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In this paper the integrated traffic control and traffic assignment problem is studied.
This problem can be considered as a non-cooperative game in which the traffic
authority, that controls the traffic signals, and the road users are the players, who use
their own strategy and seek their own optimum. The game theoretical formulation
leads to several different control strategies in which users’ reactions to traffic control
decisions are taken into account. Users’ reactions can be the choice of route, departure
time or even mode, but here only route choice is considered.

In this paper some of these control strategies for traffic signal control are described:
Webster control, Smith’s Py, Anticipatory Control and System Optimum Control. The
first two control strategies are well known and described in the literature. The
anticipatory control strategy can be formulated as a bi-level optimisation problem and
this problem is solved using genetic algorithms. Also the system optimum solution
can be found using genetic algorithms, simultancously optimising route flows and
green times.

In the paper the assignment method, together with the traffic model are formulated. In
the assignment several user classes, each with its own perception of route costs, are
defined and taken into account. For several simple example networks the traffic
control methods are tested and it is shown that taking route choice into account is
beneficial to the network performance. Further research will focus on the
improvement of the traffic model used in the control optimisation, realistic networks
and the problem of departure time choice.
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1.1 Problem description

Traffic control and traveller’s behaviour are two processes that influence each other.
The two processes have different ‘actors’ who may have different goals. The road
manager will try to achieve a network optimum and will try to control traffic in such a
way that this optimum is reached. Tools for controlling traffic are for example traffic
signals, traffic information, ramp metering, etc. The optimum for the road manager
can be minimum network delay or a preferential treatment for certain user groups, €.g.
public transport or pedestrians (system optimum). The road users will search for their
own optimum, e.g. the fastest or cheapest way to travel from A to B (user optimum).
Decisions taken by the road manager in controlling traffic in a certain way have an
influence on the possibilities for travellers to choose their preferred mode, route and
time of departure, and vice versa. A change in traffic control may have the impact that
traffic volumes change. If, for example, traffic control is modified such that
congestion on a certain route disappears and delays on intersections decrease, traffic
might be attracted from other links where congestion still exists or which are part of a
longer route. This might have the consequence that queues, which originally
disappeared, return. Delays may reappear at the original levels (Van Zuylen, 2001).
The question is then whether there still is a net profit for the traffic system as a whole.
The same question arises with respect to new traffic that may emerge as a
consequence of shorter travel times, due to either elastic demand or induced demand.
Another example is that public transport gets priority in intersection control. The
delay for other road users may increase and thus force these road users to search for
other routes, departure times or even transport modes in the network (Mordridge,
1997).

1.2 Solutions Approaches

If it is assumed that a modification in traffic control gives a change in travel
behaviour, it is necessary to anticipate this change. If delays are optimised, it should
be done for the traffic volumes that will be present after the introduction of the
optimised traffic control and not for the traffic volumes that existed before the
implementation. If the reaction of travellers is neglected in the optimisation of traffic
control, the results may even be just opposite to the desired improvement. Mordridge
shows that the improvement of the traffic condition for cars in a network with cars
and public transport may cause a modal shift from public transport to the car, which at
the end deteriorates the travel conditions for both modes (Mordridge, 1997).

Of course, it is possible to follow an interactive approach, where after each shift in
traffic volumes the control scheme is adjusted until equilibrium has been reached, or
one may use self-adjusting traffic control. However, it can be shown, for certain
examples, that the process of the adjustment of traffic control, followed by a shift in
traffic volumes, does not necessarily lead to a system optimum. It is even possible that
the system oscillates between two or more states. This arises from the fact that the
system optimum is not necessarily the same as the user optimum. The system
optimum is good for the network as a whole, but can be disadvantageous for a part of
the travellers in the network. The control problem is therefore to optimise traffic
control in such a way that the system is at a certain, prescribed optimum, taking into
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account the reaction of travellers. This is called the combined traffic assignment and
control problem. More than 25 years this problem has been the subject of study. For
an extensive overview one is referred to Taale and Van Zuylen (2001).

The reaction of users on traffic management measures has been included in many
models that simulate the dynamics of traffic flows in networks. The shift of routes as
response to travel times and traffic information is a standard feature of most dynamic
traffic assignment models, some take also the shift in departure time into account.
Very few give also an estimate of modal shifts, the shift in the demand-supply
equilibrium and reallocation of activities. The optimisation of traffic control and
traffic information, taking into account the response of travellers, is still less common.
If one classifies the available literature, a distinction can be made between three
different approaches to solve the combined assignment and control problem. The first
is the iterative approach, which solves both problems separately and uses the outcome
of one problem to serve as the input for the other problem. Most of the time this
iterative process converges to a solution, although it cannot be proven that a unique
solution exists. Van Zuylen and Taale (2000) showed for some examples that multiple
solutions can exist and that some of them might be meta-stable. In game theoretical
terms this can be considered a Cournot game, where the road manager and the road
users are the two players who react on each other’s moves, but don’t have any
knowledge about each other’s behaviour. The second approach is the anticipatory
optimisation approach. This approach still solves both problems one at the time, but in
the optimisation of traffic control the reaction of the road users (e.g. route choice) is
taken into account. In game theory this is called a Stackelberg game, where the road
manager and the road users are two players and the road manager can anticipate the
road users moves, because he has certain knowledge about their behaviour. The third
approach solves both problems simultaneously and aims at a control policy that
optimises globally, taking into account users’ behaviour. Game theory calls this the
monopoly game, where one player (in this case the road manager) can optimise the
control with the assumption that the other player (the road users) obeys his directives.
The game-theoretical approach is similar to the bi-level programming formulation,
which is used to solve the combined optimisation problem in the more recent
literature (Clegg et al, 2001 and Maher ef al, 200]). The bi-level programming
approach formulates the problem as two sub-problems and solves them
simultaneously on two levels. Assumptions about the information known to the
decision makers on the upper and lower level sub-problems determine which of the
three approaches described above is used.

1.3 Research Aspects

From the literature it can be concluded that previous research was restricted to traffic
signal control and route choice most of the time. Other aspects such as other traffic
control measures and other travel choices (e.g. departure time) were rarely taken into
account. In most references a static demand is assumed and the optimisation of the
traffic control is restricted to green times only. The way in which delay is calculated
varies: most of the time a delay formula (Webster’s or TRANSYT) is used, but
sometimes also simulation models, such as SATURN or DYNASMART. It must be
emphasised that in most cases formulas are used that are not capable of handling over-
saturated conditions and therefore lack practical relevance, because route choice in a
network depends strongly on the network conditions and level of congestion. Other



In this paper the focus will be on the comparison of several control strategies for a
number of small example networks. All cases have dynamic demand and cycle time
optimisation is included in all control strategies. For the evaluation of the control
strategies in the main loop the microscopic simulation model FLEXSYT-II- is used.
The reader is referred to Taale and Middelham (1995) for more details. For the
optimisation within some control strategies, a simple traffic model is used. The model
propagates traffic through the network with some relations like the conservation of
flow. Tt also calculates travel times, using specific delay functions.

The goal of the research is to determine the effects of anticipatory control for several
small, artificial networks, in comparison with traditional control strategies. To make
the route choice as realistic as possible, several user classes are defined, which differ
in their route choice behaviour.

1.4 Paper contents

The paper is structured as follows. First, in chapter 2 the control strategies tested are
described. In chapter 3 the traffic model and the traffic assignment method are
specified and the solution algorithm is given. In the next chapter the example
networks are sketched together with their characteristics and the results for all
examples and all control strategies are given. Finally, conclusions are drawn and
items for further research are briefly mentioned.

Effects of Anticipatory Control with Multiple User Classes 229



2 Control Strategies

Optimisation of traffic signal control is one of the oldest research fields in traffic
engineering. The subject has drawn the attention of many researchers. In this paper
several old and new control strategies are described and tested. The purpose is to
study the interaction of these control strategies with route choice. Within all control
strategies only the green times are varied between minimum and maximum values.
The cycle time is not fixed, but is a result of the green times used. The results of all
strategies are compared with the results of fixed-time control. The fixed-time control
strategy is optimised for the demand of the busiest time period, using Webster’s
strategy, described in the next section.

2.1 Webster

Already in the fifties Webster published his famous report on the optimisation of
fixed-time traffic control (Webster, 1958). In his work Webster did a theoretical
analysis and carried out a lot of simulations to derive a formula for the average delay
due to signal control. His formula for the average delay for a vehicle is:

2 2 1
:C(l—(g/C)) + x —0.65-S )3 2+5(g/C)
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where d is the average delay per vehicle in seconds, C de cycle length in seconds, g
the effective green time in seconds, x the degree of saturation defined as (g/s)*(g/C)
(demand divided by the saturation flow and multiplied with the green fraction) and ¢
the arrival rate in vehicles per second. In most applications of this formula the third
term is omitted and replaced by a multiplication with 0.9. The formula then reads

c(- (g/C))2 + x?
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Webster used these formulas to derive a general, optimal fixed-time control plan. He
found that the general formulas for an optimal cycle time and the accompanying green
times are

q
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It is known that other coefficients than 1.5 and 5 can give better results in other
circumstances (Van Zuylen, 1980), but in this paper formula (3) is used to calculate
new cycle times and new green times for every time period and every intersection for
the flows entering that intersection. This means that the control plan changes due to
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2.2 Smith’s P

According to Smith three solution methods for the combined traffic assignment and
control problem are possible: the iterative approach, the integrated approach and a
generalisation of the iterative approach taking the control strategy into account
(Smith, 1985). The control strategy Py is the result of this approach (Smith, 1980).
Smith also showed that the Py control strategy complies with three conditions for
equilibrium (flow, queues and control) and that using Py simplifies calculating a
solution (Smith, 1987). It has capacity maximising properties, because it does not try
to equalise the delays for every conflicting movement, but the product of delay and
saturation flow.

The Py control strategy is implemented as a minimisation problem. For every
intersection and every time period the product of delay and saturation flow for all
conflicting movements is equalised and minimised. The saturation flow is given and
the delay is estimated with the HCM 2000 delay formulas (TRB, 2000). In these
formulas the average delay in seconds per vehicle is estimated with

d=d, +d, +d, 4
where

_ ca-g/op
' 2(1-min(L x)(g/ C)) ‘

d, :900Tf[(x—1)+ l(x - 1) +-8QXTKfI]

The extra term d; is a term for additional delay due to non-zero queues at the start of
the analysis period. With this term the time dependency is better, because the delay
resulting from queues from the previous period are taken into account. In the formulas
for d; and d, the variables are the same as before.  the capacity of the signal
controlled lanes in vehicles per hour (QO=sg/C, where s is the saturation flow in
vehicles per hour), Ty the time interval in hours for which d is calculated and during
which the arrival rate g is constant. The additional parameters K and [ stand for a
parameter for the given arrival and service distribution (e.g. 0.5 for fixed-time
control) and a parameter for variance to mean ratio of arrivals from upstream signals
(e.g. 1.0 for Poisson arrivals) respectively.

®)

2.3 Anticipatory Control

The control strategies described above are reactive, meaning that they react on the
current traffic conditions. It is also possible to anticipate on future traffic conditions,
taking into account route choice. To that end, traffic assignment can be incorporated
in the traffic control strategy. This can be formulated as a bi-level optimisation
problem. In game theory this is called a Stackelberg game. The first two control
strategies lead to a Cournot game. In the upper level problem the traffic manager tries
to minimise the total travel costs
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In this formula is o an origin, d a destination, R the set of feasible routes between o
and d, r a possible route, k the departure time interval, /7 the route flow between o
and d for route r departing during time interval &, ¢;"* the accompanying costs for this
route flow (possibly travelling in more than one time interval) and G the set of
feasible green times. The mark on the route flows f means that the route flows are in
equilibrium, which is the solution to the lower level, dynamic traffic assignment
problem (see paragraph on traffic assignment). So the road manager performs his
optimisation for network flows that are constrained by the requirements of the user
equilibrium.

To solve this problem, not an analytical, but a heuristic approach is used. Every
feasible combination of green times can be seen as a point in the solution space G. To
find the best combination, use is made of genetic algorithms. Genetic algorithms are
part of the larger family of evolutionary algorithms. In general, evolutionary
algorithms mimic the process of natural evolution, the driving process for the
emergence of complex and well adapted organic structures, by applying variation and
selection operators to a set of candidate solutions (population) for a given
optimisation problem. In the past some simulation experiments with genetic
algorithms have been carried out (see for example Foy ef al, 1992; Hadi and Wallace,
1993 and 1994; Montana and Czerwinski, 1996; Clement and Anderson, 1997). From
these experiments it can be concluded that using genetic algorithms to find optimal
timing plans for intersections, which adapt to the actual traffic situation, is a
promising idea. For the Dutch situation, with a lot of local, advanced vehicle actuated
traffic signal control, the use of evolutionary algorithms to adapt the maximum green
times (one of the important parameters of vehicle actuated control) according to the
changing conditions was also studied with fairly good results (see Taale et al, 1998;
Taale, 2000 and 2002).

For this paper a real valued genetic algorithm was used, implemented as a MATLAB®
toolbox, which is named the Genetic Algorithms for Optimisation Toolbox (GAOT)
(Houck er al, 1995). In the case of Anticipatory Control a member of the population
(solution space) is a vector of green times of all intersections and time periods. Every
member is evaluated using traffic assignment and simulation in an iterative way (see
also figure 1). Because it takes a lot of time to iterate towards equilibrium, the number
of iterations can be limited. This can be considered as predicting a few days ahead in
a day-to-day route choice process. In the calculations described below, a choice of
one day has been used. Predicting further ahead improves the final result, but not that
much (Taale and Van Zuylen, 2003) The result of this process is a combination of
green times that takes future traffic conditions, with respect to route choice, into
account.

2.4 System Optimum Control

The system optimum control strategy is not really a practical one, but it is a kind of
benchmark, useful to compare with other control strategies, because it represents the
best that can be achieved if the traffic manager has total control. In some cases the
road manager is able to impose route choice to the road users by regulations (one-way
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The flows don’t have to be in equilibrium, but have to belong to the set of feasible
route flows F. Again, genetic algorithms, implemented in the GAOT MATLAB®
files, have been used to solve this optimisation problem. In this case a member of the
population is a vector with route flows and green times for every time period. Genetic
algorithms do not guarantee an optimal solution, but they will approach it fairly close,
dependent on the number of generations and the size of the population. An advantage
of genetic algorithms is that local optima are avoided; a disadvantage is the
calculation time needed.
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3 Algorithms

In the work described in this paper, a choice has been made to use simulation, both in
the evaluation of control strategies as in the traffic assignment procedure, which is
basically an iterative approach. The iterative approach is used, because of the
possibility to handle different control types realistically and more reliable. Also, with
simulation, the problems with the analytical description of the complex, non-linear
behaviour of traffic flow is circumvented (Abdelfatah and Mahmassani, 1998 and
2001). In the traffic assignment procedure the microscopic simulation model
FLEXSYT-II- is used (Taale and Middelham, 1995) and for the evaluation of the
control strategies a simple, analytical model is used, which is described in the next
paragraph. After that the traffic assignment and solution algorithms are described,

3.1 Traffic Modelling

The traffic model is a simple demand/capacity model that uses travel time functions to
calculate link travel times. For that purpose the travel time functions described by
Akgelik (1981 and 1991) and functions from the HCM 2000 (TRB, 2000) are used.
These functions can be used for uncontrolled and controlled links. An advantage of
the HCM 2000 formulas is that they take the initial queue into account. For
uncontrolled links the travel time is estimated with

t=L+o.25-Tf (r=1)+ f(x=1)? 45 La® (8)
Y free s~Tf

where / is the link length, vs., is the free speed on that link, s the saturation flow, Ty
the analysis period for which the arrival rate ¢ is constant, x the degree of saturation
(g/s) and J, the so-called delay parameter. This parameter is dependent on the type of
road and has a small value for motorways and larger values for arterials or secondary
streets. For controlled links with no initial queue the travel time is estimated with

— 2 . . .
t=L+M+900T{(x—l)+\/(x—1)2+MJ x>1
Y ree 2(l—min(1,x)%) o1,
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where C' is the cycle time in seconds, g the effective green time in seconds, Q the
capacity of the signal controlled lanes in vehicles per hour (Q=sg/C, where s is the
saturation flow in vehicles per hour) and x is the degree of saturation (x=¢/Q). The
additional parameters K and 7 stand for a parameter for the given arrival and service
distribution (e.g. 0.5 for fixed-time control) and a parameter for variance to mean ratio
of arrivals from upstream signals (e.g. 1.0 for Poisson arrivals) respectively.

If an initial queue is present an extra delay term dj (sec/veh) is added, which is
defined as
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where W is the initial queue in the previous period (in vehicles), ¢ the period (in hours)
of unmet demand in 7y and » a delay parameter. Further details can be found in (TRB,
2000).

Input for the model is a network consisting of nodes and links, with their attributes.
The nodes are described by their type (normal, origin node, destination node or
controlled node) and their incoming and outgoing links. The links have attributes such
as length, number of lanes, saturation flow and desired speed. Also different link
types are distinguished: normal links, signal controlled links or metered links. Other
input for the model is a set of general parameters, such as the number of time periods,
the duration of these time periods and the length of the time step, which is used in the
calculations. The length of the time step is maximised by the time a vehicle can travel
the shortest link with free flow speed. Also origins and destinations have to be
specified, including an OD table with the demands. Because a route based assignment
is used, for every OD pair a set of feasible routes has to be specified. For the traffic
model itself, the following algorithm is used:

Algorithm 1: Simple Traffic Model (T-Model)

Step 1: Initialise
1.1: determine general paramelers, link and node attributes;
1.2: calculate incoming and outgoing saturation flows per node;
1.3: give every link an initial flow according to the demand.

Step 2:  Main loop for every time step:

2.1: determine fiee flow travel time and capacity (depends on control) per
link;

2.2: calculate travel time and delay per link with Akgelik travel time
functions;

2.3 compute the outflow and the remaining space for every link, taking into
account downstream queues;

2.4:  for every node compute the inflows and outflows;

2.5: determine the inflows for every link;

2.6: calculate for every link the flows for the next time step.

Step 3: Route delays and travel times:
3.1 initialise variables;
3.2: calculate route delays and travel times per time step;
3.3: calculate route delays and travel times per time period;
3.4: calculate total time spent and total delay.

The T-Model is quit simple, but gives reasonable results and is very fast in
calculations. Therefore, T-Model is used as the objective function in the genetic
algorithms.

Effects of Anticipatory Control with Multiple User Classes 235



3.2 Traffic Assignment

The road user is assumed to obey the route-based discrete-time dynamic traffic
equilibrium, which can be defined as:

For each origin-destination (OD) pair, the route travel costs Jor all users,
travelling between a specific OD pair and departing during a specific time interval
are equal, and less than (or equal to) the route travel costs which would be
experienced (or perceived, in case of a stochastic assignment) by a single user on
any unused feasible route (Chen 1999 and Bliemer, 2001).

In fornmulas this definition can be expressed as

([ >0 =n)"),  Vo,d,re R,k (1D
where
7[,‘:‘1 = m}g’g}czd, Yo,d, k (12)

The traffic assignment problem can be formulated as a discrete time (finite
dimensional) variational inequality problem: find an f< @ such that

22 2@ DU - £ 20, Ve Q, (13)
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where Q is defined as the set of all f satisfying the following constraints:

DR =g, Vo,d,k,
re R (14)
=, Vo,d,re R k

g2 is the demand between origin o and destination d for time interval k and R°? is the
set of feasible routes between origin o and destination d. In a stochastic assignment

the perceived route costs &/ can be represented by

~rod rod

& = e (15)

where ¢ are the real travel costs and £, is the random component. If it is assumed

that the random term is an independently and identically distributed Gumbel variate,

than the multinomial logit model is obtained. Given actual travel costs, the route
choice probabilities can then be described by (Sheffi, 1985 and Chen, 1999):

Prod _ exp(—9 cl:()d)
, Z exp(—0¢™)

seR
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where @ is a parameter that reflects the degree of uncertainty in the travel time know-



information. In general there are three user types: habitual users, partially mtormed
users and perfectly informed users. Habitual users always take the same route,
irrespective of the information, e.g. if they don’t have any alternative or no access to
any information. Partially informed users know something about the conditions in the
network due to their experience, but they are not completely informed like the
perfectly informed users, who know all about the network condition for now and in
the future. Perfectly informed users are the main assumption of the dynamic user
equilibrium assignment.

A logit model describes the stochastic assignment with mixed user classes. In this
paper the C-logit model, proposed by Cascetta ef al (1996), is used. This logit model
takes into account overlap in routes with the so-called commonality factor given, for
route » of OD pair od per time period &, by

/4
L
CF/™ =B Y { ] Vo,d,re R” ,k (17)
ser™ [LrLS

where L, and L, are the ‘lengths’ of routes » and s belonging to OD pair od. Lys is the
‘length’ of the common links shared by routes » and s and § and y are positive
parameters. ‘Length’ can be the physical length or the “length’ determined by travel
costs. In our case travel times are used. With this commonality factor and the known
travel costs, the probability to choice path r, for OD pair od, time period k and user
class u, and flow f for that user class are given by

exp(=9, ¢ — CF"")

P':d —
: exp(—6, ¢ ~ CF™
Sg‘:wd p( u -k k ) (18)
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where £, is the fraction of users belonging to class u.

3.3 Solution Algorithms

Using the control strategies, the traffic simulation model and the traffic assignment
procedure described in the previous paragraphs, the solution algorithm for the
combined dynamic control and assignment problem (DCAP), except for the system
optimum control and assignment, is as follows:

Algorithm 2: Solution algorithm DCAP

Step 1: Initialise
1.1: initialise general parameters;
1.2: read network file with links, nodes, OD pairs, demands, routes and
traffic signal control information;
1.3 determine initial green times g and cycle times c;
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Step 2:

Step 3:

1.4: initial assignment based on free flow travel times (or pre-specified) to
calculate initial route flows £2 and Link Slows u®;

1.5: calculate initial route costs ¢ and total delay TD® using FLEXSYT;

1.6: set counter M=].

Main loop

2.1: determine necessary intersection information (minimum and maxinum
timings, etc.),

2.2: for all time periods and all intersections calculate new green times g™
and cycle times C™ with Webster, Smith’s Py or Anticipatory Control;

2.3: calculate route costs €™ and total delay TD™ using FLEXSYT;

2.4: calculate new route flows £ and link Slows u™ using stochastic
assignment (formulas (17) and (18);

2.9: calculate new 8y with 8, =a-e™ +b/(M +1);

2.6: smooth route flows with 0 = M) 1 SM(i(M)—f(M'l));

2.7: round flows on integers and make them consistent with demand;

2.8: check convergence: if {™ =MD gop stop, otherwise set M=M~+1 and
go to step 2.1.

Final touch.

3.1: calculate route costs €™V and total delay TD™MD using FLEXSYT;

3.2: determine simulation time.

In steps 2.6 and 2.7 the method of successive averages (MSA) is used to smooth the
flows. The convergence of the MSA is slow, because the step size quickly becomes
small and slowly decreases. Therefore, the step size dy is chosen in such a way that in
the first few iterations the step size is larger than the size normally used ({/n), and
smaller in the next iterations to speed up convergence. The necessary conditions

(Sheffi, 1985) 251' =oco and Zé‘f <eo are fulfilled for every choice of a>0, b>0,
i=1

=1

at+b=1 and #>0. For this paper ¢=0.8, 5=0.2 and #=0.2. For anticipatory control the
algorithm is also sketched in figure 1. Note that in the anticipatory control strategies
T-Model and the stochastic assignment are used frequently as an objective function,
to evaluate the vector of green times. In the calculations for this paper, n was set to 1.

| itialisation |

Optimisation contro]

[

T-Model
FLEXSYT-II-

Zuows Joua

l

Assignment

Soew = fota



which uses a genetic algorithm to determine best green times and route 1lows
simultaneously. This algorithm is:

Algorithm 3: Solution algorithm SOCAP

Step 1: Initialise

1.1: initialise general parameters;

1.2: read network file with links, nodes, OD pairs, demands, routes and
traffic signal control information;

1.3:  determine initial green times o and cycle times cO;

1.4: initial assignment based on free flow travel times (or pre-specified) to
calculate initial route flows 9 and link flows u®;

1.5: calculate initial route costs ¢ and total delay TD® using FLEXSYT.

Step 2: Main loop:
2.1: determine necessary intersection information (minimum and maximum
timings, etc.);
2.2: for all time periods calculate new green times g cycle times C
route flows £ and link flows u,

&

Step 3: Final touch:
3.1: calculate route costs ¢V and total delay ™D using FLEXSYT;
3.2: determine simulation time.

In step 2.2 all variables all calculated in one round, using genetic algorithms. The
outcome is evaluated in step 3 using FLEXSYT-II-.
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4 Case Studies

4.1 Case description

The solution algorithms described were used to test the different control strategies for
several small road networks, depicted in figure 2. The black dots represent signal-
controlled intersections, the grey dots represent ramp metering locations.

Case 4

Figure 2: Several small road networks

The networks are hypothetical, but show a lot of variation in structure, demand and
other characteristics. Due to the limit in size of the paper, not all characteristics (e.g.
length and capacity of links) of the networks can be given. At this point it is sufficient
to show that a variable demand is used. The number of time slices and the demand for
all cases and OD pairs in shown in table 1.

Table 1: OD demands (veh/hr)

OD pair Time period

(# routes) 1 2 3 4 5
Casel | AB(2) 900 | 1900 | 1000 400 400

CD (D) 400 800 400 300 300
Case2 |AB(2) 900 | 1900 | 1000 400 400

CD (D) 400 | 1000 400 300 300
Case3 | AB(2) 1200 | 1900 | 1000 700 -

CD (2) 400 | 1700 400 300 -
Case4 | AB(3) 2000 | 3500 | 2000 | 1500 -
Case 5 | AB(6) 2000 | 3400 | 2000 | 1500 -




assignment. For the control strategies the green times are allowed to vary between 7
and 40 seconds. The cycle time is not pre-fixed, but based on the green times and the
intersection lost time, which is always 10 seconds.

Following Chen (1998) the parameters for the C-logit algorithm are chosen to be f =
1.0 and y = 2.0. Three user classes are defined: class 1 are habitual users (10%), class
2 users (70%) have the perception parameters 6, = 1.0 and class 3 users (20%) have 03
= 3.0. These values were used for all cases. For case 1 extra runs were made with one
user class with the perception parameter 6 = 1.0.

For Anticipatory Control the number of generations for the GA is set to 60, with a
population size of 25 and for the System Optimum Control the population size is set
to 20 and 1500 generations should lead to a near optimal solution.

It is well known that different initial assignments can lead to different equilibria (Van
Zuylen and Taale, 2000). For three cases (case 1, 4 and 5) the initial assignment was
based on the free flow travel times. For cases 2 and 3 the distribution of the initial
route flows was an extreme one: most of the traffic demand on one route and the rest
on the other. The effects of other initial flows were not studied. All results, except the
Webster control strategy for case 4 were obtained within 50 iterations. The exception
took 52 iterations.

4.2 Results

The results for all cases and for all control strategies, in terms of the percentages of
total delay of the equilibrium solution in comparison with fixed-time control (100%),
are shown in figure 3.

B Webster aPo 8 Anticipatory System optimum

Case 1 Case 1 Case 2 Case 3
(1UC) (3UC)

140% -

120% 1

100% -

80% -

60% -

40%

20%

0% -
Case 5

Case 4
Figure 3: Percentages all control strategies in comparison with fixed-time control

The resulis show that for the cases 1, 2 and 4 Anticipatory Control is better than the
traditional control strategies (Stackelberg game gives better results than Cournot
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game). For the cases 3 and 5 Py is the best control strategy. Perhaps this strategy is
good in symmetric networks, such as in cases 3 and 5. Another reason could be that
for Anticipatory Control there are differences between the model used for the
optimisation (T-Model) and the model used for the evaluation (FLEXSYT-II-). T-
Model is a linear model that always gives consistent results in the sensc that
increasing flows lead to increasing travel times. FLEXSYT-II- is a stochastic model
and therefore it is possible that increasing flows do not necessary lead to increasing
travel times. This explains also that sometimes other results than expected are
obtained: for case 2 the System Optimum Control is worse than Webster Control! If
T-Model is used for both the optimisation and the evaluation, also for the cases 3 and
5 Anticipatory Control is better (Taale and Van Zuylen, 2003).

For case 4 it was difficult to beat the optimised fixed-time strategy. Only Anticipatory
and System Optimum Control showed improvements. This is due to the fact that not
all possible routes have control. The same is true for case 1, but there only two
possible routes exist. Optimising the controlled intersection locally attracts traffic
from the route without control and thus decreasing the performance. Anticipatory
Control takes into account the route choice process and performs better.

In most cases System Optimum Control gave the best results. Of course, this control
strategy will be difficult, if not impossible, to implement in real life, because it
supposes complete cooperation of all road users, even when the decisions the road
manager makes are not beneficial to them. In game theory this is called the monopoly
game.

On average, for the example networks and initial assignments studied, Webster gave
an improvement of 10%, Py gave an improvement of 15%, Anticipatory Control 19%
and System Optimum Control 34%. The results for the last two strategies are biased
due to the T-Model used for the optimisation.

The influence of the use of multiple user classes is not so large. Analysing the results
in figure 3 for case 1 with one user class and three user classes, one can see that the
relative differences are the same. Only the absolute values differ.



Fairly large improvements are possible if route choice is taken into account in the
control strategy. For the examples studied, Anticipatory Control showed an improve-
ment of 17% in comparison with optimised fixed-time control. In three out of five
cases Anticipatory Control was better than the traditional control strategies. If not, the
differences were due to the inconsistencies between the model used for the
optimisation (T-Model) and for the evaluation (FLEXSYT-II-). Therefore,
improvement of T-Model is needed.

From the traditional control strategies Py appeared to be the best, with an average
improvement of 15%. Webster only gave an improvement of 10%, which is consistent
with the results if T-Model is used for evaluation (Taale and Van Zuylen, 2003).

Further research will focus on the use and optimisation of vehicle-actuated control.
VA control is the normal Dutch strategy for all intersections and will be studied in
combination with anticipatory control, especially for more complex intersections.
Other important research topics are the assumptions made for this paper. The question
can be raised, what happens if the OD matrix is not known precisely or the
assignment is not in equilibrium. Finally, the influence of departure time choice will
be an interesting research field.
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