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Abstract

No-reference image quality assessment (NR-IQA) is a challenging field of research that,
without making use of reference images, aims at predicting the image quality as it is per-
ceived by the human visual system (HVS). Many NR-IQA methods have been proposed over
time but recently proposed convolutional neural network (CNN) based approaches, through
their powerful feature learning capabilities, have outperformed all previously existing NR-IQA
methods. But these CNN based approaches are perceptually incorrect in assuming distortions
to be homogeneously distributed across images. They operate on very small image portions
while considering all of them to have identical perceptual quality, whereas in reality, different
parts of an image, based on their structure and content, could bear different perceptual quality.
Further, these approaches utilize shallow CNN architectures which render them incapable of
taking advantages offered by the deep CNN architectures.

To improve upon the limitations of existing CNN based approaches, we conducted a design
space exploration of CNN’s and proposed a suitable CNN design for NR-IQA task, that operates
on bigger image portions and employs a deeper architecture. The proposed design achieves
the state of the art performance on LIVE and TID datasets. We further provide informative
visualization of features learned by the proposed CNN design, which shed light on its internal
working while promoting further understanding regarding the nature of image quality.
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Chapter 1

Introduction

With an increase in the popularity of smartphones, compact cameras, and Internet ser-
vices like Facebook and Instagram, past few years have seen tremendous growth in
the production and sharing of digital images. The journey of a digital image starts
with it being acquired by a digital camera, which converts it into a digital format and
compresses it using lossy compression algorithms to meet the onboard storage avail-
ability. This image is then transmitted over wired or wireless transmission channels
and is altered in its resolution to meet the available bandwidth. Finally, the end user
receives this image and watches it over devices ranging from smartphones to 4K dis-
plays, which require further alterations to its resolution. As shown in Figure 1.1, all
these stages generate visible artifacts in images that decrease the quality of experience
among the end users who expect images to be of highest quality. The end users tend to

(a) Reference Image (b) Acquisition (c) Compression

(d) Transmission (e) Display rendering

Figure 1.1: Resulting distortions in undistorted image during (b) acquisition, (c) com-
pression, (d) transmission and (e) display rendering.
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Introduction

become more inclined towards the selection of a content provider, a service provider,
and a display device that could better satisfy their expectations of image quality at de-
livery. Thus it becomes crucial for all content providers, service providers, and display
providers to optimize these respective technologies towards the provision of perceptu-
ally good results, and to do so, perceptual image quality needs to be estimated. Fur-
thermore, this estimation process should be automated, as much as possible, to make
it independent from the availability of human observers in order to determine the per-
ceptual quality.

Image quality is defined as the characteristic of an image that measures its level
of degradation as perceived by the human visual system (HVS) [64]. Since modeling
HVS and its sensitivity to degradation is extremely difficult, it is very tough to perform
image quality assessment (IQA) accurately. Past few decades have witnessed tremen-
dous research in the field of IQA and many methods, ranging from subjective IQA (use
human observers for IQA) to Objective IQA (use mathematical models for IQA), have
been proposed.

No-reference image quality assessment (NR-IQA), a branch of objective IQA, esti-
mates image quality without utilizing any information on reference images ( the undis-
torted versions of the image). Since NR-IQA is not dependent upon the availability of
reference images, it is more flexible than other objective IQA methods that are de-
pendent upon either full reference images (Full-reference IQA) or partial information
about them (Reduced-reference IQA). Furthermore, it has a wider scope of applica-
tions including those where reference images are usually not available. For instance,
in adaptive video streaming where resources (like bandwidth) need to be optimized
for delivering maximum possible quality, or in restoration algorithms (like denoising
or sharpening) that are applied to improve quality at delivery. Thus NR-IQA methods
are more desirable, but the unavailability of reference images render them incapable
of reasoning in terms of image fidelity (inferred by the ability to discriminate between
two images [52]), that make them even more challenging to achieve.

Many NR-IQA based algorithms have been proposed over time. One class of these
algorithms including DIIVINE[37], BLIINDS-II[49], and BRISQUE[35] use hand-
crafted features (attributes (edge, color, etc.) in data (images) that are relevant to the
modeling problem [3]) that supposedly captures relevant factors affecting image qual-
ity. Although their performance is acceptable, there is still large room for improvement
regarding the accuracy with which they reproduce human judgment of quality. An-
other set of algorithms, including CORNIA[66][67] and convolutional neural network
(CNN) based approaches [25][26], employ automatic learning of features from the
raw image pixels, which are superior and more efficient as they make feature selection
automatic and embedded within the system itself.

CNN is a multilayered feedforward neural network inspired from HVS. Given an
image, the strength of CNN lies in its ability to extract multiple layers of features,
which has been shown to mimic different stages of HVS [29]. The features of higher
layers are developed upon the features of the lower layers, and thus they become more
complex with the increase in CNN depth [11]. It has been shown in the networks
trained to recognize object categories in images, that the lower layers of CNN learn

2



Introduction 1.1 Research Objectives

to extract simple features related to color and contrast whereas the higher layers are
specialized into learning features of higher complexity, such as semantics. This ability
of CNN’s to learn high-level features could be utilized in developing better attributes
in the context of image quality, which could simplify and thus improve the task of
image quality assessment.

Though existing CNN based approaches [25][26] have reported superior perfor-
mance over other NR-IQA methods, there is still a lot of room for improvement. To
start with, since the fixed CNN architecture restricts input images to be of fixed size,
the mentioned CNN based approaches use very small portions of input images (usu-
ally 7 x 7 or 32 x 32), called image patches, for feature learning and thus are trained
to predict patch quality. During training, all patches belonging to the same image are
assigned the quality label of the whole image. Since SSIM [60] has shown that image
quality also depends on the structural information present in an image, considering all
patches to have the same quality as their corresponding image is perceptually incor-
rect. It is because, depending upon the structure of an image and the content of its
patches, distortion may vary among different patches within the same image, resulting
in distinct perceptual quality among them. Further, since image quality also depends
on the structural information of an image, global information is vital for the accurate
prediction of image quality. Thus we believe that bigger input patches should be used
instead to take more global information into consideration, which also bring the quality
of employed patches closer to the actual quality of the whole image.

Furthermore, the existing CNN based approaches employ a small number of con-
volutional layers (usually one or three layers), which prevents the network from learn-
ing high-level features from input images. Thus the full potential of CNN has not yet
been exploited for the application of NR-IQA.

Based on all these observations, in this research project, we further explore CNN
design with an aim to improve upon the current limitations of automatic feature learn-
ing based approaches. Our main goal is to develop a CNN for the application of
NR-IQA that (1.) employs bigger input patches and (2.) has a deeper architecture with
more convolutional layers.

Since the inner working of CNN’s is typically difficult to understand because of
their big architectures, we also aim at exploring their inner working, when trained
for the application of NR-IQA, by visualizing and understanding the nature of their
learned features. This could further help in better understanding the requirements
of efficient IQA metrics and thus could be useful in designing improved algorithms
through the fulfillment of these requirements.

1.1 Research Objectives

As discussed before, existing CNN based NR-IQA approaches ([25] and [26]) suffer
from many limitations. With an aim to overcome these limitations and to visualize
features learned by the CNN trained for the application of NR-IQA, this thesis project
addresses two main research questions.

3



1.1 Research Objectives Introduction

Research Question 1
What is a suitable design for a convolutional neural network to predict perceived
image quality in a no-reference setting?

We define four objectives to answer this research question:

Objective 1 Explore the field of image quality assessment and deep learning.

The goal here is to first understand the nature of the problem and review the
amount of work that has already been done, so as to choose an appropriate
methodology. A literature study on IQA methods gives the performance bench-
mark that guides our decision making. A literature study on deep learning elabo-
rates upon the set of available tools that can be utilized for achieving the goals of
this project. This objective is linked to the literature study presented in chapter
2.

Objective 2 Define research methodology.

The goal here is to define an approach, based on the outcomes of objective 1,
which is suitable for answering the first research question. This objective is
linked to chapter 3 in which we describe our general research methodology.

Objective 3 Propose a convolutional neural network design.

The goal here is to propose a CNN design for the application of NR-IQA,
through design space exploration (that includes parameters of the training pro-
cess and CNN architecture) of CNN. This research objective is linked to chapter
4.

Objective 4 Evaluate the proposed convolutional neural network design

The goal here is to conduct an extensive performance evaluation of the CNN de-
sign that obtained as an outcome of research objective 3. This research objective
is linked to chapter 5 in which we report the results of the undertaken evaluation.

Research Question 2
What can we learn from the visualization of features developed by a convolutional
neural network trained for image quality assessment?

We define two objectives to answer this research question:

Objective 5 Define a methodology.

The goal here is to define a methodology for generating and inspecting feature
visualizations of proposed CNN design ( the outcome of objective 3). This ob-
jective is linked to chapter 3 in which we describe the research methodology.

Objective 6 Report the observations derived from the analysis of feature visualiza-
tions.

The goal here is first to generate the feature visualizations of CNN, and then to
analyze them in light of the perceptual quality assessment task. This objective
is linked to chapter 6 in which we present the generated features and report our
observations.

4
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1.2 Contributions

This thesis project provides the following contributions:

1. Convolutional Neural Network Design

We propose a state of the art CNN design suitable for the application of NR-
IQA. To best of our knowledge, the proposed CNN architecture is the deepest
and perceptually the most accurate (in terms that it employ bigger input patches
that bring patch quality closer to the overall image quality) among existing NR-
IQA based CNN architectures. Further, it delivers much superior performance
in comparison to existing state of the art NR-IQA metrics.

2. Feature visualizations

We provide informative visualizations of features learned by the state of the art
CNN architecture. These visualizations could further help in better understand-
ing the characteristics of image quality, which could help in improving IQA
metrics.

1.3 Thesis Outline

This thesis is organized into seven chapters. After this introduction, we present the
literature review in Chapter 2 in which we introduction the fields of image quality
assessment and deep learning. After introducing these two main fields that are the
basis of this research project, we present our research methodology in Chapter 3 that
was used for answering both of our research questions. Then we move on to the main
chapter of this report (Chapter 4) that presents the design space exploration of CNN
and propose a final CNN design for the application of NR-IQA. After fixing the design
of CNN, we present the results of its performance evaluation in Chapter 5. Chapter 3
and 5 answers our first research question. Then in Chapter 6, we answer our second
research question by generating and analyzing the visualizations of features learned
by the proposed CNN design. Finally, in Chapter 7, we conclude our work and give
recommendations for the future work.
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Chapter 2

Background and Related Work

This chapter presents the literature study over which this research project is based on.
Concepts discussed in this chapter are used in proceeding chapters of this report.

In section 2.1, we present background information to the field of image quality
assessment, in which we describe different methods and algorithms used for IQA.
After this in section 2.2, we introduce the field of convolutional neural networks and
present some of its important components. Finally in section 2.3 we conclude this
chapter by summarizing its main findings.

2.1 Image Quality Assessment

As described in the introduction, image quality assessment (IQA) is vital for many ap-
plications, but is also tough to achieve as such because of its dependency on the quan-
tification of user perception. Figure 2.1 shows how the presence of different distortion
types could affect the perceived quality of an image. Till date, the most reliable way
to undertake IQA is through subjective assessments (utilizing human observers), but
this is not practical in real-life applications because users can’t always be dependent
upon to comment on the perceived quality. On the contrary, objective image quality
assessment instead focuses on implementing models of human perception that can es-
timate the quality of an image as perceived by a user based solely on pixel analysis
information.

In the following, we briefly revise existing subjective quality assessment methods
to then go deeper in the state of the art of methods for objective quality assessment.

2.1.1 Subjective image quality assessment

Subjective image quality assessment methods employ human observers to give their
opinion on the quality of images to be assessed. Since humans are the end users in
most of the multimedia applications, subjective IQA methods are the most accurate
and reliable for image quality assessment [36].

Several international standards like ITU BT 500[42], ITU P910[22] and ITU P913[23]
have been proposed for performing subjective image quality assessment. For given set
of images, the main goal of subjective IQA methods is to assign, to each of them, a
score that quantifies the user’s perceived quality. In most cases, it is achieved with a
scaling process, which can either be explicit or implicit [44].
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(a) Reference image (b) Additive Gaussian noise (c) Fast fadding

(d) Gaussian blur (e) JPEG compression (f) JPEG2000 compression

Figure 2.1: Examples of distortion types.

Subjective testing typically focuses on quantifying quality as perceived by an av-
erage observer. A group of subjects is asked to evaluate an image and provide their
perceived quality score. These scores are then accumulated, and the final score is
computed that reflects quality as perceived by an average person observing it. Differ-
ent scales could be utilized for the computation of this final score, for example, direct
scaling in which the perceived quality of an image is calculated as the mean of the
scores that each subject assigned to that image (Mean Opinion Score (MOS)). The
objective IQA methods (to be followed) aim at predicting these mean values using
different models.

Despite being most accurate and reliable, subjective IQA methods are very im-
practical for real-world applications because it is very expensive and time-consuming
to gather an adequate number of observers to assess the quality of images. Hence more
practical objective IQA methods are used instead for many applications.

2.1.2 Objective image quality assessment

Objective IQA methods, instead of using human observers, aim at employing relevant
models that are capable of predicting the visual quality of images as perceived by
humans. Since these algorithms do not require any human observer, they are fast
and very practical for many real world applications, like image enhancement, image
restoration, etc.

To estimate the perceptual quality of the given image (called test image), either
in the presence or absence of its reference image, most of the objective IQA methods
share a common framework of three main phases as illustrated in Figure 2.2. These
three phases are described in the following.
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Figure 2.2: General framework of objective image quality assessment metrics.

1. Corresponding to the employed objective IQA method, the test image is pro-
cessed pixel by pixel or region by region to measure the amount of distortion
present in it. This phase then outputs the measured distortion in the form of a
distortion map that contains the local description of image quality. This step is
equivalent to the process of feature extraction.

2. The first phase produces a multidimensional, but humans perceive image quality
as a single global entity rather than in terms of the local properties of an image.
Thus to produce a global visibility evaluation, a spatial pooling strategy is gen-
erally applied to down-sample the multidimensional distortion map to a single
quality score [61].

3. Since non-linearities, that characterize perception, are not employed in first two
phases, the output might not be sufficiently accurate. Thus a fitting strategy
could be applied to increase the overall accuracy of the framework. This requires
a set of images along with their subjective quality scores (obtained through sub-
jective testing as discussed in section 2.1.1), and a parametric model whose pa-
rameters are learned through regression analysis of model predictions on images
and their actual subjective scores. This learned model is then used to transform
predicted scores into better estimations that are supposedly in line with human
perception.

Objective IQA methods are further classified into three broad categories.

2.1.2.1 Full-reference image quality assessment (FR-IQA)

FR-IQA methods aim at achieving the goals of objective IQA while taking both refer-
ence and test images as input. Since these algorithms also require reference images for
estimating the visual quality, their scope is limited to few applications where reference
images are easily available, like image compression and watermarking.
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Many FR-IQA algorithms have been proposed over time. As per one of these algo-
rithms, image quality can be computed in terms of peak-signal-to-noise ratio (PSNR),
which is simply a ratio of the maximum possible power of a signal and power of dis-
tortion. The power of distortion is generally computed in terms of mean-square-error
(MSE) to calculate the pixel-wise difference between the reference and distorted im-
age. PSNR has its advantages of being simple and computationally very inexpensive,
but it does not deliver very good performance because the essential physiological and
psychophysical characteristics of the human visual system (HVS) are not incorporated
in this algorithm [36].

Structural similarity index (SSIM)[60] is another FR-IQA algorithm that advances
FR-IQA from raw pixels to structures. It is based on the assumption that HVS is
highly adapted to extracting structural information present in an image, and image
degradation is perceived as a change in this structural information. Hence SSIM aims
at assessing the quality of an image by measuring variations in the structural informa-
tion of distorted images (with respect to their reference image). SSIM has been shown
to outperform PSNR in assessing the perceptual quality of images.

Feature similarity index (FSIM)[74] is yet another more recently proposed FR-
IQA algorithm. It relies upon the fact that HVS uses low-level features (like edges
and zero crossing) for the understanding of images. FSIM make use of two features
for estimating the quality of an image: A primary feature called Phase Congruency,
which is a contrast-invariant dimensionless measure of the significance of the local
structure, and an image gradient magnitude feature. FSIM is shown to deliver superior
performance than both PSNR and SSIM algorithms on various datasets.

2.1.2.2 Reduced-reference image quality assessment (RR-IQA)

RR-IQA methods aim at achieving the goals of objective IQA by estimating test image
quality while utilizing partial information on reference images. This partial informa-
tion is usually in the form of features that are extracted from the reference images.

RR-IQA find its application in communication networks that are used for transmit-
ting images and videos. Using RR-IQA algorithms, the partial information on refer-
ence images transmitted via these communication networks can be utilized for tracking
visual quality degradation of transmitted images and videos [36]. Thus RR-IQA algo-
rithms are preferred over FR-IQA algorithms in similar applications as presented in
[45], [9], [43] and [31].

2.1.2.3 No-reference image quality assessment (NR-IQA)

NR-IQA methods aim at achieving the goals of objective IQA by only using test im-
ages for estimating the perceptual image quality. These methods are considerably more
challenging than FR-IQA and RR-IQA because of the unavailability of any informa-
tion on reference images. But they are also more desirable because of their application
in the wide variety of fields, ranging from image processing to image enhancement,
where reference images are usually not available. NR-IQA methods are also used in
wide variety of online applications, such as communication systems, image acquisi-
tion systems, etc. [4], which makes it very important for them to be computationally
inexpensive.
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Some early attempts at NR-IQA employed distortion specific methods that ap-
proach IQA tasks by making use of models that are very specific to a particular dis-
tortion type. These methods are more application specific where prior knowledge of
distortion type is available. For example, in an application to measure the quality
losses in compressed images, the knowledge on the appearance of compression arti-
facts, such as blockiness and ringing, could be used to design NR-IQA methods that
can detect their visibility.

It is more useful to have algorithms that can be applied for general purpose NR-
IQA, irrespective of the distortion types. Existing general purpose NR-IQA approaches
could be further divided into two broad categories.

Natural scene statistic based approaches (NSS): The main idea behind these ap-
proaches is that the natural scene images bear some statistical regularities that are
affected by the presence of distortions, and these statistical changes in the distorted
images can be measured to assess the image quality [4]. In these approaches, a test
image is first normalized and transformed to another domain (like wavelet domain or
DCT), from which the relevant features (such as contrast, shape, variance, etc.) are
then extracted and are considered as the descriptors of the distortion. This is the first
phase as per the general framework of objective IQA metrics (illustrated in Figure 2.2).
The extracted features are then used to perform distortion identification through classi-
fier training. At last for the identified distortion type, as per the third phase of general
objective IQA framework, a regression model is applied to map the extracted features
to an appropriate quality score [68]. These approaches do not perform pooling and thus
skip the second phase of general objective IQA framework. Methods following this ap-
proach differ primarily based on the way the features are extracted. In DIIVINE [37]
features are extracted in wavelet domain whereas in BLIINDS-II [49], cosine trans-
form coefficient based features are extracted. BRISQUE [35], instead of performing
image transformations, extract features directly from the spatial domain, which leads
to significant decrease in computation demand.

The NSS based NR-IQA approaches are highly dependent upon handcrafting a
large number of features that capture relevant factors affecting image quality. Al-
though their performance is acceptable, there is still large room for improvement re-
garding accuracy with which they reproduce human judgment of quality. Moreover,
the transformation of images to another domain is computationally very expensive,
which make these methods (except BRISQUE that does not require domain transfor-
mation) very slow in operation.

Feature learning based approaches employ methodologies that instead of using hand-
crafted features, directly learn features from the spatial domain. Contrary to hand-
crafted features that are extracted from images according to predefined algorithms and
based on expert knowledge, these features are derived during the training process it-
self. For example, in supervised learning with labeled data, a learning algorithm could
learn features (from scratch) by training on raw image pixels, to produce outputs that
are very close to the actual labels. Feature learning based approaches are superior and
more efficient than NSS based approaches because of their ability to learn better fea-
tures automatically from raw image pixels. As per the general framework of objective
IQA methods (illustrated in Figure 2.2), these approaches first extract features from
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input data through training, which is then pooled to produce a global visibility of dis-
tortion, and is finally converted to a perceptual quality score by fitting it to a regression
model.

CORNIA [66][67] is one such method that first learns codewords from the unla-
beled raw image pixels using unsupervised learning, and then using these codewords,
it learns features from IQA datasets using supervised learning. By outperforming NSS
based approaches, CORNIA showed that it is possible and better to learn features di-
rectly from the raw image pixels.

Inspired by the success of CORNIA, a convolutional neural network based ap-
proach (IQA-CNN [25]) was introduced to accomplish NR-IQA. Due to the powerful
feature learning capability provided by CNN’s (see section 2.2), IQA-CNN was able to
outperform all existing NR-IQA methods. The proposed IQA-CNN architecture con-
sists of four layers (one Conv layer and three FC layers) and takes a 32 x 32 input patch.
Later the updated version of this architecture was also introduced - IQA-CNN++ [26]-
which consists of five layers (Two Conv layers and three FC layers ) and takes a 7 x
7 input instead. IQA-CNN++ also houses around 90% less learnable parameters in
comparison to IQA-CNN. More details on these CNN architectures are presented in
section 2.2.3 where we also describe some other popular CNN architectures for object
recognition tasks.

CNN based approaches have been further shown to perform better than CORNIA,
which is dependent upon a large set of codewords (approximately 300,000) that are
expected to learn different characteristics of distortion in an unsupervised manner.
The performance of CORNIA has been shown to deplete in case the smaller num-
ber of codewords are employed instead. All these approaches employ very small input
patches in the order of 7 x 7 or 32 x 32 and assume that image patches bear same
quality score as the corresponding image itself. This is perceptually incorrect because
distortion could vary among patches based on their content and structural information.
Further, the CNN based approaches employ either one or three convolutional layers
which limit their architectures from learning high-level features. Since recent research
has shown that depth is core to handle complex issues [57], further increase in depth
of CNN architectures could boost their performance in NR-IQA tasks.

Thus there is still a lot of room for improvement. A potentially deeper and per-
ceptually more accurate (operating on bigger input patches) CNN architecture could
further improve the performance of existing CNN based approaches in NR-IQA tasks.

In next section (section 2.2), we present a literature study on CNN and describe various
components that relate to its architecture and training process. These components will
be further utilized (in Chapter 4) for designing an envisioned CNN architectures that
could overcome the limitations of existing CNN’s for the tasks of NR-IQA.

2.2 Convolutional Neural Networks

With the introduction of transistors and computers, past few decades have witnessed a
rapid change in the way we operate in our day to day lives. Contrary to pre-computer
ages, we have mobile phones to establish long distance communications, fast Inter-
net to access knowledge from another part of the world, and even a full-fledged en-
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tertainment system accessible through smartphones and personal computers. Though
computers could be programmed to do a wide variety of things with total ease and high
efficiency, there still exists a whole family of tasks that could not be decoded into math-
ematical equations and thus could not be programmed explicitly into a computer chip.
Such tasks like object recognition and image quality assessment are dependent upon
the very subjective nature of human perception developed over their past experience
and knowledge. Since it is not possible to model human perception in terms of general
mathematical equations and logic, such tasks could not be directly programmed into
computer systems. Thus to facilitate computers to be able to accomplish such non-
programmable tasks, a branch of computer science called machine learning deals with
the development of algorithms that are capable of giving the computers an ability to
learn without being explicitly programmed for [53].

In the complex problems mentioned above, we typically have a situation in which,
given an input (an image, a speech segment, any measurement) we want to be able to
predict a label y, which represents some sort of characteristic of the input. For exam-
ple, in image quality assessment, given an input image we want to predict its perceived
quality; in object recognition tasks, given an image we want to predict whether a given
object is in the image or not; in speech recognition, given a voice recording excerpt,
we want to predict the word it represents. Because these are all difficult tasks, design-
ing a model that, in closed form, is able to calculate the label y from the input x is
very hard. Learning methods can help in this, which aim at specializing generic mod-
els (parametrized by θ) to the task at hand. This "specialization" is handled through
a learning phase, where a number of examples of the x-y pairing are proposed to the
model, and its parameters θ are (iteratively) updated so that the output Ŷ of the model
is as close as possible as the desired output y proposed in the examples. Thus a cost
function (or loss function) L(y− ŷ) is generally employed to evaluate the performance
of the model by computing how far the model output ŷ is from the desired output y.
Further, the desired output y could either belong to a set of discrete classes or range
of continuous values, based on which the model can be respectively trained towards a
classification task or a regression task.

Number of techniques have been proposed in the field of machine learning. One
family of techniques that lately has gained momentum is that based on neural net-
works and connectionist paradigms. Especially the latest advances in deep learning
have made neural networks one of the most promising tools for automatic image anal-
ysis. In the following we first give a brief introduction to the artificial neural networks,
and then later we introduce the branch of deep learning.

Artificial Neural network (ANN) is inspired from biological neurons and working
of human brain [62]. An artificial neuron is a building block of ANN that takes in
various inputs and performs their weighted sum to produce its output, which further
passes through a non-linear function known as activation function or transfer function.
As shown in Figure 2.3, ANN’s are generally organized into different layers that are
made up of the number of interconnected artificial neurons. A general neural network
architecture consists of three types of layers, an input layer, one or more hidden lay-
ers that process the input examples through learnable parameters (weights and biases),
and finally, an output layer that, based on the processing done by its constituent neu-
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Figure 2.3: Basic structure of artificial neural network

rons, provides an output corresponding to given input examples . More details about
training ANN’s is provided in section 2.2.2.

Deep Learning is a part of broader machine learning family that is specialized in
learning useful features from input data [63]. Input data, for instance an image, can
be represented as a group of pixels, mixture of colors, set of edges, a collection of
shapes, or even as more complex representations. Difficulties of a learning task could
be greatly relieved if useful features are utilized. Traditionally features were hand-
crafted from spatial inputs,[11] but it is very difficult and inefficient to handcraft fea-
ture, especially for some complex applications such as image quality assessment. Thus
one of the main ideas behind deep learning is to replace handcrafted features with ef-
ficient architectures that are fully capable of learning features through supervised and
unsupervised training [55].

As pointed by the word deep, deep learning architectures are characterized by mul-
tiple layers stacked one over the other, which consists of artificial neural networks[63].
Thus in deep learning, the input data passes through number of layers and produces
higher level of abstractions (features) in comparison to the shallow learning architec-
tures.

Among several deep learning architectures, stacked denoising autoencoders[59],
deep belief networks[2], and convolutional neural networks[17] are three of the most
popular architectures utilized for different type of applications. Stacked denoising
autoencoders and deep belief networks are generally used for the applications of di-
mensionality reduction (by finding different representations of input data) and feature
extraction [1]. Their training process involves layer-wise unsupervised pre-training,
which is followed by supervise fine-tuning of all stacked layers through backpropaga-
tion.

Although deep neural networks are generally tough to train without unsupervised
pre-training, it is still possible to train very deep convolutional neural networks (CNN)
using only supervised training [1]. More details about CNN is presented in the follow-
ing.

Convolutional Neural Network (CNN) is a feedforward neural network inspired from
the visual system structure that exists in animals. The visual cortex is known to contain
a complex arrangement of cells that are sensitive to sub-regions of the visual field.
This visual field is entirely covered by the repetitions of these sub-regions – that act
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Figure 2.4: Alexnet architecture

as local filters and exploit the present local correlations [20][30]. CNN’s imitate this
behavior of animal visual cortex to achieve powerful visual processing. It is a field
of deep learning that makes use of multiple layers of complex structure or non-linear
transformations, and aims at modeling high-level abstractions of input data [1].

Two key features of CNN are:

1. Local Connectivity: When dealing with high dimensional inputs such as im-
ages, instead of connecting all neurons to every pixel of an image, CNN con-
nects each neuron to a small local region and performs its repetition across the
input volume [6].

2. Parameter Sharing: CNN makes a simple assumption that if a feature is useful
to compute at one spatial location, it will also be useful to compute at another
location. This assumption allows filters (see section 2.2.1.1) in CNN to share
parameters while calculating output activations at different input locations [6].

These two characteristics help in training very deep CNN’s without employing unsu-
pervised pre-training [1].

In the proceeding subsections, we first describe various components of CNN ar-
chitecture in subsection 2.2.1. Then in subsection 2.2.2 we present different methods
components of CNN’s training process. Finally in subsection 2.2.3, we present some
popular CNN architectures that have been successfully employed in the field of object
recognition and image quality assessment.

2.2.1 Convolutional neural network architecture

A CNN architecture consists of many components of which convolutional layers, fully
connected layers, pooling units, input feeds and activation functions are described in
subsections 2.2.1.1 to 2.2.1.5. Figure 2.4 presents AlexNet[29] CNN architecture,
which is used as an example to illustrate various components of a CNN architecture
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2.2.1.1 Convolutional layer (Conv layer)

A convolutional layer consists of a set of learnable filters, which refers to the matrix of
numerical values that are convolved with the input of a Conv layer, and are character-
ized by their fixed width, height, and length. Width and height of a filter are specific to
design choice, but its length is preset by the number of input channels (which refers to
the number of two-dimensional inputs of a Conv layer). For instance, the first convo-
lutional layer with RGB input image can have filters of shape 5 x 5 x 3, where length
3 is specified by 3 RGB input channels. A convolutional layer could contain multiple
filters, but they are constrained to be of the same width, height, and length. During
the forward pass of backpropagation during training, each filter of a Conv layer slides
across the width and height of its input. The gap between two consecutive positions of
a filter is called the stride and is specific to design choice. At each sliding position, the
dot product is computed between the filter parameters and the input values to produce
a two-dimensional output. If a Conv layer consists of C filters and each of them pro-
duces a two-dimensional output of W width and H height (called feature map), then
this Conv layer produces an output of shape H x W x C. As C is the third dimension of
output shape, the number of output channels of a Conv layer is decided by the number
of filters it employs. Spatial size of the output of a Conv layer can also be controlled
by making use of zero-padding (Pad), which is a simple technique of adding zeros
around the border of the inputs [6].

For a Conv layer l with total C number of filters, the output of its ith filter, denoted
by yl

i , is computed as per equation 2.1

yl
i = s(

Cl−1

∑
j=1

f l
i, jy

l−1
i +bl) (2.1)

Where bl is the bias vector of layer l, f l
i, j is the ith filter of Conv layer l that

is connected to the jth feature map of layer l− 1, and s is the employed activation
function.

2.2.1.2 Fully connected layer (FC layer)

All CNN architectures generally employ at least one FC layer that has full connections
to all activations from its previous layer. They are usually located between a stack of
Conv layers and network output. Contrary to Conv layers, these layers do not sup-
port parameter sharing and thus result in substantial increase in learnable parameters
within a CNN. The function of a FC layer is to learn weight (W ) and bias (b) vectors
that maps the layer input to an appropriate output.

For a FC layer l, its output yl is computed as per equation 2.2.

yl = s(yl−1 ·W l +bl) (2.2)

Where W l and bl are the respective weight and bias vectors of layer l, and s is the
employed activation function.
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2.2.1.3 Pooling units (Pool unit)

A Conv layer could be followed by a Pool unit – whose main function is to reduce
the dimensionality of Conv layer’s output. This unit helps to control overfitting by
reducing the overall number of parameters in CNN. This way it also helps in reducing
the overall computation power demanded by the network. Similar to Conv layer, Pool
unit also consists of a filter that slides, with specified number of strides, across the layer
input to produce the layer output. These filters are not learned but are fixed to compute
maximum (Max pooling), average (Average pooling) or minimum (Min pooling) of
their input regions [6].

2.2.1.4 Input feeds

A CNN architecture could consists of a multiple parallel stacks of layers and units
in-between its input and output, which are defined as feeds. As shown in Figure 2.4,
AlexNet[29] is a two feed architecture.

As multiple feeds have been shown to specialize in different types of features [29],
they are usually employed with an aim to achieve superior performance over single
feed architecture.

2.2.1.5 Activation functions

Activation function, also known as transfer function, is used for the purpose of in-
troducing non-linearity in the model implemented by the network. There are various
activation functions available around, but few of the most popular ones are describes
below:

1. Tanh is a traditional activation function that squashes its input value to a range
of [-1, 1]. For a given input x, equation 2.3 gives a mathematical operation of
Tanh function. Tanh activation is also shown in Figure 2.5a. The saturating acti-
vation of Tanh function is one of its main disadvantages – because of which it is
very slow (In terms of training time) in comparison to non-saturating activation
functions like ReLU [29].

Tanh(x) =
1− e−2x

1+ e−2x (2.3)

2. ReLU: The Rectifier Linear Unit (ReLU), given in equation 2.4, is one of the
most popular activation functions. It is a simple function that thresholds the
activation at zero. For a given input x, equation 2.4 gives a mathematical opera-
tion of ReLU function. ReLU activation function is also shown in Figure 2.5b.
Because of its non-saturating form, ReLU is shown to greatly accelerate the
convergence of a network in comparison to other saturating activation function
like Tanh [29]. It is also highly preferred because of the simple mathematical
operation it performs, in comparison to more complicated expressions involving
exponent term used in Tanh.

ReLU(x) = max(0,x) (2.4)
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(a) Tanh Activation Function (b) ReLU Activatin Function

Figure 2.5: TanH and ReLU activation functions.

3. Maxout [16] is an activation function that is implemented using a small sub-
network with learnable parameters. Maxout could provide an improvement in
performance when used along with Dropout regularization – as it helps in better
model averaging performed by Dropout. For a given input vector x, Maxout can
be implemented using equations 2.5 and 2.6.

R j = xTWj +b j (2.5)

h(x) = max
j∈[1,R]

(R j) (2.6)

Here W is learnable weight parameter, b is learnable bias parameter, h is the
Maxout function and R is the number of linear feature extractors. The learn-
able parameters W and b are specific to Maxout that are also learned during the
training process.

In simple words, Maxout activation function outputs the maximum of R linear
combinations of input vector x.

The disadvantages of using Maxout is that it adds extra learnable parameters to
the network. These learnable parameters are directly proportional to the value
of R and a total number of Maxout units employed.

2.2.2 Convolutional neural network training

This section explains various components relevant to the training of CNN’s. Gradient
descent optimization, reducing overfitting, weight initialization methods, and data pre-
processing are presented in the following subsections.

2.2.2.1 Gradient Descent Optimization

Gradient descent is a widely used algorithm used for the optimization of machine
learning algorithms. It aims at minimizing the cost function of a network by updating
the network parameters in the direction opposite to the gradient (which is a derivative
of the function in one dimension to a function in several functions) of the cost function
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with respect to the parameters. Usually, backpropagation algorithm is used along with
gradient descent to determine the extent of the update of parameters at each iteration.

Based on the amount of data used for the computation of gradients, gradient de-
scent algorithm can be classified into three main types:

1. Batch gradient descent, also known as vanilla gradient descent, computes the
gradient of the cost function with respect to network parameters, for the whole
training dataset [47]. It can be very slow since entire training dataset is used to
compute just one update of network parameters. It is also unfit for applications
where training dataset is large as it would require corresponding large RAM to
fit in the dataset. Though batch gradient descent results in the most significant
parameter update among all three types, it is highly prone to local minima’s.

2. Stochastic gradient descent computes the gradient of the cost function with
respect to network parameters, for a single data point from the training dataset.
Since network parameters are updated after the processing of every data point,
it is fastest among all three types. It also results in a very noisy gradient that
could be helpful in escaping the local minima’s, but the resulting gradient could
become too noisy for a network to converge.

3. Minibatch gradient descent falls in-between full batch and stochastic gradient
descent as it employs a subset of the dataset, called a minibatch, for computing
the gradient. It provides an option to vary the size of a minibatch, which could
help in introducing to the neural network a right amount of noise that is large
enough for it to escape local minima’s, but also small enough to help converge
in a reasonable number of epochs.

There exist many variants of gradient descent algorithm that differ in ways the
network parameters are updated. Four of the most popular gradient descent algorithms
are described below. In all described algorithms, ε is the learning rate, pt and pt−1 are
the learnable parameters at time t and t−1 respectively, and d pt−1 is the gradient. In
neural networks, time is generally reported in terms of number of epochs. In case of
CNN’s, p consists of both network weights W and biases b.

1. Vanilla is the simplest method for updating network parameters, which are up-
dated along the negative gradient direction [6]. Equation 2.7 gives the mathe-
matical expression for vanilla update.

pt = pt−1− ε∗d pt−1 (2.7)

2. Momentum is an improvement over the Vanilla update method. There may exist
a scenario where cost function has the form of a long shallow ravine leading to
an optimum solution with steep walls around. In such a scenario, Vanilla method
results in very slow convergence as it tends to oscillate across the slopes while
making small steps towards the optimum solution. Momentum, in this case,
helps in accelerating the convergence and dampening the oscillations. Thus Mo-
mentum helps the parameter vector in building up velocity in a direction with
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consistent gradient [6] Equations 2.8 and 2.9 gives the mathematical expressions
for Momentum update method.

vt = m∗ vt−1− ε∗d pt−1 (2.8)

pt = pt−1 + vt (2.9)

Here v is the momentum parameter that is initialized to zero in the starting,
and m is the momentum variable. The function of variable m is to dampen the
velocity and oscillations in the system.

3. Nesterov Momentum[40] is an improvement over Momentum update method.
It aims at achieving faster convergence by giving the momentum term some
kind of prescience about the next step. In equations 2.8 and 2.9, if the gradient
term is ignored then it would imply that momentum term (m ∗ vt−1) updates
parameter (p) to its new position [6]. In other words, computing (pt−1+m∗vt−1)
already gives us an estimation of the parameter’s next position. Thus in Nesterov
momentum method, gradient is computed at position (pt−1+m∗vt−1) that helps
in increasing the responsiveness of the updates. Equations 2.10 and 2.11 gives
the mathematical expressions for Nesterov momentum update method.

vt = m∗ vt−1− ε∗d(pt−1 +m∗ vt−1) (2.10)

pt = pt−1 + vt (2.11)

Similar to momentum method, here v is the momentum parameter that is initial-
ized to zero in the starting, and m is the momentum variable.

4. Adam[27] also known as "Adaptive Momentum Estimation" is a parameter up-
date method that computes adaptive learning rates for each parameter. In pre-
vious three methods, learning rate is manipulated globally and equally for all
network parameters, which makes it difficult to tune the learning rate and re-
quires very good initialization of the network parameters. Equations 2.12, 2.13,
2.14, 2.15 and 2.16 gives the mathematical expressions for Adam parameter up-
date method.

mt = β1 ∗mt−1 +(1−β1)∗d pt−1 (2.12)

vt = β2 ∗ vt−1 +(1−β2)∗d p2
t−1 (2.13)

m̂t =
mt

(1−βt
1)

(2.14)

v̂t =
vt

(1−βt
2)

(2.15)

pt = pt−1−
ε∗ m̂t

(
√

v̂t + ε)
(2.16)

It could be noticed that Adam keeps the track of exponentially decaying average
of old gradients mt and old squared gradients vt . Here mt and vt are the estimates
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Figure 2.6: Data augmentation technique used for AlexNet training.

of first and second moment of gradient. m̂t and v̂t are bias-corrected first and
second moments respectively. The smoothing term ε is to avoid division by
zero. The authors propose default values of 0.9 for β1, 0.999 for β2 and 10−8 for
ε.

2.2.2.2 Reducing Overfitting

Overfitting is defined as a situation in which a statistical model is too closely fit to a
limited set of data points and begins to describe random error or noise instead of its
underlying relationship [65]. A network with a large number of learnable parameters
is highly prone to overfit, as in such a case the learnable parameters fully adapt to
the training set resulting in network to lose its ability to generalize. The following
solutions have been proposed over time to cope up with the problem of overfitting.

1. Data Augmentation is a technique of artificially enlarging the dataset using var-
ious methods. Krizhevsky et al. [29] introduced some of the data augmentation
techniques that could be applied in vision related tasks:

As illustrated in Figure 2.6, Krizhevsky et al. introduced a method of generating
image translations (smaller patches) and their horizontal reflections by extract-
ing random 224 x 224 patches and horizontal reflections from the 256 x 256
images. This increased the size of their data set by a factor of 2∗ ((256−224)∗
(256−224)) = 2048. They also introduced a method of altering the intensities
of RGB channels in training images for the same purpose.

The data augmentation helps by providing extra set of examples for the network
to train on, which further helps in learning more robust learnable parameters that
promote better generalization of the network on unknown data.

2. Regularization aims at imposing stability to ill-posed problems towards avoid-
ing overfitting. Three popular regularization techniques are presented in the
following:

a) Dropout [56] is a regularization technique that forces a neural network into
learning multiple representations of the same data by randomly switching
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off neurons based upon the fixed probability during the learning process.
Thus during every training iteration, a little bit different architecture is
trained, and the network parameters are updated based on the average com-
putation of all these different architectures. In this way, dropout forces the
network into learning more robust parameters that are less dependent upon
each other. During the testing phase, the output of neurons is multiplied by
the probability value with which they were switched off to ensure that ge-
ometric mean of predictive distributions produced during dropouts (while
training) is taken into consideration.

b) L1 Regularization is a commonly used regularization technique that aims
at making the network more invariant to the noisy inputs by making the
weight vector more sparse in nature [6] It is implemented as per equation
2.17

Cost_ f unction =Cost_ f unction+λ|W | (2.17)

Here |W | is the sum of absolute values of all weights present in a network
and λ is the regularisation strength that decides the contribution of |W |
term in the cost function

c) L2 Regularization is the most commonly used type of regularization in
neural networks. It aims at regularizing the network by penalizing the
peaky weight vectors while preferring more diffused weight vectors [6].
This prevents the network from highly favoring some of the inputs over
the others. L2 regularization promotes linear decay of network weights
towards zero. It is implemented as per equation 2.18

Cost_ f unction =Cost_ f unction+λW 2 (2.18)

Here W 2 is the L2 norm of the parameter present in a network and λ is the
regularisation strength that decides the contribution of W 2 term in the cost
function

2.2.2.3 Weight initialization methods

The overall performance of CNN’s is highly dependent upon the initialization of its
weights. This requirement becomes more crucial as the depth of an architecture in-
creases. A poorly initialized network could suffer through problems of vanishing or
exploding gradients, and might take significantly long to converge than the better ini-
tialized counterpart. Thus weight initialization is vital, and many methods have been
proposed over the years for good initialization of network weights.

1. Gaussian Distribution: As per this method, weights in each layer are initialized
from a zero-mean Gaussian distribution with small standard deviation. It is the
most basic and widely used method for weight initialization. Krizhevsky et al.
[29] also uses this method from the initialization of its weights.
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2. Xavier Initialization[14] is a weight initialization method that aims at initial-
izing weights that are not too small or large, but are just right to keep the pass-
ing signal in the reasonable range of values. Xavier initialization also initialize
weights from a zero-mean Gaussian distribution but instead of randomly se-
lecting the standard deviation value, this method proposes to calculate standard
deviation using equation 2.19

σ =

√
1

nin
(2.19)

Here nin is the number of inputs to the layer.
Equation 2.19 was derived while using traditional activation functions such as
tanh and sigmoid. Later [19] repeated the derivation for ReLU activation func-
tions and proposed to calculate standard deviation using equation 2.20.

σ =

√
2

nin
(2.20)

3. Batch Normalization[21] is not a weight initialization method in itself but it
aims at avoiding the need for having proper weight initializations. Apart from
this, it also helps in accelerating the whole training process by allowing higher
learning rates and eliminating the need for regularization like the dropout. It is
also shown to give greater accuracy in deep architectures. Batch normalization
requires a minibatch of size greater than one to operate. Hence it could not be
applied for stochastic gradient descent optimization.

Typically the layer activations are made too big or too small by the network pa-
rameters – referred to as "internal covariate shift" by Sergey et al. [21]. Batch
normalization method helps in avoiding such situations by forcing the activa-
tions passing through the network to take a unit Gaussian distribution (zero mean
and unit variance) across the minibatch. It is usually applied over the existing
layers of the network, but could also be implemented over few selected layers.
Equations 2.21, 2.22, 2.23 and 2.24 gives the mathematical expression for batch
normalization method.

µB =
1
N
∗

N

∑
i=1

x (2.21)

σ
2
B =

1
N
∗

N

∑
i=1

(x−µB)
2 (2.22)

x̂ =
x−µB√
σ2

B + c
(2.23)

y = γ∗ x̂+α (2.24)

Here x and y are the respective inputs and outputs of batch normalization layer,
N is the size of a minibatch, and µB and σ2

B are the computed mean and variance
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across the minibatch respectively. In equation 2.23, the input is normalized to
have zero mean and unit variance across the minibatch, and c is the constant to
prevent division by zero. Finally the output of the batch normalization layer is
computed in equation 2.24 by scaling the normalized input by γ and shifting it
by α. Here γ and α are both learnable parameters.

Since the test dataset could not be expected to have minibatches, usually the
running mean and variance is calculated during the training process, and their
obtained values are used in equation 2.23 instead. Alternative to this is to make
a post-training run for computing the average mean and variance values across
the minibatches.

Batch normalization method has shown to produce promising results especially
in the field of convolutional neural networks, but because of the additional math-
ematical operations it performs, it could significantly increase the overall com-
putation demand of the training process.

4. Data Dependent initialization[34] is a weight initialization method inspired
from batch normalization. It aims at keeping all the advantages offered by batch
normalization while resulting in an insignificant increase in the computation
demand of the training process.

In data dependent initialization, all layers are first initialized with a non-zero
Gaussian distribution of small standard deviation. This is followed by the layer-
wise fine-tuning of weight initialization with the help of activations produced
by the selected subset of the training dataset. For a given layer, the weights are
fine-tunes using equations 2.25 and 2.26.

σ
2
B =

1
N
∗

N

∑
i=1

(x−µB)
2 (2.25)

W =
W√

σ2
B + c

(2.26)

Here x is the input to the data dependent initialization method, σ2
B is the com-

puted mean across the minibatch, N is the size of a minibatch, and c is the
constant to prevent division by zero. For each layer, equations 2.25 and 2.26 are
repeated until equation 2.27 is satisfied.

|σ2
B−1| ≥ Tolvar (2.27)

Here Tolvar is called variance tolerance is usually set in the range of 0.01 to 0.1.

[28] and [50] are some other papers that propose similar methods of weight
initialization based on the input data.
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2.2.2.4 Data pre-processing

The performance of CNN is directly proportional to its ability to extract the good
feature from the input data. Thus sometimes it is desirable to pre-process the input
data so as to make this feature extraction process more easy and effective. Two of the
main data pre-processing techniques used in literature are:

1. Global contrast normalization (GCN) is a pre-processing technique that nor-
malizes each channel (RGB) of an input image to zero mean and unit standard
deviation. It helps by making the network more robust to illuminations and con-
trast variations [25]. Moreover, it is widely considered as a good practice to
be used in CNN, especially for object recognition tasks [7]. For an image of
length X , width W and Z number of channels, GCN value can be computed as
per equations 2.28, 2.29 and 2.30.

Î(x,y,z) =
I(x,y,z)−µ(z)

σ(z)+ c
(2.28)

µ(z) =
1

(X ∗Y )

X

∑
i=1

Y

∑
j=1

I(i, j,z) (2.29)

σ(z) =

√√√√ 1
(X ∗Y )

X

∑
i=1

Y

∑
j=1

(I(i, j,z)−µ(z))2 (2.30)

Here Î(x,y,z) is the GCN value of a pixel at location (x,y,z) of intensity I(x,y,z);
µ(z) and σ(z) are the respective mean and standard deviation computed along
the z channel of the input image; and c = 1 is a positive constant that prevents
division by zero.

2. Local contrast normalization (LCN) is another pre-processing technique that
locally normalizes each channel (RGB) of an input image to zero mean and unit
standard deviation. It is believed to help by decorrelating image pixels [35].
Previous NR-IQA methods, such as BRISQUE[35], IQA-CNN[25], and IQA-
CNN++[26], also perform local contrast normalization of input images. For
an image of length X , width W and Z number of channels, GCN value can be
computed as per equations 2.28, 2.29 and 2.30.

Î(x,y,z) =
I(x,y,z)−µ(x,y,z)

σ(x,y,z)+ c
(2.31)

µ(x,y,z) =
1
k2

k−1
2

∑
i=− k−1

2

k−1
2

∑
j=− k−1

2

I(x+ i,y+ j,z) (2.32)

σ(x,y,z) =

√√√√√ 1
k2

k−1
2

∑
i=− k−1

2

k−1
2

∑
j=− k−1

2

(I(x+ i,y+ j,z)−µ(z))2 (2.33)
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Figure 2.7: IQA-CNN architecture [25] for the application of NR-IQA.

Here Î(x,y,z) is the LCN value of a pixel at location (x,y,z) of intensity I(x,y,z),
µ(x,y,z) and σ(x,y,z) are the respective mean and standard deviation computed
along the z channel of the input image, c = 1 is a positive constant that prevents
division by zero; and k is the local normalization window over which the mean
and standard deviation is computed. k should always carry an odd value to
symmetrically cover local pixels around the pixel whose LCN value is to be
computed. It has been shown in [35] that smaller values of k results in better
performance in IQA related tasks.

2.2.3 Applications

From past few year, CNN architectures have gained immense popularity and CNN has
become a default choice in many computer vision related tasks. AlexNet[29] was the
first work of its kind that popularized CNN’s for Computer Vision. As shown in Figure
2.4, AlexNet consists of five Conv layers followed by three fully connected layers and
has around 60 million learnable parameters. It was the winner of ImageNet ILSVRC
2012[10] challenge (Object recognition challenge involving 1000 object classes) and
gave superior results with top 5 error (Error in recognizing object within 5 closest
classes) of 15.3%. Many success stories with CNN architecture followed AlexNet.

ZFNet[72] was the winner of ILSVRC 2013 competition. It is an improvement
over the AlexNet obtained through tweaking of its hyperparameters. GoogleNet[57]
was the winner of ILSVRC 2014. The proposed architecture consists of 22 layers and
4 million parameters and recorded top 5 error of 6.67%. ResNet[18] was the winner of
ILSVRC 2015, and reported top 5 error of 3.57%. The proposed architecture consists
of 152 layers and is by far state of the art CNN architecture for object recognition
tasks.

Between 2012 and 2015, from AlexNet to ResNet, the depth of CNN architec-
ture increased from 8 layers to 152 layers and the performance on ILSVRC dataset
increased from 15.3% to 3.57% top 5 error. These numbers very well reflect the pop-
ularity of CNN’s and the amount of research happening in this field.

CNN’s have also been successfully applied for the application of IQA. Kang et
al. in [25] proposed a fully supervised CNN architecture, called IQA-CNN, for the
application of NR-IQA. IQA-CNN, as shown in Figure 2.7, takes a 32 x 32 input patch
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Figure 2.8: IQA-CNN++ architecture [26] for the application of NR-IQA.

that is processed by one Conv layer with 50 filters, followed by max and min pooling
to produce single max and single min value for each of its feature maps. This is further
followed by three FC layers, and an output of the last layer is used for regression
to output image quality score. Also, no activation function is employed in its Conv
layer and last FC layer whose output is used for regression. Apart from this, ReLU
activation functions are used in rest of its FC layers. IQA-CNN contain total 724,901
learnable parameters. This architecture reported state of the art performance on LIVE
dataset[51] among other NR-IQA metrics

After the success of IQA-CNN, another CNN architecture called IQA-CNN++[26]
was introduced for the application of NR-IQA. This architecture, as shown in Figure
2.8, takes a 7 x 7 input patch that is processed by three Conv layers, which is followed
by max and min pooling to produce single max and single min value for each of its
feature maps. This is further followed by three FC layers, and the output of last FC
layer is used for regression to output image quality score. It also performs classification
in its last layer to predict the distortion type of input patches. Again no activation
function is employed in any of its Conv layers and last FC layer. Apart from this,
ReLU activation functions are used in rest of its FC layers. IQA-CNN++ contain
total 77,501 learnable parameters, which is around 90% less than IQA-CNN. This
architecture reported a state of the art performance on TID dataset[41] among other
NR-IQA metrics.

2.3 Chapter conclusion

In this chapter, we presented background information related to the fields of image
quality assessment (IQA) and convolutional neural network (CNN). Based on the lit-
erature study on IQA, it was observed that NR-IQA methods are very desirable as their
operation is independent of the availability of reference images. But these methods are
also more challenging because the unavailability of reference images makes it difficult
to reason regarding image fidelity (inferred by the ability to discriminate between two
images [52]). In spite of all these challenges, CNN based approaches have been shown
to deliver superior performance in comparison to other NR-IQA methods. But there
still exist a lot of room for improvement. For instance, the CNN based approaches
operate on very small patches of input images and assume image quality to be uni-
formly distributed across images. This is perceptually inaccurate, as based on their
structure and content, different patches could bear different quality scores. Further
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existing CNN based approaches only utilize few Conv layers (max three) that prevent
them from exploiting the full power of CNN architectures.

Furthermore, based on the literature study on CNN, it was observed that CNN’s
have been very successful especially in the field of object recognition. There is a lot of
research happening, and many methods have been proposed over time to optimize and
accelerate the working of CNN’s. Many of these methods like batch normalization,
Adam, etc. were also discussed in detail.

Thus based on these studies, we believe that better CNN architectures could be
developed for the application of NR-IQA.
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Chapter 3

Methodology

From the literature study presented in Chapter 2, we established that NR-IQA is the
most desirable setting of objective IQA, but it is very tough to achieve due to the un-
availability of reference images. We further observed that CNN based approaches are
the state of the art among other NR-IQA methods, but they undergo many limitations
because of the small size of employed input patches and less number of utilized Conv
layers.

Based on the research objectives (section 1.1) and background literature (Chapter
2), we identified three phases of this research project, with an aim to address the lim-
itations of existing CNN based approaches for NR-IQA tasks and to understand the
internal working of trained CNN through feature visualizations.

Design phase : This phase deals with the design space exploration of CNN and aims
at selecting various design parameters that constitute a suitable CNN design for
the application of NR-IQA. This phase is linked to the research objective 3.

Evaluation phase : This phase deals with the testing of CNN design obtained from
the design phase, with an aim to evaluate and compare its performance with
existing state of the art NR-IQA algorithms. This phase is linked to the research
objective 4.

Inspection phase : This phase deals with the visualization of features learned by
CNN architecture, obtained from the design phase, to understand the internal
working of CNN architecture.This phase is linked to the research objective 6.

The completion of first and second phase answers the first research question (
What is a suitable design for a convolutional neural network to predict perceived im-
age quality in a no-reference setting?), and the completion of the third phase answers
the second research question (What can we learn from the visualization of features
developed by a convolutional neural network trained for image quality assessment?).

For each of the design, evaluation and inspection phase, we employed a three phase
methodology respectively presented in sections 3.1, 3.2 and 3.3.
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3.1 Methodology for design phase

To undertake this design space exploration, we considered various design parameters
of CNN based on the literature study presented in section 2.2, from which we identified
two main categories of CNN design parameters.

1. Training process design parameters: These are defined as the design parame-
ters that are utilized for the training of a CNN. These design parameters are fixed
before the initialization of CNN architecture. Based on the literature study, we
identified six main types of design parameters related to the training process of
a CNN:

• Training method: It refers to the method of CNN training, which could
be either supervised or unsupervised. The selection of training method
depends on the desired output of a CNN, and thus depends on the target
problem.

• Learning task: It refers to the type of task a CNN approaches towards,
which could either by classification or regression. The selection of a learn-
ing task also depends on the target problem.

• Cost function: It refers to the mathematical function that is used to assess
the difference between the produced output by CNN and its desired out-
put. A cost function is important to guide a CNN towards the reducing
cost, i.e., to decrease the difference between produced and desired outputs.
Since the employment of different cost functions could influence the over-
all performance of a CNN, they are considered as the design parameters
that should be carefully selected.

• Optimization methods and algorithms: It refers to the methods and algo-
rithms using which the learnable parameters of CNN are updates. Since
the employment of different optimization methods and algorithms could
influence the overall performance of a CNN, they are considered as the
design parameters that should be carefully selected. Various optimization
methods are presented in section 2.2.2.1.

• Regularization: It refers to the techniques that could be utilized towards
the prevention of overfitting. Since the employment of different regular-
ization techniques could influence the overall performance of a CNN, they
are considered as the design parameters that should be carefully selected.
Various regularization techniques are presented in section 2.2.2.2

• Weight initialization method: It refers to the methods that could be utilized
for the initialization of CNN weights during the starting of the training
process. Since the employment of different weight initialization methods
could influence the rate of convergence of a CNN, they are considered as
the design parameters that should be carefully selected. Various weight
initialization methods are presented in section 2.2.2.3

2. Architecture design parameters: These are defined as the design parameters
that are related to or based on the architecture design of a CNN. From the liter-
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ature study, we identified three main types of design parameters of CNN archi-
tecture.

• Network layers: The components of CNN that contain learnable parame-
ters (weights and biases). For example, Conv layer and FC layer. Different
types of layers, number of layers, order of layers, configuration (for ex-
ample, number of channels in Conv layers, or number of neurons in FC
layers, etc.) of layers in a CNN architecture could influence its overall per-
formance, and thus all these settings of layers are the design parameters
of CNN architecture and should be carefully selected. These layers are
presented in section 2.2.1.

• Network units: The components of CNN that perform a predefined oper-
ation on the output of a layer. For example, Pool unit, LCN unit, GCN
unit, and LRN unit. Different types of units, number of units, order of
units, configuration (for example, a Pool unit could perform max-pooling
or average pooling, etc.) of units in a CNN architecture could influence
its overall performance, and thus all these settings of units are the design
parameters of CNN architecture and should be carefully selected. These
units are presented in section 2.2.1 and 2.2.2.4.

• Activation functions: Different types of activation functions could perform
different operations on the output of CNN layers and could affect the over-
all performance of a CNN. Thus different types of activation functions
are the design parameters of CNN architecture and should be carefully se-
lected. They are presented in section 2.2.1.5.

For these two categories of design parameters, we used the following four-step
methodology for their exploration:

Step 1 As the first step, we started by exploring the training process design parameters
because they constitute the basis of CNN training and it is not possible without
them to construct or train any CNN architecture. Our method of selection of
these parameters was either based on the references from literature study, or
through a set of initial experiments that reflected their usefulness.

Step 2 After the selection of training process design parameters, it was possible to
construct and train a CNN architecture. Thus based on the literature study, we
initialized a CNN architecture to be used for the further exploration of architec-
ture related design parameters. To conduct proper investigation of these design
parameters, we designed an experimental setup to evaluate the performance of
various architecture design parameters using publicly available benchmarking
dataset (TID[41]) and image content-sensitive 5 fold cross-validation.

Step 3 After this, we further explored different architecture design parameters that
contribute to the overall increase in the performance of a CNN design. By eval-
uating their performance on the selected experimental setup, the design parame-
ters were either selected or rejected from their inclusion to the final CNN design.
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Step 4 Finally, based on the results of the design space exploration, two CNN archi-
tectures were proposed, one for the prediction accuracy and another for mini-
mizing the computational complexity.

3.2 Methodology for evaluation phase

This section presents the three-step methodology used for the testing of the CNN de-
signs obtained from the design phase. This methodology is linked to Chapter 5

Step 1 : Based on the literature study, we designed an experimental setup to evaluate
the proposed CNN architectures obtained from the design phase, using publicly
available benchmarking datasets (LIVE[51] and TID[41]) and image content-
sensitive cross-validation.

Step 2 : The two CNN architectures resulting from the design phase were first com-
pared among each other in order to better understand the trade-off that could be
achieved between the complexity and accuracy. The comparison was made in
terms of their performance on selected evaluation metrics.

Step 3 : The proposed CNN design from the design phase were then compared to the
state of the art IQA methods to verify whether the proposed innovations (more
depth and use of larger image patches as input) were of added value, again in
terms of their performance on evaluation metrics.

3.3 Methodology for inspection phase

Though CNN’s have been known to give superior performance in many application
fields, their internal working is very difficult to understand especially because of their
big size and a large number of learnable parameters. Thus to obtain a better under-
standing, we selected two feature visualization techniques namely Synthetic-Max and
Image-Max.

Synthetic-Max : This visualization technique generates a synthetic image that maxi-
mally activates a target neuron in a CNN.

Image-Max : This visualization technique selects an image patch from the training
dataset, that maximally activates a target neuron in a CNN.

The selected techniques aim at generating or extracting image patches that maximally
activate the target neuron. Thus they helped in the visualization of characteristics of
input images that a target neuron is responsible for detecting. They were also attractive
because of their capability to generate unique and informative visualizations of features
learned by even deeper layers of a CNN. This methodology is linked to Chapter 6
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Chapter 4

Convolutional Neural Network
Design

In section 2.1, various IQA methods and algorithms were presented, and it was shown
that NR-IQA (a branch of objective IQA) is the most desirable method because of
its non-requirement of a reference image and wider scope of applications. Further,
it was shown that feature learning based approaches of NR-IQA are more efficient
and superior to traditional handcrafted feature-based approaches. Thus in this thesis
project our goal was to approach NR-IQA by making use of a feature learning based
approach of CNN.

Existing feature learning based approaches ([67],[66],[25] and [26]) for NR-IQA
suffer from two main limitations:

• Loss of global information: Existing feature learning-based approaches, as re-
ported in section 2.1, often assume distortions to be homogeneously distributed
across the image, and their perceptual impact to be just as strong throughout,
independent on the structure and content of the image region where they are
located. As a consequence, common approaches are based on feeding learning
algorithms with very small portions of the images (so-called patches), of the
size of e.g. 32 x 32 or even 7 x 7 (which is even smaller than the typical block
size used by compression algorithms such as JPEG). The learning algorithms
are then trained to predict, based on these small image patches, the quality of
the overall image. In other words, the quality score of the entire image is as-
signed as a label to all small patches extracted from the image. Though this
approach is advantageous in artificially increasing the size of training datasets,
which further promotes generalization, it is perceptually incorrect. Depending
upon the content and structural information contained in these patches, image
patches could bear quality score much different from each other. Thus it is pos-
sible to improve these approaches by making use of bigger input patches that
are capable of incorporating more global information on input images.

• Lack of depth: Existing CNN based approaches for NR-IQA only employ maxi-
mum three Conv layers for the purpose of feature extraction. This lack of depth
prevents them from learning higher levels of features from input images. Since
it has been shown in [18] that higher level features could simplify a much com-
plex problem of object recognition into delivering superior performance, with
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Figure 4.1: AlexNet architecture [29]

Figure 4.2: RAPID architecture [33]

the employment of more number of layers, NR-IQA based CNN architectures
could also improve upon their current level of performances.

With an aim to overcome the above-mentioned limitations, we considered an AlexNet
based two feed CNN architecture called RAPID [33], which was proposed for the
task of image aesthetic quality assessment. RAPID architecture, shown in Figure 4.2,
employs two identical feeds called local feed for processing local view of an image,
and global feed for processing global view of an image. The local feed takes image
crops as input, and the global feed takes image warps (reshape image to input size of
CNN) as input. This type of architecture meets our first requirements by taking into
consideration the global information of input images.

Since the RAPID architecture was refined from AlexNet and was proposed for a
different application of image aesthetic quality assessment, instead of directly adopting
RAPID for our application of NR-IQA, we decided to start fresh from AlexNet archi-
tecture while adopting the idea of using local and global feeds from RAPID. Since
AlexNet consists of five Conv layers, considering AlexNet helped us in fulfilling our
second requirement of deeper CNN architecture.

We further adopted the idea of using identical local and global feeds, because first
of all the good results reported by RAPID in [33] showed that its is an efficient design
choice, and secondly, it also reduces the design space to be explored for NR-IQA task
based CNN architecture design.

Based on the above discussions, we decided to start the design space exploration
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with the only local feed of AlexNet based CNN architecture. Global feed was analysed
later after the local feed was configure with selected design parameters. We named our
target CNN design for the application of NR-IQA as IQA-DCNN: Image Quality As-
sessment using Deep Convolutional Neural Networks. The starting configurations of
IQA-DCNN, with only local feed, are described below.

IQA-DCNN architecture
AlexNet contains approximately 60 million learnable parameters and was originally
trained on ILSVRC2012 [10] dataset of 1.2 million training images. Since available
IQA datasets are not very big (TID[41], the biggest IQA dataset contain 1700 images),
directly adopting AlexNet architecture for the application of NR-IQA would result
in high levels of over-fitting. Thus instead of directly using AlexNet, its simplified
version was used so as to have less number of learnable parameters in IQA-DCNN.
The version zero (V-0) of the IQA-DCNN architecture is shown in Figure 4.3.

Similar to RAPID, we utilized only one feed of AlexNet for constructing the local
feed of IQA-DCNN. To decrease the number of learnable parameters, we dropped one
FC layer from the 3 FC layered AlexNet architecture and utilized FC1 containing 1000
neurons (similar to RAPID) and FC2 with one neuron to provide regression output. As
in AlexNet, we also employed a dropout unit with dropout probability of 0.5 over the
output of FC1 layer. The utilization of a dropout unit could prevent overfitting by
regularizing the IQA-DCNN architecture.

We then adopted the structure of convolutional layers of AlexNet and configured
IQA-DCNN to contain five Conv layers (Conv1 to Conv5), with three overlapping
max pool units (Pool1, Pool2 and Pool3 respectively added to the output of Conv1,
Conv2, and Conv5 layers), and two local response normalization units (LRN1, and
LRN2 added further to the outputs of Pool1 and Pool2 units respectively). We con-
figured Conv1, Conv2, Conv3 and Conv4 layers with 100 channels for simplification.
After this, the Conv5 layer was configured with 25 channels because it is an interface
between Conv and FC layers, and since the parameters of FC layers are not shared (un-
like Conv layers), connecting them to high number of channels would result in very
high total amount of learnable parameters to be trained.

Further following AlexNet, ReLU activation unit was used in all layers of IQA-
DCNN, except in FC2 layer whose output is used for regression. Rest of the config-
urations including filter shapes, strides and zero-padding were also directly adopted
from the AlexNet architecture and are explicitly illustrated in Figure 4.3.

The IQA-DCNN operates on 227 x 227 RGB input patches and outputs a corre-
sponding image quality score to the processed inputs. It should be noted that AlexNet
employed 224 x 224 size of input patches, but it was pointed out in [6] that 224 x 224
input size with 11 x 11 filters configured with the stride of 4 would result in some of the
filters to unsymmetrical fit across the network inputs. Thus to avoid this, inputs of size
227 x 227 should be used instead. This mistake was later rectified in reimplementation
of AlexNet.

The selected configurations of IQA-DCNN are merely the starting configurations
of IQA-DCNN, many of which were further optimized during the design space explo-
ration of architecture design parameters (presented in section 4.3).
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Figure 4.3: IQA-DCNN architecture: V-0

Though the configurations of version zero (V-0) of IQA-DCNN were motivated from
successful AlexNet and RAPID architectures, it was still very challenging to effi-
ciently train it. The biggest challenge was the small size of available IQA datasets
for CNN training. The original AlexNet architecture was trained on the ILSVRC-
2012[10] dataset of 1.2 million images, and RAPID was trained on AVA[39] dataset
of 250,000 images. Contrary to this, the biggest IQA dataset (TID[41]) merely con-
tains 1700 images in total, which is a very small number in comparison. The situation
became even more challenging as the bigger size of employed input patches also dras-
tically reduced the total number of distinct training patches (in comparison to other
CNN based NR-IQA approaches) that could be used for IQA-DCNN training.

Thus all these challenges posed the need for very careful selection of CNN design
parameters. In section 4.1, we describe our choice of different training process design
parameters that were employed for the training of IQA-DCNN. With selected training
process design parameters, in section 4.2, we describe the experimental setup that was
used for comparing and selecting various architecture related design parameters. Using
this experimental setup, in section 4.3, various design parameters were chosen for the
configuration of the local feed of IQA-DCNN. Then in section 4.4, we explore the
possibility of adding a global feed to the configured local feed architecture. Finally in
section 4.5, we conclude the findings of this Chapter.

4.1 Training process design parameters

As described in section 3.1, training process design parameters are defined as the de-
sign parameters that are utilized for the training of a CNN. Selection of these design
parameters is described is subsections 4.1.1 till 4.1.3.
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4.1.1 Learning task, training method and cost function

Since image quality is presented as a range of continuous values (rather than discrete
classes), it was obvious for us to train IQA-DCNN towards a regression target.

To fix the training method, we considered two ways in which IQA-DCNN can be
trained:

1. Supervised pre-training using a bigger dataset, followed by supervised fine-
tuning using IQA dataset.

2. Supervised training using only IQA dataset.

We did not consider unsupervised training because CNN’s are best known as su-
pervised learning algorithms and have been shown to portray superior performance
with full supervised learning in [29], [57] and [72].

In the case of deep CNN’s, it is desirable to have large amount of training examples
for better generalization. Since most of the IQA datasets are very small in size, we con-
sidered a pre-training step using ILSVRC2012[10], which is a bigger dataset (with 1.2
million images) for object recognition tasks. We figured that, since CNN’s are claimed
to extract features at different levels of abstraction, using an object recognition dataset
for pre-training would have helped in learning basic features in lower layers, which
we assume to be the same for any task (because they model the early stages of human
vision - color and orientation processing). Features in higher layers, corresponding to
higher levels of abstraction (perhaps corresponding to the task specialization), would
have then been fine-tuned for image quality assessment with an IQA dataset.

Using the method of supervised pre-training, we were never able to successfully
fine-tune IQA-DCNN using pre-trained weights of the ILSVRC-2012 dataset. We
found that it was very difficult to train a CNN with a pre-training step on the dataset
from a very different domain. This could be because relevant features (especially high-
level features) for IQA task are much different than features developed through training
on object recognition dataset, and selectively dropping some of the co-adopted layers
could prevent CNN from converging [70].

Thus based on these observations, we decided to only use IQA datasets for the
supervised training of IQA-DCNN.

With learning task and training method set, we considered two popular cost functions,
L1 norm loss and L2 norm loss, for the regression target.

It was shown in [32] that the L2 norm is more stable and produces a unique solu-
tion in comparison to L1 norm, which is less stable and produces multiple solutions.
Since properties like stability and ability to provide a unique solution are important for
smooth convergence of CNN to a global optimum, we decided to use L2 norm loss as
the cost function for IQA-DCNN. Furthermore, L2 norm was also recommends in [6]
as a cost function for CNN’s with regression task.

Hence we decided to train IQA-DCNN towards a regression task, by using only IQA
datasets through supervised training method, while employing L2 norm cost function.
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4.1.2 Optimization method

Gradient descent optimization using backpropagation is a standard method utilized for
the optimization of CNN’s. Many popular CNN architectures ([29],[57],[72],[18], etc.)
have been successfully trained using this method. Motivated by this, we also employed
gradient descent based optimization method along with backpropagation for training
IQA-DCNN.

In this section, we describe our selection of the gradient descent optimization
method and the gradient descent optimization algorithm. Detailed background infor-
mation on these methods and algorithms is presented in section 2.2.2.1.

We considered three possible gradient descent optimization methods based on the
number of training examples employed for the weight update: Batch gradient descent,
stochastic gradient descent, and minibatch gradient descent.

Through some initial trials, it was observed that batch gradient descent optimiza-
tion could not be employed because operating IQA-DCNN on a full batch of images
poses unrealistically large requirement on RAM size. Furthermore, it is also known
to be a very slow in comparison to other two methods. In addition, some trials with
stochastic gradient descent optimization method showed it to very unstable (because
of very noisy gradients), preventing the IQA-DCNN from converging. Finally, other
trials showed minibatch-based gradient descent to be a good compromise. Being it
widely used by a number of popular CNN architectures (AlexNet[29], ResNet[18],
etc.) we could rely on previous literature to foresee its application to be effective.

Based on these observations, we selected minibatch gradient descent as the opti-
mization method for IQA-DCNN.

4.1.2.1 Gradient descent optimization algorithm

Having selected minibatch gradient descent optimization method, we considered four
gradient descent optimization algorithms: Vanilla, Momentum, Nesterov Momentum,
and Adam.

Since Adam[27] is an intelligent gradient descent optimization method that employs
adaptive learning rates for each of the network parameters, it was considered for IQA-
DCNN. But in our initial trials, it was observed that using Adam makes IQA-DCNN
very unstable and prevents it from converging. This could be due to different learning
rates adopted by learnable parameters that could make the whole CNN very unstable
especially when it is being trained to achieve a regression target. Thus Adam was
rejected.

We further trained IQA-DCNN using Vanilla, Momentum and Nesterov momen-
tum on TID dataset (presented in section 4.2.2) with minibatch size of 32 (which is not
very large or very small), and L2 norm as the cost function. As shown in Figure 4.4, it
was observed that Momentum and Nesterov momentum results in faster convergence
and lower training cost in comparison to Vanilla method. Since Nesterov momentum
was further observed to be faster than Momentum method in early epochs, Nesterov
momentum was selected as a gradient descent optimization algorithm for IQA-DCNN.

Equations 2.10 and 2.11 were utilized for the update of learnable parameters with
Nesterov momentum. In equation 2.10, we used m = 0.9 as recommended in [6].
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Figure 4.4: Training cost (L2 norm) vs Epoch graph: Comparison of convergence
speed between Vanilla, Momentum, and Nesterov Momentum gradient descent opti-
mization algorithms.

Further the learning rate ε was updated in epoch t using equation 4.1, which was
adopted from [25] because of its reported superior performance.

ε = 0.02∗ (0.9)t (4.1)

As an outcome of this section, we decided to use Nesterov momentum, in minibatch
gradient descent setting, as a gradient descent optimization algorithm for IQA-DCNN.

4.1.3 Weight Initialization

Weight initialization plays an important role in the efficient functioning of CNN’s.
Good weight initialization can accelerate the overall training process whereas bad
weight initialization can prevent a CNN from converging.

We considered four weight initialization methods for the application of IQA-DCNN:
Gaussian distribution method, Xavier initialization, batch normalization, and data de-
pendent initialization. These methods were selected because of their superior perfor-
mance reported in the literature. Detailed background information on these methods is
presented in section 2.2.2.3.

In some initial trials, it was observed that utilization of Xavier initialization and
data dependent initialization method prevent IQA-DCNN from converging. The rea-
son behind this could be the regression target for which the IQA-DCNN is trained.
Training to solve a regression task is not a very stable setting in itself as it requires
CNN to learn very specific configurations of weights to output precise values for a
given set of inputs, which is not the same with classification task that employs Soft-
max functions, which render precise output values less important. Since these weight
initialization methods have been shown to display good performance for classification
tasks in [19], [28], [34], and [50], they don’t seem to perform well with a regression
target and thus were rejected for IQA-DCNN.
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Some further trials with the initialization of weights using Gaussian distribution
method gave good results. But these results were observed to be dependent upon a
specific selection of standard deviation value. Hence it was concluded that Gaussian
distribution method can be used for the initialization of IQA-DCNN weights, but it
requires some initial trials to find suitable values of standard deviation to ensure stable
convergence of IQA-DCNN.

IQA-DCNN was also tested with batch normalization method. It was observed
that though batch normalization results in very fast convergence, the proposed methods
for the estimation of unique values of mean and standard deviation (computed across
minibatches) failed at producing corresponding results during validation and testing
phase. The validation and test performance were observed to improve only when fresh
values of mean and standard deviation were computed across respective validation and
test minibatches (that contain distorted images produced from same reference image).
Since test images could not be expected to have minibatches, batch normalization was
also rejected.

From considered weight initialization methods, Gaussian distribution method was
selected for the initialization of IQA-DCNN weights.

4.2 Experimental setup

With training process design parameter already selected in section 4.1, in this section
we describe the experimental setup that was used for selecting various design parame-
ters of IQA-DCNN architecture.

Based on the selected training methods, we first describe the initialization of V-0
IQA-DCNN architecture (in subsection 4.2.1). Then we introduce the dataset (in sub-
section 4.2.2) that was utilized for the training, validation and testing of IQA-DCNN
for the purpose of this Chapter. Next we move to data augmentation technique (in
subsection 4.2.3) that was employed to artificially increase the size of IQA datasets.
Finally, we describe the evaluation method (in subsection 4.2.4) used for the selection
of architecture design parameters in the local feed of IQA-DCNN, and then later for
exploring the possibility of adding an extra global feed in section 4.4.

4.2.1 Architecture initialization

In the starting of this Chapter, we defined a version zero (V-0) of IQA-DCNN archi-
tecture (shown in Figure 4.3) and explained its configuration. Then in section 4.1, we
decided upon the training process design parameters and chose to train IQA-DCNN us-
ing only IQA dataset based supervised training towards a regression target. We further
chose L2 norm as the cost function, and employed Nesterov momentum based mini-
batch gradient descent. And finally, we decided to initialize network weights using
Gaussian weight initialization method.

Based on the selected parameters of the training process, and V-0 IQA-DCNN ar-
chitecture, we further initialized minibatch size to 32 images per minibatch, which is
not very large or small considering the size of IQA datasets. The biases in all layers
were initialized to value 0.1 (adopted from [29]) which accelerates learning in early
stages of training by providing positive inputs to ReLU activations functions. All
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weights were initialized from Gaussian distribution of zero mean and standard devi-
ation of 0.02 for Conv layers, 0.005 for FC1 and 0.05 for FC2 layer. These standard
deviation values were obtained through initial trials and were found to fit IQA-DCNN
into promoting smooth convergence. We further normalized IQA-DCNN targets be-
tween 0 and 1, that fits well with initialized weights.

We also used a data augmentation technique to artificially increase the size of our
dataset, which is presented in subsection 4.2.3.

4.2.2 Dataset

In IQA task, the perceived quality of an image is predicted in terms of Mean Opinion
Score (MOS). Thus in order to train IQA-DCNN to predict an image quality, set of
example pairs of images and their MOS values were required. This requirement could
be fulfilled through public datasets that performed subjective experiments on the set
of images and made both images and their respective MOS available in the form of
IQA datasets. We considered TID[41] dataset for the training, validation, and testing
of IQA-DCNN. The choice of TID was motivated from its utilization in related work
([66] and [26]), and also because it is the biggest among available IQA dataset.

TID[41] is an image quality dataset that consists of 25 reference images distorted
with 17 different distortion types at 4 degradation levels to provide 1700 distorted im-
ages in total. The 17 distortion types included in this dataset are: Additive Gaussian
noise (WN), Additive noise in color components (WNC), Spatially correlated noise
(SCN), Masked noise (MN), High frequency noise (HFN), Impulse noise (IN), Quan-
tization noise (QN), Gaussian blur (BLUR), Image denoising (IDN), JPEG compres-
sion (JPEG), JPEG2000 compression (JPEG2K), JPEG transmission errors (JPEGTE),
JPEG2000 transmission errors (JP2KTE), Non eccentricity pattern noise (NEPN), Lo-
cal block-wise distortions of different intensity (LBD), Inten- sity shift (IS) and Con-
trast change (CC). TID dataset provides a Mean Opinion Score (MOS) for each dis-
torted image. MOS varies in range [0,9] for images with lowest and highest visual
quality respectively.

For IQA-DCNN we have used all 25 reference images (Including non-natural
scene image) distorted with first 13 distortion types. To make our results compara-
ble with other NR-IQA algorithms, last four distortion types (NEPN, LBD, IS and
CC) were excluded following the setup of [66] and [26]. Reference images were also
not included in either of the training, validation or test sets because of the same reason.
Thus total 1300 distorted images were used from TID dataset.

4.2.3 Data Augmentation

As discussed in section 2.2.2.2, data augmentation is a good technique that helps tackle
overfitting. Thus we considered an efficient method of augmenting data inspired from
the data augmentation methods used in CNN’s for object recognition tasks [29].

The reference images used in TID dataset are bigger than 227 x 227 input size of
V-0 IQA-DCNN. This difference can be used for producing a large number of data
augments of input images. For instance, all reference images in TID dataset are of
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size 512 x 384, which makes it possible to extract (512−227)∗ (384−227) = 44,745
different but overlapping data augments of size 227 x 227 from each image. Thus
for total 1300 images, it is possible to have 581,68,500 (58.1 million) data augments,
which is a large number in itself.

Data augmentation is beneficial for IQA-DCNN but storing all these data augments
would require very large amount of disk space. One way to tackle this problem is to
randomly take 227 x 227 crops of input image during training, which would result in
different input patches in every epoch. Given large enough number of epochs, using
this scheme, a CNN could train on all possible augments of a dataset. But there is
a complication as minibatch gradient descent optimization require inputs in form of
minibatches, and it is not possible to make minibatch of different sized images (as
per general practice, a minibatch is constructed and processed as a multidimensional
matrix, and it is not possible to form a multidimensional matrix with inputs of different
dimensions).

It was also observed that if 64 evenly spaced overlapping patches of size 300 x
300 are extracted from an image of size 720 x 720 (720 being the largest dimension
among images in TID and LIVE (LIVE dataset is used in Chapter 5), then all possible
data augments of 720 x 720 image can be reproduced from the extracted 300 x 300
patches. This is also valid for any other image of the size smaller than 720 x 720. Thus
to save disk space, 64 patches of size 300 x 300 were extracted from every image in
the dataset, which was then given as an input to the IQA-DCNN that randomly takes a
227 x 227 crop as its input.

During training, all patches were assigned the quality label of the whole image.
Further during the testing phase, 64 227 x 227 patches were directly extracted from
the image dataset and were given as an input to IQA-DCNN without any further need
of cropping. For this testing scheme, the final quality score of an image was obtained
by taking an average of individual scores on 64 patches.

This data augmentation technique resulted in total 1300∗64= 83,200 image patches
from TID dataset.

It should be noted that the described data augmentation technique could only be used
with the local feed of IQA-DCNN, and no data augmentation is possible with the input
of its global feed.

4.2.4 Evaluation method

IQA-DCNN with different architecture design parameters was trained, validated and
tested using TID dataset, using which, we further employed 5 fold cross validation
(that is illustrated in Figure 4.5), as per which the 25 reference images were divided in
5 non-overlapping groups (folds) of 5 images each. Out of total 5 folds, 3 folds (60%
) were used for training, 1 fold (20%) for validation and 1 fold (20%) for testing. All
distorted version of a reference image were assigned to the fold to which the reference
image was assigned, and to no other fold. Hence, in the cross-validation setting, the
network was forced, at test time, to generalize over image contents that it had not seen
in the training (or validation). In addition, the 5-fold cross-validation made sure that
all contents were used for test at least once, thereby covering the whole dataset.
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Figure 4.5: Illustration of five fold cross validation on TID dataset.

As per the recommendations of VQEG[46] and ITU[23], we employed two mea-
sures to evaluate the performance of each fold:

1. Spearman Rank Order Correlation Coefficient (SROCC): It is correlation
metric that measures how well a variable can be described as a monotonic func-
tion of another variable.

.

2. Linear Correlation Coefficient (LCC): It measures the linear dependencies
between two variables.

These evaluation metrics were used to compute correlations between the desired out-
put quality scores (provided by IQA datasets) and quality scores generated by CNN.
Higher values of these correlations correspond to higher performance of CNN. The
performance of various architecture design parameters were evaluated based on the
average SROCC and LCC evaluation measures across the five test sets as per five fold
cross-validations.

4.3 Architecture design parameters

In this section, we describe our selection of various architecture design parameters for
IQA-DCNN.

As explained in section 2.2, the configuration and inclusion of different architec-
ture elements could greatly influence the performance of a CNN. Thus in this section
we explore a number of elements, namely data pre-processing units (subsection 4.3.1),
local response normalization units (subsection 4.3.2), activation functions (subsection
4.3.3), convolutional layer and pooling units (subsection 4.3.4), fully connected layers
(subsection 4.3.5), regularization (subsection 4.3.6), and minibatch size (subsection
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F1 F2 F3 F4 F5 Average
No-Pre 0.447 0.547 0.59 0.568 0.573 0.545
GCN 0.465 0.623 0.542 0.576 0.597 0.561
LCN 0.71 0.871 0.874 0.861 0.825 0.828

Table 4.1: SROCC: Performance evaluation of data pre-processing units on 5 test folds
of TID

F1 F2 F3 F4 F5 Average
No-Pre 0.477 0.542 0.608 0.642 0.589 0.572
GCN 0.54 0.655 0.602 0.632 0.63 0.612
LCN 0.758 0.883 0.887 0.882 0.841 0.85

Table 4.2: LCC: Performance evaluation of data pre-processing units on 5 test folds of
TID

4.3.7), of IQA-DCNN design. The experimental setup used for the comparison of var-
ious design parameters is explained in section 4.2.

4.3.1 Data pre-processing

Data pre-processing is generally used with an aim to reform the input data such that the
data could be utilized into accelerating the overall learning process [6]. Thus to inspect
their advantages, we considered and compared three different architecture design of
IQA-DCNN that respectively employ:

1. No data pre-processing (No-Pre) (as in V-0 architecture)

2. Global contrast normalizing unit (GCN)

3. Local contrast normalization unit (LCN)

GCN and LCN were selected because they are most commonly used in object recog-
nition and IQA tasks [35][25][26]. Background information on GCN and LCN is
presented in section 2.2.2.4.

It should be noted that for LCN (similar to BRISQUE, IQA-CNN, and IQA-
CNN++) we used the local normalization window of size seven (k = 7).

The SROCC and LCC measures on five folds of TID dataset, obtained after the
performance evaluation of these three architecture design, are respectively summarized
in Table 4.1 and 4.2. From the average performance on all five folds under SROCC
evaluation metric, it was observed that LCN performed around 26.7% better than GCN,
and around 28.3% better than No-Pre. On LCC evaluation metric, LCN outperformed
GCN and No-Pre by 23.8% and 27.8% margin respectively.

Clearly, the LCN unit is a valuable addition to IQA-DCNN, and thus it was in-
cluded in its architecture. The updated version of IQA-DCNN, V-1, is shown in Figure
4.6.

44



Convolutional Neural Network Design 4.3 Architecture design parameters

Figure 4.6: IQA-DCNN architecture: V-1

F1 F2 F3 F4 F5 Average
LRN 0.71 0.871 0.874 0.861 0.825 0.828
No-LRN 0.788 0.866 0.881 0.839 0.844 0.844

Table 4.3: SROCC: Performance evaluation of LRN unit on 5 test folds of TID

F1 F2 F3 F4 F5 Average
LRN 0.758 0.883 0.887 0.882 0.841 0.85
No-LRN 0.819 0.881 0.895 0.865 0.857 0.863

Table 4.4: LCC: Performance evaluation of LRN unit on 5 test folds of TID

4.3.2 Local response normalization

LRN unit was introduced in AlexNet and was claimed to aid generalization [29], but
recent CNN architectures like ResNet [18] does not employ it as it is no longer consid-
ered very useful. As IQA-DCNN architecture was adopted from AlexNet, LRN units
are used in V-1 architecture. Thus it is important to compute its usefulness, without
which it only contributes to the increase in computational demand of the architecture
design.

To test the usefulness of LRN unit is IQA-DCNN, we considered and compared
two different architecture designs that respectively apply:

1. Local response normalization (LRN) unit (as in V-1 architecture)

2. No local response normalization (No-LRN) unit

The SROCC and LCC measures on five test folds of TID dataset, obtained after the
performance evaluation of these two architecture design, are respectively summarized
in Table 4.3 and 4.4. From the average performance on all five folds under SROCC
evaluation metric, it was observed that No-LRN setting performed 1.6% better than
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Figure 4.7: IQA-DCNN architecture: V-2

LRN setting. On LCC evaluation metric, No-LRN setting was observed to outperform
LRN setting by 1.3% margin.

Since not employing any LRN unit also decreases the computational demand of the
architecture, it was decided that LRN unit should be dropped from the current version
of IQA-DCNN. The updated version of IQA-DCNN, V-2, is shown in Figure 4.7.

4.3.3 Activation Functions

As the activation of every layer of CNN is generally processed using an activation
function, the selection of an appropriate activation function is vital for the proper func-
tioning of IQA-DCNN. Thus we considered and compared two different architecture
designs that use the different type of activation functions. We compared the architec-
tures employing:

1. ReLU activation function in all layers except in FC2. (as in V-2 architecture)

2. Maxout[16] with FC1, and ReLU activation function with all other layers except
FC2. Here we used R = 3 number of linear feature extractors with each Maxout
function (see section 2.2.1.5).

Since biggest advantage of Maxout unit comes from its ability to improve the
model averaging performed by the dropout unit (as claimed in [16]), its uti-
lization in FC1 layer (that is followed by dropout unit) is the best place in the
IQA-DCNN architecture to record its advantages. Further three linear feature
extractors were used as they were shown to deliver good performance in [8].

Tanh activation function was also considered first, but because of its poor perfor-
mance reported in [6] due to its saturation problem, it was directly rejected. Back-
ground information on these employed activation functions is presented in section
2.2.1.5.
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F1 F2 F3 F4 F5 Average
ReLU 0.788 0.866 0.881 0.839 0.844 0.844
Maxout 0.743 0.859 0.887 0.861 0.884 0.847

Table 4.5: SROCC: Performance evaluation of activation functions on 5 test folds of
TID

F1 F2 F3 F4 F5 Average
ReLU 0.819 0.881 0.895 0.865 0.857 0.863
Maxout 0.783 0.822 0.906 0.89 0.892 0.859

Table 4.6: LCC: Performance evaluation of activation functions on 5 test folds of TID

The SROCC and LCC measures on five test folds of TID dataset, obtained after
the performance evaluation of these two architecture design, are respectively summa-
rized in Table 4.3 and 4.4. From the average performance on all five folds under both
SROCC and LCC evaluation metrics, it was observed that Maxout did not provide any
significant advantage over ReLU activation function. The reported results are very
closely similar to each other as Maxout outperformed ReLU by 0.02% under SROCC
metric, and ReLU outperformed Maxout by 0.4% under LCC metric.

Thus it was decided to not use the Maxout activation function as it does not pro-
vide any noticeable advantage over ReLU. Hence version V-2 of IQA-DCNN remains
unchanged.

4.3.4 Convolutional layer and pooling unit

In this section, we present the results of the exploration of different design parameters
related to the convolutional layers and pooling units, which are the building blocks
of the CNN architecture. We start the exploration from the interface of Conv and FC
layers, then we move to the exploration of the number of convolutional layers (depth),
then to the type of pooling layers employed, and finally to the number of channels used
in Conv layers. Background information about Conv layer and Pool unit is presented
in section 2.2.

4.3.4.1 Interface of convolutional layers and fully connected layers

We considered and compared three different architecture designs that employ a differ-
ent number of channels in the Conv5 layer, i.e., the Conv layer present at the interface
of Conv and FC layers. The number of channels in the Conv5 layer is of significant
importance. As Conv5 layer is followed by FC1 layers (as per V-2 architecture), each
output of the Conv5 layer results in the increase of 1000 learnable parameters (cor-
responding to 1000 neurons in FC1 layer). Thus the number of channels of Conv5
were more carefully selected in comparison to other Conv layers. We compared the
architectures employing:

1. Conv5 channels = 25 (as in V-2 architecture)

2. Conv5 channels = 50
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F1 F2 F3 F4 F5 Average
Conv5 channels = 25 0.788 0.866 0.881 0.839 0.844 0.844
Conv5 channels = 50 0.756 0.877 0.896 0.859 0.875 0.853
Conv5 channels = 64 0.783 0.871 0.853 0.844 0.862 0.843

Table 4.7: SROCC: Performance evaluation of number of channels of Conv5 layer
(which is present at the interface of Conv layers and FC layers) on 5 test folds of TID

F1 F2 F3 F4 F5 Average
Conv5 Channels = 25 0.819 0.881 0.895 0.865 0.857 0.863
Conv5 Channels = 50 0.803 0.893 0.911 0.879 0.888 0.875
Conv5 Channels = 64 0.813 0.889 0.881 0.866 0.875 0.865

Table 4.8: LCC: Performance evaluation of number of channels of Conv5 layer (which
is present at the interface of Conv layers and FC layers) on 5 test folds of TID

3. Conv5 channels = 64

Initially, only these three architecture designs were considered, and the plan was to
explore further configurations if performance peak was not identified within the con-
sidered configurations.

The SROCC and LCC measures on five test folds of TID dataset, obtained after the
performance evaluation of these three architecture design, are respectively summarized
in Table 4.7 and 4.8. From the average performance on all five folds under SROCC
evaluation metric, it was observed that Conv5 layer with 50 channels performed around
1% better than 25 and 64 channel setting. On LCC evaluation metric, 50 channel
setting performed around 1.2% better than 25 channel setting, and around 1% better
than 64 channel setting.

Hence the IQA-DCNN architecture was updated to the version V-3 and is shown
in Table 4.8.

4.3.4.2 Number of convolutional layers

Since the number of Conv layers decide the depth of IQA-DCNN, we considered and
compared three different architecture designs that use the different number of convo-
lutional layers to evaluate the required depth of architecture to perform the NR-IQA
task. We compared architectures employing:

1. Conv layers = 4

2. Conv layers = 5 (as in V-3 architecture)

3. Conv layers = 6

Initially, only these three architecture designs were considered, and the plan was
to explore further configurations if performance peak was not identified within the
considered configurations.
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Figure 4.8: IQA-DCNN architecture: V-3

F1 F2 F3 F4 F5 Average
Conv layers = 4 0.679 0.86 0.86 0.834 0.863 0.819
Conv layers = 5 0.756 0.877 0.896 0.859 0.875 0.853
Conv layers = 6 0.767 0.854 0.884 0.821 0.854 0.836

Table 4.9: SROCC: Performance evaluation of depth of convolutional layers on 5 test
folds of TID

F1 F2 F3 F4 F5 Average
Conv layers = 4 0.736 0.877 0.88 0.859 0.877 0.846
Conv layers = 5 0.803 0.893 0.911 0.879 0.888 0.875
Conv layers = 6 0.81 0.873 0.903 0.841 0.863 0.858

Table 4.10: LCC: Performance evaluation of depth of convolutional layers on 5 test
folds of TID

It should be noted that for increasing the number of convolutional layers over V-3
architecture, Conv4 layer was duplicated because Conv4 did not change the shape of
its input and duplicating it would require no further changes to be made elsewhere in
the architecture. Also for decreasing the number of convolutional layers, the Conv4
layer was deleted following the same idea.

The SROCC and LCC measures on five test folds of TID dataset, obtained after the
performance evaluation of these three architecture design, are respectively summarized
in Table 4.9 and 4.10. From the average performance on all five folds under SROCC
evaluation metric, it was observed that the depth of 5 Conv layers performed around
3.4% better than the depth of 4, and around 1.7% better than the depth of 6. On LCC
evaluation metric, depth of 5 performed around 2.9% better than the depth of 4, and
around 1.7% better than the depth of 6.

Hence the V-3 architecture was not updated.
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F1 F2 F3 F4 F5 Average
Overlapping Max pooling 0.756 0.877 0.896 0.859 0.875 0.853
Overlapping average pooling 0.698 0.83 0.838 0.802 0.841 0.802
Non-overlapping Max pooling 0.705 0.849 0.882 0.779 0.833 0.81
Non-overlapping average pooling 0.658 0.841 0.793 0.858 0.844 0.799
No pooling 0.653 0.801 0.8 0.78 0.796 0.766
Pooling scheme of IQA-CNN 0.71 0.784 0.809 0.806 0.832 0.788

Table 4.11: SROCC: Performance evaluation of pooling units on 5 test folds of TID

4.3.4.3 Pooling

Different types of pooling units have been reported in the literature. To select a proper
pooling scheme for IQA-DCNN, we considered and compared six different architec-
ture designs that use different types of pooling units. We compared architectures em-
ploying:

1. Overlapping Max pooling (as in V-3 architecture): A pooling unit that uses the
stride of 2 and max pooling filters of size 3.

2. Overlapping Average pooling: A pooling unit that uses strides of 2, and average
pooling filters of size 3.

3. Non-overlapping Max pooling: A pooling unit that uses strides of 2, and average
pooling filters of size 2.

4. Non-overlapping Average pooling: A pooling unit that uses strides of 2, and
average pooling filters of size 2.

5. No pooling: Inspired from the results reported in [7], instead of using separate
pooling units, here we increased the stride values in the convolutional layers
to decrease their output dimensionality. In this architecture design, Conv1 layer
used the stride of 8, and Conv2 and Conv5 layers used the stride of 2. No pooling
unit was used in this architecture design.

6. Pooling scheme of IQA-CNN: In this architecture design, we adopted the pooling
scheme used in IQA-CNN[25] and IQA-CNN++[26]. Here we used average
max pooling units after Conv1 and Conv2 layers, and every channel of the Conv5
layer was down-sampled to one max and one min value, which was then fed to
the FC1 layer. Following the same setup as IQA-CNN and IQA-CNN++, we
also did not use any activation function in any of the convolutional layers.

The SROCC and LCC measures on five test folds of TID dataset, obtained after the
performance evaluation of these six architecture design, are respectively summarized
in Table 4.11 and 4.12. From the average performance on all five folds under SROCC
and LCC evaluation metrics, it was observed that overlapping max pooling units per-
formed best among other types of pooling unit. Overlapping Max pooling performed
4.3% and 3.8% better than non-overlapping Max pooling (Second best performing
pooling layer) on SROCC and LCC evaluation metrics respectively.

50



Convolutional Neural Network Design 4.3 Architecture design parameters

F1 F2 F3 F4 F5 Average
Overlapping Max pooling 0.803 0.893 0.911 0.879 0.888 0.875
Overlapping average pooling 0.753 0.848 0.866 0.827 0.857 0.83
Non-overlapping Max pooling 0.76 0.864 0.894 0.818 0.848 0.837
Non-overlapping average pooling 0.706 0.853 0.837 0.877 0.859 0.826
No pooling 0.712 0.829 0.803 0.831 0.824 0.799
Pooling scheme of IQA-CNN 0.746 0.805 0.822 0.840 0.846 0.812

Table 4.12: LCC: Performance evaluation of pooling units on 5 test folds of TID

Since overlapping max pooling was already present V-3 architecture, IQA-DCNN
architecture was not updated.

4.3.4.4 Number of Conv channels

Higher number of Conv channels could increase the learnable parameters in IQA-
DCNN without providing any significant improvement in performance. Thus to select
proper number of Conv channels, we considered and compared six different architec-
ture designs that use the different number of channels in Conv layers. We compared
architectures with Conv layers employing:

1. Conv Channels = 8

2. Conv Channels = 16

3. Conv Channels = 64

4. Conv Channels = 100 (as in V-3 architecture)

5. Conv Channels = 128

Initially only these six architecture designs were considered and the plan was to ex-
plore further configurations if performance peak was not identified within the consid-
ered configurations. It should be noted that the number of channels of the Conv5 layer
were fixed to 50 based on the result of a previous experiment (see section 4.3.4.1). So
in case the employed Conv channels, as per above mentioned design parameters, were
greater than 50, the channels of the Conv5 layer were fixed to 50, otherwise channels
of Conv5 layer were also changed.

The SROCC and LCC measures on five test folds of TID dataset, obtained after the
performance evaluation of these six architecture design, are respectively summarized
in Table 4.13 and 4.14. From the average performance on all five folds under SROCC
and LCC evaluation metrics, it was observed that architectures with 64 and 100 Conv
channels deliver almost similar performance that is over 1% better in comparison to
other architecture designs. Thus we decided to use the architecture design with 64
Conv channels as it contains less number of learnable parameters than the current V-3
architecture.

Hence V-3 architecture was updated to V-4, which is shown in Figure 4.9
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F1 F2 F3 F4 F5 Average
Conv Channels = 8 0.713 0.791 0.851 0.792 0.826 0.795
Conv Channels = 16 0.768 0.83 0.883 0.844 0.864 0.838
Conv Channels = 64 0.777 0.843 0.894 0.882 0.887 0.857
Conv Channels = 100 0.756 0.877 0.896 0.859 0.875 0.853
Conv Channels = 128 0.741 0.871 0.88 0.849 0.873 0.843

Table 4.13: SROCC: Performance evaluation of number of channels in convolutional
layers on 5 test folds of TID

F1 F2 F3 F4 F5 Average
Conv Channels = 8 0.788 0.832 0.843 0.821 0.854 0.828
Conv Channels = 16 0.806 0.863 0.893 0.869 0.873 0.861
Conv Channels = 64 0.806 0.865 0.909 0.894 0.895 0.874
Conv Channels = 100 0.803 0.893 0.911 0.879 0.888 0.875
Conv Channels = 128 0.788 0.889 0.898 0.873 0.883 0.866

Table 4.14: LCC: Performance evaluation of number of channels in convolutional
layers on 5 test folds of TID

Figure 4.9: IQA-DCNN architecture: V-4
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F1 F2 F3 F4 F5 Average
FC layers = 1 0.732 0.879 0.886 0.89 0.862 0.85
FC layers = 2 0.756 0.877 0.896 0.859 0.875 0.853
FC layers = 3 0.66 0.739 0.876 0.818 0.802 0.779

Table 4.15: SROCC: Performance evaluation of depth of fully connected layers on 5
test folds of TID

F1 F2 F3 F4 F5 Average
FC layers = 1 0.771 0.896 0.9 0.904 0.872 0.869
FC layers = 2 0.806 0.865 0.909 0.894 0.895 0.874
FC layers = 3 0.695 0.773 0.889 0.858 0.829 0.809

Table 4.16: LCC: Performance evaluation of depth of fully connected layers on 5 test
folds of TID

4.3.5 Fully connected layers

FC layers result in the biggest increase in learnable parameters among other compo-
nents of CNN, and their configuration should be carefully selected to control the num-
ber of learnable parameters in a CNN architecture. Thus we considered and compared
three different architecture designs that use the different number of fully connected
layers. We compared architectures employing:

1. FC layers = 1: In this architecture design, FC1 layer was removed. Since
dropout unit was applied on FC1 layer, removing FC1 layer also removed the
dropout regularization.

2. FC layers = 2 (V-4 architecture)

3. FC layers = 3: In this architecture design, FC1 layer was duplicated (without
dropout) and added between Conv5 and FC1.

Initially only these three architecture designs were considered and the plan was to ex-
plore further configurations if performance peak was not identified within these con-
sidered configurations.

The SROCC and LCC measures on five test folds of TID dataset, obtained after
the performance evaluation of these three architecture design, are respectively sum-
marized in Table 4.15 and 4.16. From the average performance on all five folds under
SROCC and LCC evaluation metrics, it was observed that architecture with 3 FC layers
performed worse among all three architecture designs. Further 2 FC layers performed
0.3% better on SROCC metric and 0.5% better on LCC metric.

It was noticed that using 2 FC layers add 1.26 million learnable parameters to the
architecture while providing the small increase in the overall performance. Thus it
was decided that the architecture design with 1 FC layer should be adopted. Hence
IQA-DCNN architecture was updated to the version V-5 that is shown in Figure 4.10.
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Figure 4.10: IQA-DCNN architecture: V-5

4.3.6 Regularization

After exploring and fixing various design parameters related to the physical struc-
ture of the IQA-DCNN architecture, we advance to the exploration of regularization
techniques that could benefit the overall performance of IQA-DCNN by preventing
overfitting. We considered and compared four different architecture designs that use
different regularization method as follows:

1. No regularization (as in V-5 architecture)

2. Dropout unit: with dropout probability = 0.5 was applied to the output of Conv5
layer

3. L1 regularization: λ = 0.00001 and 0.000001 was chosen for L1 regulation.
This value was selected through some initial trials.

4. L2 regularization: λ = 0.005 and 0005 was chosen for L1 regulation. This value
was selected through some initial trials.

These three regularization techniques were employed because they are very com-
mon and widely used techniques in the field of neural networks [6]. Detailed back-
ground information on regularization is given in section 2.

We considered only one dropout unit in the starting, and the plan was to explore
it further in case better results were obtained through this setting. Furthermore, we
considered dropout probability of 0.5 because it is a commonly used value in many
CNN architectures. [29][54][18][57][25][26] Since the high values of λ prevent the
network from converging in the case of both L1 and L2 regularization, the values of
λ were selected by first presetting them to a very high value and then by gradually
decreasing it by a factor of 10. The first two encountered values of λ that resulted in
the convergence of IQA-DCNN were then employed for the purpose of this section.
This way we were able to select λ = 0.00001 and 0.000001 for L1 regularization and
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F1 F2 F3 F4 F5 Average
No regularization 0.732 0.879 0.886 0.89 0.862 0.85
Dropout 0.743 0.854 0.891 0.891 0.843 0.844
L1 with λ = 0.00001 0.716 0.844 0.895 0.87 0.853 0.836
L1 with λ = 0.000001 0.681 0.885 0.904 0.899 0.904 0.855
L2 with λ = 0.005 0.56 0.828 0.90 0.879 0.841 0.802
L2 with λ = 0.0005 0.713 0.89 0.902 0.918 0.879 0.86

Table 4.17: SROCC: Performance evaluation of regularization methods on 5 test folds
of TID

F1 F2 F3 F4 F5 Average
No regularization 0.771 0.896 0.9 0.904 0.872 0.869
Dropout 0.784 0.872 0.904 0.907 0.851 0.864
L1 with λ = 0.00001 0.768 0.86 0.901 0.884 0.86 0.855
L1 with λ = 0.000001 0.728 0.884 0.907 0.914 0.907 0.868
L2 with λ = 0.005 0.533 0.846 0.901 0.891 0.85 0.804
L2 with λ = 0.0005 0.768 0.899 0.912 0.928 0.888 0.879

Table 4.18: LCC: Performance evaluation of regularization methods on 5 test folds of
TID

λ = 0.005 and 0.0005 for L2 regularization.

The SROCC and LCC measures on five test folds of TID dataset, obtained after
the performance evaluation of these four architecture design, are respectively summa-
rized in Table 4.17 and 4.18. From the average performance on all five folds under
SROCC and LCC evaluation metrics, it was observed that the architecture with L2
regularization using λ = 0.0005 performed better than the other architecture designs.

Thus L2 regularization was adopted to the current V-5 IQA-DCNN architecture.

4.3.7 Minibatch size

The minibatch size could be altered to induce different proportions of noise into the
CNN architecture. This induced noise could be beneficial in preventing network from
converging to local minima, but if this noise becomes too large, it could negatively
affect the CNN by preventing it from converging. Thus appropriate minibatch size
should be selected for proper functioning of a CNN, for which we considered and
compared two minibatch sizes for IQA-DCNN.

1. Minibatch size = 16

2. Minibatch size = 32 (as in V-5 architecture)

We also considered minibatch size smaller than 16, but decreasing the size below
16 prevents IQA-DCNN from converging. The reason behind it could be that the level
of noise in the architecture could become very high which ultimately prevents the
network from converging.
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Figure 4.11: Training cost (L2 norm loss) vs Epoch graph: Comparison of convergence
speed between minibatch size of 16 and 32.

F1 F2 F3 F4 F5 Average
Minibatch size = 16 0.736 0.894 0.909 0.909 0.883 0.866
Minibatch size = 32 0.713 0.89 0.902 0.918 0.879 0.86

Table 4.19: SROCC: Performance evaluation of minibatch sizes on 5 test folds of TID

F1 F2 F3 F4 F5 Average
Minibatch size = 16 0.774 0.908 0.917 0.916 0.9 0.883
Minibatch size = 32 0.768 0.899 0.912 0.928 0.888 0.879

Table 4.20: LCC: Performance evaluation with global feed on 5 test folds of TID

We did not consider minibatch size larger than 32 because larger minibatch size
is known to make the convergence slow because of less parameter updates [6]. Fur-
thermore, minibatch size of 32 has already been observed to work well in previous
experiments.

The SROCC and LCC measures on five test folds of TID dataset, obtained after the
performance evaluation of these two architecture design, are respectively summarized
in Table 4.19 and 4.20. From the average performance on all five folds under SROCC
evaluation metric, it was observed that minibatch size of 16 performed around 0.6%
better than minibatch size of 32. Under LCC evaluation metric, minibatch of size 16
performed around 0.4% better than minibatch of size 32.

As shown in Figure 4.11, it was also observed that minibatch of size 16 resulted in
lower training cost in comparison to minibatch of size 32.

From the observations of these experiments, we selected minibatch of size 16 to
be used for IQA-DCNN because it resulted in lower training cost while providing
the overall performance improvement of IQA-DCNN. Thus minibatch of size 16 was
adopted to V-5 architecture.
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4.3.8 Discussion

Various architecture design parameters were compared in section 4.3.1 to 4.3.7, and
the V-0 architecture of IQA-DCNN was updated to V-5 based on the outcome of these
sections.

We started the design space exploration with section 4.3.1 in which we compared
LCN and GCN data pre-processing methods. LCN was observed to be the best per-
forming method and thus was employed in the IQA-DCNN design. The possible ex-
planation behind the superior performance of LCN could be the decorrelating effect
that it is claimed to have on input data [48]. Since decorrelated input data is easier to
learn from, the network could have exhibited superior performance.

Then in section 4.3.2, we computed the usefulness of LRN unit and found that
IQA-DCNN performed similarly well in case LRN unit is not employed. Thus LRN
unit was dropped from IQA-DCNN architecture. This could also be due to the presence
of LCN unit that could complement the functioning of LRN unit as they are very
similar in their operation.

We then compared ReLU activation function with Maxout and found that Maxout
did not provide any advantage over ReLU activation function. Since Maxout further
increases the number of learnable parameters in the network, it was not adopted in
IQA-DCNN architecture. Maxout unit is known to be advantageous because it com-
plements dropout unit [16], but later in section 4.3.6 dropout unit was observed to be
a poorly performing design parameter for IQA-DCNN, which could also have taken
away the advantage from Maxout unit.

Later in section 4.3.4, we compared various configurations of Conv layers and pool
units. We started with setting the number of channels for Conv5, i.e., the layer at the
interface of Conv layers and FC layers, to 50. For the other Conv, a number of channels
equal to 64 was found to be optimal. Small drops in performance were observed with
Conv layers employing widely different number of channels, which could point to the
fact that performance improvement of IQA-DCNN might have started to saturate with
number of channels being as small as 16. In fact, no improvement was recorded when
using a number of channel greater than 64. Rather, a slight inflexion in performance
was notice, which could either be due to overfitting or simply due to slow convergence
resulted by the increase in learnable parameters.

In the same section, we also explored the depth of Conv layers and it was observed
that increasing or decreasing the number of conv layers with respect to the original
number set to 5 would lead to lower performance. The decrease in depth could have
resulted in reduced performance because of the absence of high-level features that are
present in deeper architectures, and loss in performance due to further increase in depth
of the Conv layers could be due to the increased difficulty of the training process to
promote convergence.

We also compared various pooling schemes and found overlapping max pooling
to perform best among others. It was claimed in [29] that overlapping max-pooling
also helps in regularizing the architecture, which could be a possible reason for the
observed superior performance.

We then explored the depth of fully connected layers in section 4.3.5 and found
that IQA-DCNN almost gave similar performance for depth of one and two FC layer.
Since removing a FC layer also removes a large number of learnable parameters, the
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Figure 4.12: IQA-DCNN architecture

configuration with one FC layer was selected for IQA-DCNN. This could also mean
that features learned by Conv layers of IQA-DCNN are very good and relevant to the
task of IQA, and thus does not require an extra FC layers to deliver similar perfor-
mance.

Further in section 4.3.6, we explored different types of regularization and observed
that L2 regularization with λ = 0.0005 performed best among all other settings. It was
further observed that the performance of this setting was very similar to the setting in
which no regularization was employed, and to the setting in which L1 regularization
was employed with λ= 0.000001. The reason behind this could be that selected values
of λ for L1 and L2 regularization are very small which make these settings very similar
to the setting in which no regularization was employed.

At last in section 4.3.7, we compared different minibatch sizes and observed that
reducing the size of a minibatch to 16 resulted in faster convergence and helped in
achieving lower training cost, both of which could be due to the induced noise by
small sized minibatches and more number of parameter updates in comparison to big-
ger minibatches.

The IQA-DCNN architecture obtained from this design space exploration is pre-
sented in Figure 4.12. IQA-DCNN architecture contains total 229,717 learnable pa-
rameters.

As already mentioned earlier, it was observed from Table 4.13 and 4.14 that em-
ploying 16 Conv channels did not result in big performance loss in comparison of 64
Conv channel configuration. This could be the result of saturating improvement in the
performance of IQA-DCNN with the different number of employed Conv channels.
Along with this, the architecture with 16 Conv channels have much less learnable pa-
rameters than the architecture with 64 Conv channels. Thus we also propose another
architecture design, named as IQA-DCNN-s (shown in Figure 4.13), for minimizing
computational complexity. IQA-DCNN-s architecture contains total 19,601 learnable
parameters which is over 90% less than IQA-DCNN.
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Figure 4.13: IQA-DCNN-s architecture

4.4 Global Feed

After selecting various training process design parameters and CNN architecture de-
sign parameters, we further explored the possibility of adding a global feed to the
existing single feed architecture that operates on local view (crops) of input images.
Since among previously selected IQA-DCNN and IQA-DCNN-s architectures, IQA-
DCNN is a better performing architecture, it was considered to be extended by adding
an extra global feed. The plan was to extend IQA-DCNN-s as well in case global feed
was observed to perform well with IQA-DCNN.

As mentioned in the introduction of this Chapter, instead of configuring the global
feed from scratch, we decided to directly duplicate the local feed of IQA-DCNN to
form a global feed. This decision was motivated from the RAPID [33] architecture
that contains identical local and global feeds and has been shown to provide superior
performance. This decision also helped in restraining our design space.

Thus a two feed architecture was created by duplicating the local feed of IQA-
DCNN. The obtained architecture is shown in Figure 4.14. The local feed of this
architecture operates on image crops, while the global feed operates on image warps
(similar to RAPID) that are created by simply resizing the input image. Further the
image warps and image crops were created from the same image during training, vali-
dation and testing phase.

To train this two feed architecture, we adopted the same training setup as IQA-
DCNN. We further tried training the two feed architecture from scratch with weights
initialized using Gaussian distribution method. But since there is no data augmentation
on global feed (which is not possible), this setting was observed to result in high lev-
els of overfitting. It is because the number of image warps on global feed were much
smaller than possible data augment on local feed, due to which the global feed tends to
overfit on its input examples, which ultimately resulted in the whole network to overfit.

To overcome this, we further considered an alternative approach as per which we
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F1 F2 F3 F4 F5 Average
Only Local 0.736 0.894 0.909 0.909 0.883 0.866
Local + Global 0.709 0.883 0.885 0.874 0.864 0.843

Table 4.21: SROCC: Performance evaluation with global feed on 5 test folds of TID

F1 F2 F3 F4 F5 Average
Only Local 0.774 0.908 0.917 0.916 0.9 0.883
Local + Global 0.762 0.885 0.889 0.872 0.881 0.858

Table 4.22: LCC: Performance evaluation with global feed on 5 test folds of TID

pre-train the local feed (IQA-DCNN architecture) until convergence and then adopt its
learnable parameters to the global feed. The two feed architecture was then fine-tuned
with re-initialized FC layers, and with lower learning rate set for Conv layers of both
feeds and relatively higher learning rate set for FC layers. The idea here was to prevent
overfitting by slowly updating the learnable parameters of global feed, while rapidly
learning the learnable parameters of the FC layers for fast convergence.

The SROCC and LCC measures on five test folds of TID dataset, obtained after
the performance evaluation of local feed architecture (IQA-DCNN) and the two feed
architecture are respectively summarized in Table 4.21 and 4.22. From the average
performance on all five folds under SROCC evaluation metric, it was observed that
adding a global feed did not result in any improvement over single local feed.

Figure 4.15 shows the resulting SROCC measure on validation set with respect to
epochs during the training of two feed architecture. From this plot, it was observed that
the network jumps to high SROCC reading in its very first epoch (which is recorded
in Table 4.21 and 4.22) of fine-tuning but then rapidly drops in proceeding epochs of
fine-tuning. We believe that the initially observed gain in performance was because of
the pre-trained weights of local feed, after which the global feed slowly kicks which
results in the overfitting and rapid drop in the performance of the architecture. This
clearly indicates that even this scheme was incapable at avoiding overfitting of two
feed architecture.

Thus based on these observations, we decided to not use extra global feed over
IQA-DCNN or IQA-DCNN-s architectures because it did not result in any perfor-
mance gain.

4.5 Chapter conclusion

In this Chapter we have presented the design space exploration of CNN for the appli-
cation of NR-IQA tasks. With an aim to overcome the limitations of existing NR-IQA
based approaches, we envisioned a two feed CNN architecture to process the local and
global information of given images in NR-IQA task. We started by selecting various
training process design parameters, which were used for the training of CNN design.
Then we presented the experimental setup using which various architecture design
parameters were selected for local feed of CNN architecture. Later using the same
experimental setup and selected configurations of local feed, we also explored the pos-
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Figure 4.14: IQA-DCNN architecture with global feed

Figure 4.15: Plot: SROCC measure on validation dataset when fine-tuned with local
and global feed architecture.
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sibility of adding a global feed to the architecture. But based on the outcome of the
two utilized methods that resulted in overfitting, we decided not to adopt it in the final
version of the architecture design.

Based on the outcome of this Chapter, we propose two CNN architectures, IQA-
DCNN (shown in Figure 4.12) for prediction accuracy, and IQA-DCNN-s (with 90%
less learnable parameters that IQA-DCNN, as shown in Figure 4.13) for minimizing
computational demand.
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Chapter 5

Performance Evaluation

In chapter 4, we proposed two CNN architecture designs for the task of no-reference
image quality assessment: IQA-DCNN and IQA-DCNN-s. These architectures are
respectively shown in Figure 4.12 and 4.13.

In this chapter, we conduct the performance evaluation of IQA-DCNN and IQA-
DCNN-s. We start with section 5.1 in which we describe the employed evaluation
method. Using this evaluation method, in section 5.2, we present the obtained results
and compare them among existing FR-IQA and NR-IQA algorithms.

FR-IQA algorithms (described in section 2) such as PSNR, SSIM[60] and FSIM[74],
utilize reference images while predicting the quality of an image and thus are easier
to achieve and usually better at performance than NR-IQA algorithms. Among NR-
IQA algorithms, DIIVINE[37], BLIINDS-II[49] and BRISQUE[35] are NSS based
approaches that use handcrafted features for IQA. On the other hand CORNIA[66],
IQA-CNN[25] and IQA-CNN++[26] are feature learning based approaches that are
generally more efficient and better performing. Among these feature learning based
approaches, IQA-CNN and IQA-CNN++ are the CNN based approaches that respec-
tively employ one and three Conv layers in their implementation.

After conducting the performance comparison with these algorithms, in section
5.3, we describe the robustness of IQA-DCNN and IQA-DCNN-s in assessing the
perceptual quality of image patches. Finally in section 5.4, we give present the con-
clusions of this Chapter.

5.1 Evaluation method

This section presents the evaluation method used for the performance evaluation of
IQA-DCNN and IQA-DCNN-s. The employed evaluation method was adopted from
[25] and [26], where it was also used for the performance evaluation of CNN architec-
ture (IQA-DCNN and IQA-DCNN++) trained for the application of NR-IQA.

For the performance evaluation of IQA-DCNN and IQA-DCNN-s, we made use
of two datasets, TID[41] and LIVE[51]. The TID dataset and its usage in this thesis
project was described in section 4.2.2.

LIVE is an image quality dataset that consists of 29 reference images distorted with
5 different distortion types at 7-8 degradation levels to provide 779 distorted images in
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total. The 5 distortion types included in this dataset are: JP2k compression (JPEG2K),
JPEG compression (JPEG), White Gaussian (WN), Gaussian blur (BLUR) and Fast
Fading (FF). The LIVE dataset provides a Differential Mean Opinion Score (DMOS)
for each distorted image. DMOS varies in range [0,100] for images with highest and
lowest visual quality respectively.

In this thesis project, we have used all 29 reference images distorted with 4 dis-
tortion types. Reference images were also included in training, validation, and test
sets. Thus total 982 images were used from LIVE dataset. Further, we used the data
augmentation technique described in section 4.2.3, which resulted in total 982 ∗ 64 =
62,848 image patches from LIVE dataset to be used in a single epoch.

The evaluation setup using these two datasets is described below:

1. LIVE: To create training, validation and test sets, LIVE dataset was divided into
29 folds based on its 29 reference images. This counts to one fold containing one
reference image and its distorted versions. Out of total 29 folds, 17 folds (58.6%
) were used for training, 6 folds (20.7%) for validation and 6 folds (20.7%) for
testing. These 29 folds were then randomly shuffled among training, validation
and test sets to perform total 100 train-validation-test repetitions.

2. TID: To create training, validation and test sets, TID dataset was divided into
25 folds based on its 25 reference images. This counts to one fold containing
distorted versions of only one reference image. Out of total 25 folds, 15 folds
(60% ) were used for training, 5 folds (20%) for validation and 5 folds (20%) for
testing. These 25 folds were then randomly shuffled among training, validation
and test sets to perform total 100 train-validation-test repetitions.

We used SROCC and LCC evaluation metrics (similar to evaluation method in de-
sign phase as described in section 4.2.4) to evaluate the performance of IQA-DCNN
and IQA-DCNN-s on respective test sets and reported the average and median perfor-
mance on all 100 repetitions for both LIVE and TID datasets.

Both average and median performance were reported because some of the exist-
ing NR-IQA algorithms report their performance on the average, and some other on
the median of the number of employed repetitions. Thus reporting both average and
median performances helped us in performing a fair comparison of results with both
types of approaches.

5.2 Results

This section presents the results of performance evaluations of IQA-DCNN and IQA-
DCNN-s, on LIVE and TID datasets, as obtained using the evaluation method that is
described in section 5.1.

The SROCC and LCC evaluation measures in 100 train-validation-test repetitions
of IQA-DCNN and IQA-DCNN-s on TID and LIVE dataset are shown using box plots
in Figure 5.1b and 5.1a. IQA-DCNN was observed to be performing marginally better
than IQA-DCNN-s. It was further observed that difference between the first and third
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(a) LCC metric (b) SROCC metric

Figure 5.1: Box plots of 100 repetitions of evaluation on LIVE and TID dataset, using
(a) LCC and (b) SROCC measures of IQA-DCNN-s and IQA-DCNN.

SROCC LCC
LIVE 1.9∗10−08 10−06

TID 0.125 0.063

Table 5.1: p-values from independent sample t-test to compare SROCC and LCC mea-
sures over 100 repetitions of IQA-DCNN and IQA-DCNN-s training on LIVE and
TID datasets.

quartile of all box plots is quite small, which reflects the robustness of the reported
results. Furthermore, this difference was observed to be smaller with evaluations on
LIVE dataset in comparison to TID dataset reflecting superior performance on LIVE.

We also performed independent sample t-test to test if the performance with IQA-
DCNN was significantly better than IQA-DCNN-s. The results of this test are pre-
sented in Table 5.1. It was observed that the p-values in the case of evaluations on
LIVE dataset are very small, which implies that the reported mean of IQA-DCNN
performance is significantly different from IQA-DCNN-s during evaluations on LIVE
dataset. Whereas in case of evaluation on TID dataset, the reported p-values are greater
than 0.05, which implies that the performance of IQA-DCNN is not very different from
IQA-DCNN-s.

For evaluation on LIVE and TID datasets, Table 5.2 and 5.3 respectively compare
the evaluation results of 100 train-validation-test repetitions of IQA-DCNN and IQA-
DCNN-s with previous state of the art NR-IQA and FR-IQA algorithms (Italicized).
The best performing result among NR-IQA methods is in bold. The second column
in these tables points out if the corresponding algorithm computes median or average
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Algorithm Evaluation SROCC LCC
PSNR 0.866 0.856
SSIM [60] 0.913 0.906
FSIM [74] 0.964 0.960
DIIVINE [37] Median 0.916 0.917
BLIINDS-II [49] Median 0.931 0.930
BRISQUE [35] Median 0.940 0.942
CORNIA [66] Median 0.942 0.935
IQA-CNN [25] Average 0.956 0.953
IQA-CNN++ [26] Average 0.950 0.950
IQA-DCNN-s Average 0.964 0.968
IQA-DCNN-s Median 0.964 0.969
IQA-DCNN Average 0.968 0.972
IQA-DCNN Median 0.968 0.973

Table 5.2: Comparison of SROCC and LCC measure on LIVE dataset. Italicized are
FR-IQA algorithms for reference.

over its multiple repetitions of performance evaluation.
It should be noted that we do not compare our performance evaluation on TID

dataset with NSS based NR-IQA algorithms. The reason is that first of all these al-
gorithms did not report their performance evaluation on TID dataset, and secondly,
the evaluation results on the LIVE dataset (Table 5.2) clearly shows that these algo-
rithms project inferior performance in comparison to feature learning based NR-IQA
algorithms.

From these tables, it was observed that both IQA-DCNN and IQA-DCNN-s are
the best-performing algorithms on SROCC and LCC evaluation metrics among all
other NR-IQA algorithms. Further in evaluation on LIVE dataset, reported SROCC
and LCC measures of IQA-DCNN and IQA-DCNN-s were also observed to be higher
than all FR-IQA algorithms. Whereas on TID dataset, only FSIM algorithm was ob-
served to be outperforming IQA-DCNN-s in both evaluation metrics, and IQA-DCNN
in SROCC evaluation metrics.

5.3 Robustness in quality assessment across patches

As mentioned in section 4.2.3, during testing we extract 64 patches of size 227 x 227
from every image, whose final quality score is computed equal to the average score on
the extracted 64 patches.

To inspect the deviation in quality scores on patches per image, we calculated the
95% confidence interval of image quality predicted by IQA-DCNN and IQA-DCNN-s
across 64 patches belonging to same image. Then, we took the average of this value
(the 95% interval of predicted quality across patches) across the whole dataset. Figure
5.2a and 5.2b present the box-plots of this average confidence interval across the 100
repetitions on LIVE and TID datasets respectively.
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Algorithm Evaluation SROCC LCC
PSNR 0.669 0.652
SSIM [60] 0.878 0.857
FSIM [74] 0.926 0.913
CORNIA [66] Median 0.813 0.837
IQA-CNN [25] Average 0.862 0.873
IQA-CNN++ [26] Average 0.870 0.880
IQA-DCNN-s Average 0.879 0.887
IQA-DCNN-s Median 0.900 0.903
IQA-DCNN Average 0.893 0.901
IQA-DCNN Median 0.909 0.915

Table 5.3: Comparison of SROCC and LCC measure on TID dataset. Italicized are
FR-IQA algorithms for reference.

(a) LIVE (b) TID

Figure 5.2: Box plot of 100 repetitions of evaluation on (a) LIVE and (b) TID dataset:
Average 95% confidence interval of image quality prediction on 64 patches per image,
using IQA-DCNN-s and IQA-DCNN.

From these plots, It was observed that for both IQA-DCNN and IQA-DCNN-s,
the median of standard deviation in quality score with evaluation on LIVE dataset is
approximately 1 DMOS (DMOS varies in range [1, 100]), and the median of standard
deviation in quality score with evaluation on TID dataset is equivalent to 0.09 MOS
(MOS varies in range [1,10]). These reported values are very small which shows that
IQA-DCNN and IQA-DCNN-s predict almost similar image quality for all patches
of an input image. It was further observed that this confidence interval is marginally
narrower for IQA-DCNN than IQA-DCNN-s, which again reflects that IQA-DCNN is
little better at predicting the quality of image patches than IQA-DCNN-s.
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5.4 Chapter conclusions

In this Chapter, we presented the results of the performance evaluation of IQA-DCNN
and IQA-DCNN-s. First we presented the evaluation method that was used for the
evaluation of the proposed CNN architectures. As per this method, the IQA-DCNN
and IQA-DCNN-s were trained on approximately 60%, validated on 20% and tested
on the remaining 20% of the LIVE and TID datasets. Though the similar evaluation
method was employed for IQA-CNN and IQA-CNN++, other NR-IQA algorithms
(DIIVINE, BLINDS-II, BRISQUE and CORNIA) employed much easier evaluation
method by using 80% of the data for training and remaining 20% for testing. Thus
in spite of using relatively tough evaluation method, IQA-DCNN and IQA-DCNN-s
were able to outperform all existing NR-IQA algorithms. We believe that increasing
the training set to 80% would further improve the reported performance of IQA-DCNN
and IQA-DCNN-s on LIVE and TID datasets.

Since FR-IQA algorithms use reference images for IQA, they are much easier to
achieve than NR-IQA algorithms that do not employ reference images for IQA. From
Table 5.2 and 5.3 that report evaluation results on LIVE and TID datasets respectively,
it was observed that both IQA-DCNN and IQA-DCNN-s approach the performance of
FR-IQA algorithms, and even outperform them in some scenarios (when evaluated on
LIVE dataset). Thus these results further indicate the superior performance of IQA-
DCNN and IQA-DCNN-s that without using reference images match the performance
of algorithms that do use them.

Apart from comparing IQA-DCNN and IQA-DCNN-s with other algorithms, we
also compared them among themselves. From box plots shown in Figure 5.1 and
the result of individual sample t-test reported in Table 5.1, it was observed that in
spite of having 90% more learnable parameters, the performance of IQA-DCNN is
just marginally better than IQA-DCNN-s. Thus IQA-DCNN-s could easily substitute
IQA-DCNN in numerous on-line applications where low computational complexity is
the primary requirement.

We further tested the robustness of IQA-DCNN and IQA-DCNN-s in estimating
the perceptual quality score for individual patches of input images. The reported re-
sults, through box-plots shown in Figure 5.2, clearly indicate that performance of IQA-
DCNN and IQA-DCNN-s is very robust as they could very well estimate the percep-
tual quality of image patches almost equivalent to the quality of the whole image. The
reason behind could be the large size (227 x 227) of employed patches that could be
large enough to carry required structural information of an image to estimate its qual-
ity through the quality estimation of its single patch. Thus instead of extracting large
number of patches from the input images (as we extracted 64 patches per image), much
less number of patches could be utilized for estimating the quality of an image through
the average quality of extracted patches. This could further reduce the computational
demand of IQA-DCNN and IQA-DCNN-s.
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Chapter 6

Visualization

This chapter presents the feature visualizations of the IQA-DCNN architecture that
was trained separately on LIVE and TID datasets. The goal of this Chapter is to gen-
erate informative visualizations of the learned features of IQA-DCNN and use them to
understand the characteristics of image quality as identified by the learned features.

We start with section 6.1, in which we present a literature review on various feature
visualization methods being used for CNN’s. Then in section 6.2 we describe two
methods that were utilized for the visualization of IQA-DCNN features. In section 6.3
and 6.4 we present the obtained visualizations using the two selected methods. At last
in section 6.5, we discuss the observations related to the generated visualizations.

6.1 Background

Past few years have seen a tremendous increase in the popularity of CNN’s and their
application in different fields. Though CNN’s have been shown to deliver superior
performance in tasks like object recognition and image quality assessment, their in-
ternal working is typically difficult to understand because of their deep architecture
and the large number of utilized learnable parameters. Thus many efforts have been
lately made to actually understand their internal working by generating representative
visualizations of their learned features.

One of the straightforward methods of feature visualization involves the direct
plotting of the CNN weights that are learned during the training process. But this
method has only shown to produce good visualizations of the very first CNN layer
that directly interacts with the input images [6]. Features of deeper layers are much
more abstract to be visualized by this direct weights plotting method. Thus it is more
desirable to use other techniques that can also produce informative visualizations of
features learned by deeper layers of CNN.

Another set of visualization methods aim to overcome the limitations of weight
plotting method by instead plotting the network activations during the forward pass [6].
They could help in assessing the CNN operations by inspecting the changes brought
about in an input image as it propagates forward into the network. Another similar
method, called deconvolution method[73], also adds a backward pass and highlights
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the portions of input images that are responsible for the firing of target neurons in a
CNN layer.

These two visualization methods do produce informative visualizations that show
the internal working of a CNN, but the generated visualizations are associated with
specific network inputs, i.e., different input images result in different visualizations.
This makes it tough to generalize the observations to comment on the general func-
tioning of a CNN.

There also exist a third set of visualization methods that aim at generating or ex-
tracting image patches that maximally activate the target neuron. These methods help
in the visualization of the characteristics of input images that a target neuron is respon-
sible for detecting. Furthermore, these methods are also capable at generating unique
and informative visualization of features learned by even deeper layers of a CNN.

6.2 Visualization techniques

Based on the literature review of various feature visualization methods presented in
section 6.1, we employed two methods that respectively generate and extract image
patches responsible for maximally activating the neurons present in the Conv layers of
IQA-DCNN.

1. Generating synthetic images that maximally activate the target neuron (Synthetic-
Max): As per this method, a target neuron is selected, and a randomly generated
image is fed as an input to the CNN. This is followed by a sequence of fixed
number of forward and backward passes in which the input image is repeatedly
updated (using gradient descent optimization) to produce higher activations of
the target neuron[71] [38].

2. Retrieving images from dataset that maximally activate the target neuron (Image-
Max): As per this method, a target neuron is selected, and images from the
training dataset are fed through CNN while keeping track of an image patch (or
fixed number of patches) that results in maximum activation of the target neu-
ron. Once all images are processed, the recorded patch is retrieved from the
dataset.[13]

These methods were selected because they produce unique visualizations that de-
pict the general characteristics of corresponding features, and also because they can be
used for the visualization of any Conv layer irrespective of its depth.

6.3 Synthetic-Max Visualizations

For generating Synthetic-Max visualizations, we initialized the pixel values of a set of
images of size 227 x 227 to random values drawn from a Gaussian distribution with
the intensity value of RGB channels varying in the range [0,255]. We targeted all
neurons of Conv layers of IQA-DCNN whose synthetic images were generated using
100 update iterations of forward and backward passes. To generate synthetic images
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for the neurons in the first Conv layer, we also employed the regularization technique
of Gaussian blurring the synthetic images (introduced in [71]) after every four itera-
tions. Since the receptive field of Conv1 layer neurons is very small (11 x 11), this
regularization technique was observed to improve the generated feature visualizations,
without which the output was a very noisy image. No other regularization was used in
any other layer of IQA-DCNN.

Using Synthetic-Max visualization method, two feature visualizations were then
generated:

1. Synthetic-Max visualizations of the neurons in five Conv layers of IQA-DCNN
training on LIVE dataset. The generated visualizations are presented in Figure
6.1.

2. Synthetic-Max visualizations of the neurons in five Conv layers of IQA-DCNN
training on TID dataset. The generated visualizations are presented in Figure
6.2.
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(a) Synthetic images that maximally activates 50 neurons of Conv5 layer trained on LIVE dataset.

(b) Synthetic images that maximally activates 64 neurons of Conv4 layer trained on LIVE dataset.

(c) Synthetic images that maximally activates 64 neurons of Conv3 layer trained on LIVE dataset.

(d) Synthetic images that maximally activates 64 neurons of Conv2 layer trained on LIVE dataset.

(e) Synthetic images that maximally activates 64 neurons of Conv1 layer trained on LIVE dataset.

Figure 6.1: Synthetic-Max visualizations of IQA-DCNN trained on LIVE dataset.
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(a) Synthetic images that maximally activates 50 neurons of Conv5 layer trained on TID dataset.

(b) Synthetic images that maximally activates 64 neurons of Conv4 layer trained on TID dataset.

(c) Synthetic images that maximally activates 64 neurons of Conv3 layer trained on TID dataset.

(d) Synthetic images that maximally activates 64 neurons of Conv2 layer trained on TID dataset.

(e) Synthetic images that maximally activates 64 neurons of Conv1 layer trained on TID dataset.

Figure 6.2: Synthetic-Max visualizations of IQA-DCNN trained on TID dataset
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6.4 Image-Max Visualizations

For generating Synthetic-Max visualizations, we directly employed the images of
LIVE and TID dataset and fed them to two different IQA-DCNN architectures that
were respectively trained LIVE and TID datasets. All images were then fed to the
network, the index of the top nine maximally activating image patches was recorded
for every neuron of each Conv layer. The recorded image patches were then retrieved
from their respective positions at the end of the processing phase.

Using Image-Max visualization method, two feature visualizations were then gen-
erated:

1. The Image-Max visualizations of the image patches of LIVE that maximally ac-
tivate the neurons in the five Conv layers of the IQA-DCNN architecture trained
on LIVE (Figure 6.3).

2. The Image-Max visualizations of the image patches of TID that maximally ac-
tivate the neurons in the five Conv layers of the IQA-DCNN architecture trained
on TID (Figure 6.4). We excluded the non- natural scene image for this visual-
ization.

We also computed the distortion types of top nine image patches against the neu-
rons of five convolutional layers that were maximally activated by them. We then
computed the statistical mode of those distortion types per neuron to get an approx-
imate idea as of whether neurons would specialize in processing a particular type of
distortion. The graph containing these mode distortion types for IQA-DCNN trained
on the LIVE dataset is presented in Figure 6.5, and another graph for IQA-DCNN
trained on TID dataset is presented in Figure 6.6.
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(a) Image patches that maximally activates 50 neurons of Conv5 layer trained on LIVE dataset.

(b) Image patches that maximally activates 64 neurons of Conv4 layer trained on LIVE dataset.

(c) Image patches that maximally activates 64 neurons of Conv3 layer trained on LIVE dataset.

(d) Image patches that maximally activates 64 neurons of Conv2 layer trained on LIVE dataset.

(e) Image patches that maximally activates 64 neurons of Conv1 layer trained on LIVE dataset.

Figure 6.3: Image-Max visualizations of IQA-DCNN trained on LIVE dataset, using
images from LIVE dataset.
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(a) Image patches that maximally activates 50 neurons of Conv5 layer trained on TID dataset.

(b) Image patches that maximally activates 64 neurons of Conv4 layer trained on TID dataset.

(c) Image patches that maximally activates 64 neurons of Conv3 layer trained on TID dataset.

(d) Image patches that maximally activates 64 neurons of Conv2 layer trained on TID dataset.

(e) Image patches that maximally activates 64 neurons of Conv1 layer trained on TID dataset.

Figure 6.4: Image-Max visualizations of IQA-DCNN trained on TID dataset, using
images from TID dataset
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Figure 6.5: Plot of the statistical mode distortion types among distortion types of top
9 images with respect to the neuron they maximally activated in IQA-DCNN trained
on LIVE dataset.

Figure 6.6: Plot of the statistical mode distortion types among distortion types of top
9 images with respect to the neuron they maximally activated in IQA-DCNN trained
on TID dataset.
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6.5 Discussion

In this section, we present some of the interesting observations that were made from
the generated visualizations of the features of IQA-DCNN.

• The Synthetic-Max and Image-Max visualizations of the Conv1 layer were ob-
served to contain images of simple patterns and colors, which behaves like edge
detectors and color filters on the input images. It is a very similar behavior to
the first layer of CNN’s trained for object recognition tasks [71].

• The Synthetic-Max visualizations of the Conv2 layer were observed to contain
different combinations of many simple patterns that were detected in the visu-
alization of the Conv1 layer. From this observation, we believe that in Conv2
layer, IQA-DCNN looks for textured areas. This argument is also based on the
observations from Image-Max visualization of the Conv2 layer that shows many
patches with different textures. The textured areas are rich in high frequencies
and therefore very sensitive for some types of distortions such as blur and jpeg.

We also point out that this behavior of Conv2 layer is very different from the
second layer of CNN’s trained for the application of object recognition: that
looks for complex structures (like eyes, wheels, etc.) in an input image. Thus
it may suggest that CNN’s trained for IQA application start to develop different
types of features from the very second layer of the CNN architecture. It may
suggest that we can only adopt the pre-trained filters of the first layer from the
CNN trained for the application of object recognition. This observation also
explains our findings presented in section 4.1.1 in which we were not able to
successfully fine-tune a CNN pre-trained on object recognition dataset.

• Similar behavior to Conv2 layer was also observed in Conv3, Conv4, and Conv5
layers as they also seem to look for textured areas. But from the Synthetic-
Max visualizations, it was observed that though the patterns found in Conv1
layer visualizations do combine together in Conv2, Conv3, Conv4 and Conv5
layers, the complexity of the combinations of these patterns also increases in the
same sequence. Conv2 layer visualizations contain simpler combinations of few
patterns found in Conv1 layer visualizations, whereas Conv5 layer visualizations
contain much more of these patterns.

• The IQA-DCNN employs zero padding in Conv3, Conv4, and Conv5 layers.
From the Image-Max visualization of these layers, it was observed that some
of the neurons get highly activated at the edge of an image that falls into their
receptive field because of the employed zero padding. From this observation,
we believe that IQA-DCNN also looks for fast color transitions in input images
that can also point to a distortion type. The number of such observed neurons
also increases from Conv3 layer to Conv5 layer, which may suggest that these
features become more important as we go deeper into the CNN architecture.

From these observations, we recommend to not use zero padding in CNN’s
trained for the application of image quality assessment because the zero padding
could also be considered as a distortion in an image.
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• From the inspection of graphs shown in Figure 6.5 and 6.6, some distortion
types, more than others, were observed to be among the majority of max-activating
images of the larger number of neurons of IQA-DCNN. This could further help
in understanding better the role of different layers with respect to the distortion
type of input images. For example, It is interesting to note that the Conv2 layer,
which looks for simple textures, does not activate with noise. Though both tex-
tures and noise have strong high frequency components, the network seems to
be able to distinguish high frequency due to structure, from high frequency due
to noise.
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Chapter 7

Conclusions and Future Work

In this Chapter we present the main contributions of this thesis project, point out some
of its limitations, and provide suggestions for the future work.

7.1 Contributions

In this thesis project, our two main goals were: to improve upon the limitations of
existing NR-IQA metrics by designing an efficient and suitable NR-IQA based CNN
architecture, and to understand its internal working by generating informative visual-
izations of its learned features. Thus this work provides two main contributions.

Convolutional neural network design: After performing an intensive design space
exploration, we proposed two CNN architectures – IQA-DCNN (shown in Figure 4.10)
and IQA-DCNN-s (shown in Figure 4.13) for NR-IQA, the former privileging predic-
tion accuracy, the latter minimizing computational complexity – that were found suit-
able for the application of NR-IQA. Both of the proposed architectures contain five
Conv layers and operate an input patch of size 227 x 227. To the best of our knowl-
edge, the proposed CNN architectures are the deepest and perceptually most accurate
(as they employ bigger input patches that bring patch quality closer to the overall im-
age quality) among all NR-IQA based CNN architectures. They were also reported as
best-performing architectures among existing state of the art NR-IQA metrics.

The IQA-DCNN-s contains around 20,000 learnable parameters, which also makes
it the most compact CNN architecture for NR-IQA task. It contains around 75% less
learnable parameters than IQA-CNN++[26], which used to be the most compact ar-
chitecture. Furthermore, the bigger size of input patches allows both IQA-DCNN and
IQA-DCNN-s to scan an image much faster than other architectures that operate on
the smaller size of input patches. For instance, since IQA-CNN[25] operates on an
input patch of size 32 x 32 (biggest patch size among existing NR-IQA based CNN
architectures), it has to operate (227/32)∗ (227/32)≈ 50 times to scan an area of 227
x 227 that IQA-DCNN and IQA-DCNN-s could cover in a single operation.

In this thesis project, we have introduced an efficient data augmentation technique
(see section 4.2.3), that was inspired from the CNN’s employed in the object recogni-
tion tasks. This technique allowed us to train CNN architectures with a large amount
of learnable parameters on small IQA datasets. Using this technique, we were able to
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successfully train a CNN architecture with as many as 6 million learnable parameters
in our trials. Further, by successfully training an architecture similar to AlexNet with
227 x 227 input patches, we have shown that it is possible to adopt CNN architectures
(their design and not their learned parameters) for NR-IQA that have been developed
for the application of object recognition. Thus the proposed data augmentation tech-
nique could be used in future to adopt deeper and efficient CNN architectures (for
example, GoogleNet[57] architecture with 22 layers and 4 million learnable parame-
ters) to provide performance improvement in NR-IQA applications.

Feature visualization: We generated Synthetic-Max and Image-Max visualizations of
the IQA-DCNN features, which respectively helped us in visualizing synthetic images
and dataset image patches that maximally activate IQA-DCNN neurons. Both of these
visualizations helped us in understanding the image characteristics that neurons look
for. We observed that neurons of IQA-DCNN looked for textured areas and fast color
transitions. These features are very different from the higher layers of CNN’s in object
recognition task that look for complex structures like wheels, eyes, faces, etc. [71].
This observation suggests that it is not advantageous to adopt the parameters of CNN’s
that are trained on object recognition datasets (which are very big in size), to be later
fine-tuned using IQA datasets, which is a recommended technique for training CNN’s
with less training data [70].

We further found that IQA-DCNN considers zero padding as distortion, and thus
to prevent any potential harm to the overall performance, zero-padding should not be
employed in CNN’s that are trained for the application of NR-IQA.

7.2 Limitations

Though this thesis project was successful in improving upon the existing NR-IQA
metrics, there are still many limitations to this work. There are dimensions of the de-
sign space which still have to be explored. For example, we constrained the number
of channels to be the same in all convolutional layers, but this may be suboptimal.
Similarly, we may have developed an entirely new architecture for the global feed, for
which instead we used the architecture developed for the local one. These assumptions
were made to limit the design space to be explored in given time, but they might have
also prevented us from converging to a more optimal CNN design, that could have con-
tained even less learnable parameters and supposedly have given better performance.

We based our CNN design on an outdated AlexNet[29] architecture, whereas many
new and efficient CNN architectures (like VGG[54], GoogleNet[57], ResNet[18], etc.)
have been proposed since AlexNet and using them could have resulted in further im-
provements in our reported performance.

There is yet another limitation in our employed methodology as per which the
design phase was followed by evaluation phase, which was then followed by inspection
phase. During inspection phase, we realized that zero padding was a bad design choice
for IQA-DCNN as it potentially harms its performance by acting as distortion. Thus a
better choice of methodology could have been the design phase, followed by inspection
phase, then followed by a second design phase for fine-tuning, which could then have
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been followed by the evaluation phase. As per this new methodology, we could have
dropped zero padding from our design and this could have supposedly resulted in
improved performance during the evaluation phase.

7.3 Future work

Based on findings of this thesis, we provide suggestions for the future work on further
improvements of CNN design.

We suggest improving upon our CNN architecture by further exploring different
combinations of the number of Conv channels in Conv layers. It could be possible to
drop some of the Conv channels from the Conv layers without affecting the perfor-
mance of the proposed architectures. This could help in decreasing the overall number
of learnable parameters and thus could make the resulting architectures even more
compact.

We also recommend to further investigate the addition of global feed to current
CNN architectures. The global feed could provide a network with overall structural
information of images, and since image quality is also assumed to be dependent upon
the structural information present in an image [60], this could further result in overall
improvement in performance. To start with, a smaller global feed (in terms of learn-
able parameters) with better regularization could be adopted to prevent the issue of
overfitting. Since global feed is expected to learn structural information of an image, it
could also be pre-trained with object recognition datasets and later could be fine-tuned
along with local feed on IQA datasets.

We recommend on exploring other successful CNN architectures as well, which
could help in further improving the performance of CNN’s in NR-IQA tasks. For
example, GoogleNet[57] is a much deeper architecture with total 22 Conv layers and
was able to provide around 10% reduction in top 5 error of ILSVRC dataset, over
AlexNet.

We also recommend exploring other feature visualization techniques that we did
not employ in this project, for example, visualization of layer activations or deconvo-
lution based visualization techniques [71]. Though visualizations produced by these
techniques are specific to input images, they could help in understanding the internal
working of CNN’s with respect to images of different distortion types. This under-
standing could further help in designing CNN’s that could perform better on a given
set of distortion types.
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Appendix A

Glossary

In this appendix, we give an overview of the frequently used terms.

CNN: Convolutional Neural Network

IQA: Image Quality Assessment

FR-IQA: Full-Reference Image Quality Assessment

RR-IQA: Reduced-Reference Image Quality Assessment

NR-IQA: No-Reference Image Quality Assessment

Conv layer: Convolutional layer

FC layer: Fully Connected layer

Pool unit: Pooling unit

GCN unit: Global Contrast Normalization unit

LCN unit: Local Contrast Normalization unit

LRN unit: Local Response Normalization unit

Training set: Set of examples used for CNN training.

Validation set: Set of examples used for CNN performance evaluation during the
training process.

Test set: Set of examples used for CNN performance evaluation at the end of training
process.

1 Epoch: Training over 1 training set

1 Iteration: Training over 1 training example
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Appendix B

Hardware Specifications

In this appendix, we give an overview of the hardware specifications utilized in this
thesis project.

All experiments for the training of CNN’s were executed on NVIDIA GPU’s that
helped us in achieving over 15 times faster executions than CPU’s. To provide even
further speed up, CPU’s were utilized for preparing new minibatches in parallel to the
GPU operations on previous minibatches. Two clusters were used for the execution of
the experiments conducted in this thesis project.

B.1 INSY cluster

INSY is a cluster from Intelligent Systems Department at TU Delft. It contains total
304 CPU cores, 3 NVIDIA Quadro K2200 GPU’s, and 1.705 TB memory. Each of the
offered GPU’s contains local 4GB GPU memory. It is a cluster of all Linux servers and
uses the SLURM scheduler[69] for efficient workload management. This cluster was
utilized for conducting the design space exploration of CNN as presented in Chapter
4.

B.2 Cartesius cluster

Cartesius is a Dutch national supercomputer that contains total 40,960 cores, 132
NVIDIA Tesla K40 GPU’s, and 117 TB memory. Each of the offered GPU’s con-
tains 12GB GPU memory. It is a cluster of all Linux servers and uses the SLURM
scheduler[69] for efficient workload management. This cluster was utilized for con-
ducting the performance evaluation of IQA-DCNN and IQA-DCNN-s as presented in
Chapter 5.
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Appendix C

Software Specifications

In this appendix, we give an overview of the specifications of software that were uti-
lized in this thesis project.

We used two different set of software tools, one for the design space exploration
and performance evaluation of CNN, and another for generating the feature visualiza-
tion of IQA-DCNN. The specification of these two software tools is described in the
following.

C.1 CNN design and performance evaluation

For the training of CNN, we modified the code from [12], that was originally written
for the implementation of AlexNet[29] with the ILSVRC-2012 dataset. The code was
written in Python and besides standard python libraries, below mentioned libraries that
are specific to deep neural networks were used:

1. Theano[58]: It is a Python library that facilitates an efficient way of evaluating,
defining, and optimizing mathematical expressions involving multi-dimensional
arrays. It provides good support for coding deep learning systems.

2. cuDNN[5]: cuDNN is the NVIDIA library that is used in various deep learn-
ing applications. It provides an optimized version of some the operations like
convolution, which is one of the main parts of convolutional neural networks.

3. Pylearn2[15]: Pylearn2 is a machine learning library. Most of its functionality
is built on top of Theano. It is a wrap around of GPU code from Alex Krizhevsky
cuda-convnet project. It provides optimized convolution operation and modules
to do overlapped pooling and response normalization.

Both Pylear2 and cuDNN libraries provide the functionality for performing opti-
mized convolution operation on GPU, but it was observed that cuDNN convolution is
faster than Pylearn2 convolution, thus former was used utilized in this project.
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C.2 CNN feature visualization Software Specifications

C.2 CNN feature visualization

For generating the visualizations of learned features, we made use of Caffe framework[24],
which is deep learning framework especially used for the applications of CNN’s.

As mentioned in Chapter 6, we generated two feature visualization of IQA-DCNN.
For these two visualization techniques, we utilized two different sources over which
our code was created.

1. Synthetic-Max: The code for generating Synthetic-Max visualizations was mod-
ified from [38].

2. Image-Max: The code for generating Image-Max visualizations was modified
from [71].
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