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Abstract

When the fire brigade arrives at a burning building, it is of vital impor-
tance that people who are still inside can quickly be found. In this thesis
we contribute to an ultrasonic sound sensor for human presence detection
in smoke-filled spaces. This type of sensor could assist the fire brigade
when evacuating a large building by directing them to the places where
their help is most needed. The advantage of ultrasonic sound over other
sensors or cameras is that its signal is able to pierce through smoke, does
not require badges or other wearable devices and introduces little privacy
and security risks. In addition, ultrasonic sensors are very inexpensive
making it possible to equip every room of a building with an ultrasonic
presence detector. In this research an ultrasonic sensor was built for less
than 20 Euros and it was found to be unaffected by the glycerine based
smoke that it was tested in. Using a particle filter based on sequential im-
portance resampling as well as a filter based on Gaussian approximation
of the posterior density the resulting system was reliably able to detect
when there was a single person walking in the sensor direction, even when
other sources of movement such as doors and chairs were present.
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came up with the idea for this project and always kept the grand final application
in mind. And finally Hans Driessen, who provided very valuable knowledge
and intuition into Doppler measurements and signal processing. These three
people were always ready to help me with their specific expertise without ever
contradicting each other, which made working on this project a very pleasant
experience.

5



6



Contents

1 Introduction 8

2 Sonar measurements 9
2.1 Movement measurement . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Distance measurement . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 The reflection strength . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Research approach 11
3.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Definition of the used device 13

5 Making measurements 16
5.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Analysing the signal . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 The signal and the noise . . . . . . . . . . . . . . . . . . . . . . . 19

6 Estimating the system parameters 20
6.1 The stochastic process . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2 The particle filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.2.1 Importance sampling . . . . . . . . . . . . . . . . . . . . . 21
6.2.2 Resampling . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.3 The particle filter algorithm . . . . . . . . . . . . . . . . . . . . . 23
6.4 The system model . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7 Gaussian approximation 26
7.1 Updating the weights . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.2 Validity of the approximation . . . . . . . . . . . . . . . . . . . . 28

7.2.1 Taylor approximation . . . . . . . . . . . . . . . . . . . . 28
7.2.2 Convexity of the posterior density . . . . . . . . . . . . . 29
7.2.3 Finite difference error . . . . . . . . . . . . . . . . . . . . 33

7.3 The particle filter algorithm with Gaussian approximation . . . . 34

8 Results 35
8.1 Signal and noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.2 Computational complexity . . . . . . . . . . . . . . . . . . . . . . 38
8.3 Filtering behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.4 Testing in smoke . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

9 Conclusion 51

10 Discussion 52

A Measurements that were used with stills from the scene 56

B The Thalmann model 64
B.1 Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7



1 Introduction

In fires in large buildings, an important factor that determines the strategy of
the fire brigade is the presence of people inside the building. Choices like where
to start extinguishing and whether to risk going into the building to search
for people depend on this knowledge. Usually, the only information there is
comes from incomplete sources such as statements from the people who fled the
building or lists of employees. The largest portion of fatalities in fire emergency
situations is not caused by a direct result of the heat, but rather poisoning by
the smoke generated by the fire [17]. People suffering from the results of smoke
are often unconscious, but could still be saved if the firemen can reach them in
time. For instance, carbon monoxide, the most common poisonous gas in smoke
from an indoor fire, may incapacitate a person within 1 or 2 minutes at an air
concentration of 6400 ppm, but actual death from carbon monoxide may not
occur for up to 20 minutes [6]. During this time, quickly finding people is of
vital importance. If an overview of the building, indicating where people are,
could be given so that rescue actions can be quickly and efficiently coordinated
then this could potentially save lives.

Of course there are many sensors that could provide the information to create
such a map, for instance infra red sensors, cameras or even Bluetooth badges.
However, these sensors either do not work when there is smoke or require people
to wear something, making them prone to failure when their information is most
required and possibly also privacy sensitive.

In a search for a better sensor that can assist in crisis management, ultra-
sonic sensors showed to have some clear advantages. First of all, sound can
pass through smoke, which is a minimal requirement for the sensor. Secondly,
ultrasonic sensors are very inexpensive, allowing these sensors to be placed in
every room of a building. Finally, the sensors pose fewer privacy and security
risks since their measurements are limited to distance and movement and hence
cannot be used to obtain images of people.

For application in emergency management the fact that only distance and
movement are readily available means that there will need to be some data
processing in order to find where and how many people there are. When there
is a lot of smoke, people may quickly faint, posing the requirement that the
sensor can keep track of people even when they are not moving any more. This
requirement can be partly satisfied by tracking people while they are moving
using distance measurement and remembering their location when they have
stopped moving. For this, it is important to recognise whether the movement
is of human origin in order to prevent other moving objects, such as doors or
chairs from being tracked. This can be done by analysing the characteristic
movement signature, often called Doppler signature [9], that people cause in
the signal. In addition, when the Doppler signature of a person is modelled,
it might be possible to detect when there are multiple people whose Doppler
signatures overlap.

The focus of our work is on analysing the Doppler signatures in an ultra-
sonic echo in order to see how much information we can extract from them. The
Doppler effect is usually analysed using a spectrogram. A spectrogram shows
how strongly every frequency is present in a signal and how this changes over
time. Together all the small movements of a persons and their associated fre-
quency changes in the signal cause the Doppler signature in the spectrogram,
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which allows discriminating between types of movement based on the ultra-
sonic signal. Previously, this technique has been used for classifying gait [9]. In
[7] a particle filter has been applied in combination with the Thalmann model
[2] that describes human walking for classifying Doppler signatures from radar
measurements. In this thesis we will use the same approach, but focussed on
recognising human presence in an emergency situation. We will try to make the
particle filter work on the sonar data that we will measure using a sensor device
that we built. In addition, we will extend the particle filter in order to be able
to detect multiple people and try to improve its performance by using Gaussian
approximations of the posterior density.

We will start this thesis by providing a little bit more information about the
measurements that can be made using an ultrasonic sensor in section 2. After
that, we have enough properties of the ultrasonic sensor to be able to justify
a more detailed research approach. In section 3 we will outline this approach
and distil it into research questions. We will then specify our measuring device
in section 4 and the measuring method in section 5. After this, we have solid
knowledge of what the data we are using looks like and we are able te define the
particle filter in section 6.2. We will try to improve the particle filter by using
a more advanced sampling scheme in section 7. In order to get an idea of the
performance of the algorithms in a real situation, we will test them on measure-
ments in section 8. In this section, we will also comment on the performance in
smoke conditions. Finally, we can draw our conclusions in section 9.

2 Sonar measurements

The relevant properties of a reflected sound wave for sonar applications are signal
strength, time of flight and frequency shift. Signal strength is an determined
by the the size and distance of a reflecting object. Time of flight is used to
determine the distance to an object and frequency shift indicates that an object
is moving relative to the sensor causing the Doppler effect. For our quantitative
analysis of these three properties, we will use the spherically symmetric wave
equation. In reality, the spread of the sound is spherically as the speed of sound
is equal in all directions. However, as can be seen in figure 3 from the datasheet
of the sensor we have used, the amplitude of the wave may not be exactly
spherically symmetric, especially for high angles with the normal to the sensor
surface. The solution to the spherically symmetric wave equation, giving the
pressure change p(r, t) due to the sound wave is [10]

p(r, t) =
A

r
sin
(

2πfs

(
t− r

c

))
, (1)

where r is the radial distance to the sensor, c is the speed of sound in air and
fs is the sending frequency of the source. Using equation 1 we will analyse the
three signal properties.

2.1 Movement measurement

When an object moves relative to the sensor, its location keeps changing while
reflecting the sound wave. Because of this, the reflected sound wave will be
either stretched out (lower frequency) when the object is moving away from the
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sensor or pressed together (higher frequency) when the object is moving towards
the sensor. This phenomenon is know as the Doppler effect. We can derive the
frequency shift in the reflected sound wave due to a moving object as follows.
When the wave reflects at some (changing) distance robj(t) from the sensor, the
direction will be reversed, but the phase will remain the same. Ignoring the
amplitude for now, this means that the returned wave at location 0 will behave
like

sin

(
2πfs

(
t− 2robj(t)

c

))
. (2)

When robj(t) is changing with constant velocity v, we can rewrite this as

sin

(
2πfs

(
t− 2

robj(0) + v · t
c

))
. (3)

If we rearrange this to collect all the time variables, we get

sin

(
2πfs

(
1− 2

v

c

)
t− 2πfs

2robj(0)

c

)
(4)

and we see that the returned wave has frequency fr = fs
(
1− 2vc

)
and phase

shift −2πfs
2robj(0)

c . This means that we can calculate the velocity of an object
in terms of the received frequency fr as

v =

(
1− fr

fs

)
c

2
. (5)

2.2 Distance measurement

Distance to an object can be derived from the time it takes a signal that has
been sent out travel to the object and back again. This time is usually called
the time of flight (ToF). Since sound has a constant velocity in air, the radial
distance robj can simply be calculated from the time of flight tToF by

robj = c · tToF
2

. (6)

The precise determination of the time of flight is the most difficult part. The
simplest method to determine this time is by setting a threshold on the signal
strength and measuring the time between sending the signal and the threshold
being crossed. This method works well when there is not a lot of noise but as
soon as noise is high or there is a lot of interference due to reflections by other
objects, there are better ways to calculate the time of flight. The method that
is generally used, often referred to as matched filtering, is finding the maximum
of the cross correlation between the sent signal and the received signal[11]. This
maximum then occurs at the time difference between the sent and received signal
and is much less influenced by other signals as long as they are different from
the sent signal. The calculation for the time of flight from the sent signal S(t)
and the received signal R(t) then becomes

tToF = arg max
t>0

∫ ∞
∞

S(τ)R(τ + t) dτ. (7)
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2.3 The reflection strength

The strength of the reflection depends on the size, shape, material, orientation
and distance of an object. Therefore it is difficult to derive one of these quantities
from just the signal strength. When the distance robj is known, we can separate
that from the equation and summarise the other four variables into a single
variable a, which we will simply call the reflection coefficient of the object and
define to be the ratio between the power density I of the wave reaching the
object and the power density Ir of the signal reflected towards the sensor:

a =
I(robj)

Ir(robj)
. (8)

The size, shape and material of an object usually do not change but we may
sometimes let the reflection coefficient depend on the orientation of the object.
For now we will assume that the orientation is constant.

If no losses would occur in the medium itself, the power passing trough a
spherical area around the source would equal the power of the source itself be-
cause of the preservation of energy[10]. If the propagation of sound is spherically
symmetric then this automatically implies that the power density at radius r
must equal

I(r) =
Ps

4πr2
. (9)

We know from figure 3 that the energy distribution throughout the wave is
not exactly spherically symmetric, but since the propagation itself is spheri-
cally symmetric, we can still use equation 9 to observe that the intensity is
proportional to 1/r2. At least, that would be, if the air was a lossless medium.
However, air is not a lossless medium and at typical indoor conditions of 50%
humidity and temperature of 20 degrees Celsius, the attenuation of a sound
wave at 41Khz is about 1.3db ·m−1 [18]. This means that the power density is
in practice proportional to

I(r) ∝ 1

r2 100.13r
, (10)

where r must be in meters. When we analyse a reflection, the same attenuation
will happen on the way back. Hence the received reflection will have been
attenuated by a factor of r−4 10−0.26r due to the distance only.

3 Research approach

The main goal of this research is to assess whether an inexpensive ultrasonic
sensor can be used for human presence detection in a building that is filled with
smoke. Now that we have some information about the possible measurements
that we may make with such a sensor, we can decide what approach to take.
We will first provide a rationale to explain the choices we made for the setup of
this project. After this we will summarise the set up of this thesis concisely in
the form of a few research questions. These questions will lead the direction of
this thesis.
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3.1 Rationale

In order to filter the signal, we can choose between creating a model based
filter, or taking a machine learning approach. We have decided to focus on a
model based approach because it allows more understanding into when the filter
will perform as required, and in which situations it will have difficulties finding
people. If we would take a machine learning approach then this would depend
mostly on the training data that we would give the model and it is possible that
unexpected situations may give unexpected results. When we use the modelling
approach then we can qualitatively estimate the performance of the filter by
assessing how well the used model covers the situation at hand. In a system
that will be used in emergencies, it is very important to know the shortcomings
of the system before any emergency situation occurs and therefore the modelling
approach is preferred.

Regarding the measurements that could possibly be made using an ultrasonic
system, we have chosen to focus only on the signal strength and the Doppler
effect. This means that it is not possible to extract distance information from
the sensor as this would require the time of flight as well. It can be expected that
using time of flight information in order to infer the distances of objects could
increase the accuracy of the system. However, doing time of flight measurements
requires sending more complex signals and performing a different analysis of the
received signal. This would increase the size of the project too much and it is
therefore not feasible to do both distance and movement measurements within
this thesis. Since this thesis is performed for applied mathematics, we have
chosen to use movement measurement since it can use a simpler measuring
system, but requires more complex algorithms to extract information from the
signal.

In order to asses whether an inexpensive ultrasonic sensor can be used for
human presence detection in a building that is filled with smoke we will build
a preliminary prototype of the sensor. Once we have the sensor, we are able
to assess visually whether the presence of a person can be recognised from the
signal. When this is the case, we will try to recognise human movement. Since
we are taking the modelling approach for this research, we will need to restrict
the kind of movement we want to filter for now because otherwise the model
becomes to complex. we have chosen to filter walking movement since this is a
very common type of movement in any building and has distinct characteristics
in the signal. In order to test the limits of what the filter can recognise, we will
also try to find the distinction in the signal between one and two persons.

The most realistic tests can be performed on real measurements. We will
try to cover all situations that are described by the model and in addition, test
how the filter responds to situations that are slightly different than the ones
described by the model, for instance by measuring other types of movement.
Finally, we will also test in smoke conditions, because being able to make the
same measurements in smoke is a very important condition for this sensor to be
usable in emergency situations.

3.2 Research questions

Guided by the above rationale, we have set up the following research questions
for this project:
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Main question: To what extend can an inexpensive ultrasonic sensor be used
for human presence detection in a building that is filled with smoke based on
Doppler measurements analysed with a particle filter?

• To what extend can a particle filter be used to estimate the presence of
people walking through a room using the signal spectrogram as input?

– How reliably can the particle filter estimate when a single person
walks through the room?

– To what extend is the particle filter able to “see” the difference be-
tween the signal of a single person and two persons?

– To what extend is the particle filter able to discern walking from
other common types of movement in an office environment such as
opening doors and moving chairs?

– How does approximation of the posterior density by Gaussian densi-
ties affect the performance of the particle filter?

• How does smoke affect the measurements we can make with the system?

4 Definition of the used device

We will shortly define the device we have built in order to experiment with
ultrasound measurements. The device basically consists of an ultrasonic sender
and receiver, both connected to an amplifiers. The generation of the sending
signal and the analogue to digital conversion of the received signal are performed
by the sound card of a laptop with a sampling frequency of 96KHz.

Figures 1 and 2 show the electrical circuit and the prototype breadboard lay-
out. The same amplifiers are used for the input and output, with the difference
being that the amplifier of the received signal has more small capacitors that
suppress noise and the output of the sending amplifier is connected in series
with a larger capacitor to the transmitter in order to filter out DC signals and
let higher AC signals pass through to the transmitter.

The amplifiers used are LM386 integrated circuits created by Texas Instru-
ments, having a default amplification of 20 times. The receiver and transmitter
we used are the Murata MA40S4R and MA40S4S respectively. These devices
are sensitive to sound in a narrow band around 40KHz. We found that the
frequency with the highest output was 41KHz in the devices we obtained. The
advantage of the MA40S4R/S is that the sender requires relatively low input
voltages (maximum 20V) and the directivity of 80 degrees is quite wide. Figure
3 from the datasheet of the sensors shows how the sound intensity changes as a
function of the angle away from the normal.

If we exclude the laptop used for the signal processing, the hardware is not
expensive. The sender and receiver have a retail price of approximately 6 Euros
each and the two audio amplifiers cost about 1 Euro per amplifier. Combined
with some resistors and capacitors, the total price of all the components is less
than 20 Euros.
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Figure 3: Figure 11 from the transmitter datasheet[15] shows that the sound in-
tensity is approximately spherically symmetric when the angle from the normal
is not too large.
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5 Making measurements

5.1 Sampling

In order to obtain a digital representation of an acoustic signal, such as received
from the ultrasonic sensor, we need to sample the signal. This means that we
measure the signal at constant intervals and save the amplitudes of the signal
that are measured over time. The well known sampling theorem by Harry
Nyquist specifies that in order to save a signal without loosing any information,
the sampling frequency should be at least twice the highest frequency that is
present in the signal.

5.2 Analysing the signal

We want to be able to extract information about movement from the signal.
This movement is shown by a frequency change in the signal. Therefore, we
want to analyse the frequencies that are present in the signal over time. The
frequencies in a signal are generally analysed using the Fourier transform of the
signal. However, taking the Fourier transform leaves us only with frequency
information and no time information. The way we can get both time and fre-
quency information is by Fourier transforming short time intervals of signal
so that we get frequency information for each interval. When we square the
Fourier coefficients, the graph that this generates is usually called a spectro-
gram. When we use this approach, we have to make a choice between frequency
resolution and time resolution because the frequency resolution of a discrete
Fourier transformation is inversely proportional to the length of the time signal
as ∆f = 1/∆t. Therefore we have to choose an acceptable value for the time
interval that captures the time changing nature of human movement as well as
the velocity components in this movement. In addition, when the window size
multiplied by the sampling frequency is a power of two, the Fourier transform
can be performed very efficiently. By varying the time window, we have estab-
lished that we can see most details in the Doppler signal when using a time
window of 16384/96000 seconds, which is approximately 0.17 seconds.

Since the discrete Fourier transform is actually defined for an infinite time
signal, by transforming a finite part of the signal, we implicitly assume that this
signal is periodic with the period being the length of the time window we used.
When we have a sine signal that fits an integer number of times into our time
window, this assumption is perfectly fine and we will see a very narrow spike in
the Fourier transform at exactly the frequency of the sine. However, as soon as
the signal we analyse has a different period, or is not periodic at all, the assumed
periodicity will cause discontinuities in the signal. The result of this is that the
frequencies in the signal “leak” into other frequencies and cause artifacts in the
spectrogram. This behaviour means that for any noisy real-world signal, it is
beneficial to multiply the signal by a “window function” that makes the signal
“more periodic” by letting the signal approach zero at the endpoints of the time
window. There are many different window functions designed for this purpose
which all have their own advantages and disadvantages but we will use one that
is very generally applicable, called the “Hann” window defined by

w(n) =
1

2

(
1− cos

(
2πn

N − 1

))
, (11)
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Figure 4: The Hann window

where N is the number of samples in the time window we choose.
Below two spectrograms of the same signal can be found, made using differ-

ent window functions. The spectrogram in figure 5 was created without applying
a window function, which is implicitly a rectangular window, and the spectro-
gram in figure 6 was made using the Hann window. In both spectrograms the
frequency on the y axis has been transformed to velocity using equation 5. We
can see that the Hann spectrogram contains much more detail and discriminates
the signal much better from the background noise. The artifacts in the form of
vertical lines are very well visible in the spectrogram that was made using the
rectangular window.

A potential downside of using a window function is that some information is
lost since the center part of the signal in a time window gets a higher weight in
the Fourier transform than the edges. However, this can be resolved by taking
overlapping time windows so that, in a way, each piece of the signal is used
equally much. It turns out that this is very easily done using the Hann window
by taking half a window overlap. We can see this by calculating the summed
contribution of a sample at time n to the two windows in which it lies:

1

2

(
1− cos

(
2πn

N − 1

))
+

1

2

(
1− cos

(
2π[n− (N − 1)/2]

N − 1

))
(12)

=
1

2

(
2− cos

(
2πn

N − 1

)
+ cos

(
2πn

N − 1

))
= 1 (13)

independently of n and hence every sample gets exactly equal weight in the
spectrogram.
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Figure 5: Spectrogram of a walking person calculated using rectangular window.
The quality is clearly not so good.

Figure 6: Spectrogram of a walking person calculated using Hann window.
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5.3 The signal and the noise

We will describe now how exactly a recorded tone shows up in the Fourier
transform. For each Fourier coefficient we can separate its complex value into
an amplitude and complex argument. The amplitude reflects how strong a
frequency is present in the signal and the argument gives the phase of the
associated sinusoid. Since we are consecutively taking the Fourier transform of
small pieces of signal in time, we will see that the phase keeps changing and
hence the complex value rotating in the complex plane. Predicting the phase
is nearly impossible in our set up because it depends on the length of the wave
and there are usually many different reflectors of which we do not know their
distance. Even if we knew the distance, a distance error of 1 cm would already
present a phase error of more than a full period. Therefore we choose to ignore
the phase information by analysing only the amplitude of the Fourier transform.
When we analyse the amplitude of the Fourier coefficients, we will see that a
single frequency always spreads out a bit even though we have chosen a window
function to minimise this effect. However, we can easily predict how this spread
will take place by calculating the Fourier transform of a sine multiplied with the
window function we use. Figure 7 shows how this theoretical response relates
to a measured response. Figure 7 also reveals that there is still some noise in

Figure 7: Squared Fourier coefficients (in db) of a 41KHz sine wave. The orange
line is the mean of many measurements on a static scene and the blue line is the
theoretical Fourier transformation scaled to match the height of the measured
curve. The Hann window has been used in both cases.

the signal that we need to model. A reasonable assumption for the noise in the
signal is additive Gaussian noise. When we translate this into the frequency
domain, we get complex Gaussian noise added to the deterministic part of the
Fourier coefficients caused by the signal. If we look at just the noise, then this
has a two dimensional normal distribution with equal variance in the complex
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and real planes and zero covariance. When we square the Fourier coefficients
to remove the phase, we will have the sum of two independent squared normals
which gives a chi square distribution, scaled by the variance (since chi square
assumes standard normal). When there is a signal, the coefficients will also have
a deterministic part and hence the mean of the two normals is not 0 any more.
In this case, the measurement with noise can be modelled by the noncentral chi
square distribution, which describes the squared sum of normals with variance
1 and nonzero mean [14]. Suppose that C = X + iY is a complex Fourier
coefficient with added Gaussian noise and that µ = µx + iµy is its true value so
that

X ∼ N (µx, σ
2) (14)

Y ∼ N (µy, σ
2). (15)

Then Z := |C|2/σ2 has a noncentral chi square distribution. The pdf of this
distribution is given by

fZ(z; δ, n) =

∞∑
k=0

e−δ/2(δ/2)k

k!

e−z/2z(n+2k)/2−1

2(n+2k)/2Γ((n+ 2k)/2)
, (16)

where δ = (µ2
x +µ2

y)/σ2 and n is the degrees of freedom, which is 2 in this case.
Also,

E(Z) = n+ δ (17)

and
Var(Z) = 2n+ 4δ. (18)

6 Estimating the system parameters

6.1 The stochastic process

We will use a hidden Markov model with a continuous state space to describe
our measurements. In this model, we have a system which is, at each time k ≥ 1,
defined by a set of P parameters (Xk,1, ..., Xk,P ) = Xk. At each time step this
system results in an observation Yk which is available to us as a measurement.
From these observations we would like to estimate the system parameters. For
this we will use a Bayesian approach to sequentially update our belief in the pa-
rameters as we receive new measurements. The model is described stochastically
as follows:

fX1
(19)

is the prior pdf of X when no data is available.

fXk|Xk−1
(20)

is the pdf that describes how X evolves over time. In addition, we assume that
the Markov property holds:

fXk|X1:k−1
= fXk|Xk−1

, (21)
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where we use the notation X1:k−1 = X1, ..., Xk−1. Finally, we relate the system
to the measurements by the density function of the measurements given the
system parameters

fYk|Xk
. (22)

Using these distributions we can use Bayes rule to do inference on the system.
The posterior we want to obtain at each time step is

fX1:k|Y1:k
. (23)

At the first measurement we can calculate this posterior using Bayes rule as

fX1|Y1
(x1; y1) =

fX1(x1)fY1|X1
(y1;x1)∫

fX1
(x1)fY1|X1

(y1;x1) dx1
. (24)

Then we can update the posterior at each new measurement by first building
the new prior based on the previous measurements

fX1:k|Y1:k−1
(x1:k; y1:k−1) = fX1:k−1|Y1:k−1

(x1:k−1; y1:k−1)fXk|Xk−1
(xk;xk−1)

(25)
and then calculating the posterior as

fX1:k|Y1:k
(x1:k; y1:k) =

fX1:k|Y1:k−1
(x1:k; y1:k−1)fYk|Xk

(yk;xk)∫
fX1:k|Y1:k−1

(x1:k; y1:k−1)fYk|Xk
(yk;xk) dx1:k

. (26)

The nice thing about this way of updating is that we can proceed from fX1:k−1|Y1:k−1

to the next posterior at each step when new data becomes available simply by
multiplying with fXk|Xk−1

fYk|Xk
and normalising. Hence, ignoring the normal-

isation we have the easy relation

fX1:k|Y1:k
∝ fX1:k−1|Y1:k−1

· fXk|Xk−1
fYk|Xk

(27)

In practice, this distribution quickly becomes too complex to do analytic
calculations with so we will resort to Monte Carlo like methods. The algorithm
that naturally arises in this case is often referred to as the particle filter.

6.2 The particle filter

6.2.1 Importance sampling

The particle filter, also described as sequential Monte Carlo filter or sequential
importance sampling is based on importance sampling and comes from the fol-
lowing idea [3]. We would like to sample from the posterior in equation (26) in
order to do inference. However, we cannot directly do this because the posterior
has a difficult distribution. We can resolve this by using importance sampling
to sample from an easier distribution and assign weights to the samples to cor-
rect for the discrepancy. An easy choice for an importance distribution is the
unconditioned distribution that does not take into account the data,

fX1:k
(x1:k) = fX1(x1) · fX2|X1

(x2;x1) · ... · fXk|Xk−1
(xk;xk−1). (28)

From this distribution it is easy to update the importance samples {X1
k , ..., X

N
k }

at each new time step by sampling recursively

Xi
k ∼ fXk|Xk−1

( · ;Xi
k−1). (29)
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The importance weights of the samples we generate in this way are then given
by

ωik =
fX1:k|Y1:k

(Xi
1:k;Y1:k)

fX1:k(Xi
1:k)

. (30)

Using the updating equations (27) and (28) we get that

ωi1 ∝
fX1

(Xi
1)fY1|Xi

1
(Y1;Xi

1)

fX1
(Xi

1)
= fY1|X1

(Y1;Xi
1) (31)

and can be updated like

ωik ∝
fX1:k−1|Y1:k−1

(Xi
k−1;Yk−1) · fXk|Xk−1

(Xi
k;Xi

k−1) fYk|Xk
(Yk;Xi

k)

fX1:k−1
(Xi

k−1) · fXk|Xk−1
(Xi

k;Xi
k−1)

(32)

= ωik−1 · fYk|Xk
(Yk;Xi

k). (33)

That gives us all the tools to do Monte Carlo importance sampling. However,
it turns out that in practice, the use of the unconditioned distribution causes
the samples to badly represent the true distribution when more measurements
are received. Some of the weights will simply converge to 0 and add nothing
to any estimate, but still consume computation time. A well known method to
overcome this phenomenon, known as depletion, is to resample from the samples
we drew [12] (also called particles in this context).

6.2.2 Resampling

Suppose we have drawn particles {x1k, ..., xik} from the importance distribution
then we may use them together with their weights to estimate some expectation

N∑
i=1

ωik g(xik) ≈ E[g(Xk)], (34)

where g is just some function we are interested in. Instead, we could also assign
probabilities ωik to the particles and then draw from the particles we already

have. Suppose we draw one such a “new” sample, say X̃k, then the expectation
of the function g of this variable is

E[g(X̃k)] =

N∑
i=1

ωik g(xik) ≈ E[g(Xk)]. (35)

Hence we may average over many samples from X̃k to approximate the ap-
proximation of E[g(Xk)]. The double approximation already reveals that the
variance of this estimate will be theoretically higher, but the fact that only the
particles that had a high likelihood under the measurements will “survive” the
resampling compensates for the depletion and in practice gives better estimates.
In a way (that can be made precise, see [13]), the particles and their weights
now form an approximation to the distribution we want to sample from. The
particle filter algorithm with the resampling step us usually called the sequential
importance resampling filter, or SIR filter.
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6.3 The particle filter algorithm

• Sample {x11, ..., xN1 } from {X1
1 , ..., X

N
1 } ∼ fX1

i.i.d..

• Calculate the unnormalised weights of the particles using the measurement
y1 at time 1:

ω̃i1 := fY1|X1
(y1;xi1) for i = 1, ..., N. (36)

• Normalise the weights to get

ωi1 =
ω̃i1∑N
j=1 ω̃

j
1

. (37)

• For time k = 1, 2, ...:

– Resampling
Draw M = (M1, ...,MN ) from a multinomial distribution with N
trials and probabilites ωik−1. M now represent the number of times
we re-use each particle. Note that some particles may by discarded
altogether by this process but we will always end up with a total of
N particles.

– Importance sampling
Sample new particles {x1k, ..., xNk } by drawingM i samples from fXk|Xk−1

(· ;xik−1)
for each i ∈ {1, ..., N}.

– Calculate the unnormalised weights of the new particles using the
measurement yk at time k:

ω̃ik := fYk|Xk
(yk;xik) for i = 1, ..., N. (38)

– Normalise the weights to get

ωik =
ω̃ik∑N
j=1 ω̃

j
k

. (39)

Then using the particles and their weights it is possible to estimate ex-
pectations at any time step.

6.4 The system model

The system we are trying to do inference on is a walking person that generates a
Doppler signal. We will assume that the measured quantity is the spectrogram.
In order to model how a walking person is reflected in the spectrogram, we
calculate the velocities of the different body parts and translate them to Doppler
shifts in the ultrasonic signal.

In order to calculate the velocities of the human body parts, we use the
Thalmann model for human walking motion [2]. This model gives us the loca-
tions of the different body parts over time and hence allows us to calculate their
velocity with respect to the sensor. The precise calculations of the Thalmann
model can be found in appendix B. The amplitude of the signal these velocities
give is then determined by the size of the body parts, or more general their
reflection coefficients, and their distance. More information about this can be
found in section 2. The velocities and amplitudes can then be calculated from
the model using the following parameters.
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• The walking velocity V .

• The persons height H.

• The walking phase φ.

• The radial distance r.

• The presence of a person p.

Where clearly, p being false makes the other parameters irrelevant. As can
be deduced from equation (5) the relation between the velocity v of a sound
reflecting object and the received frequency fr of a signal that was sent with
frequency fs is

fr = fs
c− v
c+ v

, (40)

where c is the velocity of sound in air. In the spectrogram, we won’t see this
exact frequency due to a several reasons. First of all, we measure the spectro-
gram over a finite time interval. Therefore the velocity may change during this
interval. Secondly, we describe the body parts as having a single velocity, but
in reality the parts are rigid objects whose radial velocity with respect to the
sensor may vary over their surface. Finally, the discrete Fourier transform itself
causes each frequency to spread out a bit. More information about this last
phenomenon can be found in section 5.2. In order to model this combination
of “spread factors”, we will add all velocities of the b body parts vi, i = 1, ..., b
from the Thalmann model with amplitudes Ai to the spectrogram as

b∑
i=1

Aih(v − vi), (41)

where h is the spread function. We model h as a Gaussian with spread s like

h(v) = exp(−v
2

s2
), (42)

The Gaussian spread is a safe choice because there are many different phenom-
ena affecting the distribution of the frequency in the spectrogram. The typical
maximal acceleration for a person is 2ms−2 [8]. Multiplied by the length of
a time window of about 0.17 seconds, this results in a maximum variation of
about 0.34ms−1 within a time frame. We choose to set s to half this value:

s := 0.17 (43)

The prior distribution we assume for the parameters when estimating a single
persons is as follows:

V0 ∼ U([0.5, 1.7]) (44)

H0 ∼ N (1.7, 0.072) (45)

φ0 ∼ U([0, 1]) (46)

r0 ∼ U([2, 6]) (47)

p0 ∼ Bernoulli(0.5). (48)
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For the time evolution with a time step of ∆t, we assume the following distribu-
tions on the parameters: tk = 1.346 ·

√
0.53Hk/Vk is the period of the walking

cycle according to the Thalmann model.

Vk ∼ N (Vk−1, (0.6∆t)2) (49)

Hk ∼ N (Hk−1, 0.052) (50)

φk ∼ U(∆t/tk−1 + [−0.1, 0.1]) (51)

rk ∼ N (Vk−1 ·∆t, 0.012) (52)

pk ∼

{
Bernoulli(0.9) if pk−1 = 1

Bernoulli(0.1) if pk−1 = 0
(53)

When we want to use the model for two persons, we simply add another indepen-
dent copy of each of the stochastic parameters and sum the resulting evaluations
of the Thalmann model on both parameter sets. The only parameter that we
do not duplicate is pk. In the two persons case, the prior distribution on pk will
be

U{0, 1, 2}, (54)

a discrete uniform distribution over the numbers 0, 1 and 2. The evolution of
pk is then as follows: With 80% chance, pk remains the same and with 10% and
10% chance pk changes to one of the other two values.

Apart from the model for walking persons, we would also like to have a
model that can capture other types of movement that are not human walking.
We will call this 0 person state the null hypothesis. For this, we will use a very
simple model consisting of constant Gaussian peaks in the spectrogram. When
the parameter pk is 0, we will use three additional parameters to calculate the
theoretical spectrogram.

• Sk the spread of the peak.

• Ck the center of the peak.

• Dk the amplitude of the peak (in db).

The distribution of these three parameters will be as follows:

Sk ∼ N (0, 0.1) (55)

Ck ∼ N (0, 0.3) (56)

Dk ∼ N (−25, 20). (57)

These parameters will be constant in time, therefore we do not need to provide
the evolution equations for them. We calculate the theoretical signal in case of
the null hypothesis as

T (v) = 10Dk/10 exp

(
− (v − Ck)2

S2
k

)
. (58)

Now that we are able to calculate the theoretical measurement vector TXk
for

a given system state Xk, we can calculate the measurement likelihood. The pdf
of the measurements given the system state, fYk|Xk

, is given by the noncentral
chi squared distribution as described in section 5.3. The noise in the frequency
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bins is assumed to be independent so that we can fill in T iXk
- the theoretical

amplitude in frequency bin i given the parameter set Xk - into equation (16) and
then multiply over all I frequency bins to get the pdf of the full measurement
vector as

fYk|Xk
(yk;TXk

) =

I∏
i=0

∞∑
j=0

exp

(
−
T i
Xk

2σ2

)(
T i
Xk

2σ2

)j
j!

exp
(
yik
2σ2

)
z(2+2j)/2−1

2(2+2j)/2Γ((2 + 2j)/2)
, (59)

The value of σ in this equation is determined empirically from the measurements
of a part of a fragment of a signal where there are no people.

7 Gaussian approximation

We would ideally want to sample from the importance density. However, since
that is not possible, we could improve the efficiency of the particle filter by trying
to sample from an approximation of the posterior density. For convenience we
repeat here the posterior density, calculated from the measurement yk at time
k and the previous state xk−1

fXk|Yk,Xk−1
(xk; yk, xk−1) =

fXk|Xk−1
(xk;xk−1)fYk|Xk

(yk;xk)∫
fXk|Xk−1

(x;xk−1)fYk|Xk
(yk;x) dx

. (60)

We will approximate the log density using a Taylor expansion. This is very
useful because it will turn out that this generates an approximate density that
can be sampled from using a normal distribution [5]. For shorthand notation of
the logarithm of the posterior we will define the notation

`(xk) = ln
(
fXk|Yk,Xk−1

(xk; yk, xk−1)
)
. (61)

Let `′ and `′′ be the first and second derivative of ` with respect to xk. Note
that since xk is a vector, the first and second derivatives will be a vector and a
matrix, respectively. The calculation of these derivatives will be performed by
finite differences. We can use these derivatives to get the second order truncated
Taylor expansion of ` around some parameter vector x̃k which gives

`(xk) ≈ `(x̃k) + (xk − x̃k)T `′(x̃k) +
1

2
(xk − x̃k)T `′′(x̃k)(xk − x̃k). (62)

This approximation holds for xk “close to” x̃k. In section 7.2 we will make
more precise when exactly this approximation is valid. A very useful observa-
tion about equation (62) is that we can transform it to the log density of a
multivariate normal distribution if we set

Σ = − [`′′(x̃k)]
−1

(63)

µ = x̃k + Σ`′(x̃k). (64)

This observation only holds when `′′(x̃k) is negative definite so that it is in-
vertible and Σ becomes positive definite. We will discuss this further again in
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section 7.2. For now, we assume that this holds. If we then substitute this into
the normal log density, we get

− 1

2
(xk − µ)TΣ−1(xk − µ) (65)

= −1

2
(xk − x̃k − Σ`′(x̃k))

T
Σ−1(xk − x̃k − Σ`′(x̃k)) (66)

= −1

2
(xk − x̃k)TΣ−1(xk − x̃k) + (xk − x̃k)T `′(x̃k)− 1

2
`′(x̃k)TΣ`′(x̃k) (67)

= const+
1

2
(xk − x̃k)T [`′′(x̃k)](xk − x̃k) + (xk − x̃k)T `′(x̃k), (68)

which is equal to equation (62) up to a constant addition. This added constant
in the log density becomes a multiplicative constant in the density. However, in
order to use the approximation we have obtained as an importance density, we
need to normalise it anyway, so the constant will disappear and equations (62)
and (68) represent the same probability distribution. This distribution is, due
to the form of equation (65), Gaussian. The importance density g(xk; x̃k, yk)
we have now derived is therefore

g(xk, ; x̃k, xk−1, yk) = det(2πΣ)−
1
2 exp

(
−1

2
(xk − µ)TΣ−1(xk − µ)

)
(69)

A general method for sampling from a multivariate normal distribution is to
obtain any root Σ

1
2 of Σ, sample X from a standard multivariate distribution

(or equivalently a vector of many standard scalar normals). Then the standard
normal can be transformed by the property [14]

Σ
1
2X + µ ∼ N (µ,Σ). (70)

The only thing we have not given attention to yet is how to choose around
which x̃i to build the Taylor series. Ideally x̃i is in a place where the posterior
has a high likelihood since this means that it is an important location in the
posterior. The best estimation about the particles we have been able to make
so far though, is by using the evolution equation fXk|Xk−1

. We will use this
equation now to make an initial estimate for x̃k by evolving xk−1. This means
that x̃k will be stochastic and is distributed according to

X̃k ∼ fXk|Xk−1
(x̃k;xk−1). (71)

By making this approximation for all particles the posterior distribution is
represented by many Gaussians, which means that the posterior is now repre-
sented by a mixture of Gaussians.

7.1 Updating the weights

The importance weights should be calculated differently now that the impor-
tance distribution is different. The distribution of a sequence of samples gen-
erated using the approximated distributions posteriors g(xj ; x̃j , xj−1, yj) for
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j = 1, ..., k is given by

pX0:k|Y0:k
(x0:k, y1:k) = fX0

(x0) · fX1|X0
(x̃1;x0) · g(x1;x0, x̃1, y1) (72)

× fX2|X1
(x̃2;x1) · g(x2;x1, x̃2, y2) (73)

× · · · (74)

× fXk|Xk−1
(x̃k;xk−1) · g(xk;xk−1, x̃k, yk). (75)

Combined with equation (28), we can use this importance distribution in order
to obtain an updating equation for the weights, analogous to equation (32):

ωik ∝
fX1:k−1|Y1:k−1

(xik−1; yk−1) · fXk|Xk−1
(xik;xik−1) fYk|Xk

(yk;xik)

pX1:k−1|Yk−1
(xik−1; yk−1) · fXk|Xk−1

(x̃ik;xik−1) · g(xk;xk−1, x̃k, yk)
(76)

= ωik−1 ·
fXk|Xk−1

(xik;xik−1) fYk|Xk
(yk;xik)

fXk|Xk−1
(x̃ik;xik−1) g(xk;xk−1, x̃k, yk)

. (77)

Note the subtle difference here between fXk|Xk−1
(xik;xik−1) in the numerator and

fXk|Xk−1
(x̃ik;xik−1) in the denominator. The distribution with x̃ik is due to the

stochastic choice of parameters around which to evaluate the Taylor expansion
and the distribution with xik is simply the likelihood of the parameter evolution.

7.2 Validity of the approximation

In making a Gaussian approximation of the posterior distribution, we have
made two assumptions. First of all, we assumed that the Taylor series was
a valid approximation and secondly, we assumed that the Hessian matrix of
the posterior density function was always negative definite. In addition we are
approximating the derivatives that are required for the Taylor expansion by
finite differences. We will see in this section that neither of these assumptions
is always true, but we will provide arguments to justify the approximation and
finally we will estimate the finite difference error.

Before going into the details of the assumptions, please note that mathe-
matically, any importance density that has the same or larger support as the
posterior density is a valid importance density in the sense that it will give the
correct asymptotic results [1]. Since the approximated posterior that we are
proposing as importance density is a normal distribution, it has infinite sup-
port and is therefore always a valid importance density. The potential problem
resulting from an approximation error of any kind is therefore restricted to a
decrease in the sampling efficiency. Though this is theoretically not a problem,
a bad efficiency may mean that it is computationally better to use a simpler
importance distribution and simply increase the number of particles. Exper-
imentation will show whether the proposed Gaussian approximation provides
more efficiency to the estimator than it costs in terms of computation time.

7.2.1 Taylor approximation

The first approximation we will analyse is the approximation of the log-posterior
by a Taylor series. We fill first provide some convenient notation for the higher
order differentials we will need. Let α be a vector in Nn describing how many
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times to take derivatives in each dimension and define

|α| :=
n∑
i=1

α. (78)

Then we define

Dα :=
∂|α|

∂α1x1 · ... · ∂αnxn
, (79)

where ∂0xi should be interpreted as not taking any derivative in dimension i.
Using this notation we can conveniently write down the following theorem which
gives an estimation for the error of the Taylor series [4]:

Theorem 1. Assume that ` is at least three times differentiable within some
open ball B around x̃ with radius r, B := {x ∈ Rn : |x − x̃| < r}. Let ˜̀ be
the second order Taylor approximation of ` around x̃. Then the error ε(x) :=
|˜̀(x)− `(x)| can be bounded by

ε(x) ≤ 1

6
max
|α|=3

max
y∈B
|Dα`(y)| (80)

Using theorem 1 we can get some indication of the error by analysing the
third derivative of ` around x̃. Unfortunately, theorem 1 cannot always be used
in our case. The reason for this is that the assumption that ` is three times
differentiable in B does not always hold. In fact, the functions in the Thalmann
model are often piecewise differentiable, as can be seen in for instance equation
94 and therefore the Taylor approximation may not hold any more when B
covers multiple pieces. Since the expressions for the Thalmann model become
very elaborate and due to all the interdependencies between the parameters,
it is very difficult to find exactly where the resulting posterior will not be dif-
ferentiable. Instead, we choose to analyse the approximation error in a more
empirical way by plotting the posterior density around parameters that occur
when running the particle filter on a real signal. This way at least some feeling
can be obtained about the smoothness of the functions. Figures 8 and 9 show
how the posterior varies in each dimension around a particle. In figure 8, the
posterior is quite smooth and we can imagine that a Gaussian approximation
could do quite well. In figure 9, the posterior is much less smooth, especially
in the phase parameter. For the approximation this means that it’s quality can
vary quite a bit and that especially the estimation of the direction and phase
may be difficult because the posterior can vary a lot in these directions.

7.2.2 Convexity of the posterior density

The second problem is the positive definiteness of the Hessian. When the Hes-
sian matrix is negative definite in some point, this means that the function is
concave in that point. The logarithm of the normal distribution is also concave
since it is basically a scaled and shifted version of −x2. Therefore it can be
understood that the normal distribution could provide a reasonable approxima-
tion, at least locally. However, the posterior we obtain when using the particle
filter is not always concave. Practically, this poses the problem that `′′(x̃) can
be positive definite, making Σ = −[`′′(x̃)]−1 negative definite. When we then
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Figure 8: This part of the posterior density is relatively smooth with clearly
concave regions around the maxima.
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Figure 9: This part of the posterior density is much less smooth. We can see
that the particle has ended up around a maximum that is actually only a local
maximum in most dimensions.
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Illustration of the approximation in the convex case

Convex parabola
Approximation center
Concave approximation

Figure 10: Approximation of a convex parabola by a concave parabola. The
first order of the Taylor expansion still holds in this approximation.

want to sample from a normal distribution using equation 70 with this covari-
ance matrix, we cannot find any real root Σ

1
2 . Theoretically the matrix could

never be a covariance matrix because one of the basic properties of covariance
matrices is that they are always symmetric and positive semi-definite. If we still
want to use a normal importance density, this means that we need to some-
how change Σ so that it becomes positive semi-definite and remains symmetric,
preferably in a way that still allows it to be a reasonable approximation of the
posterior density, but does not require more computations. In order to make up
a solution for this problem, we will assume that the posterior is locally parabolic
so that a Taylor approximation could hold. The reason for this assumption is
simply that when this does not hold, there is no way to know what the function
looks like at all and we cannot find any solution at all. We will analyse scalar
case first (meaning only one input parameter) and generalise the solution to
multiple dimensions afterwards. When we calculate the Taylor approximation
of a convex parabola, µ as calculated in equation 64 will be the minimum of this
parabola. Using this as the mean of our normal approximation would mean that
we will sample from a place that has lower posterior density than the location
in which we calculated the derivative. Therefore, we will mirror the location of
µ in the point in which we calculated the derivatives. Then we keep the same
value for Taylor coefficient, but invert the sign so that the resulting parabola
becomes concave and can be used for creating a normal density. The advantage
of this method is that the resulting parabolic approximation still has the same
first derivative in Taylor centre so that at least close to the Taylor centre, the
approximation is not much worse than a convex approximation could be. Figure
10 illustrates how this approximation works.

In a multidimensional space, the function may only behave convexly in some
directions. By doing a spectral decomposition of the Hessian matrix of the
posterior density so that

`′′ = V ΛV ′, (81)
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with V having the eigenvectors in its columns and Λ being a diagonal matrix
containing the eigenvectors, we can decompose the parameter space into or-
thogonal eigenvectors (since the Hessian is symmetric) with their corresponding
eigenvalues. Whenever these eigenvalues are positive, the function is convex in
the one dimensional subspace, spanned by the eigenvector. When it is negative,
the function is concave in this subspace. We may alter the Taylor approxima-
tion in equation 62 by replacing `′′ by V (−|Λ|)V ′ to make the approximating
polynomial concave without changing the first order Taylor approximation. In
addition, due to the orthogonality of the eigenvectors, the second order ap-
proximation is still the same in the eigenvector directions in which the function
was already concave. In addition, it can be seen from equation 64 that simply
replacing `′′ this way and doing the same calculations results in the new µ be-
ing mirrored in x̃k in the directions of the eigenvectors whose eigenvalues were
positive, just as we proposed.

7.2.3 Finite difference error

Finally, an error is introduced by the use of finite differences for the derivatives.
This error depends on the step size we use for the finite differences. When the
step size is too large, it will make an error due to the function that changes
in between the steps. When the step size is too small, the error will rise again
due to the limits of the floating point representation in the computer. Some-
where in between these two extremes, there will be an optimum for the step
size where the error is minimal. Since we do not have an expression for the
exact derivative, we cannot calculate the exact error of an approximation with
a certain step size. Instead, we will calculate the relative difference between the
derivatives approximated with two different step sizes. By doing this with step
sizes 10−2, 10−3..., 10−9 we can find between which two step sizes the derivative
changes fewest. Somewhere around here will be the optimal step size.

As we have seen in figures 8 and 9, the function we are trying to calculate the
derivative of may be quite different in different places. In order to get a realistic
idea of the error in practice, we will run the particle filter and approximate
the derivatives for 10 time steps of signal for 50 particles. The figure 11 shows
the mean of the resulting relative errors for the first and second derivative. It
can be seen that the optimum for the first derivative lies between 10−6 and
10−7. For the second derivative, this optimum lies between 10−4 and 10−5. We
choose to take 10−5 as our step size since the first derivative calculation benefits
from a slightly smaller step size and it is close the optimal value for the second
derivative.
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Figure 11: The relative difference between the derivative calculated using the
step size given in the x-axis of the graph and a step size that is 10 times smaller.

7.3 The particle filter algorithm with Gaussian approxi-
mation

Now that we have all the calculations, we can write down the full particle filter
algorithm with Gaussian approximation:

• Sample {x10, ..., xN0 } from {X1
0 , ..., X

N
0 } ∼ fX0 i.i.d.

• Now for time k = 1, 2, ... :

– Resampling (for k > 1)
Draw M = (M1, ...,MN ) from a multinomial distribution with N tri-
als and probabilites ωik−1. M now represents the number of times we

re-use each particle. Now relabel the superscripts of {x1k−1, ..., xNk−1}
so that each xik−1 occurs M i times. Note that some particles may be
discarded altogether by this process but we will always end up with
a total of N particles.

– Gaussian approximation
Sample the first approximation {x̃1k, ..., x̃Nk } by drawing from X̃i

k ∼
fXk|Xk−1

(· ;xik−1) for i = 1, ..., N .

– Calculate `′(x̃ik) and `′′(x̃ik) as defined by equation (61) using finite
differences.

– Calculate the eigenvalue decompositions of `′′(x̃ik) so that `′′(x̃ik) =
V iΛi[V i]′.
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– Set

Σi = −(V i(−|Λi|)[V i]′)−1 = V i|Λi|−1[V i]′ (82)

µi = x̃ik + Σi`′(x̃ik) (83)

and let Xi
k ∼ N (µi,Σi) for i = 1, ..., N .

– Importance sampling
Now sample {x1k, ..., xNk } from {X1

k , ..., X
N
k }.

– Calculate the unnormalised weights of the new particles using the
measurement yk at time k:

ω̃ik :=
fXk|Xk−1

(xik;xik−1) fYk|Xk
(yk;xik)

fXk|Xk−1
(x̃ik;xik−1) g(xk;xk−1, x̃k, yk)

for i = 1, ..., N. (84)

Where g is defined as in equation (69).

– Finally, normalise the weights to get

ωik =
ω̃ik∑N
j=1 ω̃

j
k

. (85)

Then using the particles and their weights it is possible to estimate ex-
pectations at any time step.

8 Results

8.1 Signal and noise

The quality of the measurements than can be obtained by the device described
in section 4 depends on the so called signal to noise ratio (SNR), which is
the ratio between to the power in the signal and in the noise. Clearly the
SNR depends on the signal strength and therefore it will vary depending on
the distance to the object we measure. We will therefore plot how the SNR
changes over time when a person walks away from the sensor to get some feeling
for it. In all signals we will have a very large peak at 0 velocity caused by all
static objects in the scene. We do not want to count this peak as signal since in
contains no Doppler information. We therefore calculate the SNR by dividing
the total energy in the frequency bins corresponding to velocities between 1.5
and 20 km/h by the energy in these bins when there is no Doppler signal. To
be precise, let ymk be the measurement in frequency bin m and time k when the
scene is empty and zmk the signal when there is a person walking. Suppose for
notational simplicity that frequency bins 1 until M correspond to the velocities
between 1.5 and 20 km/h. Then we first calculate an estimate for the mean
energy in the noise

Enoise =
1

K

K∑
k=1

M∑
m=1

(ymk )2. (86)

Then we can calculate the signal energy relative to this noise floor in dB as

SNR(k) = 10 log

(∑M
m=1(zmk )2

Enoise

)
. (87)
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It should be noted that z actually contains signal as well as noise so that the
resulting SNR is actually the signal to noise ratio plus one. For large ratios
this difference negligible. For smaller ratios, it means that the minimal value
the SNR can take is 0 dB.

The noise level in our system is determined by the receiver and the ampli-
fication circuit. These component are currently fixed, but it is still possible to
increase the power of the sender in order to increase the signal to noise ratio.
While measuring with increased power, unexpected artefacts started to occur
in the signal. Figure 12 shows a spectrogram of a single walking person that
was measured with a higher power. The signal of the person can be seen in
the positive velocities, however, this signal also appears mirrored in the zero
velocity line in a slightly weaker form. We have not studied the exact reason
for this, but our hypothesis is that it is caused by the sound following a sec-
ondary path, reflecting onto the surroundings behind the walking person and
then arriving from the opposite direction at the person. This explains why the
frequency change is exactly opposite and also why the secondary signal has a
lower amplitude (because it travels a longer path). Practically, it means that
the maximum usable signal power is bounded by this effect. Figure 13 shows a
measurement that was recorded with slightly lower sending power. In this spec-
trogram the effect has diminished enough to be visible only when the person is
very close (less than two meters) to the sensor. We will use this power level for
all subsequent measurements or otherwise state this explicitly.

Figure 12: Example of a spectrogram measured with high sending power, show-
ing a copy of the original signal mirrored in the zero velocity line.

The graph containing the SNR of the two signals can be found in figure
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Figure 13: Example of a spectrogram measured with a lower sending power
than the one in figure 13, the secondary signal occurs very slightly at the very
beginning but is quickly too low to see.

14. In this graph the theoretical attenuation of the signal power (described in
equation 10 has also been plotted based on a person walking at 4 km/h. It is
a bit difficult to compare the two lines because there will be small variations in
the way the person walked, causing the SNR to decrease faster when the person
walks faster. At least we can see that the theoretical line has the same char-
acteristics as the measured lines and that the high power SNR remains higher
for a longer time, confirming the expectation that the high power measurement
provides a larger range.
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Figure 14: Signal to noise ratio changing over time when a person walks away
calculated from the signal in figure 12 for high power and figure 13 for low
power. In addition the theoretical attenuation of a person walking at 4 km/h
has been plotted.

8.2 Computational complexity

In the end, the model will need to be run in real time. The computation of a
single measurement should therefore not take any longer than the time between
the measurements. At each time step in the spectrogram is calculated from
a segment of approximately 0.17 seconds. Since, in addition, there is a 50%
overlap between the time windows, the filter needs to be able to process a
measurement within 0.085 seconds. We will see that this speed is currently not
reached for all the algorithms. That does not mean that it is not possible at
all though. In the recommendations at the end of this thesis we will provide
some suggestions to make the algorithm more efficient. One of the things we
should state already is that in the current implementation of the algorithm,
all calculations are performed for all three models (0, 1 and 2 persons) for
each particle, regardless the state of the number of persons parameter. The
theoretical advantage of this is that the computation time is constant as opposed
to depending upon the measurements. Practically it means that the times we
will give can be seen as an upper boundary on the computation time.

We will compare the time it takes the SIR filter and the Gaussian approx-
imation filter to run 12 consecutive measurements. 12 measurements cover a
time exactly equal to 1.024 seconds. We divide by this time to get the ratio
between the calculation and the covered signal time. This test was run on an
notebook with a dual core Intel Core I7-3540M processor running at 3.00 Ghz.
While running the filters, the CPU utilisation was 100%. Figure 15 shows the
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results of this test. It can be seen that the Gaussian approximation filter is not
able to run in real time. The SIR filter for one person can run in real time for
less than approximately 140 particles and the SIR filter for two persons runs
stays below the real time boundary when the number of particles is less than
approximately 50. Of course these numbers depend very much on the hardware
used.

We can see that the relative difference between the one person and two
person versions of the two filters are quite constant. For the SIR filter, the
computations for the two person version take, on average, 1.7 times longer than
the single person version. The Gaussian approximation takes, on average, 7.8
times as long to calculate for two persons. This can be explained as follows.
In the ordinary SIR filter, the calculation of the Thalmann model take most of
the time. Since it then needs to be calculated for twice as many persons, the
calculations of the full filter will take approximately twice as long. From this
argument it follows that the computational complexity of the SIR filter fill grow
linearly with the number of people. In the Gaussian approximation filter, a lot
of computation time is spent on calculating the eigenvalue decomposition of the
Hessian matrix. This operation has a computational complexity of O(n3) [16],
which explains why doubling the number of persons increases the computation
time of the filter by a factor of approximately 8. Unfortunately, this also means
that the computational complexity of the filter will grow cubically with the
number of persons that the filter can detect.
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Figure 15: Computation time of the four variations of the particle filter on a
log-log scale. It can be seen that the computation time increases linearly with
the number of particles, apart from some overhead at low numbers of particles.
Only the ordinary SIR filters manage to run in real time. Due to the very long
computation time, the Gaussian filters have not been run with more than 256
particles.

8.3 Filtering behaviour

In order to analyse the behaviour of the filters in some real situations, we have
made measurements in an office environment. We have tested how the filter
performs for one and two persons walking in various directions. In addition, we
have tested how the filter responds to other types of movement that are common
in an indoor environment, namely opening doors and moving chairs. This way
we can assess whether the filter correctly characterises when movement is not
human. We will start with the situation that gives the most distinct Doppler
signature, namely, a single person walking either directly towards or away from
the sensor.

Due to the stochastic nature of the filter, it is difficult to draw conclusions
from a single evaluation of the filter on a piece of signal. Figure 16, 17, 18 and
19 should be viewed merely as examples of what results the filters could provide.
Still it is also important to look at these examples because we need to judge if
they would provide useful information when used in a real situation. One thing
that can be seen from these graphs, is that the estimation of the number of
persons seems to take on integer values only. The cause of this is that the noise
in the signal is relatively low, therefore the measurement likelihood function is
very steep, causing the likelihood difference between the particles to be very
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Figure 16: Example of the result of the Gaussian approximation filter for one
person run with 50 particles.
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Figure 17: Example of the result of the Gaussian approximation filter for two
person run with 50 particles.
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Figure 18: Example of the result of the SIR filter for one person run with 50
particles.
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Figure 19: Example of the result of the SIR filter for two person run with 50
particles.
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high even when their difference is quite small. In practice, this means that a
single particle gets all the weight and the estimation is more like a maximum
likelihood estimator than an expectation. Another thing that can be seen in
these results, is that the estimations often quickly switch from 1 person to 0
and back again when there is still a signal. This is generally caused by the null
hypothesis, accidentally providing a signal that fits the measurement better
than the Thalmann model. Since the signals in the null hypothesis are constant
peaks, the dynamic nature of walking means that the Thalmann model will
quickly fit better again. In figure 18 we can see this happen several times.
Starting from 14 seconds, this happens twice in a row, leaving 0 persons in a
large part of the estimation.

For a more representative analysis of the algorithms, we have evaluated them
50 times on the same piece of signal and plotted how the mean and error of the
estimations behave over time. Figures 20 until 35 show the results of these
experiments on various measurements. We have used the shorthand labelling
SIR 1 and SIR 2 for the one person versions and two person version of the
ordinary SIR algorithm and Gaussian 1 and Gaussian 2 for the algorithms with
the Gaussian approximation of the posterior for one and two persons.

We will start our analysis on the most clear measurement: a persons walking
away from the sensor and back. The results of this can be found in figure 20. It
can be seen that in general the filters for a single person have smaller error than
the ones for two persons. This makes sense because the estimate can vary more
if the filter can choose between an extra state. If we compare the SIR filter and
the Gaussian approximation filter for one person, we can see that they perform
approximately the same, with the SIR filter having a slightly lower error is
most cases. Looking at how the decreasing signal strength affects the filters,
we can see that the error of the one person filter is close to zero up to about
5 seconds, after which it increases quickly. At this point the signal is too low
to convey the specific details of the Doppler signature and is therefore not seen
as a walking person any more. When the person walks back, the filter is less
quick in detecting the person. This can be explained by the mechanism of the
particle filter. When the signal start out high, it is quite clear that there is a
person and many particles representing a persons will survive the resampling
step and have some time to “adapt” to the specific Doppler signature before its
strength starts to decrease. However, when the signal start out low, it remains
uncertain if the signal is caused by a person and it is more difficult to select the
right parameters to follow the signal. Therefore persons walking away from the
sensor can generally be detected earlier than persons walking towards the sensor.
Another final feature caused by signal strength that can be observed from figure
20 is that the filters for two persons more often tend towards detecting two
persons when the signal strength is higher. This is not unexpected as multiple
persons can also increase the signal strength and it is not possible for the filter to
distinguish a persons who is close to the sensor from two persons walking in the
same pace a bit further away. A much more difficult case for the sensor is when a
person walks perpendicular to the measuring direction. In principle, the sensor
can only measure radial velocities so in theory a person moving in a perfect
circle around the sensor would be invisible. In practice people walk in straight
lines so that there will generally be some radial component relative to the sensor
in their velocity. When a person walks perpendicular to the sensor, this radial
component will suddenly change sign when the person crosses the normal line of
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Figure 20: The mean estimate and error of the four different filters on the signal
of a persons walking away from the sensor and back. The spectrogram of the
analysed signal has also been plotted.

the sensor. Since it is not possible to measure at which angle from the normal a
person is, this moment comes quite unexpected for the particle filter and we can
see in the resulting analysis in figure 21 that at around 3.6 seconds, this happens
and also that the error of the particle filter increases. In general, we can see that
the error is much higher than the error on the previous measurement. We can
see in the signal that there are much fewer details to observe making it much
harder to distinguish human movement. In fact, the mean estimated number
of persons never rises above 0.5, indicating that the filter is wrong more than
50% of the time. We must conclude that a person walking perpendicular to the
sensor cannot be very reliably detected.

When we turn to the detection of multiple persons, the easiest case is when
the persons are walking in opposite directions. This way their signals are clearly
separated by positive and negative velocity relative to the sensor. However, the
performance is not great. Of course the one signal increases in strength while
the other decreases. This can also be seen in the error which is lowest in the
centre of the signal where both signals are approximately equal. At around 5
seconds the person who is walking towards the sensor is already gone and there
is just one person in the signal. Here we can see that the mean estimated value
clearly drops, indicating that the filter is able to make the distinction between
one and two persons, but just not very well. Since the parameter space has
become considerably larger when a second person is added, it might be the case
that the filter just needs more particles in order to function more reliably. For
the Gaussian approximation, the calculation time is just too large for this to be
feasible, but for the SIR filter we can try to increase the number of particles.
To test this hypothesis we have also run the algorithm with 2500 particles. The
results of this can be found in figure 23. We can see that the estimation increases
a little bit, but the mean is still just about 1.5 where it should be close to 2.

When we try to run the filters for two people who are walking in opposite

44



Figure 21: The mean estimate and error of the two one-person versions of the
filters on the signal of a persons walking perpendicular to the sensor. The
spectrogram of the analysed signal has also been plotted.

Figure 22: The mean estimate and error of the two two-person versions of the
filters on the signal of two persons walking in opposite directions. Above 5
seconds, there is just one person left.
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Figure 23: The same measurement as in figure 22, but now the SIR filter was
run with 2500 particles.

directions, we obtain about similar performance of the two filters as we saw in
the signal of one person in figure 20. This can be understood by looking at
the signal which looks very much like the signal of one person. When we look
at the video footage that was recorded with the Doppler signal in figure 29,
we can see that the two persons have taken on the same pace, making them
virtually indistinguishable for the system. Finally, we would like to see if the
filters can make the distinction between human walking movement and other
types of movement. We will test this on an opening door and a person moving
around a chair. Figures 34 and 35 show the results of these tests. We can
see that the filters generally respond less to the door and chair motion than to
walking motion of similar signal strength such as seen in figure 20. However, we
can also see that in about half of the times, the filter still classifies the motion
as a walking person. In order to make the filter more reliable, we could try
to make a more elaborate model for the null hypothesis that better captures
dynamic signals than the constant peaks in the spectrogram we have used now.
In addition, we could try to smooth the signal and set a threshold at for instance
80% certainty before detecting a person.

46



Figure 24: Mean estimate and error of two persons walking in the same direction.
The estimates are similar to the estimates on the signal of a single person.

Figure 25: Mean estimate and error of estimates on the signal of a door opening,
standing still for a while and then closing.
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Figure 26: Mean estimate and error of estimates on the signal of a chair that is
moved around in various directions.

8.4 Testing in smoke

A very important requirement for the sensor is that it continues working in
smoke conditions. In order to test this, we were allowed to measure on a train-
ing location of the fire brigade at the Spinel Safety Center in Dordrecht, The
Netherlands. At this training facility, a house containing some common furni-
ture like a couch and some closets and a small kitchen was filled with glycerine
based smoke, so dense that it was not possible to distinguish objects from even
half a meter distance. This type of smoke is sometimes also called “cold smoke”
because it does not require heating of the room in order to generate it. This way
we were able to test our prototype that has not been designed to withstand high
temperatures yet. The sensor was placed inside the house next to its entrance.
Figure 27 shows the inside of the house before it was filled with smoke.

During the smoke measurement, we measured the signal strength in the room
with and without smoke when the room was empty (no moving objects). The
difference in signal strength between these two measurements was smaller than
the natural changes in the signal strength in a static scene, showing that the
sensor can measure equally well in smoke as in normal conditions. Despite this,
when looking at the spectrogram that was measured on a person walking in the
smoke filled room in figure 28, it is much harder to recognise the characteristic
Thalmann Doppler signature. Part of the reason for this is that the reflections in
the opposite velocity occur which were described in section 8.1. Unfortunately
this is the only measurement we currently have and therefore we will not run
the particle filter on the signal as it would not give a representative result.
However, this is not the only thing that can be noticed in the signal. Clearly
the characteristic waves that can be observed in walking motion (such as in for
instance figure 13) are less present. Starting from about 18 seconds they can be
found, but still at a much lower velocity level than in normal conditions. Since
the sensor itself is not affected by the smoke, the only conclusion that can be
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Figure 27: A picture of the inside of the testing house before it was filled with
smoke. The picture is taken from the entrance. The test subject walked the
room from the right side to the left and back.
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Figure 28: This spectrogram was made while a person walked towards the sensor
and then back again through smoke.

drawn from this difference, is that the person himself is behaving differently.
This conclusion was indeed confirmed by the person on whom the measurement
was performed. When walking in the smoke filled room, the test subject was not
able to see anything and therefore very withholding while walking out of fear
of bumping into something. This can especially be seen in the signal before 15s
where the person first walked towards the sensor. After this the person knew
the room a little bit better and was able to walk back in his normal fashion, but
still much more slowly than he would normally walk.
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9 Conclusion

I this thesis, we have built and tested an inexpensive sonar sensor in combination
with a particle filter in order to estimate when there are people walking through
a room. Based on the tests performed in various different situations, we are now
able to answer the research questions we set in section 3.2. In order to find out
to what extend a particle filter can be used to estimate the presence of people
walking through a room from the measured spectrograms, we have performed
tests on a single person walking in different directions, on multiple persons and
on moving doors and chairs. We performed this test using an ordinary SIR
filter as well as a filter that we tried to improve by sampling from a Gaussian
approximation of the posterior density. Since these two filters turned out to
perform approximately the same, we will first draw our general conclusions for
the filter performance in the different scenes and afterwards comment on the
difference between the two filter implementations.

From the test on a single person we can conclude that all four particle filters
we defined can detect a person walking in the sensor direction reliably. Provided
that the person is close enough to the sensor so that the details of its Doppler
signature can be distinguished from the signal, the accuracy is close to 100%.
The filters that were made for detecting two persons have a significantly larger
error because they have a tendency to over estimate the number of people when
the signal strength is high. When a person is walking perpendicular to the
sensor, the filter does not make reliable estimates, being wrong in more than
50% of the filter evaluations at each time step. We must therefore conclude
that reliable detection is possible with the filters we defined, but only if the
movement is radial to the sensor.

When testing with multiple persons, we found that the filter can make the
distinction between no person at all or more than zero persons very well, just like
in the 1 person case. However, in both the easier case when the two persons are
walking in opposite directions and the harder case when the persons are walking
in the same direction, the filters have a tendency to estimate one persons rather
than two, resulting in the mean estimate not rising above 1.5 at any time, even
when the number of particles is increased by a fifty fold. We therefore conclude
that the detection of any person at all in the presence of multiple persons is
very reliable, but actually counting their number is not accurately possible with
the filters we defined.

We also tested the filters on measurements performed on moving doors and
chairs. The mean number of persons detected during these kinds of movement
never raised above 0.6. This is much lower than in the one and two persons
case so that we can conclude that the filter is clearly more sensitive to walking
movement than to the movement of chairs and doors and it would be possible
to select for only human walking movement by classifying a piece of signal as
walking movement only when the certainty rises above a certain threshold.

Combining these three different tests, we can assess to what extend a par-
ticle filter can be used to estimate the presence of people walking through a
room from the measured spectrograms. When the people are walking in the
sensor direction, the particle filter can reliably serve as a zero-one indicator for
the presence of a walking person, even when other types of movement such as
opening doors or people moving chairs are present. For counting the number of
persons, the filters we have defined are not reliable enough.
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To comment on the difference between the filter based on Gaussian approx-
imation and the ordinary SIR filter, we have observed that the SIR filter is able
to run in real time and its computing time scales linearly with the number of
people it is programmed to detect. The Gaussian approximation filter for one
person should still see a speed up of 10 times before it could run in real time
with 50 particles and additionally scales cubically with the number of persons
it can detect. In addition, throughout all our tests, the SIR filter consistently
has equal or lower error. We must therefore conclude that the Gaussian ap-
proximation does not improve the particle filter, showing that after all, the
posterior density we acquire for this problem cannot be well approximated by
the Gaussian density.

Finally, to answer how smoke affects the measurements, we have performed
measurements in a room filled with glycerine based smoke. This test showed
that the sensor that we have built is not affected by this smoke at all. It should
be noted though that the persons that we are trying to measure clearly are
affected by the smoke so that their movement is different. In order to be able to
really detect people in an emergency situation, this difference should be taken
into account.

We can summarise our work and answer the main research question as fol-
lows: Using the spectrogram generated from the Doppler measurements of an
inexpensive ultrasonic sensor, a SIR particle filter can provide a reliable indica-
tion of the presence of a walking person, also in smoke conditions, even when
there are also other sources of movement, provided that the person exhibits or-
dinary walking motion and the sensor is directed in the walking direction.

10 Discussion

We acknowledge that the restrictions that we named in the conclusion as re-
quirements for the system we built to be reliable are too strict to be usable in
a real emergency situation. However, this thesis should be regarded as the very
first test for the feasibility of using ultrasonic sensors for assistance of the fire
brigade in emergencies. Within this framework, we have contributed only a very
small part of what would eventually be the total solution. In our view, the total
solution requires many sensors working together in order to track people while
they are in a room so that when at some moment during an emergency they
become unconscious, their locations can be remembered. In order to find the
locations of people, distance measurement may be used with multiple sensors
in order to be able to use trilateration to estimate locations. However, when
locations are saved after people have stopped moving, it is very important to
distinguish human movement from other sources of movement. Otherwise any
door that has been moved at some point would be registered as an unconscious
person by the system. This is exactly the point where our research can provide
a valuable addition to the sensor system we just described.

Of course even for this specific feature, our research is just the start. We
have only tested on at most two different persons in very controlled situations.
Before productising the system we have proposed, extensive testing in realis-
tic situations should be performed to be sure that the system will perform as
expected in a real emergency situation. In addition to more testing, there are
several other interesting directions for performing future research.
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One thing that has the potential to greatly improve the reliability of the
detection of people is to incorporate distance measurements. This would require
sending a pulsed signal and processing it accordingly, possibly by extending the
particle filter. When the distance to a moving object is known, it is possible
to separate multiple objects in space and to estimate their size from the signal
strength they return. When multiple sensors performing distance measurements
are used together, it is even possible to perform trilateration in order to find
the locations of the observed objects.

A more hardware related type of research would be to build a more robust
ultrasonic sensor that is able to withstand higher temperatures and has addi-
tional components to be able to send its measurements to some central control
unit that combines all the measurements. The prototype we have used worked
in glycerine based smoke at low temperatures but would not be able to with-
stand temperatures above 80 ◦C and may be affected by smoke that contains
corrosive chemical compounds.

Finally, if the above two research topics provide promising results, it is still
necessary to do research into a good way to gather all the data produced by
the sensors when there are many of them in a building and to process them. In
addition, a very important question to answer would be how the information
the sensors can obtain can be presented to the people from the fire brigade in
a way that allows them to get a quick overview of the situation and make the
right decisions.

53



References

[1] Søren Asmussen and Peter W. Glynn. Stochastic Simulation: Algorithms
and Analysis. Springer New York, 2007. doi: 10.1007/978- 0- 387-

69033-9.

[2] Ronan Boulic, Nadia Magnenat Thalmann, and Daniel Thalmann. “A
global human walking model with real-time kinematic personification”.
In: The Visual Computer 6.6 (Nov. 1990), pp. 344–358. doi: 10.1007/
bf01901021.

[3] Olivier Cappe, Simon J. Godsill, and Eric Moulines. “An Overview of
Existing Methods and Recent Advances in Sequential Monte Carlo”. In:
Proceedings of the IEEE 95.5 (May 2007), pp. 899–924. doi: 10.1109/
jproc.2007.893250.

[4] Richard Courant and Fritz John. Introduction to Calculus and Analysis
Volume II 1 Chapters 1 4. 2009. isbn: 9783540665694. url: https://www.
amazon.com/Introduction- Calculus- Analysis- II- Chapters/dp/

B0095HARQQ?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-

20 & linkCode = xm2 & camp = 2025 & creative = 165953 & creativeASIN =

B0095HARQQ.

[5] Arnaud Doucet, Simon Godsill, and Christophe Andrieu. “On sequential
Monte Carlo sampling methods for Bayesian filtering”. In: Statistics and
Computing 10.3 (2000), pp. 197–208. doi: 10.1023/a:1008935410038.

[6] Mark Goldstein. “Carbon Monoxide Poisoning”. In: Journal of Emergency
Nursing 34.6 (Dec. 2008), pp. 538–542. doi: 10.1016/j.jen.2007.11.
014.

[7] Stephan Groot et al. “Human motion classification using a particle filter
approach: multiple model particle filtering applied to the micro-Doppler
spectrum”. In: International Journal of Microwave and Wireless Tech-
nologies 5.03 (Apr. 2013), pp. 391–399. doi: 10.1017/s1759078713000366.
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A Measurements that were used with stills from
the scene

In this appendix, the measurements that were used in the analysis of the filters
have been collected. Their spectrograms have been plotted and in addition, we
have included images from the video that was taken while measuring. We have
included one image per second, taken in between every full second (0.5 s, 1.5 s,
2.5 s, ...). The videos were recorded separately from the sound so even though
we have carefully tried to align the video and audio a well a possible, one should
refrain from drawing conclusions that are based on very time specific features
in the video. The images give a good indication of the scene and the type of
movement though.
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B The Thalmann model

The body is defined as follows.

vlll

vlul

vlf

vlla

vlua

vh

vls

vt

vlh

θls

θle

θlt
θlh

θlk

θla

θut

y

z

x

A hierarchical model is used to calculate the positions of the joints when
they have moved from the starting position. In this model, the joint in the
lower thorax is used as the starting point. In other words, we use this joint
to fix our coordinate system to so that it is always in the point (0, 0, 0) We
illustrate how to find a position by means of an example.

Suppose we want to calculate the position of the hand. Then we start off
with the vector that is at the end of the arm, the lower arm. Rotate it by
the elbow rotation, add the vector of the upper arm, rotate the result by the
shoulder rotation, add the shoulder vector, rotate by the thorax rotation, add
the thorax vector and finally rotate by the forward hip rotation. If we set
Rjoint name for the rotation matrix corresponding to the joint θjoint name, then
we can write this operation as

Rlt(vt +Rut(vrs +Rrs(vrua + (Rrevrla)))).

When we remove the brackets, we get

Rltvt +RltRutvrs +RltRutRrsvrua +RltRutRrsRrevrla. (88)

Hence we see that we can simply apply the rotations of all joints to which a
vector is connected sequentially to obtain the correctly rotated version of this
vector.
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In the simulation we use this property to calculate the location of each of the
joints over time. We define the body as a tree of nodes and recurse trough the
tree, starting from θlt. At each node we calculate its location using the location
of its parent plus the rotated version of the displacement from its parent, vname.

For the movement, we assign functions of time to the joints that describe
their rotation (in degrees, positive orientation) around either the x, y or the
z axis. We will define the movement functions below. We only specify only
the functions for the left body parts. The functions for the joints on the right
side of the body can be found by substituting tr by tr − 0.5. All function that
are defined here are periodic in tr on the interval [0, 1) First we define these
expressions for convenience:

Vr = v/(0.53H) (89)

Rc = 1.346 ·
√
Vr (90)

Tc = Rc/Vr (91)

Ts = 0.752 ∗ Tc − 0.143 (92)

tr = t/Tc (93)

The forward-backward moving of the torso (around the y axis) at each step.

aTorsoY =

{
−8V 2

r + 8Vr for Vr < 1/2

2 for Vr ≥ 1/2
(94)

θTorsoY = aTorsoY − aTorsoY · sin(2π · (2tr − 0.1)) (95)

The up and down movement of the hips that makes the hips move down at
the standing leg.

aPelvisX = 1.66 · vr (96)

θPelvisX = aPelvisX ·



−1 + cos(2π · 10 · tr/3) for 0 ≤ tr mod 1 < 0.15

−1− cos(2π · 10 · (tr − 0.15)/7)

for 0.15 ≤ tr mod 1 < 0.5

1− cos(2π · 10 · (tr − 0.5)/3)

for 0.5 ≤ tr mod 1 < 0.65

1 + cos(2π · 10 · (tr − 0.65)/7) for 0.65 ≤ tr mod 1 < 1

(97)
Rotation of the shoulder to move the arm (around the y axis).

θShoulder = −3 · 9.88 · vr · cos(2π · tr) (98)

Rotation of the elbow to move the lower arm relative to the upper arm
(around y axis).

θElbow = −23 + 11 · vr · cos(2π · tr) (99)

Some of the functions are defined as cubic spines through control points.
In table 1 an overview of the control points can be found. In section B.1 the
method for building the splines from the control points can be found. Besides
expression for the rotation of the joints, there are also some linear movement
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The rotation of the hip around
the y-axis θHipY :

θHipY -15 25
tr 0.5 0.9

The rotation of the knee around
the Y axis θkneeY :

θkneeY 3 20 70 3
tr 0.18 0.4 0.75 0.99

The rotation of the ankle around
the Y axis θankleY :

θankleY -3 -18 8 -20 -3
tr 0 0.08 0.5 0.65 0.85

The rotation of the torso around
the z axis θtorsoZ :

θtorsoZ 1.4 -1.5 -1.4 1.5
tr 0.1 0.4 0.6 0.9

Table 1: List of the control points that define the splines used for these rotation
functions.

expressions that describe how the body accelerates and decelerates during each
step. These movement expressions are all movements are small deviations from
the general walking velocity of the person such that their total displacement
within one cycle remains 0. We will call these translations of the body in the x,
y and z direction Tx, Ty and Tz.

Tz = 0.015 · Vr · (−1 + sin(2π(2tr − 0.35)) (100)

Ty =

{
(0.128V 2

r − 0.12Vr) · sin(2π(tr − 0.1)) for Vr < 0.5

0.032 · sin(2π(tr − 0.1)) for Vr ≥ 0.5
(101)

Tx =

{
(0.084 · V 2

r − 0.084 · Vr) · sin(2π(2tr + 2(0.625− Ts))) for Vr < 0.5

0.021 · sin(2π(2tr + 2(0.625− Ts))) for Vr ≥ 0.5

(102)

B.1 Splines

For the some rotation functions, cubic splines through control points are used.
Splines are piecewise polynomials that connect the control points in such a way
that the value of their 0th until 2nd derivative in the control points are equal.
Suppose we have control points (xi, yi) for i ∈ {0, ..., n−1}. Then the piecewise
polynomials are

Si(x) = ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3

for x ∈ (xi−1, xi] when i ∈ {0, ..., n− 1}.
(103)

where we define
x−1 = xn−1 − 1. (104)

The reason for this is the following: We want to make the spline such that it is
periodic on [0, 1) while preserving the differentiability. Therefore we repeat the
point xn−1 below zero by adding (x−1, y−1) = (xn−1 − 1, yn−1) to the control
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points to make S0 connect to it smoothly when we generate the spline. Then
we add

Sn(x) = S0(x− 1) for x ∈ (xn−1, 1) (105)

to smoothly finish the support in [0, 1).
In order to find the coefficients for the splines, we use the equations for the

differentials in the control points. The easiest relation is

yi = Si(xi) = ai + bi(xi − xi) + ci(xi − xi)2 + di(xi − xi)3 = ai (106)

which immediately shows that

ai = yi for i ∈ {0, 1, ..., n− 1}. (107)

Then using the equality of adjacent polynomials at the control points gives the
following three relations for i ∈ {1, ..., n− 1}.

Si(xi) = Si−1(xi) (108)

=⇒ ai = ai−1 + bi(xi − xi−1) + ci−1(xi − xi−1)2 + di−1(xi − xi−1)3 (109)

=⇒ ai − ai−1 = bi−1(xi − xi−1) + ci−1(xi − xi−1)2 + di−1(xi − xi−1)3

(110)

S′i(xi) = S′i−1(xi) (111)

=⇒ bi = bi−1 + 2ci−1(xi − xi−1) + 3di−1(xi − xi−1)2 (112)

=⇒ 0 = −bi + bi−1 + 2ci−1(xi − xi−1) + 3di−1(xi − xi−1)2 (113)

S′′i (xi) = S′′i−1(xi) (114)

=⇒ 2ci = 2ci−1 + +6di−1(xi − xi−1) (115)

=⇒ 0 = −2ci + 2ci−1 + 6di−1(xi − xi−1) (116)

For i = 0 the relations reduce to

a0 − an−1 = bn−1(x0 − x−1) + cn−1(x0 − x−1)2 + dn−1(x0 − x−1)3 (117)

0 = −b0 + bn−1 + 2cn−1(x0 − x−1) + 3dn−1(x0 − x−1)2 (118)

0 = −2c0 + 2c−1 + 6d−1(x0 − x−1). (119)

We can turn this into a matrix-vector equation by putting all the unknown
ai, bi and ci in a vector. First define

A =

 0 0 0
−1 0 0
0 −2 0

 (120)

Bk =

(xk − xk−1) (xk − xk−1)2 (xk − xk−1)
1 2(xk − xk−1) 3(xk − xk−1)2

0 2 6(xk − xk−1)

 . (121)
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Then


A B0

B1 A
. . .

. . .

Bn−1 A





b0
c0
d0
...

bn−1
cn−1
dn−1


=



a0 − an−1
0
0

a1 − a0
0
0
...

an−1 − an−2
0
0


(122)

When we solve this equation we get the coefficients.
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