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Abstract. In recent years, unified correspondence has been developed as a generalized
Sahlqvist theory which applies uniformly to all signatures of normal and regular (distributive)
lattice expansions. A fundamental tool for attaining this level of generality and uniformity is
a principled way, based on order theory, to define the Sahlqvist and inductive formulas and
inequalities in every such signature. This definition covers in particular all (bi-)intuitionistic
modal logics. The theory of these logics has been intensively studied over the past seventy
years in connection with classical polyadic modal logics, using versions of Gödel-McKinsey-
Tarski translations, suitably defined in each signature, as main tools. In view of this
state-of-the-art, it is natural to ask (1) whether a general perspective on Gödel-McKinsey-
Tarski translations can be attained, also based on order-theoretic principles like those
underlying the general definition of Sahlqvist and inductive formulas and inequalities, which
accounts for the known Gödel-McKinsey-Tarski translations and applies uniformly to all
signatures of normal (distributive) lattice expansions; (2) whether this general perspective
can be used to transfer correspondence and canonicity theorems for Sahlqvist and inductive
formulas and inequalities in all signatures described above under Gödel-McKinsey-Tarski
translations.

In the present paper, we set out to answer these questions. We answer (1) in the
affirmative; as to (2), we prove the transfer of the correspondence theorem for inductive
inequalities of arbitrary signatures of normal distributive lattice expansions. We also prove
the transfer of canonicity for inductive inequalities, but only restricted to arbitrary normal
modal expansions of bi-intuitionistic logic. We also analyze the difficulties involved in
obtaining the transfer of canonicity outside this setting, and indicate a route to extend the
transfer of canonicity to all signatures of normal distributive lattice expansions.

Key words and phrases: Sahlqvist theory, Gödel-McKinsey-Tarski translation, algorithmic correspondence,
canonicity, normal distributive lattice expansions, Heyting algebras, co-Heyting algebras, bi-Heyting algebras.
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1. Introduction

Sahlqvist theory has a long history in normal modal logic, going back to [58]. The Sahlqvist
theorem in [58] gives a syntactic definition of a class of modal formulas, the Sahlqvist class,
each member of which defines an elementary (i.e. first-order definable) class of frames and is
canonical.

Over the years, many extensions, variations and analogues of this result have appeared,
including alternative proofs in e.g. [59], generalizations to arbitrary modal signatures [22],
variations of the correspondence language [51, 63], Sahlqvist-type results for hybrid logics
[61], various substructural logics [41, 25, 30], mu-calculus [64], and enlargements of the
Sahlqvist class to e.g. the inductive formulas of [36], to mention but a few.

Recently, a uniform and modular theory has emerged, called unified correspondence
[11], which subsumes the above results and extends them to logics with a non-classical
propositional base. It is built on duality-theoretic insights [18] and uniformly exports
the state-of-the-art in Sahlqvist theory from normal modal logic to a wide range of logics
which include, among others, intuitionistic and distributive and general (non-distributive)
lattice-based (modal) logics [15, 17], non-normal (regular) modal logics based on distributive
lattices of arbitrary modal signature [53], hybrid logics [20], many valued logics, [43] and
bi-intuitionistic and lattice-based modal mu-calculus [5, 7, 6].

The breadth of this work has stimulated many and varied applications. Some are closely
related to the core concerns of the theory itself, such as understanding the relationship
between different methodologies for obtaining canonicity results [52, 16], or the exploration of
the limits of applicability of the theory [71, 70] or of the phenomenon of pseudocorrespondence
[19]. Other, possibly surprising applications include the dual characterizations of classes of
finite lattices [29], the identification of the syntactic shape of axioms which can be translated
into structural rules of a proper display calculus [38] and of internal Gentzen calculi for the
logics of strict implication [45], and the epistemic interpretation of lattice-based modal logic
in terms of categorization theory in management science [9, 8]. The approach underlying
these results relies only on the order-theoretic properties of the algebraic interpretations of
logical connectives, abstracting away from specific logical signatures.

Featuring prominently among the logics targeted by these developments are (bi-)intuitionistic
logic and their all modal expansions. The theory of these logics has been intensively studied
over the past seventy years using the Gödel-McKinsey-Tarski translation [34, 50], henceforth
simply the GMT translation, as a key tool. Specifically, since the 1940s and up to the
present day, versions of the GMT translation have been used for transferring and reflecting
results between classical and intuitionistic logics and their extensions and expansions (see
e.g. [48, 2, 27, 28, 4, 67, 68, 69, 65]. More on this in Section 3.1).

In view of this state-of-the-art, it is natural to ask (1) whether a general perspective
on Gödel-McKinsey-Tarski translations can be attained, also based on order-theoretic
principles like those underlying the general definition of Sahlqvist and inductive formulas
and inequalities, which accounts for the known Gödel-McKinsey-Tarski translations and
applies uniformly to all signatures of normal (distributive) lattice expansions; (2) whether
this general perspective can be used to transfer correspondence and canonicity theorems
for Sahlqvist and inductive formulas and inequalities in the signatures described above
under Gödel-McKinsey-Tarski translations. In the present paper, we set out to answer these
questions.
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Notice that in general, GMT translations do not preserve the Sahlqvist shape. For
instance, the original GMT translation transforms the Sahlqvist inequality 23p ≤ 3p
into 232Gp ≤ 32Gp, which is not Sahlqvist, and in fact does not even have a first-order
correspondent [62]. Any translation which ‘boxes’ propositional variables would suffer from
this problem (for further discussion see [11, Section 36.9]). However, some GMT translations
preserve the shape of some Sahlqvist and inductive formulas or inequalities. This has been
exploited by Gehrke, Nagahashi and Venema in [32] to obtain the correspondence part of
their Sahlqvist theorem for Distributive Modal Logic. The need to establish a suitable match
between GMT translations and Sahlqvist and inductive formulas or inequalities in each
signature gives us a concrete reason to investigate GMT translations as a class.

The starting point of our analysis, and first contribution of the present paper, is an
order-theoretic generalization of the main semantic property of the original GMT translation.
We show that this generalization provides a unifying pattern, instantiated in the concrete
GMT translations in each setting of interest to the present paper. As an application of this
generalization, we prove two transfer results, which are the main contributions of the present
paper: the transfer of generalized Sahlqvist correspondence from multi-modal (classical)
modal logic to logics of arbitrary normal distributive lattice expansions and, in a more
restricted setting, the transfer of generalized Sahlqvist canonicity from multi-modal (classical)
modal logic to logics of arbitrary normal bi-Heyting algebra expansions. The transfer of
correspondence extends [32, Theorem 3.7] both as regards the setting (from Distributive
Modal Logic to arbitrary normal DLE-logics) and the scope (from Sahlqvist to inductive
inequalities). The transfer of canonicity is entirely novel also in its formulation, in the sense
that it targets specific, syntactically defined classes. Finally, we analyze the difficulties in
extending the transfer of canonicity to normal DLE-logics. Thanks to this analysis, we
identify a route towards this result, which – however – calls for a much higher level of
technical sophistication than required by the usual route.

The paper is structured as follows. Section 2 collects preliminaries on logics of normal
DLEs and their algebraic and relational semantics. In Section 3 we discuss GMT translations
in various DLE settings in the literature and the semantic underpinnings of the GMT
translation for intuitionistic logic. In Section 4 we introduce a general template which
accounts for the main semantic property of GMT translations—their being full and faithful—
in the setting of ordered algebras of arbitrary signatures. In Section 5, we show that the
GMT translations of interest instantiate this template. This sets the stage for Sections 6
and 7 where we present our transfer results. We conclude in Section 8.

2. Preliminaries on normal DLEs and their logics

In this section we collect some basic background on logics of normal distributive lattice
expansions (DLEs). All the logics which we will consider in this paper are particular instances
of DLE-logics.

2.1. Language and axiomatization of basic DLE-logics. Our base language is an
unspecified but fixed language LDLE, to be interpreted over distributive lattice expansions
of compatible similarity type. We will make heavy use of the following auxiliary definition:



15:4 Conradie, Palmigiano and Zhao Vol. 15:1

an order-type over n ∈ N1 is an n-tuple ε ∈ {1, ∂}n. For every order type ε, we denote its
opposite order type by ε∂ , that is, ε∂i = 1 iff εi = ∂ for every 1 ≤ i ≤ n. For any lattice A,
we let A1 := A and A∂ be the dual lattice, that is, the lattice associated with the converse
partial order of A. For any order type ε, we let Aε := Πn

i=1Aεi .
The language LDLE(F ,G) (from now on abbreviated as LDLE) takes as parameters: 1) a

denumerable set PROP of proposition letters, elements of which are denoted p, q, r, possibly
with indexes; 2) disjoint sets of connectives F and G. Each f ∈ F and g ∈ G has arity
nf ∈ N (resp. ng ∈ N) and is associated with some order-type εf over nf (resp. εg over ng).

2

The terms (formulas) of LDLE are defined recursively as follows:

ϕ ::= p | ⊥ | > | ϕ ∧ ϕ | ϕ ∨ ϕ | f(ϕ) | g(ϕ)

where p ∈ PROP, f ∈ F , g ∈ G. Terms in LDLE will be denoted either by s, t, or by lowercase
Greek letters such as ϕ,ψ, γ etc.

Definition 2.1. For any language LDLE = LDLE(F ,G), the basic, or minimal LDLE-logic is
a set of sequents ϕ ` ψ, with ϕ,ψ ∈ LLE, which contains the following axioms:

• Sequents for lattice operations:

p ` p, ⊥ ` p, p ` >, p ∧ (q ∨ r) ` (p ∧ q) ∨ (p ∧ r),
p ` p ∨ q, q ` p ∨ q, p ∧ q ` p, p ∧ q ` q,

• Sequents for f ∈ F and g ∈ G:

f(p1, . . . ,⊥, . . . , pnf ) ` ⊥, for εf (i) = 1,

f(p1, . . . ,>, . . . , pnf ) ` ⊥, for εf (i) = ∂,

> ` g(p1, . . . ,>, . . . , png), for εg(i) = 1,

> ` g(p1, . . . ,⊥, . . . , png), for εg(i) = ∂,

f(p1, . . . , p ∨ q, . . . , pnf ) ` f(p1, . . . , p, . . . , pnf ) ∨ f(p1, . . . , q, . . . , pnf ), for εf (i) = 1,

f(p1, . . . , p ∧ q, . . . , pnf ) ` f(p1, . . . , p, . . . , pnf ) ∨ f(p1, . . . , q, . . . , pnf ), for εf (i) = ∂,

g(p1, . . . , p, . . . , png) ∧ g(p1, . . . , q, . . . , png) ` g(p1, . . . , p ∧ q, . . . , png), for εg(i) = 1,

g(p1, . . . , p, . . . , png) ∧ g(p1, . . . , q, . . . , png) ` g(p1, . . . , p ∨ q, . . . , png), for εg(i) = ∂,

and is closed under the following inference rules:

ϕ ` χ χ ` ψ
ϕ ` ψ

ϕ ` ψ
ϕ(χ/p) ` ψ(χ/p)

χ ` ϕ χ ` ψ
χ ` ϕ ∧ ψ

ϕ ` χ ψ ` χ
ϕ ∨ ψ ` χ

ϕ ` ψ
f(p1, . . . , ϕ, . . . , pn) ` f(p1, . . . , ψ, . . . , pn)

(εf (i) = 1)

ϕ ` ψ
f(p1, . . . , ψ, . . . , pn) ` f(p1, . . . , ϕ, . . . , pn)

(εf (i) = ∂)

ϕ ` ψ
g(p1, . . . , ϕ, . . . , pn) ` g(p1, . . . , ψ, . . . , pn)

(εg(i) = 1)

1Throughout the paper, order-types will be typically associated with arrays of variables ~p := (p1, . . . , pn).
When the order of the variables in ~p is not specified, we will sometimes abuse notation and write ε(p) = 1 or
ε(p) = ∂.
2Unary f (resp. g) will be sometimes denoted as 3 (resp. 2) if the order-type is 1, and � (resp. �) if the
order-type is ∂.
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ϕ ` ψ
g(p1, . . . , ψ, . . . , pn) ` g(p1, . . . , ϕ, . . . , pn)

(εg(i) = ∂).

The minimal DLE-logic is denoted by LDLE. For any DLE-language LDLE, by an DLE-logic
we understand any axiomatic extension of the basic LDLE-logic in LDLE.

Example 2.1. The DLE setting is extremely general, covering a wide spectrum of non-
classical logics. Here we give a few examples, showing how various languages are obtained
as specific instantiations of F and G. The associated logics extended the basic DLE logics
corresponding to these instantiations.

The formulas of intuitionistic logic are obtained by instantiating F := ∅ and G := {→}
with n→ = 2, and ε→ = (∂, 1). The formulas of bi-intuitionistic logic (cf. [56]) are obtained
by instantiating F := {> } with n> = 2 and ε> = (∂, 1), and G := {→} with n→ = 2
and ε→ = (∂, 1). The formulas of Fischer Servi’s intuitionistic modal logic (cf. [28]), Prior’s
MIPC (cf. [54]), and G. Bezhanishvili’s intuitionistic modal logic with universal modalities
(cf. [1]) are obtained by instantiating F := {3} with n3 = 1 and ε3 = 1 and G := {→,2}
with n→ = 2, and ε→ = (∂, 1), and n2 = 1, and ε2 = 1. The formulas of Wolter’s bi-
intuitionistic modal logic (cf. [66]) are obtained by instantiating F := {> ,3} with n3 = 1
and ε3 = 1 and n> = 2 and ε> = (∂, 1), and G := {→,2} with n→ = 2, and ε→ = (∂, 1),
and n2 = 1, and ε2 = 1. The formulas of Dunn’s positive modal logic (cf. [24]) are obtained
by instantiating F := {3} with n3 = 1, ε3 = 1 and G := {2} with n2 = 1 and ε2 = 1.
The language of Gehrke, Nagahashi and Venema’s distributive modal logic (cf. [32]) is an
expansion of positive modal logic and is obtained by adding the connectives � and � to F
and G, respectively, with n� = n� = 1 and ε� = ε� = ∂.

2.2. Algebraic and relational semantics for basic DLE-logics. The following defini-
tion captures the algebraic setting of the present paper:

Definition 2.2. For any tuple (F ,G) of disjoint sets of function symbols as above, a
distributive lattice expansion (abbreviated as DLE) is a tuple A = (L,FA,GA) such that L is
a bounded distributive lattice, FA = {fA | f ∈ F} and GA = {gA | g ∈ G}, such that every
fA ∈ FA (resp. gA ∈ GA) is an nf -ary (resp. ng-ary) operation on A. A DLE is normal if

every fA ∈ FA (resp. gA ∈ GA) preserves finite (hence also empty) joins (resp. meets) in
each coordinate with εf (i) = 1 (resp. εg(i) = 1) and reverses finite (hence also empty) meets

(resp. joins) in each coordinate with εf (i) = ∂ (resp. εg(i) = ∂).3 Let DLE be the class of
normal DLEs. Sometimes we will refer to certain DLEs as LDLE-algebras when we wish to
emphasize that these algebras have a compatible signature with the logical language we
have fixed. A distributive lattice is perfect if it is complete, completely distributive and
completely join-generated by its completely join-prime elements. Equivalently, a distributive

3 Normal DLEs are sometimes referred to as distributive lattices with operators (DLOs). This terminology
derives from the setting of Boolean algebras with operators, in which operators are understood as operations
which preserve finite (hence also empty) joins in each coordinate. Thanks to the Boolean negation, operators
are typically taken as primitive connectives, and all the other modal operations are reduced to these. However,
this terminology is somewhat ambiguous in the lattice setting, in which primitive operations are typically
maps which are operators if seen as Aε → Aη for some order-type ε on n and some order-type η ∈ {1, ∂}.
Rather than speaking of lattices with (ε, η)-operators, we then speak of normal DLEs. This terminology is
also used in other papers developing Sahlqvist-type results at a level of generality comparable to that of the
present paper, e.g. [38, 6].
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lattice is perfect iff it is isomorphic to the lattice of up-sets of some poset. A normal DLE
is perfect if its lattice-reduct is a perfect distributive lattice, and each f -operation (resp.
g-operation) is completely join-preserving (resp. meet-preserving) in the coordinates i such
that εf (i) = 1 (resp. εg(i) = 1) and completely meet-reversing (resp. join-reversing) in the
coordinates i such that εf (i) = ∂ (resp. εg(i) = ∂). The canonical extension of a normal

DLE A = (L,F ,G) is the perfect normal DLE Aδ := (Lδ,Fσ,Gπ), where Lδ is the canonical
extension of L,4 and Fσ := {fσ | f ∈ F} and Gπ := {gπ | g ∈ G}.5 Canonical extensions of
Heyting algebras, Brouwerian algebras and bi-Heyting algebras are defined by instantiating
the definition above in the corresponding signatures. The canonical extension of any Heyting
(resp. Brouwerian, bi Heyting) algebra is a (perfect) Heyting (resp. Brouwerian, bi-Heyting)
algebra.

In the present paper we also find it convenient to talk of normal Boolean algebra
expansions (BAEs) (respectively, normal Heyting algebra expansions (HAEs), normal bi-
Heyting algebra expansions (bHAEs)) which are structures defined as in Definition 2.2, but
replacing the distributive lattice L with a Boolean algebra (respectively, Heyting algebra,
bi-Heyting algebra). The logics corresponding to these classes will be collectively referred to
as normal BAE-logics, normal HAE-logics, normal bHAE-logics. In what follows we will
typically drop the adjective ‘normal’.

4The canonical extension of a bounded lattice L is a complete lattice Lδ containing L as a sublattice, such
that:

1. (denseness) every element of Lδ is both the join of meets and the meet of joins of elements from L;
2. (compactness) for all S, T ⊆ L, if

∧
S ≤

∨
T in Lδ, then

∧
F ≤

∨
G for some finite sets F ⊆ S and

G ⊆ T .

5An element k ∈ Lδ (resp. o ∈ Lδ) is closed (resp. open) if is the meet (resp. join) of some subset of L.
We let K(Lδ) (resp. O(Lδ)) denote the set of the closed (resp. open) elements of Lδ. For every unary,
order-preserving map h : L→M between bounded lattices, the σ-extension of h is defined firstly by declaring,
for every k ∈ K(Lδ),

hσ(k) :=
∧
{h(a) | a ∈ L and k ≤ a},

and then, for every u ∈ Lδ,
hσ(u) :=

∨
{hσ(k) | k ∈ K(Lδ) and k ≤ u}.

The π-extension of f is defined firstly by declaring, for every o ∈ O(Lδ),

hπ(o) :=
∨
{h(a) | a ∈ L and a ≤ o},

and then, for every u ∈ Lδ,
hπ(u) :=

∧
{hπ(o) | o ∈ O(Lδ) and u ≤ o}.

The definitions above apply also to operations of any finite arity and order-type. Indeed, taking order-duals

interchanges closed and open elements: K((Lδ)
∂
) = O(Lδ) and O((Lδ)

∂
) = K(Lδ); similarly, K((Ln)δ) =

K(Lδ)n, and O((Ln)δ) = O(Lδ)n. Hence, K((Lδ)
ε
) =

∏
iK(Lδ)ε(i) and O((Lδ)

ε
) =

∏
iO(Lδ)ε(i) for every

lattice L and every order-type ε over any n ∈ N, where

K(Lδ)ε(i) :=

{
K(Lδ) if ε(i) = 1

O(Lδ) if ε(i) = ∂
O(Lδ)ε(i) :=

{
O(Lδ) if ε(i) = 1

K(Lδ) if ε(i) = ∂.

From this it follows that (L∂)
δ

can be identified with (Lδ)
∂
, (Ln)δ with (Lδ)

n
, and (Lε)δ with (Lδ)

ε
for any

order type ε over n, where Lε :=
∏n
i=1 L

ε(i). These identifications make it possible to obtain the definition of
σ-and π-extensions of ε-monotone operations of any arity n and order-type ε over n by instantiating the
corresponding definitions given above for monotone and unary functions.
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In the remainder of the paper, we will abuse notation and write e.g. f for fA when
this causes no confusion. Normal DLEs constitute the main semantic environment of the
present paper. Henceforth, since every DLE is assumed to be normal, the adjective will be
typically dropped. The class of all DLEs is equational, and can be axiomatized by the usual
distributive lattice identities and the following equations for any f ∈ F (resp. g ∈ G) and
1 ≤ i ≤ nf (resp. for each 1 ≤ j ≤ ng):
• if εf (i) = 1, then f(p1, . . . , p ∨ q, . . . , pnf ) = f(p1, . . . , p, . . . , pnf ) ∨ f(p1, . . . , q, . . . , pnf );

moreover if f ∈ Fn, then f(p1, . . . ,⊥, . . . , pnf ) = ⊥,
• if εf (i) = ∂, then f(p1, . . . , p ∧ q, . . . , pnf ) = f(p1, . . . , p, . . . , pnf ) ∨ f(p1, . . . , q, . . . , pnf );

moreover if f ∈ Fn, then f(p1, . . . ,>, . . . , pnf ) = ⊥,
• if εg(j) = 1, then g(p1, . . . , p ∧ q, . . . , png) = g(p1, . . . , p, . . . , png) ∧ g(p1, . . . , q, . . . , png);

moreover if g ∈ Gn, then g(p1, . . . ,>, . . . , png) = >,
• if εg(j) = ∂, then g(p1, . . . , p ∨ q, . . . , png) = g(p1, . . . , p, . . . , png) ∧ g(p1, . . . , q, . . . , png);

moreover if g ∈ Gn, then g(p1, . . . ,⊥, . . . , png) = >.

Each language LDLE is interpreted in the appropriate class of DLEs. In particular, for every
DLE A, each operation fA ∈ FA (resp. gA ∈ GA) is finitely join-preserving (resp. meet-
preserving) in each coordinate when regarded as a map fA : Aεf → A (resp. gA : Aεg → A).

For every DLE A, the symbol ` is interpreted as the lattice order ≤. A sequent ϕ ` ψ
is valid in A if h(ϕ) ≤ h(ψ) for every homomorphism h from the LDLE-algebra of formulas
over PROP to A. The notation DLE |= ϕ ` ψ indicates that ϕ ` ψ is valid in every DLE.
Then, by means of a routine Lindenbaum-Tarski construction, it can be shown that the
minimal DLE-logic LDLE is sound and complete with respect to its corresponding class of
algebras DLE, i.e. that any sequent ϕ ` ψ is provable in LDLE iff DLE |= ϕ ` ψ.

Definition 2.3. An LDLE-frame is a tuple F = (X,RF ,RG) such that X = (W,≤) is a
(nonempty) poset, RF = {Rf | f ∈ F}, and RG = {Rg | g ∈ G} such that for each f ∈ F ,
the symbol Rf denotes an (nf + 1)-ary relation on W such that for all w, v ∈ Xηf ,

if Rf (w) and w ≤ηf v, then Rf (v), (2.1)

where ηf is the order-type on nf + 1 defined as follows: ηf (1) = 1 and ηf (i+ 1) = ε∂f (i) for
each 1 ≤ i ≤ nf .

Likewise, for each g ∈ G, the symbol Rg denotes an (ng + 1)-ary relation on W such
that for all w, v ∈ Xηg ,

if Rg(w) and w ≥ηg v, then Rg(v), (2.2)

where ηg is the order-type on ng + 1 defined as follows: ηg(1) = 1 and ηg(i+ 1) = ε∂g (i) for
each 1 ≤ i ≤ ng.

An LDLE-model is a tuple M = (F, V ) such that F is an LDLE-frame, and V : Prop→
P↑(W ) is a persistent valuation.

The defining clauses for the interpretation of each f ∈ F and g ∈ G on LDLE-models
are given as follows:

M, w  f(ϕ) iff there exists some v ∈Wnf s.t. Rf (w, v)

and M, vi εf (i) ϕi for each 1 ≤ i ≤ nf ,
M, w  g(ϕ) iff for any v ∈Wng , if Rg(w, v) then M, vi εg(i) ϕi

for some 1 ≤ i ≤ ng,
where 1 is  and ∂ is 1.
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2.3. Sahlqvist and Inductive LDLE-inequalities. In the present subsection, we recall
the definitions of Sahlqvist and inductive LDLE-inequalities (cf. [17, Definition 3.4]), which
we will show to be preserved and reflected under suitable GMT translations in Section 6.
These definitions capture the non-classical counterparts, in each normal modal signature,
of the classes of Sahlqvist ([58]) and inductive ([36]) formulas. The definition is given in
terms of the order-theoretic properties of the interpretation of the logical connectives (cf.
[11, 15, 17] for expanded discussions on the design principles of this definition). The fact
that this notion applies uniformly across arbitrary normal modal signatures makes it possible
to give a very general yet mathematically precise formulation to the question about the
transfer of Sahlqvist-type results under GMT translations.

Technically speaking, these definitions are given parametrically in an order type. This
contrasts to with the classical case, where the constantly-1 order-type is sufficient to
encompass all Sahlqvist formulas. As a result, the preservation of the syntactic shape of
each of these inequalities requires a GMT translation parametrized by the same order-type.
These parametric translations will be introduced in Section 5.2.

Definition 2.4 (Signed Generation Tree). The positive (resp. negative) generation tree
of any LDLE-term s is defined by labelling the root node of the generation tree of s with the
sign + (resp. −), and then propagating the labelling on each remaining node as follows:

• For any node labelled with ∨ or ∧, assign the same sign to its children nodes.
• For any node labelled with h ∈ F ∪ G of arity nh ≥ 1, and for any 1 ≤ i ≤ nh, assign the

same (resp. the opposite) sign to its ith child node if εh(i) = 1 (resp. if εh(i) = ∂).

Nodes in signed generation trees are positive (resp. negative) if are signed + (resp. −).

Signed generation trees will be mostly used in the context of term inequalities s ≤ t. In
this context we will typically consider the positive generation tree +s for the left-hand side
and the negative one −t for the right-hand side.

For any term s(p1, . . . pn), any order type ε over n, and any 1 ≤ i ≤ n, an ε-critical
node in a signed generation tree of s is a leaf node +pi with εi = 1 or −pi with εi = ∂. An
ε-critical branch in the tree is a branch from an ε-critical node. The intuition is that variable
occurrences corresponding to ε-critical nodes are those that the algorithm ALBA will solve
for in the process of eliminating them.

For every term s(p1, . . . pn) and every order type ε, we say that +s (resp. −s) agrees
with ε, and write ε(+s) (resp. ε(−s)), if every leaf in the signed generation tree of +s (resp.
−s) is ε-critical. In other words, ε(+s) (resp. ε(−s)) means that all variable occurrences
corresponding to leaves of +s (resp. −s) are to be solved for according to ε. We will also
write +s′ ≺ ∗s (resp. −s′ ≺ ∗s) to indicate that the subterm s′ inherits the positive (resp.
negative) sign from the signed generation tree ∗s. Finally, we will write ε(γ) ≺ ∗s (resp.
ε∂(γ) ≺ ∗s) to indicate that the signed subtree γ, with the sign inherited from ∗s, agrees
with ε (resp. with ε∂).

Definition 2.5. Nodes in signed generation trees will be called ∆-adjoints, syntactically
left residual (SLR), syntactically right residual (SRR), and syntactically right adjoint (SRA),
according to the specification given in Table 1. A branch in a signed generation tree ∗s, with
∗ ∈ {+,−}, is called a good branch if it is the concatenation of two paths P1 and P2, one of
which may possibly be of length 0, such that P1 is a path from the leaf consisting (apart
from variable nodes) only of PIA-nodes, and P2 consists (apart from variable nodes) only of
Skeleton-nodes. A good branch in which the nodes in P1 are all SRA is called excellent.
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Skeleton PIA
∆-adjoints SRA

+ ∨ ∧
− ∧ ∨

+ ∧ g with ng = 1
− ∨ f with nf = 1

SLR SRR
+ ∧ f with nf ≥ 1
− ∨ g with ng ≥ 1

+ ∨ g with ng ≥ 2
− ∧ f with nf ≥ 2

Table 1. Skeleton and PIA nodes for DLE.

+

Skeleton

+p

γPIA

≤ −

Skeleton

+p

γ′PIA

−p −p

Figure 1. A schematic representation of inductive inequalities.

Definition 2.6 (Sahlqvist and Inductive inequalities). For any order type ε, the signed
generation tree ∗s (∗ ∈ {−,+}) of a term s(p1, . . . pn) is ε-Sahlqvist if for all 1 ≤ i ≤ n,
every ε-critical branch with leaf pi is excellent (cf. Definition 2.5). An inequality s ≤ t is
ε-Sahlqvist if the signed generation trees +s and −t are ε-Sahlqvist. An inequality s ≤ t is
Sahlqvist if it is ε-Sahlqvist for some ε.

For any order type ε and any irreflexive and transitive relation <Ω on p1, . . . pn, the
signed generation tree ∗s (∗ ∈ {−,+}) of a term s(p1, . . . pn) is (Ω, ε)-inductive if

1. for all 1 ≤ i ≤ n, every ε-critical branch with leaf pi is good (cf. Definition 2.5);
2. everym-ary SRR-node occurring in the critical branch is of the form~(γ1, . . . , γj−1, β, γj+1 . . . , γm),

where for any h ∈ {1, . . . ,m} \ j:
(a) ε∂(γh) ≺ ∗s (cf. discussion before Definition 2.5), and
(b) pk <Ω pi for every pk occurring in γh and for every 1 ≤ k ≤ n.

We will refer to <Ω as the dependency order on the variables. An inequality s ≤ t is
(Ω, ε)-inductive if the signed generation trees +s and −t are (Ω, ε)-inductive. An inequality
s ≤ t is inductive if it is (Ω, ε)-inductive for some <Ω and ε.

The definition above specializes so as to account for all the settings in which GMT
translations have been defined. Below we expand on a selection of these.

Example 2.2 (Intuitionistic language). As observed in [15], the Frege inequality

p→ (q → r) ≤ (p→ q)→ (p→ r)
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is not Sahlqvist for any order type, but is (Ω, ε)-inductive, e.g. for r <Ω p <Ω q and
ε(p, q, r) = (1, 1, ∂), as can be seen from the signed generation trees below:

+→

−p +→

−q +r

≤
− →

+→

−p +q

− →

+p −r

In the picture above, the circled variable occurrences are the ε-critical ones, the nodes in
double ellipses are Skeleton, and those in single ellipses are PIA.

Example 2.3 (Bi-intuitionistic language). In [56, Section 4], Rauszer axiomatizes bi-
intuitionistic logic considering the following axioms among others, which we present in the
form of inequalities:

r > (q > p) ≤ (p ∨ q)> p (q > p)→ ⊥ ≤ p→ q.

The first inequality is not (Ω, ε)-inductive for any Ω and ε; indeed, in the negative generation
tree of (p ∨ q)> p, the variable p occurs in both subtrees rooted at the children of the root,
which is a binary SRR node, making it impossible to satisfy condition 2(b) of Definition 2.6
for any order-type ε and strict ordering Ω.

The second inequality is ε-Sahlqvist for ε(p) = 1 and ε(q) = ∂, and is also (Ω, ε)-
inductive but not Sahlqvist for q <Ω p and ε(p) = ε(q) = ∂. It is also (Ω, ε)-inductive but
not Sahlqvist for p <Ω q and ε(p) = ε(q) = 1.

Example 2.4 (Intuitionistic bi-modal language). The following Fischer Servi inequalities
(cf. [28])

3(q → p) ≤ 2q → 3p 3q → 2p ≤ 2(q → p),

are both ε-Sahlqvist for ε(p) = ∂ and ε(q) = 1, and are also both (Ω, ε)-inductive but not
Sahlqvist for p <Ω q and ε(p) = ∂ and ε(q) = ∂.

Example 2.5 (Distributive modal language). The following inequalities are key to Dunn’s
positive modal logic [24], the language of which is the {�,�}-free fragment of the language
of Distributive Modal Logic [32]:

2q ∧3p ≤ 3(q ∧ p) 2(q ∨ p) ≤ 3q ∨2p.

The inequality on the left (resp. right) is ε-Sahlqvist for ε(p) = ε(q) = 1 (resp. ε(p) =
ε(q) = ∂), and is (Ω, ε)-inductive but not Sahlqvist for p <Ω q and ε(p) = 1 and ε(q) = ∂
(resp. p <Ω q and ε(p) = ∂ and ε(q) = 1).

3. The GMT translations

In this section we give a brief overview of some highlights in the history of the Gödel-
McKinsey-Tarski translation, its extensions and variations and the uses to which they have
been put. We then recall the technical details of the translation and how its is founded upon
the interplay of persistent and arbitrary valuations in intuitionistic Kripke frames.
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3.1. Brief history. The GMT translation originates in the work of Gödel [34] and its
algebraic underpinnings were analysed by McKinsey and Tarski in [49, 47]. In particular,
in [49] develops the theory of closure algebras, i.e. S4-algebras, while [47] shows that every
Brouwerian algebra embeds as the subalgebra of closed subsets of some closure algebra. In
[50] this analysis is used to show that the GMT translation and a number of variations
are full and faithful. This result is extended by Dummett and Lemmon [23] in 1959 to all
intermediate logics. In 1967 Grzegorczyk [39] showed that Dummett and Lemmon’s result
also holds if one replaces normal extensions of S4 with normal extension of what is now
known as Grzegorczyk’s logic. In light these developments, Maksimova and Rybakov [46]
launched a systematic study of the relationship between the lattice of intermediate logics
and that of normal extensions of S4.

In 1976 Blok [2] and Esakia [27] independently built on this work to establish an
isomorphism, based the GMT translation, between the lattice of intermediate logics and the
lattice of normal extensions of Grzegorczyk’s logic.

Between 1989 and 1992, several theorems are proven by Zakharyaschev and Chagrov
about the preservation under GMT-based translations of properties such as decidability, finite
model property, Kripke and Hallden completeness, disjunction property, and compactness.
For detailed surveys on this line of research, the reader is referred to [3] and [69].

The first extension of the GMT translation to modal expansions of intuitionistic logic is
introduced by Fischer Servi [28] in 1977. Between 1979 and 1984 Shehtman and Sotirov also
published on extensions (cf. discussions in [3, 69]).

In the mid 90s, building on the work of Fischer Servi and Shehtman, Wolter and
Zakharyaschev [68] use an extension of the GMT translation to prove the transfer of a
number of results, including finite model property, canonicity, decidability, tabularity and
Kripke completeness, for intuitionistic modal logic with box only. In Remark 7.2 we will
expand on the relationship of their canonicity results (cf. [68, Theorem 12]) with those
of the present paper. In [67] this line of work is extended to intuitionistic modal logics
with box and diamond. Duality theory is developed and the transfer of decidability, finite
model property and tabularity under a suitably extended GMT translation is established.
Moreover, a Blok-Esakia theorem is proved in this setting.

This research programme is further pursued by Wolter [66] in the setting bi-intuitionistic
modal logic, obtained by adding the left residual of the disjunction (also known as co-
implication) to the language of intuitionistic modal logic. He develops duality theory for
these logics, extends the GMT translation and established a Blok-Esakia theorem. Recent
developments include work by G. Bezhanishvili who considers expansions of Prior’s MIPC
with universal modalities, extends the GMT translation and establishes a Blok-Esakia
theorem.

As the outline above shows, the research program on the transfer of results via GMT
translations includes many transfers of completeness and canonicity (the latter in the form of
d-persistence) which are closely related to the focus of the present paper. However, there are
very few transfer results which specifically concern Sahlqvist theory, and this for the obvious
reason that the formulation of such results depends on the availability of an independent
definition of Sahlqvist formulas for each setting of (modal expansions of) non-classical logics,
and these definitions have not been introduced in any of these settings, neither together nor
in isolation, until 2005, when Gehrke, Nagahashi and Venema [32] introduced the notion of
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Sahlqvist inequalities in the language of Distributive Modal Logic (DML).6 This definition
made it possible to formulate the Sahlqvist correspondence theorem for DML-inequalities
(cf. [32, Theorem 3.7]) and prove it via reduction to a suitable classical poly-modal logic
using GMT translations.

We conclude this brief survey by mentioning a recent paper by van Benthem, N.
Bezhanishvili and Holliday [65] which studies a GMT-like translation from modal logic with
possibility semantics into bi-modal logic. They prove that this translation transfers and
reflects first-order correspondence, but point out that it destroys the Sahlqvist shape of
formulas in all but a few special cases.

3.2. Semantic analysis. In the present section we recall the definition of the GMT trans-
lation in its original setting, highlight its basic semantic underpinning as a toggle between
persistent and non-persistent valuations on S4-frames. This analysis will be extended to a
uniform account of the GMT translation for arbitrary normal DLE-logics in the next section.

In what follows, for any partial order (W,≤), we let w↑ := {v ∈ W | w ≤ v}, w↓ :=
{v ∈ W | w ≥ v} for every w ∈ W , and for every X ⊆ W , we let X↑ :=

⋃
x∈X x↑ and

X↓ :=
⋃
x∈X x↓. Up-sets (resp. down-sets) of (W,≤) are subsets X ⊆W such that X = X↑

(resp. X = X↓). We denote by P(W ) the Boolean algebra of subsets of W , and by P↑(W )
(resp. P↓(W )) the (bi-)Heyting algebra of up-sets (resp. down-sets) of (W,≤). Finally we let
Xc denote the relative complement W \X of every subset X ⊆W .

Fix a denumerable set Prop of propositional variables. The language of intuitionistic
logic over Prop is given by

LI 3 ϕ ::= p | ⊥ | > | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ.

The language of the normal modal logic S4 over Prop is given by

LS42 3 α ::= p | ⊥ | α ∨ α | α ∧ α | ¬α | 2≤α.
The GMT translation is the map τ : LI → LS42 defined by the following recursion:

τ(p) = 2≤p
τ(⊥) = ⊥
τ(>) = >

τ(ϕ ∧ ψ) = τ(ϕ) ∧ τ(ψ)
τ(ϕ ∨ ψ) = τ(ϕ) ∨ τ(ψ)
τ(ϕ→ ψ) = 2≤(¬τ(ϕ) ∨ τ(ψ)).

Both intuitionistic and S4-formulas can be interpreted on partial orders F = (W,≤),
as follows: an S4-model is a tuple (F, U) where U : Prop → P(W ) is a valuation. The
interpretation ∗ of S4-formulas on S4-models is defined recursively as follows: for an w ∈W ,

F, w, U ∗ p iff p ∈ U(p)
F, w, U ∗ ⊥ never
F, w, U ∗ > always
F, w, U ∗ α ∧ β iff F, w, U ∗ α and F, w, U ∗ β
F, w, U ∗ α ∨ β iff F, w, U ∗ α or F, w, U ∗ β
F, w, U ∗ ¬α iff F, w, U 6∗ α
F, w, U ∗ 2≤α iff F, v, U ∗ α for any v ∈ w↑.

6We refer to [11, 17] for a systematic comparison between [32, Definition 3.4] and the definition of Sahlqvist
and inductive inequalities for normal DLE-languages (cf. Definition 2.6).
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For any S4-formula α we let ([α])U := {w | F, w, U ∗ α}. It is not difficult to verify that for
every α ∈ LS4 and any valuation U ,

([2≤α])U = ([α])cU↓
c. (3.1)

An intuitionistic model is a tuple (F, V ) where V : Prop → P↑(W ) is a persistent
valuation. The interpretation ∗ of S4-formulas on S4-models is defined recursively as
follows: for an w ∈W ,

F, w, V  p iff p ∈ V (p)
F, w, V  ⊥ never
F, w, V  > always
F, w, V  ϕ ∧ ψ iff F, w, V  ϕ and F, w, V  ψ
F, w, V  ϕ ∨ ψ iff F, w, V  ϕ or F, w, V  ψ
F, w, V  ϕ→ ψ iff either F, v, V 6 ϕ or F, v, V  ψ for any v ∈ w↑.

For any intuitionistic formula ϕ we let [[ϕ]]V := {w | F, w, V  ϕ}. It is not difficult to verify
that for all ϕ,ψ ∈ LI and any persistent valuation V ,

[[ϕ→ ψ]]V = ([[ϕ]]cV ∪ [[ψ]]V )c↓c. (3.2)

Clearly, every persistent valuation V on F is also a valuation on F. Moreover, for every
valuation U on F , the assignment mapping every p ∈ Prop to U(p)c↓c defines a persistent
valuation U↑ on F. The main semantic property of the GMT translation is stated in the
following well-known proposition:

Proposition 3.1. For every intuitionistic formula ϕ and every partial order F = (W,≤),

F  ϕ iff F ∗ τ(ϕ).

Proof. If F 6 ϕ, then F, w, V 6 ϕ for some persistent valuation V and w ∈ W . That
is, w /∈ [[ϕ]]V = ([τ(ϕ)])V , the last identity holding by item 1 of Lemma 3.2. Hence,
F, w, V 6∗ τ(ϕ), i.e. F 6∗ τ(p). Conversely, if F 6∗ τ(ϕ), then F, w, U 6 τ(ϕ) for some
valuation U and w ∈W . That is, w /∈ ([τ(ϕ)])U = [[ϕ]]U↑ , the last identity holding by item 2

of Lemma 3.2. Hence, F, w, U↑ 6 ϕ, yielding F 6 ϕ.

Lemma 3.2. For every intuitionistic formula ϕ and every partial order F = (W,≤),

1. [[ϕ]]V = ([τ(ϕ)])V for every persistent valuation V on F;
2. ([τ(ϕ)])U = [[ϕ]]U↑ for every valuation U on F.

Proof. 1. By induction on ϕ. As for the base case, let ϕ := p ∈ Prop. Then, for any
persistent valuation V ,

[[p]]V = V (p) (def. of [[·]]V )
= V (p)c↓c (V persistent)
= ([2≤p])V (equation (3.1))
= ([τ(p)])V , (def. of τ)

as required. As for the inductive step, let ϕ := ψ → χ. Then, for any persistent valuation V ,

[[ψ → χ]]V = ([[ψ]]cV ∪ [[χ]]V )c↓c (equation (3.1))
= (([τ(ψ)])cV ∪ ([τ(χ)])V )c↓c (induction hypothesis)
= ([2≤(¬τ(ψ) ∨ τ(χ))])V (equation (3.1), def. of ([·])V )
= ([τ(ψ → χ)])V , (def. of τ)
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as required. The remaining cases are omitted.
2. By induction on ϕ. As for the base case, let ϕ := p ∈ Prop. Then, for any valuation

U ,

([τ(p)])U = ([2≤p])U (def. of τ)
= ([p])cU↓

c (equation (3.1))
= U(p)c↓c (def. of ([·])U )
= [[p]]U↑ , (def. of U↑)

as required. As for the inductive step, let ϕ := ψ → χ. Then, for any valuation U ,

([τ(ψ → χ)])U = ([2≤(¬τ(ψ) ∨ τ(χ))])U (def. of τ)
= ([¬τ(ψ) ∨ τ(χ)])cU↓

c (equation (3.1))
= (([τ(ψ)])cU ∪ ([τ(χ)])U )c↓c (def. of ([·])U )
= ([[ψ]]cU↑ ∪ [[χ]]U↑)

c↓c (induction hypothesis)
= [[ψ → χ]]U↑ , (equation (3.2), U↑ persistent)

as required. The remaining cases are omitted.

Hence, the main semantic property of GMT translation, stated in Proposition 3.1, can
be understood in terms of the interplay between persistent and nonpersistent valuations,
as captured in the above lemma. In the next section, we are going to establish a general
template for this interplay and then apply it to the algebraic analysis of GMT translations
in various settings.

4. Unifying analysis of GMT translations

In the present section, we generalize the key mechanism captured in Section 3.2 and
guaranteeing the preservation and reflection of validity under the GMT translation. Being
able to identify this pattern in generality will make it possible to recognise this mechanism
in several logical settings, as we do in the following section.

Let L1 and L2 be propositional languages over a given set X, and let A and B be ordered
L1- and L2-algebras respectively, such that an order-embedding e : A ↪→ B exists. For each
V ∈ AX and U ∈ BX , let [[·]]V and ([·])U denote their unique homomorphic extensions to
L1 and L2 respectively. Clearly, e : A ↪→ B lifts to a map e : AX → BX by the assignment
V 7→ e ◦ V .

Proposition 4.1. Let τ : L1 → L2 and r : BX → AX be such that the following conditions
hold for every ϕ ∈ L1:

(a) e([[ϕ]]V ) = ([τ(ϕ)])e(V ) for every V ∈ AX ;

(b) ([τ(ϕ)])U = e([[ϕ]]r(U)) for every U ∈ BX .

Then, for all ϕ,ψ ∈ L1,

A |= ϕ ≤ ψ iff B |= τ(ϕ) ≤ τ(ψ).

Proof. From left to right, suppose contrapositively that (B, U) 6|= τ(ϕ) ≤ τ(ψ) for some
U ∈ BX , that is, ([τ(ϕ)])U 6≤ ([τ(ψ)])U . By item (b) above, this non-inequality is equivalent
to e([[ϕ]]r(U)) 6≤ e([[ψ]]r(U)), which, by the monotonicity of e, implies that [[ϕ]]r(U) 6≤ [[ψ]]r(U),

that is, (A, r(U)) 6|= ϕ ≤ ψ, as required. Conversely, if (A, V ) 6|= ϕ ≤ ψ for some V ∈ AX ,
then [[ϕ]]V 6≤ [[ψ]]V , and hence, since e is an order-embedding and by item (a) above,



Vol. 15:1 SAHLQVIST VIA TRANSLATION 15:15

([τ(ϕ)])e(V ) = e([[ϕ]]V ) 6≤ e([[ψ]]V ) = ([τ(ψ)])e(V ), that is (B, e(V )) 6|= τ(ϕ) ≤ τ(ψ), as

required.

In the proof above we have only made use of the assumption that e is an order-
embedding, but have not needed to assume any property of r. Moreover, the proposition
above is independent of the logical/algebraic signature of choice, and hence can be used
as a general template accounting for the main property of GMT translations. Finally, the
proposition holds for arbitrary ordered algebras. This latter point is key to the treatment of
Sahlqvist canonicity via translation.

5. Instantiations of the general template for GMT translations

In the present section, we look into a family of GMT-type translations, defined for different
logics, to which we apply the template of Section 4. We organize these considerations into
two subsections, in the first of which we treat the GMT translations for intuitionistic and
co-intuitionistic logic and discuss how these extend to bi-intuitionistic logic. In the second
subsection we consider parametrized versions of the GMT translation in the style of Gehrke,
Nagahashi and Venema [32] for normal modal expansions of bi-intuitionistic and DLE-logics.

5.1. Non-parametric GMT translations. As is well known, the semantic underpinnings
of the GMT translations for intuitionistic and co-intuitionistic logic are the embeddings of
Heyting algebras as the algebras of open elements of interior algebras and of Brouwerian
algebras (aka co-Heyting algebras) as algebras of closed elements of closure algebras [47]. In
the following subsections, the existence of these embeddings will be used to satisfy the key
assumptions of Section 4.

5.1.1. Interior operator analysis of the GMT translation for intuitionistic logic. As observed
above, Proposition 4.1 generalizes Proposition 3.1 in more than one way. In the present
subsection, we show that the GMT translation for intuitionistic logic verifies the conditions of
Proposition 4.1. This is an alternative proof of the well-known fact that the GMT-translation
is full and faithful, not only with respect to perfect algebras (dual to frames), but also
with respect to general algebras. This fact is necessary for the proof of the transfer of
Sahlqvist canonicity (cf. Section 7). Towards this goal, we let X := Prop, L1 := LI , and
L2 := LS4. Moreover, we let A be a Heyting algebra, and B a Boolean algebra such that an
order-embedding e : A ↪→ B exists, which is also a homomorphism of the lattice reducts of A
and B, and has a right adjoint7 ι : B→ A such that for all a, b ∈ A,

a→A b = ι(¬Be(a) ∨B e(b)). (5.1)

Then B can be endowed with a natural structure of Boolean algebra expansion (BAE) by
defining 2B : B→ B by the assignment b 7→ (e ◦ ι)(b). The following is a well known fact in
algebraic modal logic:

7That is, e(a) ≤ b iff a ≤ ι(b) for every a ∈ A and b ∈ B. By well known order-theoretic facts (cf. [21]), e ◦ ι
is an interior operator, that is, for every b, b′ ∈ B,

i1. (e ◦ ι)(b) ≤ b;
i2. if b ≤ b′ then (e ◦ ι)(b) ≤ (e ◦ ι)(b′);
i3. (e ◦ ι)(b) ≤ (e ◦ ι)((e ◦ ι)(b)).
Moreover, e ◦ ι ◦ e = e and ι = ι ◦ e ◦ ι (cf. [21, Lemma 7.26]).
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Proposition 5.1. The BAE (B,2B), with 2B defined above, is normal and is also an
S4-modal algebra.

Proof. The fact that 2B preserves finite (hence empty) meets readily follows from the fact
that ι is a right adjoint, and hence preserves existing (thus all finite) meets of B, and e
is a lattice homomorphism. For every b ∈ B, ι(b) ≤ ι(b) implies that 2Bb = e(ι(b)) ≤ b,
which proves (T). For every b ∈ B, e(ι(b)) ≤ e(ι(b)) implies that ι(b) ≤ ι(e(ι(b))) and hence
2Bb = e(ι(b)) ≤ e(ι(e(ι(b)))) = (e ◦ ι)((e ◦ ι)(b)) = 2B2Bb, which proves K4.

Finally, we let r : BX → AX be defined by the assignment U 7→ (ι ◦ U).

Proposition 5.2. Let A, B, e : A ↪→ B and r : BX → AX be as above.8 Then the GMT
translation τ satisfies conditions (a) and (b) of Proposition 4.1 for any formula ϕ ∈ LI .

Proof. By induction on ϕ. As for the base case, let ϕ := p ∈ Prop. Then, for any U ∈ BX
and V ∈ AX ,

e([[p]]r(U)) = e((ι ◦ U)(p)) ([τ(p)])e(V ) = ([2≤p])e(V )

= (e ◦ ι)(([p])U ) assoc. of ◦ = 2B([p])e(V )

= 2B([p])U = 2B((e ◦ V )(p))
= ([2≤p])U = (e ◦ ι)((e ◦ V )(p))
= ([τ(p)])U . = e((ι ◦ e)(V (p))) assoc. of ◦

= e(V (p)) e ◦ (ι ◦ e) = e
= e([[p]]V ),

which proves the base cases of (b) and (a) respectively. As for the inductive step, let
ϕ := ψ → χ. Then, for any U ∈ BX and V ∈ AX ,

e([[ψ → χ]]r(U)) = e([[ψ]]r(U) →A [[χ]]r(U))

= e(ι(¬Be([[ψ]]r(U)) ∨B e([[χ]]r(U)))) assumption (5.1)

= e(ι(¬B([τ(ψ)])U ∨B ([τ(χ)])U )) (induction hypothesis)
= (e ◦ ι)(¬B([τ(ψ)])U ∨B ([τ(χ)])U )
= 2B(¬B([τ(ψ)])U ∨B ([τ(χ)])U )
= ([2≤(¬τ(ψ) ∨ τ(χ))])U
= ([τ(ψ → χ)])U .

e([[ψ → χ]]V ) = e([[ψ]]V →A [[χ]]V )
= e(ι(¬Be([[ψ]]V ) ∨B e([[χ]]V ))) assumption (5.1)
= e(ι(¬B([τ(ψ)])e(V ) ∨B ([τ(χ)])e(V ))) (induction hypothesis)

= (e ◦ ι)(¬B([τ(ψ)])e(V ) ∨B ([τ(χ)])e(V ))

= 2B(¬B([τ(ψ)])e(V ) ∨B ([τ(χ)])e(V ))

= ([2≤(τ(ψ) ∨ τ(χ))])e(V )

= ([τ(ψ → χ)])e(V ).

The remaining cases are straightforward, and are left to the reader.

The following strengthening of Proposition 3.1 immediately follows from Propositions
4.1 and 5.2:

8The assumption that e is a homomorphism of the lattice reducts of A and B is needed for the inductive steps
relative to ⊥,>,∧,∨ in the proof this proposition, while condition (5.1) is needed for the step relative to →.
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Corollary 5.3. Let A be a Heyting algebra and B a Boolean algebra such that e : A ↪→ B
and ι : B→ A exist as above. Then for all intuitionistic formulas ϕ and ψ,

A |= ϕ ≤ ψ iff B |= τ(ϕ) ≤ τ(ψ),

where τ is the GMT translation.

We conclude this subsection by showing that the required embedding of Heyting algebras
into Boolean algebras exists. This well known fact appears in its order-dual version already
in [47, Theorem 1.15], where is shown in a purely algebraic way. We give an alternative
proof, based on very well known duality-theoretic facts. The format of the statement is
different from the dual of [47, Theorem 1.15] both because it is in the form required by
Proposition 4.1, and also because it highlights that the embedding lifts to the canonical
extensions of the algebras involved, where it acquires additional properties. This is relevant
to the analysis of canonicity via translation in Section 7.

Proposition 5.4. For every Heyting algebra A, there exists a Boolean algebra B such that
A embeds into B via some order-embedding e : A ↪→ B which is also a homomorphism of
the lattice reducts of A and B and has a right adjoint ι : B → A verifying condition (5.1).
Finally, these facts lift to the canonical extensions of A and B as in the following diagram:

A

Aδ

B

Bδ

e

eδ

`

ιπ

`

ι

`

c

Proof. Via Esakia duality [26], the Heyting algebra A can be identified with the algebra of
clopen up-sets of its associated Esakia space XA, which is a Priestley space, hence a Stone
space. Let B be the Boolean algebra of the clopen subsets of XA. Since any clopen up-set is
in particular a clopen subset, a natural order embedding e : A ↪→ B exists, which is also a
lattice homomorphism between A and B. This shows the first part of the claim.

As to the second part, notice that Esakia spaces are Priestley spaces in which the
downward-closure of a clopen set is a clopen set.

Therefore, we can define the map ι : B → A by the assignment b 7→ ¬((¬b)↓) where
b is identified with its corresponding clopen set in XA, ¬b is identified with the relative
complement of the clopen set b, and (¬b)↓ is defined using the order in XA. It can be readily
verified that ι is the right adjoint of e and that moreover condition (5.1) holds.

Finally, e : A → B being also a homomorphism between the lattice reducts of A and
B implies that e is smooth and its canonical extension eδ : Aδ → Bδ, besides being an
order-embedding, is a complete homomorphism between the lattice reducts of Aδ and Bδ (cf.
[31, Corollary 4.8]), and hence is endowed with both a left and a right adjoint. Furthermore,
the right adjoint of eδ coincides with ιπ (cf. [33, Proposition 4.2]). Hence, Bδ can be endowed

with a natural structure of S4 bi-modal algebra by defining 2Bδ
≤ : Bδ → Bδ by the assignment

u 7→ (eδ ◦ ιπ)(u), and 3Bδ
≥ : Bδ → Bδ by the assignment u 7→ (eδ ◦ c)(u).
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5.1.2. The GMT translation for co-intuitionistic logic. In the present subsection, we show
that the GMT translation for co-intuitionistic logic (which we will sometimes refer to as
the co-GMT translation) verifies the conditions of Proposition 4.1. Our presentation is
a straightforward dualization of the previous subsection. We include it for the sake of
completeness and for introducing some notation. Semantically, this dualization involves
replacing Heyting algebras with co-Heyting algebras (aka Brouwerian algebras cf. [47]), and
interior algebras (aka S4 algebras with box) with closure algebras (aka S4 algebras with
diamond).

Fix a denumerable set Prop of propositional variables. The language of co-intuitionistic
logic over Prop is given by

LC 3 ϕ ::= p | ⊥ | > | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ> ϕ.

The target language for translating co-intuitionistic logic is that of the normal modal logic
S43 over Prop, given by

LS43 3 α ::= p | ⊥ | α ∨ α | α ∧ α | ¬α | 3≥α.
Just like intuitionistic logic, formulas of co-intuitionistic logic can be interpreted on partial
orders F = (W,≤) with persistent valuations. Here we only report on the interpretation of
3≥-formulas in LS43 and > -formulas in LC :

F, w, U ∗ 3≥ϕ iff F, v, U ∗ ϕ for some v ∈ w↓.
F, w, V  ϕ> ψ iff F, v, V 6 ϕ and F, v, V  ψ for some v ∈ w↓.

The language LC is naturally interpreted in co-Heyting algebras. The connective > is
interpreted as the left residual of ∨. The co-GMT translation is the map σ : LC → LS43

defined by the following recursion:

σ(p) = 3≥p
σ(⊥) = ⊥
σ(>) = >

σ(ϕ ∧ ψ) = σ(ϕ) ∧ σ(ψ)
σ(ϕ ∨ ψ) = σ(ϕ) ∨ σ(ψ)
σ(ϕ> ψ) = 3≥(¬σ(ϕ) ∧ σ(ψ))

Next, we show that Proposition 4.1 applies to the co-GMT translation. We let X := Prop,
L1 := LC , and L2 := LS43. Moreover, we let A be a co-Heyting algebra, and B a Boolean
algebra such that an order-embedding e : A ↪→ B exists, which is also a homomorphism of
the lattice reducts of A and B, and has a left adjoint9 c : B→ A such that for all a, b ∈ A,

a> Ab = c(¬Be(a) ∧B e(b)). (5.2)

Then B can be endowed with a natural structure of Boolean algebra expansion (BAE)
by defining 3B : B → B by the assignment b 7→ (e ◦ c)(b). The following is the dual of
Proposition 5.1 and its proof is omitted.

Proposition 5.5. The BAE (B,3B), with 3B defined above, is normal and is also an
S43-modal algebra.

9That is, c(b) ≤ a iff b ≤ e(a) for every a ∈ A and b ∈ B. By well known order-theoretic facts (cf. [21]), e ◦ c
is an interior operator, that is, for every b, b′ ∈ B,

c1. b ≤ (e ◦ c)(b);
c2. if b ≤ b′ then (e ◦ c)(b) ≤ (e ◦ c)(b′);
c3. (e ◦ c)((e ◦ c)(b)) ≤ (e ◦ c)(b).
Moreover, e ◦ c ◦ e = e and c = c ◦ e ◦ c (cf. [21, Lemma 7.26]).
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Finally, we let r : BX → AX be defined by the assignment U 7→ (c ◦ U). The proof of
the following proposition is similar to that of Proposition 5.2, and its proof is omitted.

Proposition 5.6. Let A, B, e : A ↪→ B and r : BX → AX be as above.10 Then the co-GMT
translation σ satisfies conditions (a) and (b) of Proposition 4.1 for any formula ϕ ∈ LC .

The following corollary immediately follows from Propositions 4.1 and 5.6:

Corollary 5.7. Let A be a co-Heyting algebra and B a Boolean algebra such that an order-
embedding e : A ↪→ B exists, which is a homomorphism of the lattice reducts of A and B,
and has a left adjoint c : B→ A such that condition (5.2) holds for all a, b ∈ A. Then for all
ϕ,ψ ∈ LC ,

A |= ϕ ≤ ψ iff B |= σ(ϕ) ≤ σ(ψ),

where σ is the co-GMT translation.

As in the previous subsection, we conclude by giving a version of [47, Theorem 1.15]
which we need to instantiate Proposition 4.1 and for the analysis of canonicity via translation
in Section 7. The proof is dual to that of Proposition 5.4.

Proposition 5.8. For every co-Heyting algebra A, there exists a Boolean algebra B such
that A embeds into B via some order-embedding e : A ↪→ B which is a homomorphism of
the lattice reducts of A and B, and has a left adjoint c : B → A verifying condition (5.2).
Finally, these facts lift to the canonical extensions of A and B as in the following diagram:

A

Aδ

B

Bδ

e

eδ

`

cσ

`

c

`

ι

5.1.3. Extending the GMT and co-GMT translations to bi-intuitionistic logic. In the present
subsection we consider the extensions of the GMT and co-GMT translations to bi-intuitionistic
logic (aka Heyting-Brouwer logic according to the terminology of Rauszer [56] who introduced
this logic in the same paper, see also [55, 57]). The extension τ ′ of the GMT translation con-
sidered below coincides with the one introduced by Wolter in [66] restricted to the language
of bi-intuitionistic logic. The paper [66] considers a modal expansion of bi-intuitionistic logic
with box and diamond operators where the extended GMT translation is used to establish a
Blok-Esakia result and to transfer properties such as completeness, finite model property
and decidability.

10The assumption that e is a homomorphism of the lattice reducts of A and B is needed for the inductive
steps relative to ⊥,>,∧,∨ in the proof this proposition, while condition (5.2) is needed for the step relative
to > .
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The language of bi-intuitionistic logic is given by

LB 3 ϕ ::= p | ⊥ | > | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ϕ> ϕ

The language of the normal bi-modal logic S4 is given by

LS4B 3 α ::= p | ⊥ | α ∨ α | ¬α | 2≤α | 3≥α
The GMT and the co-GMT translations τ and σ can be extended to the bi-intuitionistic
language as the maps τ ′, σ′ : LB → LS4B defined by the following recursions:

τ ′(p) = 2≤p σ′(p) = 3≥p
τ ′(⊥) = ⊥ σ′(⊥) = ⊥
τ ′(>) = > σ′(>) = >

τ ′(ϕ ∧ ψ) = τ ′(ϕ) ∧ τ ′(ψ) σ(ϕ ∧ ψ) = σ′(ϕ) ∧ σ′(ψ)
τ ′(ϕ ∨ ψ) = τ ′(ϕ) ∨ τ ′(ψ) σ′(ϕ ∨ ψ) = σ′(ϕ) ∨ σ′(ψ)
τ ′(ϕ→ ψ) = 2≤(¬τ ′(ϕ) ∨ τ ′(ψ)) σ′(ϕ→ ψ) = 2≤(¬σ′(ϕ) ∨ σ′(ψ)).
τ ′(ϕ> ψ) = 3≥(¬τ ′(ϕ) ∧ τ ′(ψ)) σ′(ϕ> ψ) = 3≥(¬σ′(ϕ) ∧ σ′(ψ)).

Notice that τ ′ and σ′ agree on each defining clause but those relative to the proposition
variables. Let A be a bi-Heyting algebra and B a Boolean algebra such that e : A ↪→ B is an
order-embedding and a homomorphism of the lattice reducts of A and B. Suppose that e
has both a left adjoint c : B→ A and a right adjoint ι : B→ A such that identities (5.1) and
(5.2) hold for every a, b ∈ A. Then B can be endowed with a natural structure of bi-modal
S4-algebra by defining 2B : B→ B by the assignment b 7→ (e ◦ ι)(b) and 3B : B→ B by the
assignment b 7→ (e ◦ c)(b).

Proposition 5.9. The BAE (B,2B,3B), with 2B,3B defined as above, is normal and an
S4-bimodal algebra.

The following proposition show that Proposition 4.1 applies to τ ′ and σ′. We let
X := Prop. The proof is similar to those of Propositions 5.2 and 5.6, and is omitted.

Proposition 5.10. The translation τ ′ (resp. σ′) defined above satisfies conditions (a) and
(b) of Proposition 4.1 relative to r : BX → AX defined by U 7→ (ι ◦ U) (resp. defined by
U 7→ (c ◦ U)).

Thanks to the proposition above, Proposition 4.1 applies to both τ ′ and σ′ provided
suitable embeddings of bi-Heyting algebras into Boolean algebras exist. The existence of
such embeddings is proven by Rauszer in [56, Section 4]. We now give a reformulation of this
result in the format required to instantiate Proposition 4.1 and highlighting the compatibility
of this embedding with canonical extensions — as well as a duality-based proof.

Proposition 5.11. For every bi-Heyting algebra A, there exists a Boolean algebra B such
that A embeds into B via some order-embedding e : A ↪→ B which is also a homomorphism
of the lattice reducts of A and B and has both a left adjoint c : B→ A and a right adjoint
ι : B→ A verifying conditions (5.1) and (5.2). Finally, all these facts lift to the canonical
extensions of A and B as in the following diagram:
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A

Aδ

B

Bδ

e

eδ

`

ιπ

`

ι

`

cσ

`

c

Proof. Via Esakia-type duality [26, 66], the bi-Heyting algebra A can be identified with the
algebra of clopen up-sets of its associated dual space XA (referred to here as a a bi-Esakia
space), which is a Priestley space, hence a Stone space. Let B be the Boolean algebra of the
clopen subsets of XA. Since any clopen up-set is in particular a clopen subset, a natural
order embedding e : A ↪→ B exists, which is also a lattice homomorphism between A and B.
This shows the first part of the claim. As to the second part, bi-Esakia spaces are Priestley
spaces such that both the upward-closure and the downward-closure of a clopen set is a
clopen set.

Therefore, we can define the maps c : B→ A and ι : B→ A by the assignments b 7→ b↑
and b 7→ ¬((¬b)↓) respectively, where b is identified with its corresponding clopen set in
XA, ¬b is defined as the relative complement of b in XA, and b↑ and (¬b)↓ are defined using
the order in XA. It can be readily verified that c and ι are the left and right adjoints of e
respectively, and that moreover conditions (5.1) and (5.2) hold.

Finally, e : A → B being also a homomorphism between the lattice reducts of A and
B implies that e is smooth and its canonical extension eδ : Aδ → Bδ, besides being an
order-embedding, is a complete homomorphism between the lattice reducts of Aδ and Bδ (cf.
[31, Corollary 4.8]), and hence is endowed with both a left and a right adjoint. Furthermore,
the left (resp. right) adjoint of eδ coincides with cσ (resp. with ιπ) (cf. [33, Proposition 4.2]).
Hence, Bδ can be naturally endowed with the structure of an S4 bi-modal algebra by defining

2Bδ
≤ : Bδ → Bδ by the assignment u 7→ (eδ ◦ ιπ)(u), and 3Bδ

≥ : Bδ → Bδ by the assignment

u 7→ (eδ ◦ cσ)(u).

5.2. Parametric GMT translations. In this section we extend the previous translations
to a parametric set of GMT translations for each normal DLE- and bHAE-logic (cf. Section
2). Parametric GMT translations were already considered in [32] in the context of one
specific DLE signature, namely that of Distributive Modal Logic, where they are used to
prove the transfer of correspondence results for ε-Sahlqvist inequalities in every order-type
ε (cf. Definition 2.6). We generalize this idea to arbitrary DLE-logics, and explore the
additional properties of GMT translations in the setting of bHAE-logics.
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5.2.1. Parametric GMT translations for normal DLE-logics. In the present section we
consider parametric GMT translations for the general DLE-setting. We will use the following
notation: for every Boolean algebra B, n-tuple b of elements of B and every order-type η
on n, we let b

η
:= (b′i)

n
i=1 where b′i = bi if η(i) = 1 and b′i = ¬bi if η(i) = ∂. Let us fix

a normal DLE-signature LDLE = LDLE(F ,G). We first identify the target language for
these translations. This is the normal BAE-signature L◦BAE = LBAE(F◦,G◦) associated with
LDLE, where F◦ := {3≥} ∪ {f◦ | f ∈ F}, and G◦ := {2≤} ∪ {g◦ | g ∈ G}, and for every
f ∈ F (resp. g ∈ G), the connective f◦ (resp. g◦) is such that nf◦ = nf (resp. ng◦ = ng) and
εf◦(i) = 1 for each 1 ≤ i ≤ nf (resp. εg◦(i) = 1 for each 1 ≤ i ≤ ng).

We assume that an order-embedding e : A ↪→ B exists, which is a homomorphism of the
lattice reducts of A and B, such that both the left and right adjoint c : B→ A and ι : B→ A
exist and moreover the following diagrams commute for every f ∈ F and g ∈ G:11

Anf e
εf

−−−−→ BnfyfA yf◦B
A c←−−−− B

Ang eεg−−−−→ BngygA yg◦B
A ι←−−−− B

(5.3)

where eεf (a) := e(a)
εf

and eεg(a) := e(a)
εg

. Then, as discussed early on, the Boolean reduct
of B can be endowed with a natural structure of bi-modal S4-algebra by defining 2B : B→ B
by the assignment b 7→ (e ◦ ι)(b) and 3B : B→ B by the assignment b 7→ (e ◦ c)(b).

The target language for the parametrized GMT translations over Prop is given by

L◦BAE 3 α ::= p | ⊥ | α ∨ α | α ∧ α | ¬α | f◦(α) | g◦(α) | 3≥α | 2≤α.
Let X := Prop. For any order-type ε on X, define the translation τε : LDLE → L◦BAE by

the following recursion:

τε(p) =

{
2≤p if ε(p) = 1

3≥p if ε(p) = ∂,

τε(⊥) = ⊥
τε(>) = >

τε(ϕ ∧ ψ) = τε(ϕ) ∧ τε(ψ)
τε(ϕ ∨ ψ) = τε(ϕ) ∨ τε(ψ)

τε(f(ϕ)) = 3≥f
◦(τε(ϕ)

εf
)

τε(g(ϕ)) = 2≤g
◦(τε(ϕ)

εg
)

where for each order-type η on n and any n-tuple ψ of L◦BAE-formulas, ψ
η

denotes the
n-tuple (ψ′i)

n
i=1, where ψ′i = ψi if η(i) = 1 and ψ′i = ¬ψi if η(i) = ∂.

Let A be a LDLE-algebra and B be a L◦BAE-algebra such that an order-embedding
e : A ↪→ B exists, which is a homomorphism of the lattice-reducts of A and B, is endowed
with both right and left adjoints, and satisfies the commutativity of the diagrams (5.3) for
every f ∈ F and g ∈ G. For every order-type ε on X, consider the map rε : BX → AX
defined, for any U ∈ BX and p ∈ X, by:

rε(U)(p) =

{
(ι ◦ U)(p) if ε(p) = 1

(c ◦ U)(p) if ε(p) = ∂

Proposition 5.12. For every order-type ε on X, the translation τε defined above satisfies
conditions (a) and (b) of Proposition 4.1 relative to rε.

11Notice that equations (5.1) and (5.2) encode the special cases of the commutativity of the diagrams
(5.3) for f(ϕ,ψ) := ϕ> ψ (in which case, f◦(¬α, β) := ¬α ∧ β) and g(ϕ,ψ) := ϕ → ψ (in which case,
g◦(¬α, β) := ¬α ∨ β).
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Proof. By induction on ϕ. As for the base case, let ϕ := p ∈ Prop. If ε(p) = ∂, then for any
U ∈ BX and V ∈ AX ,

e([[p]]rε(U)) = e((c ◦ U)(p)) (def. of rε) ([τε(p)])e(V ) = ([3≥p])e(V ) (def. of τε)

= (e ◦ c)([p])U (assoc. of ◦) = 3B([p])e(V ) (def. of ([·])U )

= 3B([p])U (def. of 3B) = 3B((e ◦ V )(p)) (def. of e(V ))
= ([3≥p])U (def. of ([·])U ) = (e ◦ c)((e ◦ V )(p)) (def. of 3B)
= ([τε(p)])U . (def. of τε) = e((c ◦ e)(V (p))) (assoc. of ◦)

= e(V (p)) (e ◦ (c ◦ e) = e)
= e([[p]]V ). (def. of [[·]]V )

If ε(p) = 1, then for any U ∈ BX and V ∈ AX ,

e([[p]]rε(U)) = e((ι ◦ U)(p)) (def. of rε) ([τε(p)])e(V ) = ([2≤p])e(V ) (def. of τε)

= (e ◦ ι)([p])U (assoc. of ◦) = 2B([p])e(V ) (def. of ([·])U )

= 2B([p])U (def. of 2B) = 2B((e ◦ V )(p)) (def. of e(V ))
= ([2≤p])U (def. of ([·])U ) = (e ◦ ι)((e ◦ V )(p)) (def. of 2B)
= ([τε(p)])U . (def. of τε) = e((ι ◦ e)(V (p))) (assoc. of ◦)

= e(V (p)) (e ◦ (ι ◦ e) = e)
= e([[p]]V ). (def. of [[·]]V )

Let ϕ := f(ϕ). Then for any U ∈ BX and V ∈ AX ,

e([[f(ϕ)]]rε(U)) ([τε(f(ϕ))])e(V )

= e(f([[ϕ]]rε(U))) (def. of [[·]]rε(U)) = ([3≥f
◦(τε(ϕ)

εf
)])e(V ) (def. of τε)

= e(c ◦ f◦(e([[ϕ]]rε(U))
εf

) (assump. (5.3)) = 3Bf◦(([τε(ϕ)])e(V )

εf
) (def. of ([·])e(V ))

= 3Bf◦(([τε(ϕ)])U
εf

) (IH & def. of 3B) = 3Bf◦(e([[ϕ]]V )
εf

) (IH)

= ([3≥f
◦(τε(ϕ)

εf
)])U (def. of ([·])U ) = e(c ◦ f◦(e([[ϕ]]V )

εf
)) (def. of 3B)

= ([τε(f(ϕ))])U . (def. of τε) = e(f([[ϕ]]V )) (assump. (5.3))
= e([[f(ϕ)]]V ) (def. of [[·]]V )

The remaining cases are analogous and are omitted.

As a consequence of the proposition above, Proposition 4.1 applies to τε for any order-type
ε on X. Hence:

Corollary 5.13. Let A be a LDLE-algebra. If an embedding e : A ↪→ B exists into a L◦BAE-
algebra B which is a homomorphism of the lattice reducts of A and B, and e has both a right
adjoint ι : B→ A and a left adjoint c : B→ A satisfying the commutativity of the diagrams
(5.3) for every f ∈ F and g ∈ G, then for any LDLE-inequality ϕ ≤ ψ,

A |= ϕ ≤ ψ iff B |= τε(ϕ) ≤ τε(ψ).

We finish this subsection by showing that every perfect LDLE-algebra A (cf. Definition
2.2) embeds into a perfect L◦BAE-algebra B in the way described in Corollary 5.13:

Proposition 5.14. For every perfect LDLE-algebra A, there exists a perfect L◦BAE–algebra B
such that A embeds into B via some order-embedding e : A ↪→ B which is also a homomorphism
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of the lattice reducts of A and B and has both a left adjoint c : B→ A and a right adjoint
ι : B→ A satisfying the commutativity of the diagrams (5.3).

Proof. Via expanded Birkhoff’s duality (cf. e.g. [21, 60]) the perfect LDLE-algebra A can be
identified with the algebra of up-sets of its associated prime element LDLE-frame XA, which
is based on a poset. Let B be the powerset algebra of the universe of XA. Since any up-set is
in particular a subset, a natural order embedding e : A ↪→ B exists, which is also a complete
lattice homomorphism between A and B. This shows the first part of the claim.

As to the second part, because e is a complete homomorphism between complete lattices,
it has both a left adjoint c : B→ A and a right adjoint ι : B→ A, respectively defined by the
assignments b 7→ b↑ and b 7→ ¬((¬b)↓), where b is identified with its corresponding subset in
XA, ¬b is defined as the relative complement of b in XA, and b↑ and (¬b)↓ are defined using
the order in XA.

Finally, notice that any LDLE-frame F is also an L◦BAE-frame by interpreting the f -type
connective 3≥ by means of the binary relation ≥, the g-type connective 2≤ by means of
the binary relation ≤, each f◦ ∈ F◦ by means of Rf and each g◦ ∈ G◦ by means of Rg.
Moreover, the additional properties (2.1) and (2.2) of the relations Rf and Rg guarantee
that the diagrams (5.3) commute for every f ∈ F and g ∈ G.

Remark 5.15. The parametric GMT translations defined in this section do not just gener-
alize those of [32] w.r.t. the signature, but also differ from them in terms of their definition,
and the assumptions each of which requires. Specifically, the parametric translations of
f -formulas (resp. g-formulas) add an extra 3≥ (resp. a 2≤) on top of the corresponding f◦

(resp. g◦) connective, while in [32], the extra 3≥ and 2≤ are not used in the definition of the
translation of formulas with a modal operator as main connective. This simpler definition is
sound only w.r.t. semantic settings, such as that of [32], in which the relations interpreting
the modal connectives satisfy the additional properties (2.1) and (2.2). This corresponds
algebraically to the operations interpreting the classical modal connectives restricting nicely
to the algebra of targets of persistent valuations, and corresponds syntactically to the mix
axioms (e.g. 2≤2

◦2≤p↔ 2◦p and 3≥3
◦3≥p↔ 3◦p, cf. [66, Section 6]) being valid. The

particular algebras and maps picked in the proof of Proposition 5.14 happen to validate
also the mix axioms. However, the mix axioms are not a necessary condition for satisfying
Proposition 5.14, as the following example shows.

>

⊥

b

>

c

y

⊥

b

a

>

d

c

y
x

The (finite, hence perfect) distributive lattice with 2 on the left embeds as a complete
lattice into the (finite, hence perfect) Boolean algebra with 2◦ on the right. Hence, the
corresponding embedding e has both a right adjoint ι and a left adjoint c. The composition
e ◦ ι gives rise to the S4-operation 2≤ := e ◦ ι which by construction maps a to b, d to
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c, x to ⊥, and every other element to itself. It it easy to check that 2 and 2◦ verify the
commutativity of diagram (5.3). However, 2≤2

◦2≤b = b 6= a = 2◦b, which shows that the
mix axiom is not valid.

Notice that Proposition 5.14 has a more restricted scope than analogous propositions such
as Propositions 5.11 or 5.4. Indeed, via expanded Priestley duality (cf. e.g. [60]), any DLE A
is isomorphic to the DLE of clopen up-sets of its dual (relational) Priestley space XA, which
is a Stone space in particular, and this yields a natural embedding of A into the BAE of
the clopen subsets of XA. However, this embedding has in general neither a right nor a left
adjoint. In Section 6, we will see that Proposition 5.14 is enough to obtain the correspondence
theorem for inductive LDLE-inequalities via translation from the correspondence theorem
for inductive LBAE-inequalities. However, we will see in Section 7 that canonicity cannot be
straightforwardly obtained in the same way, precisely due to the restriction on Proposition
5.14. As we show next, this restriction can be removed if we confine ourselves setting to
arbitrary normal bHAEs. In this setting, we are going to show a strengthened version of
Proposition 5.14 which will be key for the transfer of canonicity of Section 7.1.

5.2.2. Parametric GMT translations for bHAE-logics. The considerations collected in Section
5.2.1 apply to the more restricted setting of bHAEs (cf. Section 2.2). Let us fix a bHAE-
signature LbHAE = LbHAE(F ,G) and let L◦BAE denote its corresponding target signature
(cf. Section 5.2.1). Then, Corollary 5.13 specializes as follows:

Corollary 5.16. Let A be an LbHAE-algebra. If an embedding e : A → B exists into an
L◦BAE-algebra B which is a homomorphism of their lattice reducts and e has both a right
adjoint ι : B→ A and a left adjoint c : B→ A satisfying (5.1), (5.2) and (5.3), then for any
LbHAE-inequality ϕ ≤ ψ,

A |= ϕ ≤ ψ iff B |= τε(ϕ) ≤ τε(ψ).

As discussed above, the present setting is characterized by the fact that, for any LbHAE-
algebras A, the right and left adjoints of the embedding map e : A ↪→ B exist, as shown by
the following proposition.

Proposition 5.17. For every LbHAE-algebra A, there exists an L◦BAE-algebra B such that
A embeds into B via some order-embedding e : A ↪→ B which is also a homomorphism of the
lattice reducts of A and B and has both a left adjoint c : B→ A and a right adjoint ι : B→ A
satisfying (5.1), (5.2) and (5.3). Finally, all these facts lift to the canonical extensions of A
and B as in the following diagram:
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A

Aδ

B

Bδ

e

eδ

`

ιπ

`

ι

`

cσ

`

c

Proof. By Proposition 5.11, to complete the proof of the first part of the statement, we
need to address the claims regarding the expansions. This is done by using a version of the
duality in [60] restricted to those Priestley spaces which are also bi-Esakia spaces. As to the
second part, notice that the commutativity of the diagrams (5.3) can be written in the form
of pairs of inequalities (i.e. f = cf◦eεf and g = ιg◦eεg) which are Sahlqvist and hence lift to
the upper part of the diagram above.

6. Correspondence via translation

The theory developed so far puts us in a position to meaningfully formulate and prove
the transfer of first-order correspondence to Sahlqvist and inductive DLE-inequalities from
suitable classical poly-modal cases. These general results specialize to the logics mentioned
above, e.g. those mentioned in Example 2.1.

In what follows, we let L denote an arbitrary but fixed DLE-language and L◦ its
associated target language (cf. Section 5.2.1). The general definition of inductive inequalities
(cf. Definition 2.6) applies both L and L◦. In particular, the Boolean negation in L◦
enjoys both the order-theoretic properties of a unary f -type connective and of a unary
g-type connective. Hence, Boolean negation occurs unrestricted in inductive L◦-inequalities.
Moreover, the algebraic interpretations of the S4-connectives 2≤ and 3≥ enjoy the order-
theoretic properties of normal unary f -type and g-type connectives respectively. Hence, the
occurrence of 2≤ and 3≥ in inductive L◦-inequalities is subject to the same restrictions
applied to any connective pertaining to the same class to which they belong.

The following correspondence theorem is a straightforward extension to the L◦-setting
of the correspondence result for classical normal modal logic in [13]:

Proposition 6.1. Every inductive L◦-inequality has a first-order correspondent over its
class of L◦-frames.

In what follows, we aim to transfer the correspondence theorem for inductive L◦-
inequalities as stated in the proposition above to inductive L-inequalities. The next proposi-
tion is the first step towards this goal. As before, let X := Prop.

Proposition 6.2. The following are equivalent for any order-type ε on X, and any L-
inequality ϕ ≤ ψ:

1. ϕ ≤ ψ is an (Ω, ε)-inductive L-inequality;
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2. τε(ϕ) ≤ τε(ψ) is an (Ω, ε)-inductive L◦-inequality.

Proof. By induction on the shape of ϕ ≤ ψ. In a nutshell: the definitions involved guarantee
that: (1) PIA nodes are introduced immediately above ε-critical occurrences of proposition
variables; (2) Skeleton nodes are translated as (one or more) Skeleton nodes; (3) PIA nodes
are translated as (one or more) PIA nodes. Moreover, this translation does not disturb the
dependency order Ω. Hence, from item 1 to item 2, the translation does not introduce any
violation on ε-critical branches, and, from item 2 to item 1, the translation does not amend
any violation.

Theorem 6.1 (Correspondence via translation). The correspondence theorem for inductive
L◦-inequalities transfers to inductive L-inequalities.

Proof. Let ϕ ≤ ψ be an (Ω, ε)-inductive L-inequality, and F be an L-frame such that
F  ϕ ≤ ψ. By the discrete duality between perfect L-algebras and L-frames, this assumption
is equivalent to A |= ϕ ≤ ψ, where A denotes the complex L-algebra of F. Since A is a perfect
L-algebra, by Proposition 5.14, a perfect L◦-algebra B exists with a natural embedding
e : A→ B which is a homomorphism of the lattice reducts of A and B and has both a right
adjoint ι : B → A and a left adjoint c : B → A such that diagrams (5.3) commute. Hence,
Corollary 5.13 is applicable and yields A |= ϕ ≤ ψ iff B |= τε(ϕ) ≤ τε(ψ), which is equivalent
to F ∗ τε(ϕ) ≤ τε(ψ) by the discrete duality between perfect L◦-algebras and L◦-frames.

By Proposition 6.2, τε(ϕ) ≤ τε(ψ) is an (Ω, ε)-inductive L◦-inequality, and hence, by
Proposition 6.1, τε(ϕ) ≤ τε(ψ) has a first-order correspondent FO(ϕ) on L◦-frames. Therefore
F ∗ τε(ϕ) ≤ τε(ψ) iff F |= FO(ϕ). Since the first-order frame correspondence languages of
L and L◦ are the same, it follows that FO(ϕ) is also the first-order correspondent of ϕ ≤ ψ.
The steps of this argument are summarized in the following chain of equivalences:

F  ϕ ≤ ψ
iff A |= ϕ ≤ ψ (discrete duality for L-frames)
iff B |= τε(ϕ) ≤ τε(ψ) (Proposition 5.14, Corollary 5.13)
iff F ∗ τε(ϕ) ≤ τε(ψ) (discrete duality for L◦-frames)
iff F |= FO(ϕ) (Proposition 6.1)

Remark 6.3. In Example 2.1, we showed that the languages of Rauszer’s bi-intuitionistic
logic, Fischer Servi’s intuitionistic modal logic, Wolter’s bi-intuitionistic modal logic, Bezhan-
ishvili’s MIPC with universal modalities, Dunn’s positive modal logic and Gehrke Nagahashi
and Venema’s Distributive Modal Logic are specific instances of DLE-logics. Hence, The-
orem 6.1, applied to each of these settings, enables one to transfer generalized Sahlqvist
correspondence theorems to each of these logics. In all these settings but the latter two, this
transferability is a new result which can be added to the list of known transfer results for
these logics (cf. e.g. [3, Section 4.1]). In positive modal logic and distributive modal logic,
[32, Theorem 3.7] proves the transfer of Sahlqvist correspondence. Our result strengthens
this to the transfer of correspondence for the larger class of inductive formulas.12

12In [36] it is shown that inductive formulas exist which are not semantically equivalent to any Sahlqvist
formula.



15:28 Conradie, Palmigiano and Zhao Vol. 15:1

7. Canonicity via translation

In this section we apply the results of Section 5, and in particular those of Section 5.2.2,
to show that the canonicity of the inductive LbHAE-inequalities transfers from classical
multi-modal logic via parametrized GMT translations. The proof strategy of this result
does not generalize successfully to DLE-logics or, indeed, to intuitionistic or co-intuitionistic
modal logics. We discuss the reasons for this and propose possible alternative strategies.

7.1. Canonicity transfer to inductive bHAE-inequalities. Throughout the present
section, let us fix a bHAE-signature LbHAE = LbHAE(F ,G), and let L◦BAE = LBAE(F◦,G◦) be
the target language for the parametric GMT translations for LbHAE (cf. Section 5.2.1). The
following canonicity theorem is a straightforward algebraic reformulation of the canonicity
result for classical normal polyadic modal logic in [35] and [14]:

Proposition 7.1. For every inductive L◦BAE-inequality α ≤ β and every L◦BAE-algebra B,

if B |= α ≤ β then Bδ |= α ≤ β.

In what follows, we show that the canonicity of inductive L◦BAE-inequalities, given by
the proposition above, transfers to inductive LbHAE-inequalities via suitable parametrized
GMT translations.

Theorem 7.1 (Canonicity via translation). The canonicity theorem for inductive L◦BAE-
inequalities transfers to inductive LbHAE-inequalities.

Proof. Fix an LbHAE-algebra A and let ϕ ≤ ψ be an inductive LbHAE-inequality such that
A |= ϕ ≤ ψ. We show Aδ |= ϕ ≤ ψ. By Proposition 5.17, an L◦BAE-algebra B exists with
a natural embedding e : A ↪→ B which is a homomorphism of the lattice reducts of A and
B and has both a right adjoint ι : B→ A and a left adjoint c : B→ A such that conditions
(5.1), (5.2), and (5.3) hold. Hence, Corollary 5.16 is applicable, which yields A |= ϕ ≤ ψ iff
B |= τε(ϕ) ≤ τε(ψ).

By Proposition 6.2, τε(ϕ) ≤ τε(ψ) is an (Ω, ε)-inductive L◦BAE-inequality, and hence, by

Proposition 7.1, Bδ |= τε(ϕ) ≤ τε(ψ). By the last part of the statement of Proposition 5.17,
Corollary 5.16 applies also to Aδ and Bδ, and thus Aδ |= ϕ ≤ ψ, as required. The steps of
this argument are summarized in the following U-shaped diagram:

A |= ϕ ≤ ψ Aδ |= ϕ ≤ ψ
m (Prop 5.17, Cor 5.16) m (Prop 5.17, Cor 5.16)

B |= τε(ϕ) ≤ τε(ψ) ⇔ Bδ |= τε(ϕ) ≤ τε(ψ)

Remark 7.2. Theorem 7.1 applies to both Rauszer’s bi-intuitionistic logic13 [56] and
Wolter’s bi-intuitionistic modal logic [66]. Hence, transfer of generalized Sahlqvist canonicity
theorems is available for each of these logics. This transferability is a new result for these
settings, and is different from the transfer of d-persistence as was shown e.g. in [68, Theorem
12] in the context of intuitionistic modal logic, in at least two respects; first, it hinges
specifically on the preservation and reflection of the shape of inductive formulas; second, it

13As discussed in Example 2.3, not all axioms in Rauszer’s axiomatization of bi-intuitionistic logic are
inductive. However, in [37], Goré introduces a proper display calculus for bi-intuitionistic logic, which implies,
by the characterization given in [38], that an axiomatization for bi-intuitionistic logic exists which consists
only of inductive formulas.
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does not rely on any assumptions about the interaction between the S4 and other modalities
in the target logic such as those captured by the mix axiom (cf. Remark 5.15).

7.2. Generalizing the canonicity-via-translation argument. In the present subsec-
tion, we discuss the extent to which the proof pattern described in the previous subsection
can be applied to the settings of normal Heyting and co-Heyting algebra expansions (HAEs,
cHAEs), and to normal DLEs. In the setting of bHAEs, the order embedding e has both
a left and a right adjoint, the existence of which is shown in Proposition 5.17, while for
HAEs, cHAEs and DLEs at most one of the two adjoints was shown to exist in general (cf.
Propositions 5.4 and 5.8), while both adjoints exist if the algebra is perfect (cf. Proposition
5.14).

This implies that the the U-shaped argument discussed in the proof of Theorem 7.1 is not
straightforwardly applicable to HAEs, cHAEs and DLEs. Indeed, in each of these settings,
the equivalence on the side of the perfect algebras can still be argued using Proposition
5.14 and Corollary 5.13, but the one on the side of general algebras (left-hand side of the
diagram) cannot, precisely because Proposition 5.14 does not generalize to arbitrary DLEs
(resp. HAEs, cHAEs).

A |= ϕ ≤ ψ Aδ |= ϕ ≤ ψ
m ? m (Prop 5.14, Cor 5.13)

B |= τε(ϕ) ≤ τε(ψ) ⇔ Bδ |= τε(ϕ) ≤ τε(ψ)

In what follows, we employ a more refined argument to show that the left-hand side
equivalence holds. That is, the question mark in the U-shaped diagram above can be
replaced by Proposition 7.4 below. We work in the setting of L-algebras for an arbitrarily
fixed DLE-signature L, with L◦ its associated target signature. Recall that the canonical
extension eδ : Aδ → Bδ of the embedding e : A ↪→ B is a complete lattice homomorphism,
and hence both its left and right adjoints exist, which we respectively denote c : Bδ → Aδ
and ι : Bδ → Aδ. It is well known from the theory of canonical extensions that c(b) ∈ K(Aδ)
and ι(b) ∈ O(Aδ) for every b ∈ B (cf. [17, Lemma 10.3]). Hence, if rε : (Bδ)X → (Aδ)X is
the map defined for any U ∈ (Bδ)X and p ∈ X by:

rε(U)(p) =

{
(ι ◦ U)(p) if ε(p) = 1

(c ◦ U)(p) if ε(p) = ∂

then (rε(U))(p) ∈ K(Aδ) if ε(p) = ∂ and (rε(U))(p) ∈ O(Aδ) if ε(p) = 1 for any ‘admissible
valuation’ U ∈ BX and p ∈ X.

Lemma 7.3. Let A be an L-algebra, and e : A ↪→ B be an embedding of A into an L◦-algebra
B which is a homomorphism of the lattice reducts of A and B such that the left and right
adjoints of eδ : Aδ → Bδ make the diagrams (5.3) commute. Then, for every order-type ε on
X, the following conditions hold for every ϕ ∈ L:

(a) e([[ϕ]]V ) = ([τε(ϕ)])e(V ) for every V ∈ AX ;

(b) ([τε(ϕ)])U = eδ([[ϕ]]rε(U)) for every U ∈ BX .

Proof. The statement immediately follows from Proposition 5.12 applied to eδ : Aδ → Bδ.

Proposition 7.4. Let A be an L-algebra, and e : A ↪→ B be an embedding of A into an
L◦-algebra B which is a homomorphism of the lattice reducts of A and B such that the left
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and right adjoints of eδ : Aδ → Bδ make the diagrams (5.3) commute. Then, for every
(Ω, ε)-inductive L-inequality ϕ ≤ ψ,

Aδ |=A ϕ ≤ ψ iff Bδ |=B τε(ϕ) ≤ τε(ψ).

Sketch of proof. From right to left, if (Aδ, V ) 6|= ϕ ≤ ψ for some V ∈ AX , then [[ϕ]]V 6≤ [[ψ]]V .
By Lemma 7.3 (a), this implies that ([τε(ϕ)])e(V ) = e([[ϕ]]V ) 6≤ e([[ψ]]V ) = ([τε(ψ)])e(V ), that

is (Bδ, e(V )) 6|= τε(ϕ) ≤ τε(ψ), as required.
Conversely, assume contrapositively that (Bδ, U) 6|= τε(ϕ) ≤ τε(ψ) for some U ∈ BX , that

is, ([τε(ϕ)])U 6≤ ([τε(ψ)])U . By Lemma 7.3 (b), this is equivalent to eδ([[ϕ]]rε(U)) 6≤ eδ([[ψ]]rε(U)),

which, by the monotonicity of eδ, implies that [[ϕ]]rε(U) 6≤ [[ψ]]rε(U), that is, (A, rε(U)) 6|=
ϕ ≤ ψ. This is not enough to finish the proof, since rε(U) is not guaranteed to belong in
AX ; however, as observed above, (rε(U))(p) ∈ K(Aδ) if ε(p) = ∂ and (rε(U))(p) ∈ O(Aδ)
if ε(p) = 1 for each proposition variable p. To finish the proof, we need to show that an
admissible valuation V ′ ∈ AX can be manufactured from rε(U) and ϕ ≤ ψ in such a way
that (Aδ, V ′) 6|= ϕ ≤ ψ. In what follows, we provide a sketch of the proof of the existence of
the required V ′. Assume that ε(q) = ∂ for some proposition variable q occurring in ϕ ≤ ψ
(the case of ε(q) = 1 is analogous and is omitted). Then we define V ′(q) ∈ A as follows. We
run ALBA on ϕ ≤ ψ according to the dependency order <Ω, up to the point when we solve
for the negative occurrences of q, which by assumption are ε-critical. Notice that ALBA
preserves truth under assignments.14 Then the inequality providing the minimal valuation
of q is of the form q ≤ α, where α is pure (i.e. no proposition variables occur in α). By [15,
Lemma 9.5], every inequality in the antecedent of the quasi-inequality obtained by applying
first approximation to an inductive inequality is of the form γ ≤ δ with γ syntactically closed
and δ syntactically open. Hence, α is pure and syntactically open, which means that the
interpretation of α is an element in O(Aδ). Therefore, by compactness, there exists some
a ∈ A such that rε(U)(q) ≤ a ≤ α. Then we define V ′(q) = a. Finally, it remains to be
shown that (Aδ, V ′) 6|= ϕ ≤ ψ. This immediately follows from the fact that ALBA steps
preserves truth under assignments, and that all the inequalities in the system are preserved
in the change from rε(U) to V ′.

However, Proposition 7.4 is still not enough for the U-shaped argument above to go
through. Indeed, notice that, whenever e : A→ B misses one of the two adjoints (e.g. the
left adjoint), for any (Ω, ε)-inductive L-inequality ϕ ≤ ψ containing some q with ε(q) = ∂,
its translation τε(ϕ) ≤ τε(ψ) contains occurrences of the connective 3≥, the algebraic
interpretation of which in Bδ is based on the left adjoint c of eδ, which, as discussed above,
maps elements in B to elements in K(Bδ). Hence, the canonicity of τε(ϕ) ≤ τε(ψ), understood
as the preservation of its validity from B to Bδ, cannot be argued by appealing to Proposition
7.1: indeed, Proposition 7.1 holds under the assumption that B is an L◦-subalgebra of Bδ,
while, as discussed above, B is not in general closed under 3≥.

In order to be able to adapt the canonicity-via-translation argument to the case of
HAEs, cHAEs and DLEs, we would need to strengthen Proposition 7.1 so as to obtain the

14In [15] it is proved that ALBA steps preserve validity of quasi-inequalities. In fact, something stronger is
ensured, namely that truth under assignments is preserved, modulo the values of introduced and eliminated
variables. This notion of equivalence is studied in e.g. [12]. We are therefore justified in our assumption that
the value of q is held constant as are the values of all variables occurring in ϕ ≤ ψ which have not yet been
eliminated up to the point where q is solved for.
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following equivalence for any inductive L◦-inequality α ≤ β:

Bδ |=B α ≤ β iff Bδ |= α ≤ β (7.1)

in a setting in which the interpretations of 3≥ and 2≤ exist only in Bδ and all we have in

general for b ∈ B is that 3Bδ(b) ∈ K(Bδ) and 2Bδ(b) ∈ O(Bδ).
Such a strengthening cannot be straightforwardly obtained with the tools provided

by the present state-of-the-art in canonicity theory. To see where the problem lies, let us
try and apply ALBA/SQEMA in an attempt to prove the left-to-right direction of (7.1)
for the ‘Sahlqvist’ inequality 2≤p ≤ 3≥2≤p, assuming that 3≥ is left adjoint to 2≤, and
([2≤p])U ∈ O(Bδ) and ([3≥p])U ∈ K(Bδ) for any admissible valuation U ∈ BX :

Bδ |=B ∀p[2≤p ≤ 3≥2≤p]
iff Bδ |=B ∀p∀i∀m[(i ≤ 2≤p & 3≥2≤p ≤m)⇒ i ≤m]
iff Bδ |=B ∀p∀i∀m[(3≥i ≤ p & 3≥2≤p ≤m)⇒ i ≤m]

The minimal valuation term 3≥j, computed by ALBA/SQEMA when solving for the negative
occurrence of p, is closed. However, substituting this minimal valuation into 3≥2≤p ≤m
would get us 3≥2≤3≥j ≤ m with 3≥2≤3≥j neither closed nor open. Hence, we cannot
anymore appeal to the Esakia lemma in order to prove the following equivalence:15

Bδ |=B ∀p∀i∀m[(3≥i ≤ p & 3≥2≤p ≤m)⇒ i ≤m]
iff Bδ |=B ∀i∀m[3≥2≤3≥i ≤m⇒ i ≤m]

An analogous situation arises when solving for the positive occurrence of p. Other
techniques for proving canonicity, such as Jónsson-style canonicity [40, 52], display the same
problem, since they also rely on an Esakia lemma which is not available if B is not closed
under 2≤ and 3≥.

8. Conclusions and further directions

Contributions. In the present paper, we have laid the groundwork for a general and
uniform theory of transfer of generalized Sahlqvist correspondence and canonicity from
normal BAE-logics to normal DLE-logics. Towards this goal, we have introduced a unifying
template for GMT translations, of which the GMT translations in the literature can be
recognized as instances. We have proved that generalized Sahlqvist correspondence transfers
for all DLE-logics, while generalized Sahlqvist canonicity transfers for the more restricted
setting of bHAE-logics. The formulation of these results has been made possible by the
recent introduction of a general mechanism for identifying Sahlqvist and inductive classes
for any normal DLE-signature [17]. Consequently, there are not many transfer results in the
literature to which these results can be compared, the only exceptions being the transfer
of Sahlqvist correspondence for DML-inequalities of [32, Theorem 3.7], and the transfer of
canonicity in the form of d-persistence for intuitionistic modal formulas of [68, Theorem 12].
The transfer of correspondence shown in this paper generalizes [32, Theorem 3.7] both as
regards the setting (from DML to general normal DLE-logics) and the scope (from Sahlqvist
to inductive inequalities). As discussed in Remark 7.2, the transfer of canonicity shown in
the present paper is neither subsumed by, nor does it subsume [68, Theorem 12].

15In other words, if B is not closed under 3≥ or 2≤, the soundness of the application of the Ackermann rule
under admissible assignments cannot be argued anymore by appealing to the Esakia lemma, and hence, to
the topological Ackermann lemma.



15:32 Conradie, Palmigiano and Zhao Vol. 15:1

Regarding insights, we have also gained a better understanding of the nature of the
difficulties in the transfer of (generalized) Sahlqvist canonicity via GMT translations. These
difficulties were discussed as follows in the conclusions of [32]:

[...] a reduction to the classical result for canonicity seems to be much harder
than for correspondence, due to the following reason. In the correspondence
case, where we are working with perfect DMAs, there is an obvious way to
connect with Boolean algebras with operators, namely by taking the (Boolean)
complex algebra of the dual frame. In the canonicity case however, we would
need to embed arbitrary DMAs into BAOs in a way that would interact nicely
with taking canonical extensions, and we do not see a natural, general way for
doing so.

Our analysis shows that, actually, the problem does not lie in the interaction between
the embedding and the canonical extensions, but rather in the fact that the embedding
e : A ↪→ B of an arbitrary DLE into a suitable BAE lacks the required adjoint maps, and
that while the role of these adjoints can be played to a certain extent by the adjoints of
eδ : Aδ ↪→ Bδ (cf. Proposition 7.4), we would need to develop a much stronger theory
of algebraic (generalized) Sahlqvist canonicity in the BAE setting to be able to reduce
(generalized) Sahlqvist canonicity for DLEs to the Boolean setting.

Further directions. As mentioned above, our analysis suggests a way to obtain the transfer
of generalized Sahlqvist canonicity for arbitrary DLE-logics, namely to develop a generalized
canonicity theory in the setting of BAEs which relies on the order-theoretic properties of
maps A→ Bδ. The way to this theory has already been paved in [52], where a generalization
of the standard theory of canonical extensions of maps is developed, accounting for maps
fA : A→ Bδ such that the value of fA is not restricted to clopen elements in B.

Blok-Esakia theorem for DLE-logics. The uniform perspective on GMT translations
developed in this paper can perhaps be useful to systematically explore the possible variants
of the notion of ‘modal companion’ of a given intuitionistic modal logic, and extend the
Blok-Esakia theorem uniformly to DLE-logics.

Methodology: generalization through algebras via duality. The generalized canonicity-
via-translation result for the bi-intuitionistic setting comes from embracing the full extent
of the algebraic analysis. Specifically, canonicity-via-translation hinges upon the fact that
the interplay of persistent and non-persistent valuations on frames can be understood and
reformulated in terms of an adjunction situation between two complex algebras of the
same frame. In its turn, this adjunction situation generalizes to arbitrary algebras. The
same modus operandi, which achieves generalization through algebras via duality, has been
fruitfully employed by some of the authors also for very different purposes, such as the
definition of the non-classical counterpart of a given logical framework (cf. [42, 44, 10]).
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[37] R. Goré. Dual intuitionistic logic revisited. In TABLEAUX, pages 252–267. Springer, 2000.
[38] G. Greco, M. Ma, A. Palmigiano, A. Tzimoulis, and Z. Zhao. Unified correspondence as a proof-theoretic

tool. Journal of Logic and Computation, 28:7 (2018), 1367-1442. doi: 10.1093/logcom/exw022.
[39] A. Grzegorczyk. Some relational systems and the associated topological spaces. Fundamenta Mathemati-

cae, 60:223–231, 1967.
[40] B. Jónsson. On the canonicity of Sahlqvist identities. Studia Logica, 53:473–491, 1994.
[41] N. Kurtonina. Categorical inference and modal logic. Journal of Logic, Language, and Information, 7,

1998.
[42] A. Kurz and A. Palmigiano. Epistemic updates on algebras. Logical Methods in Computer Science, 9(4),

2013.
[43] C. le Roux. Correspondence theory in many-valued modal logics. Master’s thesis, University of Johan-

nesburg, South Africa, 2016.
[44] M. Ma, A. Palmigiano, and M. Sadrzadeh. Algebraic semantics and model completeness for intuitionistic

public announcement logic. Annals of Pure and Applied Logic, 165(4):963–995, 2014.
[45] M. Ma and Z. Zhao. Unified correspondence and proof theory for strict implication. Journal of Logic

and Computation, 27(3):921–960, 2017.
[46] L. L. Maksimova and V. V. Rybakov. A lattice of normal modal logics. Algebra and Logic, 13(2):105–122,

1974.
[47] J. C. McKinsey and A. Tarski. On closed elements in closure algebras. Annals of Mathematics, pages

122–162, 1946.
[48] J. C. McKinsey and A. Tarski. Some theorems about the sentential calculi of lewis and heyting. The

journal of symbolic logic, 13(1):1–15, 1948.
[49] J. C. C. McKinsey and A. Tarski. The algebra of topology. Annals of mathematics, pages 141–191, 1944.
[50] J. C. C. McKinsey and A. Tarski. Some theorems about the sentential calculi of Lewis and Heyting. The

Journal of Symbolic Logic, 13(1):1–15, 1948.
[51] H. J. Ohlbach and R. A. Schmidt. Functional translation and second-order frame properties of modal

logics. Journal of Logic and Computation, 7(5):581–603, 1997.
[52] A. Palmigiano, S. Sourabh, and Z. Zhao. Jónsson-style canonicity for ALBA-inequalities. Journal of

Logic and Computation, 27(3):817–865, 2017.
[53] A. Palmigiano, S. Sourabh, and Z. Zhao. Sahlqvist theory for impossible worlds. Journal of Logic and

Computation, 27(3):775–816, 2017.
[54] A. Prior. Time and Modality. John Locke Lectures, 1955-6. Greenwood Press, 1955.



Vol. 15:1 SAHLQVIST VIA TRANSLATION 15:35

[55] C. Rauszer. A formalization of the propositional calculus of hb logic. Studia Logica, 33(1):23–34, 1974.
[56] C. Rauszer. Semi-boolean algebras and their applications to intuitionistic logic with dual operations.

Fundamenta Mathematicae, 83(3):219–249, 1974.
[57] C. Rauszer and C. Rauszer. An algebraic and Kripke-style approach to a certain extension of intuitionistic

logic. Panstwowe Wydawnictwo Naukowe, 1980.
[58] H. Sahlqvist. Completeness and correspondence in the first and second order semantics for modal logic.

In S. Kanger, editor, Studies in Logic and the Foundations of Mathematics, volume 82, pages 110–143.
North-Holland, Amsterdam, 1975.

[59] G. Sambin and V. Vaccaro. A new proof of Sahlqvist’s theorem on modal definability and completeness.
Journal of Symbolic Logic, 54(3):992–999, 1989.

[60] V. Sofronie-Stokkermans. Duality and canonical extensions of bounded distributive lattices with operators,
and applications to the semantics of non-classical logics i. Studia Logica, 64(1):93–132, 2000.

[61] B. ten Cate, M. Marx, and J. P. Viana. Hybrid logics with Sahlqvist axioms. Logic Journal of the IGPL,
(3):293–300, 2006.

[62] J. van Benthem. Modal reduction principles. Journal of Symbolic Logic, 41(2):301–312, 06 1976.
[63] J. van Benthem. Modal frame correspondences and fixed-points. Studia Logica, 83(1-3):133–155, 2006.
[64] J. van Benthem, N. Bezhanishvili, and I. Hodkinson. Sahlqvist correspondence for modal mu-calculus.

Studia Logica, 100(1-2):31–60, 2012.
[65] J. van Benthem, N. Bezhanishvili, and W. Holliday. A bimodal perspective on possibility semantics.

ILLC Publications, Prepublication (PP) Series PP-2016-04, University of Amsterdam, 2016.
[66] F. Wolter. On logics with coimplication. Journal of Philosophical Logic, 27(4):353–387, 1998.
[67] F. Wolter and M. Zakharyaschev. On the relation between intuitionistic and classical modal logics.

Algebra and Logic, 36:121–125, 1997.
[68] F. Wolter and M. Zakharyaschev. Intuitionistic modal logics as fragments of classical modal logics. In

E. Orlowska, editor, Logic at Work, Essays in honour of Helena Rasiowa, pages 168–186. Springer–Verlag,
1998.

[69] F. Wolter and M. Zakharyaschev. On the Blok-Esakia theorem. In Leo Esakia on duality in modal and
intuitionistic logics, pages 99–118. Springer, 2014.

[70] Z. Zhao. Algorithmic correspondence and canonicity for possibility semantics. arXiv preprint
arXiv:1612.04957, 2016.

[71] Z. Zhao. Algorithmic Sahlqvist Preservation for Modal Compact Hausdorff spaces. In Proc. International
Workshop on Logic, Language, Information, and Computation, volume 10388 of Lecture Notes in
Computer Science, pages 387–400. Springer, 2017.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany


	1. Introduction
	2. Preliminaries on normal DLEs and their logics
	2.1. Language and axiomatization of basic DLE-logics
	2.2. Algebraic and relational semantics for basic DLE-logics
	2.3. Sahlqvist and Inductive LDLE-inequalities

	3. The GMT translations
	3.1. Brief history
	3.2. Semantic analysis

	4. Unifying analysis of GMT translations
	5. Instantiations of the general template for GMT translations
	5.1. Non-parametric GMT translations
	5.2. Parametric GMT translations

	6. Correspondence via translation
	7. Canonicity via translation
	7.1. Canonicity transfer to inductive bHAE-inequalities
	7.2. Generalizing the canonicity-via-translation argument

	8. Conclusions and further directions
	Contributions.
	Further directions.
	Blok-Esakia theorem for DLE-logics.
	Methodology: generalization through algebras via duality.

	Acknowledgement
	References

