can easily be calculated by a program as it only has size 6 × 6. In addition, we
emphasize that experience with the program has the tendency that the nonlinear RSC contribution
makes the scheme more stable.
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Part II

Test models
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Chapter 9

Simple shear flow

9.1 Introduction

The simple shear flow field is used widely in the literature to test fiber orientation models. It is im-
portant in many processing flows and often indicated to be the most difficult flow to match for closure
approximations [15]. We discuss the characteristics of the simple shear flow field and what we expect
from the fiber orientation. We check if these expectations are met and (de)motivate them with the
results from the different models. Herewith, we start with considering the motion of a single ellipsoidal
particle immersed in a viscous fluid. This is done with Jeffery’s equation. Afterwards, we extend to the
Folgar-Tucker model by adding fiber-fiber interaction. Different parameter sets are considered to study
the variation of the fiber orientation. Initiation effects are investigated by varying the initial condition
and increasing the shear and stress rates in time. We extend to the Wang-O’Gara-Tucker model by
adding the strain reduction term and interpret the results. Comparisons between the ’exact’ solutions
and the approximations of the orientation tensors are made.

DSM, and DSM only, is provided with the implementations in question. The output in this report,
and the output corresponding with any other feasible parameter set, can be reproduced by DSM per-
sonnel. The simulations mentioned in this report are therefore limited to merely the most prominent
cases.

9.2 The simple shear flow field

The simple shear flow field is characterized by

v = K · x =

 0 G 0
0 0 0
0 0 0

 · x (9.1)

where v[ms ] is the velocity, G[ 1
s ] is the shear rate and x[m] represents the space. As K is constant in

space, it is a homogeneous flow field. Recalling (3.7), the flow is assumed to be incompressible. It is
independent of time and thus the stream, path and streak lines are the same. The velocity is depicted
in Figures 9.1 and 9.2 by the use of cones. As can be seen from the figures, the velocity field does not
differ in the z direction. For every cut parallel to the x−y plane perpendicular to the z axis, the velocity
field is the same. Interpreting the curl of the velocity field as a measure for rotation, we see that

∇× v = −Gez

where ez is the unit vector corresponding to the z direction. Simple shear thus induces a counterclock-
wise rotation proportional to the shear rate G.

Say we consider a batch of fibers in the simple shear flow with, initially, a random distribution in
orientation. The lift and drag of the flow on the fiber are clearly not symmetric around the midpoint of
the fiber and will induce a rotation. Note that we speak of a midpoint instead of the center of gravity
to emphasize that the fibers are modelled as massless ellipsoids. It is expected that the fibers keep
rotating as the lift and drag are never symmetric around the midpoint, with the exception of the higly
improbable state that a fiber is parallel to the x or z axis.

Aside from the lift and drag induced rotation, there is also FFI. The interaction counteracts the lift and
drag induced rotation and will keep the fibers from reaching a smooth rotary state. In the sense of prob-
ability density of the orientation, it is expected that this phenomenon expresses itself as a decrease in
comparison with the case without FFI. In the sense of the components of the tensor form, it is expected
that this phenomenon expresses itself as a tendency to the random distribution A11 = A22 = A33 = 1

3 .
This tendency gets stronger as the FFI gets stronger, thus when CI increases.

When considering long fibers, the length to diameter ratio of the ellipsoid is traditionally set to in-
finity, so re = l

d = ∞. This corresponds with ξ = 1. This quantitative state can be split into two
separate cases. Either the length is finite and the diameter goes to zero or the diameter is finite and
the length goes to infinity. In both cases it is expected that the rotation of the fibers is transient. In
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Figure 9.1: simple shear velocity field cones in three dimensional view.

Figure 9.2: simple shear velocity field cones in x−y view.
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the former case this expectation is justified as follows. When the length is finite and the diameter goes
to zero, the flux inducing rotation goes to zero when the fibers are aligned with the x axis. In other
words, the effects of lift and drag vanish when the fiber is infinitely thin. Hence, the flow will not induce
a rotation. In the case that the diameter is finite and the length goes to infinity, the expectation is
justified in an analogous way.

As we are mainly concerned with the case of plastics filled with long fibers, the emphasize will be
on ξ close and equal to one in the report.

9.3 Results Jeffery’s equation

The expectations of the orientational distribution in the simple shear flow field have now been discussed,
mainly qualitatively. For the sake of quantative results, we start with considering Jeffery’s equation
(3.3) or (3.4) in combination with (9.1). Note that (CI , κ) = (0, 1) so that the only contribution to the
orientation that is left is the LD. The orientation will depend merely on the balance between the LD
and the stress within the ellipsoidal fiber. Recall

ṗ−W · p− ξD · p︸ ︷︷ ︸
difference between velocity flow and velocity fiber

= −ξD : ppp︸ ︷︷ ︸
stress within fiber

.

Simple shear (9.1) results in

(W · p)i =
G

2
(δi1 sin(θ) sin(φ)− δi2 sin(θ) cos(φ))

(D · p)i =
G

2
(δi1 sin(θ) sin(φ) + δi2 sin(θ) cos(φ))

D : pp =
G

2
sin2(θ) sin(2φ).

The (W ·p)1 and (D ·p)1 are the largest at (θ, φ) ∈ {(π2 ,
π
2 ), (π2 ,

3π
2 )}, confer Figure 9.3. Physically, this

Figure 9.3: p2 = sin(θ) sin(φ).
Figure 9.4: sin2(θ) sin(φ)

2 .

means that the spin and strain contributions of the velocity of the flow are the largest when the fiber is
aligned with the x2 axis. This is justifiable as at these angles, the arm of the fiber in the x2 direction is
the largest. The x2 direction is the direction wherein the velocity in the x1 direction increases maximally.

When ξ is in the neighborhood or equal to one, the second components of W · p+ ξD · p are small or
vanish for an prolate ellipsoid. For a oblate ellipsoid, the first and second components of W · p and
D · p obviously interswitch. In the case ξ = 0 we have a spherical particle wherefore the strain is zero.
The spin term W · p remains. The third components of W · p+ ξD · p are zero as the flow field lies in
the x1−x2 plane.
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The D : pp is the largest at (θ, φ) ∈ {(π2 ,
π
4 ), (π2 ,

5π
4 )}, confer Figure 9.4. As D : pp is a measure

for the internal stress of the fiber, the location of the maxima is justified by considering the principal
axes of D. We have

D =
G

2

 0 1 0
1 0 0
0 0 0


so that the principal values are λi ∈ {−G2 , 0,

G
2 } and the corresponding principal axes

ei ∈


 1
−1
0

 ,
 0

0
1

 ,
 1

1
0

 .

Herewith, it is proven that the internal stress is maximal if one considers the direction of the princi-
pal axes, which indeed corresponds with (θ, φ) ∈

{
(π2 ,

π
4 ), (π2 ,

5π
4 )
}

. A simple shear flow field is thus
equivalent with a tensile stress under an angle of π

4 and a compressive stress under an angle 5π
4 , both

proportional to G
2 . The former is equivalent with decomposing the velocity vectors in components along

the principal axes of the rate of deformation tensor D, confer Figure 9.5.

Figure 9.5: velocity vectors decomposed along the eigenvectors of D.

The stationary points of (3.4) are interesting. We evaluate (3.4) in combination with (9.1) and ob-
tain

θ̇ =
ξG sin(2θ) sin(2φ)

4

φ̇ =
G

2
(ξ cos(2φ)− 1). (9.2)

Setting θ̇ = 0, φ̇ = 0 we find

sin(2θ) = 0 ∨ sin(2φ) = 0 ⇔ θ ∈ {0, π
2
, π} ∨ φ ∈ {0, π

2
, π,

3π

2
, 2π}

ξ cos(2φ)− 1 = 0 ⇔ φ ∈ {π
2
,

3π

2
} if ξ = −1 ∨ φ ∈ {0, π, 2π} if ξ = 1.

It stands out that there are no stationary points when |ξ| < 1. The reason for this is that if |ξ| < 1, the
ellipsoid has a short axis unequal to zero and will thus always be subjected to a rotation, excluding the
possibility of stationary points.

Summarizing the stationary points, they are the x3 and x2 axes for ξ = −1 and the x3 and x1 axes for
ξ = 1. This can be seen from the Jeffery orbits for these particular cases, confer Figures 9.6 and 9.7. If
the initial orientation p0 6= [0 0 1]T , the fiber will always align with the x2 and x1 axis for ξ = −1 and
ξ = 1 respectively. If we take p0 = [0 0 1]T , the fiber stays aligned with the x3 axis, confer Figure 9.8.

If |ξ| < 1, the Jeffery orbit has no stationary points and is periodic. The further ξ is away from
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Figure 9.6: stationary point for ξ = −1,p0 = 1√
3
[1 − 1 1]T .
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Figure 9.7: stationary point for ξ = 1,p0 = 1√
3
[1 − 1 1]T .
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Figure 9.8: stationary point for ξ = 1,p0 = [0 0 1]T .
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ξ = −1 and ξ = 1, the larger the distance of the Jeffery orbit to the x2 or x1 axis respectively, and the
shorter the period, confer Figures 9.9 and 9.10. An exception is the case where (p0)3 = 0. In this case,
the fiber passes through the x1 and x2 axis. The period however, still get shorter when ξ is further away
from ξ = −1 and ξ = 1. This emphasizes the domination of spin if |ξ| < 1.

As we consider the results in the dimensionless time t̄, ψ(p, t̄) does not vary under variation of G
in the case of simple shear. And since we consider the fibers to be massless, there are no occurences of
initiation effects due to high accelerations by the shear rate G.
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Figure 9.9: Jeffery orbit for r = 25,p0 = 1√
3
[−1 − 1 1]T .



106 9. Simple shear flow

Figure 9.10: Jeffery orbit for r = 5,p0 = 1√
3
[1 1 1]T .
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9.4 Results kinetic theory

9.4.1 Relation to Jeffery’s equation

By using the approach as explained thoroughly in Chapter 7, we solve the probabilty density of the
fiber orientation for the simple shear flow field.

Having treated the equation of Jeffery for simple shear, we can already say something about the prob-
ability density when there is no additional rotary diffusion or decrease of the kinetics, (CI , κ) = (0, 1).
From Property 7.3 we obtain

ψ(p(t), t) = ψ(p0, t0)eξD:p(t)p(t)(t−t0) = ψ(p0, t0)e
ξG sin2(θ(t)) sin(2φ(t))(t−t0)

2 (9.3)

which states that along a Jeffery orbit, the initial probability density increases or decreases dependent
on the internal stress of the fiber.

For the power of the exponential, provided that G, t− t0 > 0, we have

ξG sin2(θ(t)) sin(2φ(t))(t− t0)

2
> 0⇔

{
(θ(t), φ(t)) ∈ (0, π)×

(
0, π2

)
∪
(
π, 3π

2

)
if ξ > 0

(θ(t), φ(t)) ∈ (0, π)×
(
π
2 , π

)
∪
(

3π
2 , 2π

)
if ξ < 0

. (9.4)

Hence, depending on the aspect ratio of the ellipsoidal particles and their Jeffery orbits, the solution is
bounded or unbounded for t ↑ ∞. If |ξ| < 1, the Jeffery orbits do not have steady states, as mentioned
in Section 9.3, and keep passing through the areas mentioned in (9.4). The probability density thus
keeps increasing there ∀t and so the solution is unbounded. If ξ ∈ {−1, 1} the Jeffery orbits do have
steady states, namely the at the x2 and x1 axes respectively. These axes are not in the domains (9.4).
However, the Jeffery orbits converge to the x2 and x1 axes, but never actually reach them. It follows
that the probability density keeps increasing in (9.4) and is also unbounded when ξ ∈ {−1, 1}.

It is interesting to ask where the maxima of ψ are. If |ξ| < 1, the Jeffery orbits of a set of fibers
’cover’ S at all time. The maxima of the power lie at (θ, φ) ∈

{
(π2 ,

π
4 ), (π2 ,

5π
4 )
}

. If ξ ∈ {−1, 1}, the
Jeffery orbits of a set of fibers converge to the x2 and x1 axes respectively. The PDF will converge to

ψs(p) := lim
t↑∞

ψ(p, t) =
1

2

δ(p−
 0
−1
0

) + δ(p−

 0
1
0

)


and

ψs(p) =
1

2

δ(p−
 −1

0
0

) + δ(p−

 1
0
0

)


respectively. Note that the factor 1

2 stems from the constraint
∫
S
ψd2p = 1.

The unboundedness of ψ confirms the difficulty of constructing a solution on a finite partition as partic-
ular cells will keep increasing in value whereas surrounding cells may converge to zero. This results in
an infinite gradient which needs an infinitely fine grid. In contrast, rotary diffusion bounds the solution,
making a finite partition sufficient. Nonetheless, as CI ↓ 0, the grid needs to be refined drastically as
the upper bound for the solution increases. In addition, stability criteria demand that ∆t decreases
along with the space partition. This increases the computation times to unacceptable large levels.

In this section, we will exploit our interest in the Wang-O’Gara-Tucker model wherefore (CI , κ) 6= (0, 1).
In addition, an analysis of the case (CI , κ) = (0, 1) would be futile as we already have the deterministic
result from Jeffery’s equation and inefficient due to the stability criteria as treated in Subsection 7.4.6.
Results of the case (CI , κ) = (0, 1) will therefore be omitted.

9.4.2 Adding fiber-fiber interaction

9.4.2.1 Probability density

Taking FFI into account, we expect the LD contribution to the orientation to be counteracted, since
FFI ’pulls’ ψ to the random fiber orientation ψ = 1

4π . Due to this FFI being modeled as rotary diffusion,

we expect the gradients in space ∂ψ
∂θ ,

∂ψ
∂φ to decrease and thus also

ψmin(t) := min
θ,φ

ψ(θ, φ, t), ψmax(t) := max
θ,φ

ψ(θ, φ, t)
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are expected to decrease and increase respectively.

We consider the case (ξ, CI , κ) = (1, 0.001, 1). This means that the ratio of the long axis to the
short axis of the ellipsoidal particle is infinite, that there is a marginal amount of rotary diffusion and
that the additional flux from the Wang-O’Gara-Tucker model is not yet being used. The results are
depicted in Figures 9.11, 9.12 and 9.13. After about 3[s] a tendency becomes clear. The probability
density increases in the neighborhood of the x1 axis. The maxima stop moving when they are almost
lying on the x1 axis. The reason that the maxima are now slightly off, in contrast with the outcome
of Jeffery’s equation where the solution converges to the x1 axis, is the rotary diffusion. The diffusion
pulls the density to ψ = 1

4π . Density from dense areas is diffused to the sparser environment. The
balance between the convection and diffusion does not only induce smaller maxima and larger minima
in comparison with the diffusionless case, it also causes a change in location of the extrema. Physically,
this means that a collection of fibers in the simple shear flow field are not probable to be oriented the
most purely in the x1 direction. It has an inclination that is slightly off the x1 axis, which is a result from
FFI avoiding the fibers to align in the x1 direction. This inclination becomes stronger as CI increases,
as can be seen in Figure 9.14. Hence, the tendency to a random orientation in the x1−x2 plane becomes
stronger. It also stands out from the color bar that indeed ψmin increases and ψmax decreases.

The progression of the locations of the extrema of the PDF in time is depicted in Figure 9.15. From the
value of the maximum in time, it becomes clear that the convection and diffusion are not immediately
in balance. After 30[s] the maximum is within one percent of its equilibrium. We call this the transient
time. This transient time decreases if CI increases. Starting with a uniform distribution, the stationary
location of the maximum is reached after 13.1[s]. This is depicted in the two lower graphs. Because the
θ corresponding to the maximum of ψ is at about θ = π

2 , it is hard for the numerical scheme to stay
accurate. This is why the angular locations of the minimum and maximum appear to be alternating
between φ = π

2 and φ = 3π
2 , and φ = 0 and φ = π respectively. Plotting the graphs with a modulo π

modification clarifies the graph.

Recalling (7.1) we conclude that there is a CI wherefore ψ̇ becomes diffusion dominated so that the bal-
ance between convection and diffusion is immediate and not after an ’overshoot’. Indeed, the diffusion
has an oppsite sign in (7.1) and can vary with CI independently of the LD contribution.

From the latter alinea one could suspect that the overshoot is an initiation effect, which indeed turns
out to be the case. Consider the convection term and write

∇̃ · (ψṗ) = (∇̃ψ) · ṗ+ ψ∇̃ · ṗ = (∇̃ψ) · ṗ− ξD : ppψ.

The left term on the RHS ’builds up’ in time, as ∇̃ψ = 0 when taking an IC uniform in space. The
right term however, is immediately of a substantial strength as ψ, ∇̃ · ṗ 6= 0. To explain it physically, a
set of fibers is subjected to an internal stress by the flow field, resulting in a convection of orientation
if the IC is unequal to the steady state orientation. This internal stress is immediate as the fibers are
assumed to be massless. To complete the argument, we note that the diffusion

CIG∇̃ · ∇̃ψ

also has to initiate, as it depends on the second derivative in space of ψ, which is zero at initiation when
using a uniform IC. The overshoot is thus the result of the balance between

(∇̃ψ) · ṗ ∧ CIG∇̃ · ∇̃ψ

and
ψ∇̃ · ṗ.

It is interesting to investigate if the initiation effects can be changed by varying certain parameters.
Such a consideration also gives insight in how much the probability density depends on its history, in
how much it has ’memory’. To this end we study the influence of the IC and a time dependent shear
rate on the PDF.

We recall the nonuniform IC (7.23)

ψ0
i,j = a · (sin(θi − b))2d(cos(φj − c))2e + f, a > 0, b ∈

[
0,
π

2

]
, c ∈ [0, 2π), d, e ∈ Z+, f ≥ 0.

The terms
(∇̃ψ) · ṗ ∧ CIG∇̃ · ∇̃ψ
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Figure 9.11: development of ψ for the simple shear flow field.



110 9. Simple shear flow

Figure 9.12: development of ψ for the simple shear flow field.
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Figure 9.13: development of ψ for the simple shear flow field.
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Figure 9.14: deviation of the x1 axis increases when the diffusion becomes stronger.
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Figure 9.15: location and values of the extrema of the probability density. The maximum is red, the
minimum is blue.
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do not start at zero for this IC. This changes the balance between the convective and diffusive terms.
We take b = c = f = 0 so that we get

ψki,j = a · (sin θi)2d(cosφj)
2e.

Taking a = 3.2627 and d = e = 20, we get the progression of the extrema of ψ as depicted in Figure
9.16. The progression differs a lot from the progression depicted in Figure 9.15. As the emphasis in
this thesis is on the results for the second order tensor A, we will consider the influence of the IC more
extensive in Subsubsection 9.4.2.2.

In the former cases, the shear rate G was immediately at its ’final’ value. It was not progressively
built up in time. Although the accelerations in the flow in the process of injection molding are large,
a certain dependence of the shear rate on time seems plausible. In accordance, we introduce a logistic
function which we use as a time dependent factor to smoothly build up the shear rate in time. It has
the form

g(t) =
1

1 + 1
eh(t−j)

=
eh(t−j)

eh(t−j) + 1
. (9.5)

In this way, the LD contribution to the fiber orientation is smoothly built up. In particular, the
convection as a result of the internal stress in the fiber, ψ∇̃ · ṗ, is now smoothly built up. The rotary
diffusion remains unchanged. Taking (h, j) = (0.1, 40) gives the logistic function as depicted in Figure
9.17 and the progression of the extrema of ψ as depicted in Figure 9.18.

Figure 9.17: logistic function to smoothly build up the shear rate in time.

For the time dependent shear rate in question, the balance between the convection and diffusion is im-
mediate, and not after an overshoot. As the shear rate is almost zero at initiation, and slowly increases,
the convective and diffusive contributions to the orientation have a different ratio in comparison with
the former cases. Where the LD dominated the FFI in the former cases, the FFI now ’gets more time’
to counteract the slowly increasing LD. As before, the emphasis will be on the second order orientation,
and thus the consequences of using a time dependent shear rate are treated more thorough in Subsection
9.4.2.2.

Aside from the particular case that the ellipsoidal fibers have an infinite ratio for the long to short
axis, or ξ = 1, it is also interesting to consider cases where ξ 6= 1 but close to one. As discussed in 9.3,
the fibers do not have stationary points in this case. From (9.3), it follows that the probability density
will not have a steady state. When rotary diffusion is added, ψ does have a steady state. It is reached
when the convection and diffusion are in balance. This balance is expected to be at a lower values of ψ
compared to the ξ = 1 case. This is justified by the fact that we are considering a probability density
for a set of fibers. When ξ = 1, every fiber of this set will align the same way, creating extrema of ψ
that are concentrated in a small area ∈ S. When ξ 6= 1, all the fibers of the set keep rotating and so
the probability density is smeared out over the area that the fibers ’pass’. As the initial positions of the
fibers in the set are arbitrary, this area is S. Extrema of ψ will therefore be less concentrated, confer
Figures 9.19 and 9.20. In effect, also the steady state values will be lower.
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Figure 9.16: location and values of the extrema of the probability density for the nonuniform IC (7.23).
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Figure 9.18: location and values of the extrema of the probability density for a time dependent shear
rate.
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Figure 9.19: the extrema are less concentrared in space when ξ 6= 1.
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Figure 9.20: the minima are larger and the maxima are lower when ξ 6= 1.
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The remaining parameter that can be varied is the shear rate G[ 1
s ]. However, recalling Section 7.3

it follows that in the case of the simple shear flow field, it merely scales the time. The process time
decreases inversely propertional to G. The other quantities remain the same. It follows that the con-
sideration of the shear rate is redundant.

9.4.2.2 Second order orientation tensor

We have constructed the numerical solution of ψ from the Folgar-Tucker model. It contains all the infor-
mation on the fiber orientation. Nonetheless, it is still important to consider the orientation tensors as
these are the quantities that we want to use eventually to obtain data from practical injection molding
processes. We can relate the observations we make from the orientation tensors to the observations we
made from the PDF.

We recall Definition 4.1

A(t) =

∮
S

ψ(p, t)pp d2p.

and in particular Property 4.9

A(t) = 2

∫
Sup

ψ(p, t)pp d2p

where Sup is the surface of the upper hemisphere. Using generalized coordinates the tensor becomes
the matrix

A(t) = 2

2π∫
φ=0

π
2∫

θ=0

ψ(θ, φ, t)p(θ, φ)p(θ, φ) sin(θ) dθdφ.

From this identity, A can be seen as a sum of ψ times a weight pp sin θ, both varying in space. De-
pending on the position on the upper hemisphere, the probability density is represented with a certain
strength in A. We depicted the weights in Figures 4.1-4.6 to indicate where the PDF is represented
stronger or weaker, per component of A.

For the case (ξ, CI , κ,G) = (1, 0.001, 1, 1) the components of A and Ȧ are depicted in Figure 9.21.
The A13 and A23 components are zero to machine precision, as the flow field does not vary in the x3

direction. It stands out that A11 is the strongest component. The reason for this is that both ψ and
p2

1 sin θ are the strongest in the neighborhood of the x1 axis. The contribution of ψ to A11 is smaller
away from the x1 axis. As we are still considering the Folgar-Tucker model and not the Wang-O’Gara-
Tucker model with additional RSC term, ȦRSC = 0. As the prefered direction is the x1 axis, A22 and
A33 are much smaller than A11. This also holds for the fluxes. Because the probability density is not
all at the ends of the x1 axis, but rather with a slightly increased φ away from the x1 axis, the A12

component is nonzero. The principal axes are thus not aligned with the axes of the velocity flow field,
confer Figures 9.22, 9.23 and 9.24. The color of the axes represents the strength of the direction, which
stems from the corresponding eigenvalues. The discontinuities in the φ graph stem from the eigenvector
that is aligned with the x3 axis. As in this case we have that θ = 0, it does not matter what φ is. Its
values are scattered due to

φ = arctan
(ei)2

(ei)1

with (ei)1 zero or zero to machine precision.

We see that all the nonzero components of A show an overshoot before they reach their equilibrium.
The origin hereof has already been discussed in Subsubsection 9.4.2.1. It was found that the IC and
time dependence of the shear rate were of importance for the balance between the convection and the
diffusion. We will discuss both variations.

We recall the nonuniform IC (7.23)

ψ0
i,j = a · (sin(θi − b))2d(cos(φj − c))2e + f, a > 0, b ∈

[
0,
π

2

]
, c ∈ [0, 2π), d, e ∈ Z+, f ≥ 0.

In particular, we set b = c = f = 0 so that the maxima of the IC lie at (θ, φ) ∈
{

(π2 , 0), (π2 , π)
}

. In this
way, the probability density is already somewhat set to the preferred direction of the simple shear flow
field. Because the IC is nonuniform, the rotary diffusion

∇̃ · ∇̃ψ



120 9. Simple shear flow

Figure 9.21: the components of A and Ȧ. The blue lines represent the components of A, the black lines
the components of Ȧ, and the red, green and turqoise lines the LD, FFI and RSC contributions hereof
respectively.
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Figure 9.22: initial state of the eigenpairs.
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Figure 9.23: the principal axes almost align with the flow field axes.
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Figure 9.24: diffusion pulls the principal axes away from the flow field axes, to a random orientation
state.
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is not zero everywhere and thus also the FFI contribution ȦFFI(t0) 6= 0. This results in a different
ratio ratio between the convection and diffusion. Increasing the powers of the sinusoids and taking a
such that

∫
S
ψd2p = 1, we have that A11 ↑ 1, A22, A33 ↓ 0, as depicted in Figure 9.25. The extrema

are clearly displaced in time per case of the powers. Nevertheless, the components maintain the same
steady state and thus the solutions calculated with different ICs will eventually converge, as we observe.
The variation of the IC indicates how ’strong’ the memory of the tensor is. In other words, to what
extent in time the variation of the IC results in a different value of the components of A.

For varying the shear rate we recall the logistic function (9.5)

g(t) =
1

1 + 1
eh(t−j)

=
eh(t−j)

eh(t−j) + 1

and set h = 0.1, j = 40, confer Figure 9.18. We use the latter as a factor for G to make the shear
rate time dependent. The result is depicted in Figure 9.26. As mentioned in Subsubsection 9.4.2.1, the
shear rate is not immediate anymore, so that the orientation is not convection dominated at initiation.
The convection and diffusion are of the same order of magnitude. The balance is now also immediate,
instead of first overshooting.

For the cases (ξ, κ, CI , G) ∈ {(1, 1, 0.01, 1), (1, 1, 0.1, 1)} similar behavior is observed. The corresponding
Figures are 9.27 and 9.28, and 9.29 and 9.30 respectively. Increasing the strength of the rotary diffusion,
CI , makes the FFI contribution ȦFFI stronger. The counteraction to the LD contribution increases and
the total change Ȧ decreases, leaving A closer to its uniform initial condition, the random orientation
state. This implies that the diagonal components have a tendency towards the value 1

3 . Indeed, the
diagonal components show this tendency, as do the eigenvalues of A. As the flow field does not vary
in the x3 direction, the inclination to a random orientation state takes place in the x1−x2 plane. This
implies that

ψ →
δ(θ − π

2 )

4π
⇒ A→

 1
2 0 0
0 1

2 0
0 0 0

 .
The factor 1

4π in ψ again stems from the conservation of the total probability,
∫
S
ψd2p = 1. A possible

set of eigenpairs of the latter is

(λi, ei) ∈


1

2
,

 1
1
0

 ,

1

2
,

 1
−1
0

 ,

0,

 0
0
0

 .

The inclination to this state is depicted in Figure 9.30. As the difference between the principal axes
and flow field basis becomes larger, also the A12 component increases.
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Figure 9.25: making the IC nonuniform changes the balance between convection and diffusion.
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Figure 9.26: building up the shear rate changes the balance between convection and diffusion.
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Figure 9.27: the components of A and Ȧ.



128 9. Simple shear flow

Figure 9.28: diffusion pulls the principal axes away from the flow field axes, to a random orientation
state.
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Figure 9.29: the components of A and Ȧ.
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Figure 9.30: diffusion pulls the principal axes away from the flow field axes, to a random orientation
state.
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9.4.3 The RSC extension

Adding the RSC term to the original Folgar-Tucker model, we obtain the kinetic theory of the Wang-
O’Gara-Tucker model

ψ̇ = −∇̃ · (ψṗ+ q)

ṗ = W · p+ ξ(D · p−D : ppp)− CI γ̇∇̃ lnψ

q =
∑
l

βl(elel · p− elel : ppp)

βl = −5(1− κ)

4π
[ξ(λlD : elel − elel : A : D) + CI γ̇(1− 3λl)].

As discussed in Section 5.5, the additional RSC term ’draws’ fibers toward, or ’pushes’ them away from,
the eigenvectors of A. This is done in a way that the strain is reduced, so that the transient time is
prolonged. The steady state values should remain the same. The strain reduction changes both the
convection and the diffusion, altering the balance between them. As a result, the extrema are displaced,
as depicted in Figure 9.31.

We consider the rate equation for the second order orientation tensor

Ȧ = W ·A−A ·W + ξ{D ·A+A ·D − 2[A + (1− κ)(L−M : A)] : D}+ 2κCI γ̇(I − 3A).

As discussed in Chapter 8, both the LD and FFI contribution are decreased by the RSC term. This
slows down the orientation, as depicted in Figure 9.32. The transient time is prolonged and the steady
state values remain the same. The extrema are displaced. The overshoots have the tendency to disap-
pear, meaning that the balance between the convection and diffusion has the tendency to be immediate.

Varying the parameters ξ, G, CI and the IC does not offer any new perspectives. The results are
analogous to the κ = 1 case.
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Figure 9.31: the extrema are displaced as the strain is reduced by taking κ = 0.1.
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Figure 9.32: the strain is reduced, prolonging the transient time. The used factors are κ ∈
{1, 0.75, 0.5, 0.25, 0.1} in blue, red, green, cyan and purple respectively.
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9.5 Results tensor approximation

In this section we use the approach as described in Chapters 6 and 8 to obtain solutions for the orientation
tensors. We will consider the quadratic, orthotropic smooth and orthotropic fitted closures (QC, OSC
and OFC) as constructed in [15]. The coefficients for the OFC were constructed with five different flow
fields with the parameters set to ξ = 1 and CI = 0.01:

• simple shear, v1 = Gx2, v2 = v3 = 0,

• shearing/stretching flow, v1 = −Ex1 +Gx2, v2 = −Ex2, v3 = 2Ex3,
G
E = 10,

• shearing/stretching flow, v1 = −Ex1 +Gx2, v2 = −Ex2, v3 = 2Ex3,
G
E = 1,

• uniaxial elongation, v1 = 2Ex1, v2 = −Ex2, v3 = −Ex3,

• biaxial elongation, v1 = Ex1, v2 = Ex2, v3 = −2Ex3.

The time range for the flows is taken such that the steady state is reached, but not overemphasized.
Subsequently, we can compare these approximate solutions with the kinetic theory solutions (KTS) from
Section 9.4.

We recall the RSC equation in intact form (5.13)

Ȧ = W ·A−A ·W + ξ{D ·A+A ·D − 2[A + (1− κ)(L−M : A)] : D}+ 2κCI γ̇(I − 3A) (9.6)

and in eigenpair decomposed form (5.2), (5.10)

λ̇i = 2ξ (λiD : eiei − eiei : A : D) + 2CI γ̇(1− 3λi)

ėi = W · ei + ξ
λ2 + λ1 − 4Ā1212

λ2 − λ1
(D : e1e2)(δ2ie1 − δ1ie2)

+ξ
λ3 + λ2 − 4Ā2323

λ3 − λ2
(D : e2e3)(δ3ie2 − δ2ie3)

+ξ
λ1 + λ3 − 4Ā3131

λ1 − λ3
(D : e3e1)(δ1ie3 − δ3ie1). (9.7)

Combining (9.6) and (9.7) with

K =

 0 G 0
0 0 0
0 0 0

 ⇔ D =
G

2

 0 1 0
1 0 0
0 0 0

 ∧ W =
G

2

 0 1 0
−1 0 0
0 0 0


simplifies the terms containing D or W . It shows that the dependence between the components of A is
marginal in comparison with the case thatK has only nonzero components. Unfortunately, this is hardly
as illuminating as the simplifications we found for the Jeffery and Fokker-Planck equations in Section 9.3.

We first compare the tensors for the case (ξ, CI , κ,G) = (1, 0.01, 1, 1), wherefore the coefficients of
the OFC were constructed in [15]. The results are depicted in Figure 9.33. The OFC is clearly the best
closure in this case. It follows the tensor solution of ψ properly for all components at almost all times.
The largest error is made in the A11 component for t ∈ [7, 18]. The OSC performs reasonably for the
A22 and A33 components, but fails for the A11 and A12 components. The QC fails completely. Indeed,
it is not constructed with any physcial argument in contrast with the OSC and OFC.

It is also interesting to consider the approximations for cases other then where the coefficients of the
OFC have been constructed for. We therefore consider both a case with a smaller and a larger interaction
coefficient CI . In addition, we consider a case wherefore ξ 6= 1. For CI = 0.001 the results are depicted
in Figure 9.34. In this case, the results of the OFC are poor. It contains nonphysical oscillations. The
OSC performs better. For the second and third diagonal components, it follows the same trend as the
KTS. For the A11 and A12 components, it also fails. The QC performs almost as bad as the OFC. It
can be concluded that decreasing the CI has disastrous consequences for the OFC. In response to this,
the authors of [15] constructed coefficients for the CI = 0.001 case. Herewith the aprroximation from
the OFC followed the KTS properly again.

Decreasing the CI had a negative response. We consider the case CI = 0.1 to see if increasing the
rotary diffusion has the same effect. The results are depicted in Figure 9.35. The results are surprising.
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All three closures have improved approximations, wherein OFC is the best, OSC follows and the QC is
the worst. Apparently, the CI can be increased with a factor ten without resulting in negative responses.
The reason hereof is that the contribution of the closure decreases when CI increases, as it makes the
diffusion stronger and the convection, which contains the closure, weaker.

Most of the cases where ξ < 1 do not offer any new perspectives. In combination with CI in the
neighborhood of 0.01, the differences with the ξ = 1 case are minimal. If CI is in the neigborhood of
0.001, the quality of the results decay. The QC and OSC give bad results and the OFC even worse, as
it shows unphysical oscillations. An example is depicted in Figure 9.36. It can be seen that the results
are disastrous. The closures have difficulties following the exact solution. The oscillations are the origin
of this problem. The amplitude, frequency and phase are not adapted in a proper way. We do however,
see a tendency that the OFC has about the same guide line as the exact solution. In this sense, the
OFC gives better results than the OSC and QC.

Another question that arises is if the RSC addition effects the results of the closures. Testing the
simple shear with the same closures for κ ∈ {0.1, 0.25, 0.5, 0.75} shows some differences. For κ ≥ 0.5,
the results do not change excessively. The QC still has poor results. The OSC is, due to its moderate
results for all cases, the best in overall sense. The OFC is excellent in the case that the interaction
is equal to the case wherefore the coefficients were constructed, namely for CI = 0.01. Increasing the
interaction to CI = 0.1 does not introduce any decay and decreasing to CI = 0.001 is disastrous. Tak-
ing κ < 0.5 shows an improvement in the results. When using the OFC, the components of the tensor
approximation improve in the sense that they do not show any nonphysical oscillations anymore for
CI = 0.001. Nonetheless, the errors are still substantial and thus the quality of the OFC solution is not
good. In addition, the QC is still the worst and the OSC gives again moderate results. Three examples
are depicted in Figures 9.37, 9.38 and 9.39.
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Figure 9.33: comparison of A from ψ, in blue, and the QC, OSC and OFC in red, green and black
respectively.
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Figure 9.34: comparison of A from ψ and the QC, OSC and OFC.
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Figure 9.35: comparison of A from ψ and the QC, OSC and OFC.
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Figure 9.36: comparison of A from ψ and the QC, OSC and OFC for (r, CI) = (5, 0.001).
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Figure 9.37: comparison of A from ψ and the QC, OSC and OFC for κ = 0.75.
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Figure 9.38: comparison of A from ψ and the QC, OSC and OFC for κ = 0.75.
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Figure 9.39: comparison of A from ψ and the QC, OSC and OFC for κ = 0.1.
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9.6 Conclusion

Varying the shear rate of the simple shear flow field scales the transient time linearly. Increasing the
shear rate with, for instance, a factor two, decreases the transient time with a factor two.

The balance between convection and diffusion is sensitive for the initial condition for the probabil-
ity distribution and the (initial) progression of the shear rate. The influence hereof, decays with time
and the steady state values remain the same. Such results can be used to give an indication on whether
the IC and/or progression of the shear rate influence the fiber orientation in a practical injection molding
process. In accordance, the transient time corresponding to a certain IC and progression of the shear
rate should be compared with the injection time of a product.

The OFC performs good for the cases wherefore the coefficients were generated. Increasing the FFI
contribution by increasing CI , decreases the LD contribution relatively. The LD contribution contains
the closure term, and thus the results remain good. In contrast, decreasing the CI increases the influence
of the closure and leads to poor results. Similar results are obtained for most of the cases where κ < 1.
Taking κ in the neigborhood of 0.1 shows an improvement for the OFC in the weak diffusion cases in the
sense that nonphysical oscillations are no longer present. Taking ξ 6= 1 also leads to similar results, with
the exception of the cases where CI is in the neighborhood of 0.001. In the latter case, the components
of A keep oscillating and the closures fail to have the same phase, amplitude, frequency and guide line.
Only the OFC manages to approximately have the same guide line as the exact solution.
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Chapter 10

Uniaxial elongational flow

10.1 Introduction

The second homogeneous flow field we consider is uniaxial elongation. We discuss the characteristics
of the uniaxial elongation flow field and what we expect from the fiber orientation. We check if these
expectations are met and (de)motivate them with the results from the different models. An approach
similar to the approach in Chapter 9 is maintained: the simplest form, Jeffery’s equation, is treated
first, continuing with the more difficult Folgar-Tucker and Wang-O’Gara-Tucker models. Comparisons
between the ’exact’ solutions and the approximations of the orientation tensors are made.

10.2 The uniaxial elongational flow field

The uniaxial elongational flow field is characterized by

v = K · x =

 2E 0 0
0 −E 0
0 0 −E

 · x (10.1)

where E[ 1
s ] is the strain rate. Tensor K is diagonal resulting in D = K, W = O. Hence, there is no

spin, but merely strain. We have that

∇ · v = 0 ∧ ∇× v = 0.

The homogeneous flow field is thus both solenoidal or incompressible and irrotational. The flow field
is depicted in Figures 10.1 and 10.2. From both the figure and the name it is clear that a prolate
ellipsoid in such a flow is expected to align with the x1 axis. The x1 axis should represent a steady
state. Considering the x2−x3 plane, it is also expected that an ellipsoidal particle has a stationary
orientation in this plane when x1 = 0 as the streamlines are axisymmetric in this case. This stationary
equilibrium however, is expected to be unstable as a small perturbation in the x1 direction results in a
stable alignment with the x1 axis.

Figure 10.1: the unixaxial elongational flow field.
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Figure 10.2: the unixaxial elongational flow field, x1−x3 and x2−x3 views.

10.3 Results Jeffery’s equation

Recall

ṗ− ξD · p︸ ︷︷ ︸
difference between velocity flow and velocity fiber

= −ξD : ppp︸ ︷︷ ︸
stress within fiber

.

Uniaxial elongational flow (10.1) results in

W · p = 0

D · p = E

 2 sin(θ) cos(φ)
− sin(θ) sin(φ)
− cos(θ)


D : pp = 3 sin2(θ) cos2(φ)− 1.

The distribution of the D : pp is depicted in Figure 10.3. The internal stress in the ellipsoidal particle
is the largest in the x1 axis. This is justifiable as the strain rate there is 2E in contrast with −E along
the other axes.

Figure 10.3: sin2(θ) cos2(φ).

We omit a further interpretation of the general form of Jeffery’s equation as considering it in combination
with its generalized coordinates is more clear. In accordance, we determine the rate equations for the
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azimnuth and elevation to be

θ̇ =
3ξE sin(2θ) cos2(φ)

2
(10.2)

φ̇ =
−3ξE sin(2φ)

2
. (10.3)

The stationary point of θ̇ are

θ ∈
{

0,
π

2
, π
}
∨ φ ∈

{
π

2
,

3π

2

}
and for φ̇

φ ∈
{

0,
π

2
, π,

3π

2
, 2π

}
.

Omitting identical stationary points we get

(θ, φ) ∈
{(π

2
, 0
)
,
(
θ,
π

2

)
,

(
θ,

3π

2

)}
which correspond to the x1 axis and x2−x3 plane. Note that, in contrast with the steady states for the
simple shear flow field, steady states now also exist when |ξ| < 1. The stability of these steady states is
determined by considering the signs of both θ̇ and φ̇. We note that

sin(2α)

{
> 0 if α ∈

(
0, π2

)
∪
(
π, 3π

2

)
< 0 if α ∈

(
π
2 , π

)
∪
(

3π
2 , 2π

) .

It follows that for ξ > 0 the x1 axis is a stable equilibrium and the x2−x3 plane an unstable equilibrium.
For ξ < 0, it is the other way around. If ξ = 0, the particle remains at its initial state. Examples of
Jeffery orbits are depicted in Figures 10.4 and 10.5.
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Figure 10.4: Jeffery’s orbit for uniaxial elongation with p0 = 1√
201

[1 − 10 10]T .
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Figure 10.5: Jeffery’s orbit for uniaxial elongation with p0 = 1√
200

[0 − 10 10]T .
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10.4 Results kinetic theory

Recalling Property 7.3, it follows that

ψ(p(t), t) = ψ(p0, t0)eξD:pp(t−t0) = ψ(p0, t0)eξ(3 sin2(θ(t)) cos2(φ(t))−1)(t−t0)

when (CI , κ) = (0, 1). If ξ = 0, the solution remains at its initial state. If ξ > 0, the Jeffery orbits
converge to the x1 axis and thus the power of the exponential goes to 2ξ(t − t0). If ξ < 0, the Jeffery
orbits converge to the x2−x3 plane and the power of the exponential converges to −ξ(t− t0). It follows
that in both cases the solution is unbounded as t ↑ ∞ and ’needs’ rotary diffusion, or CI 6= 0, for
obtaining an upper bound. In particular, we take CI ≥ 0.01 to avoid the necessity of very small space
and time steps.

The power of the exponential is proportional to ξ. It thus controls the progression of ψ along an
arbitrary Jeffery orbit. It also controls the convergence rate of the Jeffery orbits as θ̇, φ̇ ∝ ξ. In contrast
with the simple shear flow, the Jeffery orbits for uniaxial elongation also have steady states if |ξ| < 1.
Hence, taking 1 < |ξ| only slows the progression of ψ down. If FFI is added, this deceleration in progres-
sion is still noticable. A similar reasoning holds for the variation of the strain rate E as also θ̇, φ̇ ∝ E.
In addition, we know from the dimensional analysis that E does not change the quantities when using
the scaled time E · t.

In the case (ξ, CI , κ, E) = (1, 0.1, 1, 1), the solution is depicted in Figure 10.6. The variation of the
parameters ξ, E and CI does not offer illuminating perspectives. The variation of ξ and E induces the
same changes as in the diffusionless case, and the FFI coefficient CI merely determines the lower and
upper bounds of ψ.

The variation of the initial condition does give a new perspective. It gives an indication in how strong
the ’memory’ of the probability density is. We recall the nonuniform IC (7.23)

ψ0
i,j = a · (sin(θi − b))2d(cos(φj − c))2e + f, a > 0, b ∈

[
0,
π

2

]
, c ∈ [0, 2π), d, e ∈ Z+, f ≥ 0.

and set d = e = 1 and b = f = 0. Furthermore, we take c ∈
{
π
8 ,

2π
8 ,

3π
8

}
so that the maxima initially lie

at (θ, φ) ∈
{(

π
2 ,

π
8 + lπ

)
,
(
π
2 ,

2π
8 + lπ

)
,
(
π
2 ,

3π
8 + lπ

)}
, with l ∈ {0, 1}. The results are depicted in Figure

10.7. We make some interesting observations. It stands out that when considering A22, there is a cross-
ing of two graphs. The origin hereof is that for the uniform IC, the probability density ’comes from all
sides’ of the x1 axis, and for the nonuniform IC only from the x2 axis. In this way, the weight p2

2 sin θ is
’applied’ differently to ψ in each of the latter cases. In addition, ψmax lies at (θ, φ) =

(
π
2 , 0 + lπ

)
in the

case of the uniform IC, whereas in the case of the nonuniform IC it progresses from (θ, φ) = (π2 ,
π
4 + lπ)

to (θ, φ) = (π2 , 0 + lπ).

When considering A33, we see that in case of the nonuniform IC, the component is nonzero for a
moment. This is justified by the decay of ψmax at the beginning, and subsequent increase when it
comes near the x1 axis. In effect, the density increases slightly in the direction of the x3 axis, to subse-
quently decrease again.

The crossing of the A12 components stems from the weight p1p2 sin θ. The maximum is initially at
(θ, φ) = (π2 ,

3π
8 ), moves toward the x1 axis and so passes the maxima of the weight p1p2 sin θ.

As in the case of the simple shear flow field, the balance between the convection and diffusion can
be altered by varying the IC. Varying the strain rate in time also alters this balance.

As discussed in Section 5.5, the additional RSC term ’draws’ fibers toward, or ’pushes’ them away
from, the eigenvectors of A. This is done in a way that the strain is reduced, so that the transient time
is prolonged. The steady state values should remain the same. The strain reduction changes both the
convection and the diffusion, altering the balance between them. As a result, the extrema are displaced,
as depicted in Figure 10.8.

10.5 Results tensor approximation

In this section we use the approach as described in Chapters 6 and 8 to obtain solutions for the orien-
tation tensors. We will consider the quadratic, orthotropic smooth and orthotropic fitted closures (QC,
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Figure 10.6: solution for uniaxial elongation with (ξ, CI , κ, E) = (1, 0.1, 1, 1).



152 10. Uniaxial elongational flow

Figure 10.7: nonuniform IC with c ∈
{
π
8 ,

2π
8 ,

3π
8

}
in red, green and cyan respectively. The results for a

uniform IC are depicted in blue.
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Figure 10.8: influence of strain reduction, κ ∈ {0.25, 0.5, 0.75, 1}.
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OSC and OFC) as constructed in [15]. The coefficients for the OFC were constructed with five different
flow fields with the parameters set to ξ = 1 and CI = 0.01, as mentioned in Section 9.5. The time range
for the flows is taken such that the steady state is reached, but not overemphasized. We can compare
these approximate solutions with the kinetic theory solutions (KTS) from Section 10.4.

The results of the case (ξ, CI , κ, E) = (1, 0.01, 1, 1) are depicted in Figure 10.9. The approximation
using the OFC is good. It follows the KTS even better than for the simple shear flow field. The QC
results in a poor approximation. The OSC gives moderate results. Its transient period is too short.

Increasing the CI for the simple shear flow field did not result in bad approximations. This was mo-
tivated by the increasing ratio of the LD to FFI contributions. The closure only influences the LD
contribution, thus, stronger diffusion obviously leads to weaker contributions of the closure and in effect
better approximations. The results of the (ξ, CI , κ, E) = (1, 0.1, 1, 1) case for uniaxial elongational flow
are therefore surprising, confer Figure 10.10. The approximations all give bad results, even the OSC
which consistently gave moderate results. The origin of these bad approximations lies largely in the
error in the A1111 component. The increase of CI causes a too large decay in the A1111 component
of the closures. It can be concluded that the interpolation causes a large error in the case of uniaxial
elongational flow, even though the LD contribution gets weaker. It is interesting to check how the ap-
proximations behave when ’new’ coefficients are generated for the OFC, namely for the CI = 0.1 case.
Such a generation is not part this project, and thus a comparison is omitted.

Taking κ 6= 1 gives some interesting results. Setting (ξ, CI , κ, E) = (1, 0.01, 0.75, 1), the quality of
the approximations does not suffer, confer Figure 10.11. The quality of the approximations do, how-
ever, suffer when κ is changed to 0.25. The approximations of the latter are depicted in Figure 10.12.
The OFC converges too fast to the steady state. The decrease of κ weakens the LD contribution and
thus the contribution of the fourth order tensor, but this reduction differs from the one that is induced
by the usage of the OFC. It can be concluded that these reductions are alike when κ is in the neigbor-
hood of 0.75, but differ when κ decreases further. In the latter case, coefficents for the OFC should be
generated for similar values of κ.

Taking ξ not equal to one, but in the neighborhood of one, does result in large differences with the
ξ = 1 solution. In effect, the approximations also do not suffer from such a variation of ξ.
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Figure 10.9: comparison of KTS and the approximations.
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Figure 10.10: comparison of KTS and the approximations for a larger FFI contribution.
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Figure 10.11: comparison of KTS and the approximations for a larger RSC contribution.
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Figure 10.12: comparison of KTS and the approximations for a larger RSC contribution.
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10.6 Conclusion

Varying the strain rate of the uniaxial elongational flow field scales the transient time linearly. Increas-
ing the strain rate with, for instance, a factor two, decreases the transient time with a factor two.

The balance between convection and diffusion is sensitive for the initial condition for the probabil-
ity distribution. The influence hereof, decays with time and the steady state values remain the same.
Such results can be used to give an indication on whether the IC and/or progression of the shear rate
influence the fiber orientation in a practical injection molding process. In accordance, the transient time
corresponding to a certain IC should be compared with the injection time of a product.

The OFC performs good for the cases wherefore the coefficients were generated. In contrast with the
simple shear test model, the quality of the approximations suffer from an increase of CI . This indicates
that even though the contribution of the closure is expected to be weaker, the loss of quality due to a
change of the parameters can still be substantial. It would be illuminating to generate coefficients for
the CI = 0.1 case. Such a generation is, however, beyond the scope of this project and was thus omitted.

The quality of the approximations is unaffected if κ is in the neighborhood of one. The quality is
still good if κ = 0.75. If κ = 0.25, the quality has already decayed substantially. Varying ξ does little
when ξ stays in the neighborhood of one.
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Chapter 11

Conclusions and recommendations

11.1 Introduction

Based on the evaluations made throughout this project, conclusions can be drawn and recommendations
can be made concerning the modeling of the fiber orientation. Conclusions are drawn with respect to
the numerical approaches used. The results from the test models are reconsidered. The quality of the
closure approximations are discussed. References to recent publications are made.

11.2 Conclusions

The numerical approach as described in Chapter 7 is sufficient for the modeling of the fiber orientation
in homogeneous flow fields with the Wang-O’Gara-Tucker model. The spherical partition in space and
explicit time integration conserve the intrinsic properties of a probability density function. Although the
time increments need to be small for stability, the computation times are still modest, especially when
considering the linear Folgar-Tucker model. A noticable property is that the local truncation error has
a nature of four different types, namely acceleration, production or vanishing, convection and diffusion
of probability density. The stability criterium for the model is rather strict, involving the ratio between
the space and time partition, diffusion and strain reduction. The latter extension, has the tendency to
weaken the stability criterium, even though it induces a nonlinear term.

Explicit time integration is also sufficient for the tensor form of the Wang-O’Gara-Tucker model, as
shown in Chapter 8. The intrinsic properties of the second order tensor are conserved, with the excep-
tion of positive semidefiniteness. The stability criterium is not demanding.

The simple shear and uniaxial elongational flow field are sensitive to the variation of the initial condition
and the progression of the shear and strain rate, respectively, in time. They are inherent to the balance
of the convection and diffusion of the fiber orientation. The strain reduction induces longer transient
times but does not alter the steady state values. It is therefore a useful phenomenological parameter
that enables theoretic results to be fitted to experimental results.

The quality of the closure approximations varies with the parameters and the flow fields. The quality
is good for the cases where the parameter set is the same as the set wherefore the orthotropic fitted
closure was originally fitted. Varying the aspect ratio of the fibers does not seem to have a large im-
pact. Varying the strength of the fiber-fiber interaction leads to inconsistent results. In most cases it
is disastrous. The exception lies in the increase of the strength of the fiber-fiber interaction for the
simple shear flow field. The latter seems to conserve the good quality of the approximations, which they
have when the parameter set matches the set wherefore the orthotropic fitted closure was originally
fitted. Varying the strain reduction somewhat does not reduce the quality of the approximations. A
substantial strain reduction, however, leads to poor results. Varying the strain or shear rate merely
scales the transient time linearly with the rate, conserving the quality of the approximations. Due to
the somewhat inconsistent results when varying the parameters, it can be concluded that is wise to
generate coefficients for the interpolation function of the orthotropic fitted closure, per parameter set.
This ensures a good quality of the approximations.

11.3 Recommendations

The research in the modeling of fiber orientation in fiber filled injection molded thermoplastics is far
from complete. Papers have been published that either motivate a different approach, or extend the
existing models. In [14], the Wang-O’gara-Tucker model is extended with anisotropic rotary diffusion to
replace the isotropic rotary diffusion by J.H. Phelps and C.L. Tucker. D.A. Jack and D.E. Smith have
published various papers, e.g. [3], wherein they motivate the use of the exact fourth order tensor and
approximate the sixth order tensor. Such approaches should be taken into account when attempting to
model the fiber orientation.

The closure approximations should be fitted to the correct parameter set. The λ1−λ2 curve should
cover a substantial part of the green shaded area in Figure 6.1. This can be achieved by choosing
appropriate types of flow. Such fits ensure a good quality of the approximations.



164 11. Conclusions and recommendations

The possibilities for the numerical approaches for both the kinetic theory and tensor form of the Wang-
O’Gara-Tucker model should investigated. Indeed Euler forward is simple to implement and conserves
the intrinsic properties of the quantities, but perhaps more stable approaches can be constructed. Find-
ing such an approach is complexified by the definition of a probability density, as it makes many demands,
but it is not necessarily impossible. Perhaps it is possible to conserve the positive semidefiniteness of
the second order tensor with a certain scheme. Also a stability analysis should be made for the full
model, not just the linear part.

The orthotropic fitted closures can be investigated further. There are many adequate interpolation
functions possible and many different flows to choose when generating the coefficients for the closure.
There influence on the quality of the tensor approximations should be investigated extensively to ensure
a proper approximation for practical injection molding simulations.
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Appendix A

Proofs

A.1 Introduction

Throughout this thesis, various proofs are given to motivate theorems and properties. Some of them
are ’classical’ and do not fit the main construction line of the thesis. In accordance, these proofs are
denoted in this chapter.

A.2 Nonnegative real eigenvalues

Proof. Denoting the eigenpairs of A with (λj , ej)j∈{1,2,3} with ej · ek = δjk we have

(A · ej , ej) = (λjej , ej) = λ∗j

and
(A · ej , ej) = (ej ,A · ej) = (ej , λjej) = λj

and so ∀j λj = λ∗j ⇒ λj ∈ R.

For proving the posivity of the eigenvalues we use the property positive definiteness

x ·A · x ≥ 0 ∀x ∈ R\{0}

and Property 4.1. The positive semidefiniteness can be extended to the more general, complex form

x̄ ·A · x ≥ 0 ∀x ∈ C\{0}.

Take for x = ei an eigenvector. Then

ēi ·A · ei ≥ 0

ēi · λiei ≥ 0

λiēi · ei ≥ 0

λi||ei||22 ≥ 0.

Due to ||ei||22 ≥ 0 it follows that λi ≥ 0, which concludes the proof.

A.3 Real eigenvectors

Proof. By Property 4.3, we already know that λj ∈ R and so

(A− λjI)︸ ︷︷ ︸
∈R

·ej = 0︸︷︷︸
∈R

.

The eigenvectors are determined by Gaussian elimination in combination with ||ej ||2 = 1. As A− λjI
contains merely real elements, Gaussian elmination will result in elements with Im((ej)k) = 0. The
normalization merely stems from the multiplication of ej with a constant ∈ R. In effect, the ∀j ej ∈
R3.

A.4 Orthonormal eigenvectors

Proof. Consider two eigenpairs (λ1, e1), (λ2, e2), λ1 6= λ2, (λ1, λ2) ∈ R. Then

A · e1 = λ1e1 ∧ A · e2 = λ2e2 ⇒ (A · e1, e2) = (λ1e1, e2) ∧ (e1,A · e2) = (e1, λ2e2)

⇒ (A · e1, e2) = λ1(e1, e2) ∧ (A · e1, e2) = λ2(e1, e2)

⇒ λ1(e1, e2) = λ2(e1, e2)

⇒ (e1, e2) = 0

where we used, in order, λ2 ∈ R, symmetry of A and λ1 6= λ2.
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A.5 Genuine eigenvectors

Proof. Consider tensor A with eigenpairs (λi, ei){i∈{1,2,3}. Then we have

∀i ∈ {1, 2, 3} ∃d ∈ Z+ (A− λiI)d · ei = 0.

Recall that ei is a genuine eigenvector if d = 1 and a generalized one if d 6= 1.

Say d = 2, then

∀i (A− λiI)2 · ei = 0 ⇒ ((A− λiI)2 · ei, ei) = (0, ei)

⇔ ((A− λiI) · ei, (A− λiI) · ei, ei) = 0

⇔ ||(A− λiI) · ei||22 = 0

⇔ (A− λiI) · ei = 0

and so ei is a genuine eigenvector.

Say we consider the common case for d, then

∀i (A− λiI)d · ei = 0 ⇔ (A− λiI)2 · (A− λiI)d−2 · ei = 0

⇔ (A− λiI)2 · fi = 0

⇒ (A− λiI) · fi = 0

⇔ (A− λiI)d−1 · ei = 0

⇔ (A− λiI)2 · (A− λiI)d−3 · ei = 0

⇔ (A− λiI)2 · gi = 0

⇔ . . .

⇔ (A− λiI) · ei = 0

which concludes the induction proof.

A.6 Spectral decomposition

Proof. Due to Property 4.5 we have

E = {ei}i∈{1,2,3} = span(R3).

The second order unit tensor I can be expressed as a dyadic, a combination of dyads, as

I =
∑
i,j

δijeiej =
∑
j

(∑
i

δijei

)
ej =

∑
j

ejej

where we used the independence of i and j to interchange the sums, linearity and association of the
tensor product. It follows that

A = A · I = A ·
(∑

i

eiei

)
=
∑
i

(A · ei)ei =
∑
i

(λiei)ei =
∑
i

λieiei

which represents the spectral decomposition of A. We used linearity and association of the tensor
product, and the eigenvalues of A.
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Appendix B

Instruction programming codes

B.1 Introduction

The most important contribution of this master project is that the DSM personnel has programming
codes to their disposal to model fiber orientation for homogeneous flows. This chapter focusses on the
explanation of these codes to facilitate their usage. In other words, this chapter is a manual for the
codes. We explain the code on the user level. In accordance, we do not explain all the called functions
thoroughly, but rather refer to the sections in the thesis wherein the details are described.

The implementations are done in Matlab R2008b. It is assumed that the reader is sufficiently ac-
quainted with Matlab R2008b. We will omit explanations of commonly used commands.

Their are three main programs: the implementation of Jeffery’s equation and the kinetic theory and
tensor form of the Wang-O’Gara-Tucker model. A schematic of the implementations is depicted in
Figure B.1. Of each step in the schematic, we give a description. In effect, we analyze the codes line by
line so that the user can understand them fully.

The notation in the programming codes is analogous to the notation used in the thesis. Explanations of
the used notation are therefore omitted. One can refer to last page of the thesis for the nomenclature.

We motivate the instruction of the program by treating an example. In this example, we consider
the kinetic theory of the Wang-O’Gara-Tucker model for the simple shear flow field. The treatment
of the other two programs are omitted, as their structure and the used functions are analogous to the
treated program.

B.2 Example: simple shear flow

B.2.1 Preamble

Every program starts with the piece of code

clc, close all, clear global, clear all

format compact;

format long e;

set(0,’defaulttextinterpreter’,’latex’);

set(0,’defaulttextfontsize’,12);

set(0,’defaultaxesfontsize’,12);

tic

. The first line clears the command window, regular and global variables and closes all figure win-
dows. The lines after set the format to a 16 digit exponential compact notation. The command
set(0,’option’,option_value) sets the default option ’option’ to the given value option_value.
We increase some font sizes for the sake of clarity. In addition, we set the interpreter of the text to
’latex’. The latter is known to be somewhat buggy. If it gives any problems, it can be switched to
’none’. The command tic starts the stopwatch so that the computation time can be measured.

B.2.2 Physical and numerical parameters

All three programs need a set of physical and numerical parameters as input. The physical parameters
are inherent to the process that is considered. The numerical parameters are inherent to the numerical
approach.

A basis Eb has to be chosen. The program is written for bases fixed in time. In our case, we choose a
basis wherein the flow field is described as

v = K · x, K =

 0 G 0
0 0 0
0 0 0

 .
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Figure B.1: schematic of implementations.
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There are certain parameters that are used not only by the main program, but also by a set of functions.
If a parameter is used often outside the main program, one can consider declaring this parameter as
a global variable. In this way, it does not have to given to the function as an argument. The global
variables we use are denoted in

%% Define global variables.

global n

global theta dtheta n_theta

global phi dphi n_phi

global n_DOF

global lambda_min lambda_plus

global G Kappa D_r m

global dt

global S

global xi C_I

. The used notation is in accordance with the report, as mentioned in the nomenclature. When declaring
a variable as global, an empty variable is created in the workspace of global variables. We still have to
assign values to them. We implement

%% Defining the constants.

% Fixed parameters.

n=3; %Number of dimensions.

% r_e=10; %Ratio of long axis and short axis of ellipsoid.

% xi=(r_e^2-1)/(r_e^2+1); %Aspect ratio of fibers, xi=(r_e^2-1)/(r_e^2+1), r_e=L/D.

xi=1;

lambda_min=(xi-1)/2;

lambda_plus=(xi+1)/2;

kappa=1; %To slow down the kinetics, 0<kappa<=1

C_I=0.01; %Fiber-fiber interaction coefficient.

% Rates.

E=10^0; %Strain rate in [1/s].

G=10^0; %Shear rate in [1/s].

. It stands out that two command lines are considered as comments. This is done because we chose
ξ = 1. The latter corresponds with re =∞ and can thus not be expressed in the program. Nonetheless,
one can take re large so that ξ = 1 to machine precision. For |ξ| < 1, the user might find it more clear
to express the physics by assigning a value to re. In this case, the two lines should not be considered as
comments and the line after should.

The next step is to define the homogeneous flow field by

%% Definition of the homogeneous flow field.

vfield=’simple shear’; %Later used in file and directory names.

[Kappa,D,W,gamma_dot]=simple_shear(G);

D_r=C_I*gamma_dot;

storage.m=sum(sum(abs(Kappa)));

m=storage.m;

if D_r==0

fprintf(1,[’The coefficient D_r=0. It is recommended to use ’...

’the p_dot program to calculate p instead of psi.\n\n’]);

end

. The specification of the name of the flow field is used later to define the name of the directory wherein
the output is stored. The program simple_shear needs the shear rate as an argument and returns K,
its symmetric and antisymmetric parts D and W respectively, and m, the measure for the strength of
the velocity field. The latter is used to scale certain variables, as described in Sections 7.3 and 8.3. The
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parameter m is stored in the structure storage, which is meant for the storage of all the important
quantities. The situation Dr = 0 implies that CI = 0 so that there is no rotary diffusion. If in addition
κ = 1, the program suggests to use Jeffery’s equation to obtain the requested information, as it is much
more efficient. The Folgar-Tucker model is not meant for diffusionless cases, as motivated in Chapter 3.

Now that m is known from the velocity field, the scaling of the time is known and the time related
constants can be defined. This is done in

%% Time related constants.

dt=10^-5/m; %Time step size.

t_0=0; %Initial time.

t_end=10/m; %End time.

t=t_0:dt:t_end;

t_length=length(t);

. It stands out that both the time step and end time are taken inversely proportional to m = G. We
continue with the choice of the partition in space

% Space related constants.

n_theta=50; %Partition number of theta domain. Must be even.

theta_begin=0;

theta_end=pi/2;

dtheta=(theta_end-theta_begin)/n_theta; %Step size theta.

theta=theta_begin:dtheta:theta_end; %Vector containing possible values of theta.

theta_mid=theta_begin+dtheta/2:dtheta:theta_end-dtheta/2;

n_phi=4*n_theta; %Partition number of phi domain.

n_DOF=n_theta*n_phi; %(N)umber of (d)egrees (o)f (f)reedom.

if mod(n_phi,2)==1

fprintf(1,[’WARNING: n_phi is odd, which makes it impossible for the ’...

’program to run properly. Ending program.\n\n’]);

return

end

phi_begin=0;

phi_end=2*pi;

dphi=(phi_end-phi_begin)/n_phi; %Step size phi.

phi=phi_begin:dphi:phi_end; %Vector containing possible values of phi.

phi_mid=phi_begin+dphi/2:dphi:phi_end-dphi/2;

[Phi_mid,Theta_mid]=meshgrid(phi_mid,theta_mid); %Construct a meshed grid.

. The partition of the θ and φ directions are made. The coordinates of the centers of the resulting
cells are constructed with the meshgrid command. The θ does not end at π but at π

2 as ψ is an even
function. The φ ∈ [0, 2π] so we take the partition number in the φ direction, nφ, four times as large as
nθ. A warning is given when nφ is odd. As explained in Subsection 7.4.3, nφ has to be even for the sake
of the conservation of the properties of ψ.

B.2.3 Preliminary calculations

Now that the space S has been partitioned, the IC can be constructed. The IC must suffice to the
conservation of probability (7.22)

2
∑
i,j

ψ0
i,j |Si| = 1 ∧ ∀i, j ψ0

i,j ≥ 0.

In addition, the IC should be constructed with the space partition in mind in the sense of gradients.
Large gradients between cells may lead to large errors. This can result in divergence of the solution, or
that it takes a long time for the errors to decrease to an acceptable level. In the literature, the random
fiber orientation IC is often used, so ∀i, j ψ0

i,j = 1
4π . As an alternative, the IC can also be nonuniform.

An example hereof is (7.23).
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The values of θ, φ, δr, δθ and δφ at the centers of the cells and centers of the sides of the cells
are used in the calculation of the nonlinear RSC term. This term has to be calculated each time incre-
ment and it is thus important for it to be efficient. As the former set of variables is merely dependent
on space and not on time, we calculate them before the time integration process. Also their products
occur in (3.14) are determined before the time integration process:

% Determine the basis vectors at the sides of each cell. Will be used later

% for the calculations of the nonlinear RSC part.

[bdrW,bdtW,bdpW,bdrN,bdtN,bdpN,bdrS,bdtS,bdpS,bdrE,bdtE,bdpE,...

dphisinthetaN,dphisinthetaS,...

bdrbdpW,bdrbdtN,bdrbdtS,bdrbdpE,...

theta_N,theta_S]=bvaWNSE;

. Other quantities that are used often and that do not depend on time are |Si|, pp sin θ and pppp sin θ.
They are calculated by

% Determine surface elements.

S=dphi*dtheta*sin(theta(1:end-1)+dtheta/2).’;

S_full=S*ones(1,n_phi);

% Determine (pp)_ij|S_i| and (pppp)_ij|S_i| in advance for efficiency.

[PPS,PPPPS]=PPSnPPPPS;

. For the storage of important quantities, we construct the structure storage. We store the quantities
with commands like

storage.psi=zeros([size(psi_0) length(t_storage)]);

, where t_storage contains the time values whereon the data is stored and has the size that the user
chooses by defining n_storage.

With the piece of code

%% Construction of linear part of Fokker-Planck equation.

B_ld=lpFPeqn(0); %Convection only, D_r=0.

if D_r~=0

B=lpFPeqn(D_r); %Convection and diffusion.

else

B=B_ld;

end

B_ffi=B-B_ld; %Diffusion only.

% Storage of matrices.

storage.matrices.B_ld=B_ld;

storage.matrices.B_ffi=B_ffi;

storage.matrices.B=B;

we call the function lpFPeqn(D_r) to construct the linear parts of the Fokker-Planck equation. We
are not only interested in the ’total’ linear part, but also in the LD and FFI contributions. To this
end, we call lpFPeqn(0) to determine the coefficients for the LD contribution and lpFPeqn(D_r) to
determine the coefficients for the total contribution. Subsequently, the FFI contribution is determined
by subtracting the former from the latter. These quantities are stored in the structure storage.

From Euler forward it follows that the system matrix is C = I + ∆tB. In accordance, we construct the
sparse matrix with
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%% Construction of the matrix C.

C=speye(n_DOF,n_DOF)+dt*B;

storage.matrices.C=C;

%% Stability check for linear part.

plot_and_save.stability_check=0;

stability_check(plot_and_save,C);

and check the stability of the linear part of the scheme by determining the largest absolute eigenvalue
with the function stability_check(plot_and_save,C). For more details on stability analyses, we re-
fer to Subsections 7.4.6 and 8.5.3. Note that we have also constructed the structure plot_and_save

wherein we store certain settings. In this case, the setting concerns whether the stability check should
be done or skipped.

Table B.1 contains various tested settings for the time and space partition that are stable. The tested
settings give an indication on how the space and time partition should be chosen. Note that these
settings do, however, not guarantee that ∀t ψ ≥ 0. It ı́s guaranteed that the errors will decay as t ↑ ∞
so that ∀t ψ ≥ 0 will hold if t ↑ ∞.

flow field ξ CI κ nθ nφ m∆t
simple shear 1 0.01 1 40 160 10−5.3

simple shear 1 0.001 1 40 160 10−5

simple shear 1 0.005 1 40 160 10−5

simple shear 1 0.05 1 40 160 10−6.2

simple shear 1 0.1 1 40 160 10−7

simple shear 0.99501 0.001 1 50 200 10−5.5

simple shear 0.9230769 0.001 1 50 200 10−7

simple shear 0.99681 0.01 1 40 160 10−5.1

uniaxial elongation 1 0.01 1 24 96 10−4.3

uniaxial elongation 1 0.1 1 24 96 10−4.2

Table B.1: tested stable settings.

B.2.4 Time integration

The time integration loop starts as

%% Time integration.

% In case kappa=1 we set Q to zero.

Q=spalloc(n_theta,n_phi,0);

for t_step=2:t_length %Time step.

% Determine nonlinear RSC part of Fokker-Planck equation.

if kappa~=1

Q=nlpFPeqn(bdrW,bdpW,bdrN,bdtN,bdrS,bdtS,bdrE,bdpE,...

dphisinthetaN,dphisinthetaS,PPS,PPPPS,...

D,kappa,xi,D_r,n,dtheta,psi,n_theta,n_phi);

Q=-dt./S_full.*Q;

Q=Q(:);

psi_l=C*psi_l+Q;

else

psi_l=C*psi_l;

end

. The first command line is to create an empty sparse matrix that uses a minimal amount of memory.
This is merely done to set to set the RSC contribution to zero if κ = 1. This Q is replaced if κ 6= 1.
The function nlpFPeqn constructs the nonlinear RSC part of the kinetic theory. The command Q=Q(:)

constructs a column vector from the two dimensional matrix. The reason herefore becomes obvious in
the line after: the system of equations can be written in the form

ψk+1
l = C ·ψkl + q(ψkl ).
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If κ = 1, the construction of Q is redundant and the system of equations is merely

ψk+1
l = C ·ψkl .

In addition, there are interesting cases of K(t), so where the matrix of the homogeneous flow field is
dependent on time. In that case, one could add the piece of code

% The time;

t=t_0+(t_step-1)*dt;

% Determine time dependent linear part.

a=1;

b=5;

dtB_ld_td=dtB_ld/(1+1/(exp(a*(t-b))));

C=C_unity_ffi+dtB_ld_td;

to the time integration loop, so that the LD contribution is multiplied with a time dependent function.
E.g. a logistic function as described by (9.5).

The time integration loop also contains

% Storage of variables.

if mod(t_step+1,n_storage_step)==1

storage_step=ceil((t_step+1)/n_storage_step);

fprintf(1,[’Process at time ’ num2str(m*t_storage(storage_step)) ...

’[] of total time ’ num2str(m*t_storage(end)) ’[].\n’]);

% Reshape psi vector to psi matrix.

psi=reshape(psi_l,n_theta,n_phi);

% Storage of flux contributions.

f_ld=reshape(B_ld*psi_l,n_theta,n_phi);

f_ffi=reshape(B_ffi*psi_l,n_theta,n_phi);

f_RSC=reshape(Q/dt,n_theta,n_phi);

psi_dot=f_ld+f_ffi+f_RSC;

% Storage.

storage.psi(:,:,storage_step)=psi;

end

to store the requested quantities in storage. In addition, it prints a line in the command window to give
an indication of the progress of the program. The commands for the storage are trivial. The command
reshape is used to reshape the one dimensional vectors ’back’ to their original two dimensional matrix
form.

B.2.5 Output

The code

%% Stop stopwatch.

t_CPU=toc;

storage.t_CPU=t_CPU;

stops the stopwatch to determine the calculation time. It is stored in storage. The code
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%% Save data in question.

% In this cell, all the data that is of importance is saved to a mat file.

% Herewith, all output can be constructed.

string_parameters=[’psi,’ vfield ’,xi=’ num2str(xi) ’,kappa=’ num2str(kappa) ...

’,C_I=’ num2str(C_I) ’,n_theta=’ num2str(n_theta) ’,n_phi=’ num2str(n_phi) ...

’,t_0=’ num2str(t_0) ’,mt_end=’ num2str(m*t_end) ’,mdt=’ num2str(m*dt,’%6.6e’) ...

’,E=’ num2str(E) ’,G=’ num2str(G)];

curdir=pwd; %Save current path.

% Check if a directory ’Results’ exists. If not, create it and change

% directory to it, if it does, just change directory to it.

erd=exist([pwd ’\Results’],’dir’); %Stands for (e)xistence (r)esults (d)irectory.

if erd==7

cd([pwd ’\Results’]);

else mkdir(’Results’);cd([pwd ’\Results’]);

end

[status,message,messageid]=mkdir(string_parameters);

if status==1

cd(string_parameters);

outputdir=pwd;

else fprintf(1,’Output not created due to error from mkdir command.\n\n’)

end

cd(curdir) %Change back to original working path.

creates a string that is used to name the directory wherein the output is saved. It first checks if the
directory Results exists. If it does not, it created and subsequently the directory wherein the data
will be saved is created. If it does, the directory is changed to Results and subsequently the directory
wherein the data will be saved is created. An error is given when the make directory command mkdir

fails to create the output directory. At the end of the code, the directory is changed back to the original
working directory. The user should keep in mind that the string for the directory name is rather large.
This can give problems if the maximum amount of characters for a pathname is exceeded. This can be
solved by shortening the string or to put the directory in the lower levels of a directory structure. Such
problems can differ per operating system.

The main calculation process has finished. What follows are the a posteriori calculations, visualiza-
tion and saving the workspace to the hard disk. To determine which data should be visualized and/or
saved, settings are stored in the structure plot_and_save. As an example, we treat the call of the
function that visualizes the probability density,

%% Visualization of output.

% Necessary for multiple visualizations.

plot_and_save.output_directory=outputdir;

plot_and_save.string_parameters_latex=[’$\psi$, ’ vfield ’, $\xi=$’ ...

num2str(xi) ’, $\kappa=$’ num2str(kappa) ’, $C_I=$’ num2str(C_I) ...

’, $n_{\theta}=$’ num2str(n_theta) ’, $n_{\phi}=$’ num2str(n_phi) ...

’, $t_0=$’ num2str(t_0) ’, $m \cdot t_{end}=$’ num2str(m*t_end) ...

’, $m \cdot dt=$’ num2str(dt*m) ’, $E=$’ num2str(E) ’, $G=$’ ...

num2str(G)];

% Plotting the probability density.

plot_and_save.psi_pd.relative_or_absolute_colors=’abs’;

plot_and_save.psi_pd.avioutput=1;

plot_and_save.psi_pd.filename=’probability_density’;

plot_and_save.psi_pd.fps=10;

vis_psi_pd(storage,plot_and_save);

. The first line saves the output directory. The second line creates a LATEX string that is denoted in the
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lower left corner of each plot. There are some settings that are needed for the function vis_psi_pd.
The first is if the limits of the colorbar for the probability density are taken for all time or absolute, or
at each time increment or relative. An animation is created when plot_and_save.psi_pd.avioutput

is equal to one. This is skipped if the value is zero. The filename and frames per second (FPS) for
the animation are also set. When all the parameters are set, the visualization function is called. The
settings and output requests differ per visualization program. Information on the latter can be recov-
ered by considering the first lines of the visualization function in question. The following visualization
programs are available.

• Function vis_psi_pd, for depicting the probablity density and its LD, FFI and RSC contributions
on the sphere. An example is Figure 9.11.

• Function vis_psi_checks. This is a function wherewith the adequacy of the solution can be
checked. It depicts the occurences of negative elements of ψ, and calculates the integrals of ψ
and ψ̇ over the sphere at each time. Obviously, a proper solution does not have any negative ψ
elements, and integrals with values one and zero respectively. An example is depicted in Figure
B.2.

• Function vis_A_2. This function visualizes the components of A, Ȧ and its LD, FFI and RSC
contributions, and the eigenpairs of A. Examples are the Figures 9.21 and 9.22.

• Function vis_A_4, which visualizes the fifteen independt components of A. An example is Figure
B.3.

• Function vis_psi_extr, which visualizes the extrema of ψ and their corresponding generalized
coordinates θ and φ. An example is Figure 9.15.

• Function steady_state_info. It calculates the steady states times and values for all quantities.

The program is concluded with

%% Save all data in workspace to hard disk.

save([outputdir ’\workspace.mat’]);

%% Put settings back to factory settings.

set(0,’defaulttextinterpreter’,’factory’);

set(0,’defaulttextfontsize’,’factory’);

%% Ending program. Back to console.

fprintf(1,’\nEnd of program.\n\n’)

, which saves the workspace to the hard disk, sets the settings that were changed in the preamble back
to the factory defaults, and prints the line End of program. in the command window. The former is
important in particular, as it can be used to construct coefficients for the an OFC.
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Figure B.2: example of the output of the function vis psi checks.
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Figure B.3: example of the output of the function vis A 4.
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B.2.6 Input

For the sake of completeness, we summarize the input parameters that arised during the walkthrough
of the code, in this section. The input parameters are denoted in Tables B.2 and B.3, each with their
possible values and description. The order corresponds with the order in the code.
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Input Values Description

re R+ Aspect ratio of ellipsoidal particle, l
d . An alternative is to specify ξ.

ξ [−1, 1] Function of the aspect ratio
r2e−1
r2e+1 . An alternative is to specify re and calculate

ξ.
CI R+ Strength of the fiber-fiber interaction.
κ (0, 1] Strength of the strain reduction to prolong the transient times.
E R Strain rate.
G R Shear rate.
nθ Z+ Partition number in θ direction.
nφ {2, 4, . . .} Partition number in φ direction.
vfield string String that is used in the name of the output directory.
K R3×3 Homogeneous flow field matrix.
∆t R+ Step size for time integration loop.
t0 R Starting time.
tend R End time, tend > t0.
ψ0
i,j R+ Initial probability density at the mesh element with its center at (θi− ∆θ

2 , φi−
∆φ
2 ). The condition that 2

∑
i,j

ψ0
i,j |Si| = 1 must be satisfied.

nstorage N Number of storage times. At these time, requested data is stored in the
sturcture storage. Note that nstorage must be smaller than the total num-
ber of time increments.

Table B.2: needed input for program.
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Input Values Description
stability_check {0, 1} If value is one, the largest absolute eigen-

value of the linear system matrix will be
determined. If the value is zero, this check
is skipped.

psi_pd.relative_or_absolute_colors ’abs’

’rel’

Determines if the limits of the color bar are
set per time increment or one time for all
time increments.

psi_pd.avioutput {0, 1} One for creation of an animation in an AVI
container, zero if not.

psi_pd.filename string Filename of animation.
psi_pd.fps Z+ Frame rate of animation.
psi_checks.save {0, 1} One if animation of the checks of the PDF

should be saved.
psi_checks.name string Filename of the animation.
psi_checks.fps Z+ Frame rate of animation.
A.six_graphs.plot {0, 1} Plots the six components ofA in six graphs

if one.
A.six_graphs.save {0, 1} Save the former if one.
A.six_graphs.name string Filename of the former.
A.six_graphs_with_fluxes.plot {0, 1} Plots the six components of A and its

fluxes in six graphs if one.
A.six_graphs_with_fluxes.save {0, 1} Save the former if one.
A.six_graphs_with_fluxes.name string Filename of the former.
A.one_graph.plot {0, 1} Plots the six components ofA in one graph

if one.
A.one_graph.save {0, 1} Save the former if one.
A.one_graph.name string Filename of the former.
A.symmetry.plot {0, 1} Plots the six components of A − AT to

check the conservation of symmetry if one.
A.symmetry.save {0, 1} Save the former if one.
A.symmetry.name string Filename of the former.
A.trace.plot {0, 1} Plots the trace of A if one.
A.trace.save {0, 1} Save the former if one.
A.trace.name string Filename of the former.
A.eigenpairs.plot {0, 1} Plots the eigenpairs of A if one.
A.eigenpairs.save {0, 1} Save the former if one.
A.eigenpairs.name string Filename of the former.
A.eigenpairs.fps Z+ Frame rate of animation.
A_4.fifteen_graphs.plot {0, 1} Plots the fifteen independent components

of A if one.
A_4.fifteen_graphs.save {0, 1} Save the former if one.
A_4.fifteen_graphs.name string Filename of the former.
psi_extrema.plot {0, 1} Plot the extrema of ψ if one.
psi_extrema.save {0, 1} Save the former if one.
psi_extrema.filename string Filename of the former.

Table B.3: needed input for program in the structure plot and save.
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Nomenclature

Symbol Dimension Description
φ rad Azimuth. Spherical coordinate.
γ̇ 1

s Shear rate, see also E.
κ 1 RSC or strain reduction factor.

λ 1 Function of re,
r2e−1
r2e+1 , see also ξ.

λi 1 The ith eigenvalue of A.
λ− 1 Function of λ, λ−1

2 .
λ+ 1 Function of λ, λ+1

2 .
θ rad Elevation. Spherical coordinate.

ξ 1 Function of re,
r2e−1
r2e+1 , see also λ.

ψ 1 Probability density.
δr 1 Unit basis vector for the radius, see also p.
δθ 1 Unit basis vector for the elevation, see also q.
δφ 1 Unit basis vector for the azimuth, see also s.
f 1

s Flux of probability density.

m 1
s Measure of the strength of K, defined as

∑
i,j

|κij |.

r m Radial length of vector.
re 1 Aspect ratio of ellipsoid, l

d .
t s Time.
ei 1 The ith eigenvector of A.
p 1 Unit basis vector for the radius, see also δr.
q 1 Unit basis vector for the elevation, see also δθ. Nonlinear RSC or strain

reduction term in kinetic theory.
s 1 Unit basis vector for the azimuth, see also δφ.
x m Space vector, (x y z)T or (x1 x2 x3)T .
Ci 1 Boundary of Si.
CI 1 Fiber-fiber interaction coefficient.
Dr

1
s Defined as CIm.

E 1
s Strain rate.

G 1
s Shear rate, see also γ̇.

S 1 The set p ∈ R3 : ||p||2 = 1.
Si 1 Mesh element of S.
|Si| 1 Size of mesh element Si.
A 1 Tensor

∫
S

ψppd2p, second order moment or orientation tensor.

D 1
s The symmetric part of K, rate of deformation tensor.

I 1 Unit tensor.
K 1 Homogenous flow field tensor.
Q 1 Proper orthogonal tensor or rotation with det(Q) = 1 and Q−1 = QT .
W 1

s The antisymmetric part of K, spin rate tensor.
A 1 Voigt index version of A, second order tensor.
A 1 Tensor

∫
S

ψppppd2p, fourth order moment or orientation tensor.

C 1 The set of complex numbers.

L 1 Auxiliary fourth order tensor, defined as
∑
i

λieieieiei.

M 1 Auxiliary fourth order tensor, defined as
∑
i

eieieiei.

N 1 The set of natural numbers.
P 1 Probability.
R 1 The set of real numbers.
Z 1 The set of integers.
∇ 1 The ∂

∂p operator or gradient.

∇̃ 1 The ∂̃
∂p operator or constrained gradient.
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