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INTRODUCTION

In this chapter we briefly give the most important definitions and properties which
are necessary for the understanding of the other chapter.

§ 1 Relations

Let A be a non empty set. The Cartesian product of a natural number n of copies
of A will be denoted by A.

A relation o on A is a subset of A'. We will call o
reflexive if (a,a)eo for all aeA,
symmetric if (a, b) e o implies (b, a) e o,
antisymmetric if (a, b) e o and (b, a) e o imply a = b,
transitive if (a, b) e e and (b, c) e Q imply (a, c) e O.

A relation on A which is reflexive and transitive is called a preorder on A. A sym-
metrie preorder is called an equivalence relation and an antisymmetric preorder is
called a partial order.

In case o is a partial order we write a < b(q) (a is smaller than b under the partial
order o) instead of (a, b) e o, and if no misunderstanding is possible we remove the
sign (o) and write a < b. If a < b but not a = b, then we write a < b (a is strictly
smaller than b). Moreover we use the following notations: b >, a (resp. b > a) for
a  b (resp. a < b), a 4 b for not a  b etc. and finally a 11 b for a 4 b and b 4 a.
A set endowed with a preorder (resp. a partial order) is called a preordered (resp.
partially ordered) set. A subset S of a partially ordered set A is called convex (with
respect to the given partial order o) if a < b <, c (q) and a, c e S imply b e S.

For a relation o on A we define o -1 = {(a, b) : (b, a) e o}. If q is a partial order on A
such that Q u o -1 = A Z we will say that o is a full order on A and A is called a
fully ordered set or a chain. A chain is called well ordered if every non-void subset B of
A contains a smallest element i.e. B contains an element d such that d < b for all
beB. A finite chain is well ordered.

Let o be an equivalence relation on A. As is known, Q induces a division of A into
disjoint classes (of mutually equivalent elements) which is allo called a partition of A.
The set of these classes is denoted by A/Q. The class of the element a of A in this
set is denoted by ae i.e. ae = {bcA:(a,b)eC}. Conversely, a partition of A induces an
equivalence relation on A. The correspondence between the equivalence relations on
A and its partitions is one to one.

If n is a preorder on A, then s = 7r n nr - ' is an equivalence relation on A and the
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classes of e are called the classes of the preorder n. The set A/E can be endowed with
a partial order in the following natural way: a` <, b if and only if (a, b) air. In the
sequel this process of passing from a preordered set A to the partially ordered set
A/E of the classes of the preorder will be used several times.

We say that a relation o on A is smaller than a relation o on A if Q c a. This
defines a partial order on the set of relations on a set A (the so called inclusion order).
If the preorder n l on A is smaller than the preorder n 2 on A, then the equivalence
relation e l = 7r 1 n ir 1

- ' is smaller than the equivalence relation e2 = 7r Z n 7r2-1.

The equivalence relation o on A is smaller than the equivalence relation o on A if and
only if ae c a° holds good for all aeA. In this case we will say that the classes of Q
are contained in the classes of a. As a consequente we have: if the preorder n 1 is
smaller than the preorder 7r2 (both on the same set A), then the classes of ir are
contained in the classes of ir2 . Partitions on a set A are ordered in correspondente
with the ordering of the induced equivalence relations.

§ 2 Lattices

A lattice L is a non-empty set together with two binary operations v and A satis-
fying:

L1. ava = a and ana = a,

L2. avb=bva and aAb=bAa,

L3. (avb)vc = av(bvc) and (avb)vc = av(bvc),

L4. (a v b) A a = a and (a A b) v a = a.

L is called distributive if the following law holds.

L5. av(bAc) = (avb)A(avc).

In a distributive lattice we also have

L5'. a A (b v c) = (a n b) v (a A c).

L5 and L5' are equivalent properties of a lattice.
The relation A defined by 2 = {(a, b)eL2 : a A b = a} is a partial order on L. Unless

otherwise stated the symbol <, used in a lattice will always refer to this partial ordering.
Then a v b (resp. a A b) turns out to be the l.u.b. or join (resp. the g.l.b. or meet) of

a and b. If every non-empty subset of a lattice L has a g.l.b. and a l.u.b., then L is
called a complete lattice; if every bounded subset has a g.l.b. and a l.u.b. we say that
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L is conditionally complete. The partially ordered set of partitions on a set A is a
complete lattice.

If L is a lattice with a minimal element 0 and a maximal element 1 and a unary
operation a — a' such that

L6. ana' = 0 and ava' = 1,

then the lattice is called complemented; the element a' is called the complement of a.
The subset [a, b] = {xeL:a < x < b} of L is called a closed interval in L. It is a

sublattice of L with a minimal element a and a maximal element b. A relatively com-
plemented lattice is a lattice in which every closed interval is complemented. In such a
lattice there exists for every element c e [a, b] an element c' such that c A c' = a and
cv c' = b; c' is called the complement of c in [a, b]. A lattice is sectionally comple-
mented if it has a minimal element 0 and every interval [0, al is complemented.

Of course a relatively complemented lattice with minimal element 0 is sectionally
complemented and in a distributive lattice with minimal element 0 the converse is
allo true. A Boolean algebra is a distributive and a complemented lattice. A Boolean
algebra is relatively complemented.

§ 3 Lattice ordered groups

A partially ordered group (p.o.group)is an additively written group G and at the
same time a partially ordered set such that the monotony law is satisfied i.e. a < b
implies a+c < b+c and c+a < c+b for a,b,ccG. The positive cone P(G) (if no
misunderstanding is possible, we write shortly P) of a p.o.group G consists of the
elements g >, 0 in G.

P has the following properties:

P1. P is a semigroup with 0,

P2. Pn —P = 0 with —P = {xEG : —xeP},

P3. P is a normal subset of G i.e. geP implies —x+g+xeP for xeG.

For the rest of this paragraph G will stand for the p.o.group G. G is called directed
if every two elements of G have an upperbound and a lowerbound in G. We have

P4. G is directed, if and only if P generates G.

If G is a lattice and its partial order is the partial order A of the preceding paragraph,
then G is called a lattice ordered group (l.group).



In an l.group the monotony law is equivalent to

a+(b v c)+d = (a+b+d) v (a+c+d) for a, b, c, deG.

An l.subgroup of an l.group G is a subgroup which is a sublattice of G. It should be
observed that a subgroup of G which is a lattice under the induced order need not
be an l.subgroup of G.

For the positive cone of an l.group we have

P5. G is an l.group, if and only if P generates G and P is a lattice under the in-
duced order.

The properties of the positive cone decide whether G is fully ordered or not. This is
seen from

P6. G is fully ordered, if and only if P generates G and P is fully ordered under the
induced order.

G is called Archimedean if a, be G and na < b for all integers n implies a = 0. This
means that {O} is the only subgroup of an Archimedean l.group G, having an upper
bound in G. For l.groups we have

P7. An l.group is Archimedean if and only if P is Archimedean in the following
sense: a, bcP and na < b for all ncN implies a = 0.*

For later use we will give the following properties of an l.group G. For the proofs
of A to H see e.g. Fuchs [4].

A. G is a distributive lattice.

B. na > OforaaG,neN,ifandonlyifa OinG.

C. a v b = a — (a A b) + b for a, b e G. This implies: a v b < a + b, if and only if
a, baP.

D. Two positive elements a and b of G are called orthogonal if a A b = 0. From C
one sees immediately that a v b = a + b, if and only if a A b = 0 and also that
orthogonal elements commute. Moreover, a n b = 0 implies ma n nb = 0 for
m, neN.

E. We define the absolute value lal of aeG as lal = av —a. Then we have the fol-
lowing properties:

* N is the set of natural numbers.

10



lal > 0 for a ^ 0, and 101 = 0;
1 —al = I al and Inal = nlal for neN;
la—bi = (avb)—(anb).

If lal and I bi are orthogonal then a and b commute.
The set of elements xe G such that Ixl n a = 0 for some fixed aeP is a convex
l.subgroup of G.

F. The following identities hold in G.
If vaa (if A„aa) exists in G (here v and A may denote the l.u.b. resp. g.1.b. of
an infinite set of elements) then:

1. b+(van)+c = v„(b+a„+c) and b+(A Qaa)+c = Aa(b+aa+c)
for b, ce G,

2. —
( v «a«) _ A( — a^) and —

( A aa„) = va(—a«).

Moreover the infinite distributive laws apply.

3. b n (v„aa) = v„ (b A aa) and b v (A„a„) = A a (b v a„) for b e G.

G. If a, b 1 , ..., b„ are positive elements of G such that

a <_ bl+bZ+...+b„

then G contains positive elements a l , ..., a„ satisfying

a = a1+a2+...+a„

with a; < b i (i = 1, ..., n).

H. An Archimedean 1.group is commutative. (We will give an original proof of this
well-known property in the next chapter, § 7.) An Archimedean fully ordered
group is isomorphic to a subgroup of the additive group of the real numbers
with the usual ordering.

The following properties are new, it appears.

I. For a, beP we have

na nmb < (n+m-1) (anb) < (n+m) (a Ab) for n, mcN.

Proof. The last inequality is trivial and is mentioned for the sake of convenience.
The proof of the first one follows from

(n+m—l)(anb) = (n+m-1)an(...)A...A(n+m-1)b.

Every factor (...) in the right member contains either at least n times the element
a or at least m times the element b. This means that such a factor is greater than
na or mb and consequently greater than na n mb. q
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COROLLARY. For a, b e P and n e N we have nb A a= n (a n b) A a.

Proof. Since a A b 5 b we see that n (a A b) A a <, nb A a. We just proved
nbAa <, n(aAb), hence nbna <, n(aAb)Aa. q
We will also need the well-known formula nb A 0 = n (b A 0) for all b eG, n eN.

J. Further reflection on the infinite distributive laws under F yields the following
consequences which play an essential role in the development of the theory of
the Ko-classes in the next chapter.
Let {aa} and {ap} be sets of elements of an l.group G. If:

1. v s (a# A aa) exist for all a and v a{ v f (af n a a)} exists, then
v a{ v fl (a. A aa)} = v «,^ (aa n a,),

2. v Q (apAa.) = aa for all a and v a aa exists, then
v a aa = vp{apA(v a aa)} = va,Q(a.Aan),

3. vpap and v aa exist, then
(v a aa)A(v fl a.) = V a{Vp(apAaa)} = v fl {v a (a,Aa.)} = va,fl(a.Aa.).

Proof. 1. Of course v a{ v a(a. A aa)} >, aa n aa for all a, f3 and if d > ;Aap ap
for all a, P, then d >, v p(a. A aa) for all a. Hence d > v a{ v p(a, A aa)}. Hence
V a{ v p(a, A aa)} is the l.u.b. for the set of elements {ap A aa}.

2. v fl (afl A aa) exists (=a,) for all a and v a { v fl(af A aa)} exists (= v aa.). By
property 1 this implies v a,P(aa A afl) = V a { v,(a, A aa)} = v Oaa . In order to
prove the remaining equality we observe that v «aa > ap A (v aaa) for all /i. If
d > a0 A (v aa„) for all /3, then d > v.(a, A aa) = aa for all a. Hence d> v Oa,.

This proves that v a. = v P {a, A (v aaa)}.

3. Since v pap exists, we have that v p(ap A aa) = a„ A (v pap) (property F3 of
this paragraph). Moreover, the existance of v aaa implies (using the same
property) v a{ v s(af A a O)} = v{a a n (v Pa,)} = (v aa.) A (v„a fl), This proves
the first equality of the above stated property. Because the conditions of the
property are symmetrie with respect to interchanging a and P3, the second
equality of the property follows immediately, while the third one is a conse-
quence of property 1. q

K. Let {aQ}, {ba} and {c,} be sets of elements of an l.group G such that v„a„ and
v a ca exist, then v a a. = v a ca and aa < ba < ca for all a imply v,ba = vaaa.
Proof. We have ba < ca < v. ca for all a. Hence v„ ca is an upperbound for the

set {b,}. Suppose d is an upperbound for the set {b a} i.e. d > ba for all a, then

d > aa for all a and this implies d > v„ aa = v, Ca . q
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§ 4 Homomorphisms

Let L and L' be lattices and (p a function from L onto L'. (p is said to be isotone if
x < y in L implies (p(x) (p(y). We use the following terms
join homomorphism if cp(x v y) = (p(x) v'p(y),
meet homomorphism if qp(x A y) = p(x) A (p(y) and
lattice homomorphism if (p is both a join and a meet homomorphism.
A join homomorphism as well as a meet homomorphism is an isotone function. If cp
is a function from L onto L' such that (p(v a a) = v a {cp(aa) } whenever v a a exists
in L, then (p is called a suprema preserving homomorphism. Clearly, a suprema pre-
serving homomorphism is a join homomorphism. If G and G' are groups (semi-
groups) and (p is a function from G onto G' such that p(x+y) _ (p(x)+cp(y) then (p

is called a group homomorphism (semigroup homomorphism).
In any of the preceding cases we use the following self-evident notations: : x -* x'

or x' = q(x) and L' = (p(L) resp. G' = (p(G); L' is called a join homomor-
phic image of L in case (p is a join homomorphism, etc. The word homomorphism
is replaced by the word isomorphism if the function cp is one to one. If the function (p
is one to one and L (resp. G) coincides with L' (resp. G') we replace the word homo-
morphism by the word automorphism.

We observe that if G and G' are l.groups, then the property of (p being a lattice (or
join or meet) homomorphism from G onto G' need not imply that (p is a group (or
semigroup) homomorphism from G onto G'. The converse need not be true either.
We say that two homomorphisms (p and l' of the l.group G ónto the l.groups Q(G)
resp. 0(G) are of the same type if they are both join homomorphisms (or both meet
homomorphisms etc.), even if the images (p(G) and i(G) do not coincide.

Let G be an l.group and let S be a class of all homomorphisms of the same
type defined on G. If (p e S, then o. = {(x, y) e GZ : cp(x) = (p(y)} is an equivalence
relation on G. We define the classes of the homomorphism q as the classes of the
corresponding equivalence relation o^. We define the order relation for homomor-
phisms (p and (i of the same type as follows: cp i, if and only if o, c Qo for the
corresponding equivalence relations. This partial ordering on S has the following
properties:

1. (p < >/i for two homomorphisms (p and i1' of G (both of the same type) if and only
if *p(x) = q(y) for x, yc- G implies Ji(x) = ^li(y) or, if and only if the classes of (p
are contained in the classes of i/i.

2. (p = ip, if and only if the mapping q(x) -^ '(x) for xeG is an isomorphism from
pp(G) onto 0(G). In the special case of (p(G) and i'(G) coinciding, we have (p = >li,

if and only if (p(x) -^ 0(x) for xe G is an automorphism of G' = (p(G).

If cp is a lattice homomorphism from a lattice L onto a lattice L' and L' has a minimal
element 0', then the set of elements xeL such that (p(x) = 0' is called the kernel of (p
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and is denoted by K(cp). In general cp is not determined by its kernel. However, if L
is a sectionally complemented lattice, then the kernel does determine (p. This means
that if cp and i i are two lattice homomorphisms of a sectionally complemented
lattice L onto the lattices p(L) and 0i(L) and (p and iji have the same kernel, then
cp = ili in the sense of 2. above.
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ON THE STRUCTURE OF LATTICE ORDERED GROUPS

§ 1 Archimedean classes

In this paragraph we will approach the notion of Archimedean classes of a lattice
ordered group in another way and we will derive some new properties.

For an l.group G we define: a < Nb for a, b e G, if and only if there exists a nat-
ural number n such that a <, nb. Otherwise stated: a < Nb means that a finite mul-
tiple of b is greater than a.

It is easy to see that 7rN = {(a,b)EP Z : a <, Nb} is a reflexive and transitive rela-
tion on the positive cone P of an l.group G. So 7rN is a preorder on P. The classes
of ltN (Intr., 1) are called the Archimedean classes of the l.group G, a - denotes the
Archimedean class of the element a. Trevisan [14] proved that for any l.group G
the partially ordered set P/nN of the Archimedean classes is a distributive lattice.*

A study of the Archimedean classes yields

THEOREM 1.1. An Archimedean class is a subsemigroup and a convex sublattice of P.

Proof. Let a t and az (a t , a2 nP) belong to the same Archimedean class a- . This
means a t <, n la and a2 n2a, a - m ta t and a < m2a2 for some n l , n 2 , m l , m2eN.
Then we have

a < m la l A 
m

2a2 ' (m l +m2) (al A a2) (Intr., 3,I)

G (ml + m
2) (a t v a2) < (m l +m2) (al +a2),

and also

a1 na2 - a 1 va <- 
a l + a2 <, (n1+n2)a.

This implies that both a l A a2 and a l v a2 and a t +a2 belong to a- whenever we have
a l , a2 Ea - . So a - is a subsemigroup and a sublattice of P. Suppose a l < b < a2,
then a < m la l < m l b and b < a2 < n2a which proves bea- . Consequently a - is
convex. q

The following theorem characterises the partition of P into Archimedean classes
among the other partitions of P.

* The Archimedean classes were introduced by HAHN [6] for commutative fully ordered groups
and by LOONSTRA [9] for commutative lattice ordered groups. Both paid more attention to the

structure of the set of Archimedean classes than to the Archimedean classes themselves.
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THEOREM 1.2. The partition of P into Archimedean classes is the minimal partition of
P into convex subsemigroups.

Proof. The set of partitions of P into convex subsemigroups is not empty (e.g. P
itself is an element of this set). Hence this set has a g.l.b. in the partially ordered set
of all partitions (Intr., 2). This g.l.b. is a partition of P into convex subsemigroups
since the intersection of any number of partitions of P into convex subsemigroups is
a partition of P into convex subsemigroups. Let S be the class of the element a in
this minimal partition. We will prove that a - c S. Suppose bea - i.e. beP such that
a < nb and b < ma for some n, m e N. Then we have a < nb < nma. Because S is a
convex subsemigroup we have the following implications aeS - nmaeS -* nbeS.
If boS, then there exists a class T such that b e T implying nbeT and therefore
S n T 0 contradicting that S and T are classes of a partition. Consequently, we
have be S. Hence a - c S. By Theorem 1.1 the partition of P into Archimedean classes
is a partition into convex subsemigroups and we just proved that this partition is
smaller than the minimal partition under discussion. But it cannot be strictly smaller
and this proves the theorem. q

We continue with some theorems concerning the distributive lattice of Archi-
medean classes.

THEOREM 1.3. The mapping (p : a — a - from the positive cone P of an l.group G onto
the distributive lattice of the Archimedean classes of G is a lattice homomorphism with
kernel K((p) = {O}, satisfying

(p(a+b) = cp(a v b).

(p may be characterized as the minimal join homomorphism cp' of P which satisfies
pp'(a+b) = cp'(avb).

Proof. The first part of the theorem is proved by showing that (a A b) - and (a v b) -
are the g.l.b. and the l.u.b. respectively of a and b - . It is obvious that (a A b) < a-

and b - . Assume that c <a - ,b - , then we have (c, a) and (c,b)eirr i.e. c < n,a and
c < n 2b for some n l , n 2 EN. If m = max(n 1 ,n 2), then c s maAmb < 2m(aAb)
(Intr., 3,1). Therefore c < (a n b) - , establishing the first assertion.

In the second case a - ,b - < (a v b) - is trivial and if d >, a - ,b - then k 1d a,
k2d > b for some k l , k2 e N, whence ld > a v b for 1 = max (k l , k2). Consequently
d - >(avb)-.

It is immediately seen that K(p) is {O} and we have cp(a+b) = q (a v b) because
avb ( a+b < 2(avb) for a, beP (Intr., 3, C).

To prove the last statement of the theorem, let cp' be any join homomorphism of
P satisfying cp'(a+b) = (p'(a v b). Then (p' is an isotone function which satisfies
cp'(na) = cp'(a) for aeP. If bea - , then we have a <, Nb and b <, Na. Hence, cp'(a)
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(p'(b) and p'(b) < (p'(a). So p'(a) = (p'(b). This means that the Archimedean
classes are contained in the classes of (p' or otherwise stated cp < (p' (Intr., 4). But
(p itself is a join homomorphism satisfying (p(a+b) = (p(a v b). So it must be the
minimal one. q

THEOREM 1.4. The lattice of Archimedean classes of an l.group G is a chain if and only
if G is a fully ordered group.

Proof. From Theorem 1.3 and the fact that the lattice isomophic image of a fully
ordered set (i.c. P) is a chain, follows the "if" part of the theorem. Suppose that the
lattice of Archimedean classes contains two incomparable elements, say the Archi-
medean classes a and b - , then it is clear that a and b themselves must be incompa-
rable and so P cannot be fully ordered. An application of Intr., 3, P5 and P6 com-
pletes the proof. q

A strong unit u of an l.group G is an element ueG such that for each anG we have
a < Nu (Freudenthal [3]).

THEOREM 1.5. The lattice of Archimedean classes of an l.group G has a maximal
element, if and only if G has a strong unit; this maximal Archimedean class is the set
of strong units of G.

Proof. If u is a strong unit of G, then u is a positive element of G (Intr., 3, B). But
then u - is the maximal Archimedean class. Conversely, if (u') - is the maximal
Archimedean class, then u' is a positive element of G such that for any aeP some
nu' < a. But then for any b e G we have b < b v 0 < Nu'. Hence u' is a strong unit. q

We finish this paragraph with a lemma which clarifies the use of words in the next
paragraph, where we will introduce the term "infinite multiple of an element".

LEMMA 1.1. In an l.group G we have: a < Nb for a, beP, if and only if
a = V , (nb A a) for some kcN.

Proof. Because a and b are positive, we have b A a < 2b n a < ... < kb A a. Hence
V n_, (nb n a) = kb n a. But then a = V , (nb n a) implies a = kb n a i.e. a < kb
or a < Nb. This proves the "if" part of the lemma. Reading the proof in opposite
direction yields the "only if" part of this lemma. q

§ 2 rto classes

In this paragraph we introduce a partition of P which shows a remarkable corre-
spondence with the division of P into Archimedean classes.
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For an l.group G we define: a <, K0b for a, b e G, if and only if a = V , (nb n a).

Remarks. We emphasize that the expression "K0b" has no meaning in itself, but
that only the meaning of the statement "a <, Kob" is defined. Loosely speaking one
might say that a < tob means that "a countable infinite multiple of b is greater
than a" (c.f. also Lemma 1.1).

We start with a sequence of lemmas which give the rules for the calculus on the new
notion a <, rt0b.

LEMMA 2.1. If in an l.group a < Nb for a, beP, then a < Hob.

Proof. Let a < Nb for some a, beP i.e. a < kb for some keN. This implies
a s (k +p)b for all p e N, and so a = V ` p (nb n a) for all p e N (Lemma 1.1). Other-
wise written a = V 1 (nb n a) or a K 0b. q

COROLLARY 2.1. For any positive element a of an l.group we have ka < rt0a for all
keN.

The following example shows that the converse of this lemma is not true. Hence
a <, K0b makes sense.

EXAMPLE 2.1. G is the additive group of all real valued continuous functions on
[0,1]. P is the set of functions f E G with f (x) >, 0. Then G is an l.group. Let f be the
function f (x) = 1x— 21 on [0,1] and let g be the function g(x) = 1 on [0,1]. We
certainly have not g < Nf (no finite multiple of f is greater than g) but we do have
g = V 00 , (nf n g), for g is the least continuous function on [0, 1 ] that is greater than
all the functions nf n g, n e N. q

The negation of a < t ob will be denoted by a td0b. It has a consequence which
is used several times in this paragraph.

LEMMA 2.2. 1f in an l.group G a 4 rtob for a, beP, then there is an element deG
such that nb A a <, d < a for all n e N.

Proof. We show that if we assume that there is no such d, then we would have
a = V (nb A a). Indeed, if c is an upperbound for the elements nb A a(ncN), then
a A c is also an upperbound. Our assumption implies a n c jz a, but then a A c = a
i.e. c a. Since a is an upperbound for the elements nb n a, a must be the least upper-
bound of these elements. q

If in an l.group a < Nc and b < Nc for a, b, ceP, then a+b < Nc. The following
lemma concerns "infinite multiples" and is analogous to the preceding inference.
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LEMMA 2.3. 1f in an l.group a 0c and b < tt„c for a, b, ceP then a+b < tt0c.

Proof Suppose that a < rt0c, b < K 0c and a+b K0c for a, b, ceP. Then, by
Lemma 2.2, there exists an element d such that kc A (a+b) < d < a+b for all keN.

This implies

(ncna)+(mcnb) = (n+m)cA(a+mc)A(nc+b)A(a+b)

(n+m)cA(a+b) < d for all n, mcN.

So we find

(ncAa)+b = (ncAa)+V,(mcAb) (Intr., 3, F1)

= Vm = , {(ncAa)+(mcnb)} < d for all neN.

Hence

d {Vn_,(ncna)}+b = a+b (a < tj0c).

This indeed contradicts d < a+b. The conclusion is that a < K0c and b < K oc imply
a+b oc. q

COROLLARY 2.2. 1f in an l.group a < rt 0b for a, b eP, then na <, rt0b for all n e N.

Proof. This follows by induction, for, according to Lemma 2.3, (n - 1)a < tob and
a < K0b imply na <, 1•t0b. q

Another property on "finite multiples" which occurs analogously in the case of
"infinite multiples" is: if in an l.group a < Nb and b < Nc for a, b, ceP then
a < Ne. We prove

LEMMA 2.4. 1f in an l.group a - At ob and b < K ac for a, b, ceP, then a 0c.

Proof. From b < K oc and Corollary 2.2 we know V,, (mc A nb) = nb.
Then

V, {mc n (nb n a)} = V , {(mc A nb) A a} = nb A a for all n eN (Intr., 3, F3)

We now apply Intr., 3, J2 substituting for the set of elements {aa} the set {nb n a,
neN} and for the set {a#} the set {mc,meN}. Because V ,(nbAa) exists (=

 since we just proved V „ _, {mc A (nb A a)} = nb A a for all n eN we have
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a = V „-1(
nb n a)

= Vm_, [mcA{V' ,(nbna)}]

= V,(mcna).

Hence a < K oc. q

COROLLARY 2.3. If in an l.group a < b and b < H oc for a, b, ceP, then a <, K0c.

COROLLARY 2.4. If in an l.group a <, K ob and b < c for a, b, ceP, then a < Z4„c.

Proofs. Both corollaries are proved in the same way. We prove the first one. a <, b

implies a <, At0b (Lemma 2.1) and an application of the foregoing lemma gives the
desired result. q

LEMMA 2.5. If in an l.group a <, H 0b and a <, K o c for a, b, ceP, then a <, Ko(b n c).

Proof. The assumptions of the lemma mean a = V n ,(nb A a) and a = V =, (mc A a)

for a, b, ceP. From a = a A a = { V, (nb n a)} V {°. 1 (mc n b)} and Intr., 3, J3 we
conclude

a = V 1(nbnmcna).

From this and (Intr., 3, I)

nb A mc A a < { (n + m) (b A c)} n a <, a

it follows that (Intr., 3, K)

a = 1{(n+m)(bAc)}na = Vk-1{k(bnc)Aa}

i.e. a < lto (b n c). q

COROLLARY 2.5. If in an l.group a ,< Atob and a ,< tt oc for a, b, ceP, then a ,< td a(b v c)

and a < t^„(b + c).

Proof Since b n c < b v c, we have (Lemma 2.1) b n c < Ko(b v c). From Lemma 2.5
we know that a < K0(b n c) and Lemma 2.4 leads to the conclusion a < rto(b v c).

The proof of a < K 0(b+c) is analogous. q
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THEOREM 2.1. The relation n^ o = {(a,b)e Q 2 :a < bt 0b} is a preorder on the set of

positive elements of an l.group.

Proof. From Corollary 2.1 we know that a <, H 0a for all anP. Hence the relation
nm. is reflexive. From Lemma 2.4 we know that the relation nKo is transitive. q

The classes of ir 1) will be called the K o-classes of the l.group G; the class

of the element anP will be denoted by a°.
Our first aim will be to prove the analogs of the Theorems 1.1 and 1.2 on Archi-

medean classes. In order to get an adequate description we will introduce a closure
operation in a lattice (i.e. a unary operation S --> [S] on the set of subsets of the
lattice such that S c [S], [S] = [ [S] ] and S c T implies [S] c [T]). The concept
is due to Riesz [12]. It concerns the correspondence

S—* [S] = {b:beS or b = v„a„ with a„eS}

for subsets of a lattice. A subset S is called closed if S = [S]. We formulate

THEOREM 2.2. An lto class is a subsemigroup and a closed convex sublattice of P.

Proof. Suppose a° = b° for a, b e P. This means a K0b and b Koa. From
a A b < a we conclude a n b °a (Lemma 2.1). From a < st oa and b < bt 0a we
conclude a+b < At 0a (Lemma 2.3) and since a v b < a+b (Intr., 3, C), we have
a v b <, tt0a (Corollary 2.3). Moreover, a <, stoa (Corollary 2.1) and a < tt 0b imply
a < K 0(a A b) (Lemma 2.5), a s K 0(a v b) and a o(a+b). Together witti the first
part of the proof these show that a° = b° leads to (a A b)° _ (a v b)° = (a + b)° = a°.
If we have a <, c < b and a° = b°, then a° < c° (since a rt0c i.e. (a, c) e nbK.) and
c° <, b°. From this it is obvious that a° = c°, which proves the convexity of an
bt0-class.

It remains to prove that an K 0-class of an element is closed. Suppose that v«aa
exists for a set of elements {aa}, such that (a,)° = a° for all a. From a < tt 0aa we
conclude a < toto( v aa.) (Corollary 2.4). On the other hand if, in property J2 of Intr., 3,
we replace the set of elements {a,} by the set {na, neN}, then V -_, (na Aa,) = a. for
all a and v aaa exists. Hence v a„ = V ° 

=1 {na A ( v ^a)}. This means v „a. < K0a.
Consequently v aaa ea°. q

The analogue of Theorem 1.2 is

THEOREM 2.3. The partition of P into rt °-classes is the minimal partition of P into
closed convex subsemigroups.
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Proof. P can be considered a closed convex subsemigroup of P. Therefore, the set
of partitions of P into closed convex subsemigroups is not empty and consequently
it has a g.l.b. in the p.o. set of all partitions of P. (Intr., 2). This g.l.b. is a partition of P
into closed convex subsemigroups, because the intersection of any number of parti-
tions of P into closed convex subsemigroups is a partition of the same type.

Let S be the class of the element anP in this minimal partition. We wilt show that
the K 0-class a° is contained in S. Let bna°, then a <, K0b and b <, stoa i.e.
a = V -=1 (nb A a) and b = V , (na A b). From Intr., 3,1 we know

aAb < nbAa < n(aAb) and aAb < naAb <, n(aAb).

Consequently, the classes of the partition under discussion being convex subsemi-
groups, we see that na A b and nb A a belong to the same class for all n e N. From the
fact that this class is closed we see that: V , (na A b) = b and V , (nb A a) = a
belong to the same class. So indeed a° c S. The partition of P into K 0-classes is a
partition of P into closed convex subsemigroups (Theorem 2.2) and as we just proved
it is contained in the minimal partition into closed convex subsemigroups. But then
it is the minimal partition. q

From Intr., 1 we know that the set of K 0-classes, being the set of classes of a pre-
order, can be partially ordered in a natural way. We intend to show that (a v b)° and
(a A b)° are the 1.u.b. and g.l.b. respectively of a° and b° with respect to this partial
order. Clearly (a v b)° > a° and b°. If c° >, a° and b°, then a v b < a+b <, Kac
(Intr., 3, C; Lemma 2.3 and Corollary 2.3), and consequently (a v b)° <, c°. This
proves that (a v b)° = á v b°. In the second case (a A b)° < a°, b° is trivial. If
c° <, a°, b°, we have c < K °a and c K0b and thus c < 1t °(a n b) (Lemma 2.5) or
c° <, (a A b)°. Consequently (a A b)° = a° A b°. This proves that the partially ordered
set of g °-classes is a lattice. Now we are able to formulate

THEOREM 2.4. The mapping a:a - -* a° from the lattice of Archimedean classes of an
l.group G onto the lattice of the 0-classes of G is a lattice homomorphism with kernel
K(a) = {0-}.

Proof. First of all we must show that a maps one Archimedean class upon one
Ko class i.e. a is a function. For that purpose suppose a - <, b - i.e. a < Nb. This
implies (Lemma 2.1) a < t ob or a° < b°. Because a - = b - can be interpreted as

a - < b - and b - < a - , this statement implies a° < b° and b° < a° i.e. a° = b°.
Hence a is a function from the lattice of Archimedean classes to the lattice of
M0-classes of G. That a is onto is trivial.

Above we derived that (a v b)° = a° v b°. This means that a maps a - v b - = (a v b) -

upon (a v b)° = a° v b° or in words, a is a join homomorphism. In the same way we
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can demonstrate that a is a meet homorphism. But then a is a lattice homomorphism.
It is immediately seen that the kernel K(a) of a is {0 - }. q

COROLLARY 2.6. The partially ordered set of the ,tto classes of an l.group is a distri-
butive lattice.

Proof. The lattice of Archimedean classes is distributive (introductory remarks of
the second chapter, § 1) and a lattice homomorphic image of such a lattice is also
distributive. q

The mapping 0 : a — a° from the positive cone of an l.group G onto the lattice of

0-classes of G can be considered as the result of first applying the homomorphism
(p of Theorem 1.3 on P and next the homomorphism a of Theorem 2.4 on the image
(i.e. the lattice of Archimedean classes of G). In this sense ' might be called
the product of (p and a i.e. t 11' = a • cp. It is seen from Theorem 1.3 that >/i(a + b) =

= a • qp(a+b) = a • (p(a v b) = O(a v b). Moreover, the kernel of cp is {O} and the
kernel of a is {0 - }. Hence the kernel of ii is {O}. This proves the first part of

THEOREM 2.5. The mapping >1i : a –> a° Erom the positive cone P of an l.group G onto
the distributive lattice of the t<o classes is a lattice homomorphism with kernel K(i) _
= {O}, satisfying

>/i(a+b) = t/i(a v b).

can be characterized as the minimal suprema preserving homomorphism i' of P
which satisfies >/fr'(a+b) = fr '(a v b).

Proof. Let a = v ^a^ for elements a^ EP. We prove that 1i (a) = v alIi (aa) or other-
wise stated that a° is the l.u.b. for the elements (aa)° in the lattice of „to classes. It is
clear that a° is an upperbound for the (aa)°. Let b° be any upperbound for the (aa)°,
then aa <, M.b or aa = V n _ 1 (nb A a,) for all a. This implies

a = v aaa = Vn=1 {nbA(v aaa)} = V =,(nbAa)

(by Intr., 3, J2,) the set {a„} being replaced by the set {nb, neN}) or a° <, b°. So
indeed, a° is the least upperbound for the (aa)° i.e. 0 is suprema preserving.

Suppose 0' is a suprema preserving homomorphism of P which satisfies Ji'(a+b) _
v b). Then >G' is also a join homomorphism, satisfying >/i'(a+b) = O'(a v b).

Consequently the homomorphism p of Theorem 1.3 is smaller than 0'.
For a, b eP we have cp(a A b) = cp(na A b) for all n e N. Hence i'(a A b) = O'(na A b)

for all n e N. If b = V 1 (na n b), then the suprema preserving property of 0' yields
^/i'(b) = t/i'(a n b). In the same way we derive from a = V, (nb n a) that iji'(a) =
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= ^i'(a n b). This means that O(a) = iji(b) (or á = b°) implies O'(a) = >fi'(b). Thus 1/i
is smaller than is". q

COROLLARY 2.7. The Archimedean classes of an l.group G are contained in the K 1

-classes of G.

Proof. The proof of this corollary is trivial, since the homomorphism cp of Theorem
1.3 is smaller than the homomorphism i/i of the foregoing theorem. q

There is an important case in which the Archimedean classes coincide with the
-classes. Then, in other words, the mapping a of Theorem 2.4 is a lattice isomorphism.

This is seen from

THEOREM 2.6. Ina fully ordered group the 0-classes are the Archimedean classes.
Otherwise stated: If in a fully ordered group a < rt 0b . for a, b c-P, then a < Nb (c.f.
also Lemma 2.1).

Proof. By Corollary 2.7, it suffices to show that the rto class a° of a positive element
a of a fully ordered group G is contained in the Archimedean class a - of a.

We already know that {0 - } = {O°} (Theorem 2.4). Suppose a° = b° for elements
a, b > 0 (a > 0 combined with b=0, or a=0 combined with b>0 are im-
possible after Theorem 2.5). If a = b, then a - = b - . So we assume a 0 b. Then
without loss of generality we may take a < b. If it is true that na < b for all neN,
then we also have na < b — a for all n EN. Hence b = V _ , (na A b) <, (b — a) A b =
= b — a. This implies a < 0, contradicting a> 0. Consequently from a° = b° it must
be concluded that na < b is not valid foi all n E N. In a fully ordered group this means
that for some neN we have b < na. As a consequence a° = b° implies a - = b-.
This means that the K o-class a° is contained in the Archimedean class a - . q

Let L„(aeA) be a set of fully ordered groups. The set of all the elements a =
_ <..., a., ...> of the complete direct sum of the L a such that nearly all a. vanish, is an
l.subgroup of the complete direct sum. The positive elements in this subgroup are the
elements for which all non-vanishing components a a are strictly positive in La. The
l.group thus obtained is called the restricted cardinal sum of the La. Theorem 2.6 can
be extended to cases in which G is an l.group of this type.

THEOREM 2.6A. In a restricted cardinal sum of fully ordered groups the 0-classes are
the Archimedean classes.

Proof. The introductory remarks of the proof of Theorem 2.6 apply here too. So
we confine ourselves to the case a° = b° for elements 0 < a < b. Let a = <..., a., ...>
and b = <..., b«, ...>. Then 0 < a < b means 0 <, aa <, bQ for all aeA. Suppose
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(a^)° < (bao)° in L., for some a.eA. We define ao = <..., ap, ...> with a. = 0 if
/I 0 ao, and a„ = a, if $ = ao . Then both b and b—a° are upperbounds for the ele-
ments na Ab, ne N. But b is the l.u.b. for these elements (b° = a°

); hence ao < 0.
This implies a , = 0. If b, 0, then b cannot be the l.u.b. for the elements na n b
(n eN), because if we replace the ^ 0-th component b, of b by 0, we get a strictly smaller
upperbound for the same elements. So b = V', (na A b) implies b, = 0. This con-
tradicts (a„.)° < (b„,)°. The conclusion is (a^)° = (ba)° in La for all aEA.

For at most a finite number of a's, say a i (i = 1, ..., n), we have aa . > 0. For
each such aa . there exists a natural number m i such that m ia0 . > ba . (Theorem 2.6).
Let m = max (m l , ..., m„), then it is clear that ma > b. Since we have a < b, we
conclude a - = b - . q

If G is the complete direct sum of fully ordered groups L a, with the componentwise
ordering (the so called cardinal sum of the La) then the 8to classes need not be the
Archimedean classes. The following example will show this.

EXAMPLE 2.2. Let A be the closed interval [0, 1] and the La are the fully ordered
groups of the reals for all aeA. Then the cardinal sum of the L« is the lattice ordered
group of all real-valued functions on [0, 1 ] Let f be the function f(x) = 1 on (0, 1 ]
and f (0) = 0, and let g be the function g(x) = x on [0, 1 ] Then f ° = g° butf - > g -. q

As in the case of the Archimedean classes of an l.group G we have

THEOREM 2.7. The lattice of rt 0-classes of an l.group G is a chain, if and only if G is
a fully ordered group.

The proof of this theorem is completely analogous to the proof of Theorem 1.4.
We omit it.

A pseudo strong unit of an l.group G is defined as an element veG such that for
each aeG we have a < Kov.

THEOREM 2.8. The lattice of td °-classes of an l.group G has a maximal element, if and
only if G has a pseudo strong unit. This maximal tt 0-class is the set of pseudo strong
units of G.

Proof. Let v be a pseudo strong unit of G, then 0 < av i.e. 0 = V „_, (nv A 0). From
nv A 0 = n(v A 0) (Intr., 3,1) we see that 0 = V n= ,n(v A 0) = VA 0. This means v > 0,
hence v° exists. It is clear that v° is the maximal td 0-class and so: (v')° = v° if v' is
any other pseudo strong unit.

It is trivial that the maximal Kó class consists of all the pseudo strong units in G. q

COROLLARY 2.8. Every strong unit is a pseudo strong unit.



The proof of this corollary is a straightforward application of Theorem 1.5, Theorem
2.4 and Theorem 2.8 successively. Not all pseudo strong units are strong units as can
be seen from Example 2.1. There f is a pseudo strong unit but not a strong unit.

§ 3 Carriers

A third important preorder on the positive cone P of an l.group G can be defined
as follows :

7r, = {(a,b)eP 2 :xAb = 0 for xc-G implies xAa = 0}.

It is immediately seen that 7r, is a reflexive and a transitive relation on the positive
elements of G. Hence n, is a preorder on P. The classes of this preorder (Intr., 1) are
called the carriers of G. The carrier of the element acP is denoted by a^. The notion
was introduced by Jaffard [7], [8] in a slightly different way. He discovered several
theorems on this subject which are similar to our theorems on Archimedean classes
and Kó classes.

We mention without proof

THEOREM 3.1 (Jaffard [7]). A carrier is a subsemigroup and a convex sublattice of P.

THEOREM 3.2. (Jaffard [8]). The partially ordered set of the carriers of an 1.group G
is a distributive lattice. The mapping x:a—*a" from the positive cone P of G onto the
lattice of the carriers of G is a lattice homomorphism with kernel K(X) = {0},
satisfying

x(a+b) = x(a v b).

To Theorem 3.1 we add

THEOREM 3. l a. A carrier is closed.

Proof. Let a" be a carrier and let v aaa exist for elements aa e a ^ . Then x n a = 0 for
xe G implies x A a« = 0 for all a, and from Intr., 3, F3 it then follows that x A (v aaa) =
= v a(x n aa) = 0. Conversely, let x A (v aaa) = 0, then clearly x n aa = 0 for any a
and, because aQ ea^, this implies x n a = 0. This proves v aaa ea^ hence a^ is closed. q

A theorem of Pierce [11] reads: The mapping x (see Theorem 3.2) can be charac-
terized as the maximal lattice homomorphism of P with kernel {0}. This result can
be extended to

THEOREM 3.3. The mapping x of Theorem 3.2 can be characterized as the maximal
meet homomorphism x' of P with kernel K(x') = {0}.
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Proof. Let x' be any meet homomorphism of P whose kernel is {O} and suppose
x'(a) = X'(b) for a,beP. Then x A (a A b) = 0 for xe G implies x'(x A (a n b)) _
=X'(x)nX'(a)nX'(b) = X'(xna) = x'(0)

The kernel of x' being {0} we find that x A (a A b) = 0 and x'(a) = X'(b) imply
x A a = 0. But then a A _ (a A b) A . The interchanging of a and b shows that X'(a) _
= x'(b) also yields b ^ _ (a A b) ^, and thus a ^ = b".

Hence, the classes of the meet homomorphism x' (Intr., 4) are contained in the
carriers of G. The mapping x:a—>a^ itself is a meet homomorphism with kernel {0}
(Theorem 3.2). This completes the proof. q

COROLLARY 3.1. The maximal meet homomorphism of P with kernel {0} is a lattice
homomorphism of P.

The connection between the lattice of the 1`to classes and the lattice of the carriers of
G follows from

THEOREM 3.4. The mapping $ : á —* a ^ from the lattice of the rto classes of an l.group G
onto the lattice of the carriers of G is a lattice homomorphism with kernel {00}.

Proof. Suppose a° < b° for some a, beP. Then a <, rt 0b i.e. a = V , (nb A a). If
x n b = 0, then x n nb = 0 for all n e N (Intr., 3, D) ; hence x A nb n a = 0 for all
n e N. Consequently, x n a = x A { V 1 (nb n a) } = V i=1 (x n nb n a) = 0 (Intr., 3, F).
So we showed that a° < b° implies (a,b)eir i.e. a^ < b^. But then a° = b° implies
a ^ = b" which proves that $ is a function. Since we know (a A b)° = a° n b° and
(a v b)° = a° v b° from the introductory remarks to Theorem 2.4 and (a A b) ^ =
= a" Ab" and (a v b) ^ = a" v b ^ from Theorem 3.2, it is proved that $ is a lattice
homomorphism. Obviously the kernel of $ is {0°}. q

COROLLARY 3.2. The 1!to classes of an l.group G are contained in the carriers of G.

Goffman [5] has proved that in an Archimedean l.group the mapping x  -+ a^
of Theorem 3.2 is the unique suprema preserving homomorphism x' of P with kernel
K(x') = {0}, and which satisfies x'(a+b) = x'(a v b). From Theorem 2.5 we know
that 1' : a -^ a° is a suprema preserving lattice homomorphism with kernel {0} and
>/i(a+b) = fi(avb). Hence in an Archimedean l.group we have x = fr. Otherwise
stated we have proved (Intr., 4)

THEOREM 3.5. In an Archimedean l.group the carriers are the t oto classes.

A weak unit w of an l.group Gis defined as an element we G such that x A w = 0 for
xeG, if and only if x = 0 (Birkhoff [1]). It is clear that w is a positive element of G.
The carrier w^ of a weak unit w is the maximal element in the lattice of the carriers of
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an l. group G (Fuchs [4]) and, conversely if the lattice of carriers of an l. group G bas a
maximal element, then the elements of this carrier (and only these) are the weak units
in G.

COROLLARY 3.3. Every pseudo strong unit is a weak unit.

This is a direct consequence of Theorem 2.8, of Theorem 3.4 and of the preceding
observations, applied successively. Not all weak units are pseudo strong units. For
example in a non-Archimedean fully ordered group all strictly positive elements are
weak units but not all these elements are pseudo strong units.

However, from the foregoing theorem we know that in an Archimedean l.group
the weak units are pseudo strong units. This is an extension of a result of Fuchs [4].
He proved this under the stronger hypothesis that G is a complete 1.group.

§ 4 The lattice of ttó classes

So far we have deduced the structure of the K 0-classes and of the lattice which they
form, from what is known about l.groups. In this paragraph we will investigate the
consequences regarding the l.group G if the lattice of its K- oclasses is relatively com-
plemented.

Let G be an l.group. Gis called a full l.group, if V n _ 1 (na A b) exists for all a, b EP.

THEOREM 4.1. If G is a Pull l.group, then the lattice of the Kó classes of G is relatively
complemented.

Proof. Because the lattice of ttó classes is a distributive lattice with minimal element 0°
(Corollary 2.6), it suffices to prove that the lattice of tdo classes sectionally comple-
mented (Intr., 2). Let a° and b° be lto classes of G such that a° < b°, and let
c = V  (na n b). The t<, classes are closed (Theorem 2.2) and na A bna° for all neN.
So we have ceá i.e. c° = a°. It is clear that b—c 0; hence (b—c)° exists. We
conclude (b—c)°va° = (b—c)°vc° = {(b—c)+c}° = b° (c.f. Theorem 2.5 for the
second step).

From Intr., 3, F1 we see that a + c = V =1 { na n (a + b)} and Intr., 2, F3 shows
bA(a+c) = V,{bnnaA(a+b)} = V'- ,(naeb) = c. This implies (b—c)na = 0

and, consequently, (b — c)° A a° = 0°. This proves that (b — c)° is the complement of

a° in [0°, b°]. q
On the other hand we have

THEOREM 5.2. If the lattice of the tt °-classes of an l.group Gis relatively complemented,
then G is Archimedean.
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Proof. Suppose G is not Archimedean. According to Intr., 3, P7 there exists a and b
(a, b> 0) such that na <b for all n E N. Then we have a° < b°.

The condition of the theorem yields an Hó classe c° such that c° A á = 0
0
 and

c° v a° = b°. From c° A a° = (c A a)° and Theorem 2.5 we conclude c A a = 0. From
c° v a° = (c v a)° = (c+a)° and (2b)° = b° (both consequences of Theorem 2.5) we
derive 2b = V n _, {n(a+c)A2b}. Because orthogonal elements commute (Intr., 3, D)
we have n(a+c) = na + nc, and so n(a + c) n 2b = (na + nc) A 2b < (b + nc) A2b =
= b+(ncnb) <_ 2b.

From Intr., 3, K and F1 we see that 2b = V 1 (b + (nc n b)) = b + Vn _ ,(nc n b) ;
hence b = V'_, (nc n b) i.e. b° < c°.

Since c° v a° = b° it follows b° = c°; hence b° Aa° = 00.

This last conclusion and a° < b° imply a° = 0
0
 i.e. a = 0. This contradicts a> 0

and, consequently, the lattice of K 0- classes of G cannot be relatively complemented,
if G is not Archimedean. q

In order to formulate the next theorem we use the following abbreviations:
"Full" means: Gis a full l.group.
"T rel. compl." means: the lattice Fof m. classes of G is relatively complemented.
"Arch." means: G is an Archimedean l.group.
"a° = a" means: the carriers of G are the id 0-classes of G.
"A rel. compl." means: the lattice A of carriers of G is relatively complemented.
Moreover: p -> q means p implies q and q}_-* r means that whenever p and q hold
simultaneously we have r; p, q and r here stand for properties of the l.group G. The
first type of implication (p -> q) will be called a simple implication. Then we have the

FIRST INCLUSION THEOREM. In any l.group G we have the following implications:

(->Arch.--*a° = a^
Full -> F rel. compl. { }-* F rel. compl.

l -+A rel. compl.

The converse of the simple implications does not hold. Consequently, neither of the pro-
perties "Arch" and "a° = a" " depends on "A rel. compl.".

Proof. "Full -> F rel. compl." is proved in Theorem 4.1.
'T rel. compl. —* Arch." is proved in Theorem 4.2.
"Arch. -> a° = a^" is proved in Theorem 3.5.
"I' rel. compl. -* A rel. compl." is a consequence of the fact we just mentioned that
'T rel. compl." implies "a° = a ^ ",
and finally that "A rel. compl." in combination with "a° = a^" imply I' rel. compl.
is trivial.

The second part of the theorem is proved by a list of counterexamples.

29



1. An l.group with a relatively complemented lattice of K°-classes which is not a full
l.group. Let G be the additive l.group of all real continuous functions on [0, 1]

with P as the set of all functions f (x) > 0 in G (the "pointwise ordering"). The lattice
of K°-classes of G (which is the same as the lattice of carriers of G because G is Archi-
medean; Theorem 3.5) is relatively complemented. Let f be the function f(x) =
max(x— Z, 0) on [0, 1] and let g be the function g(x) = 1 on [0, 1]. Thenf, geP and
V n= , (nf n g) does not exist in G. Hence Gis not a full l.group.
2. An Archimedean l.group of which the lattice of °-classes (which is the lattice of

carriers; Theorem 3.5) is not relatively complemented. Let G be the additive
l.group of all real continuous functions on [-1, 1] such that each function faG is
constant in some interval (0, e f) with e f > 0, G being pointwise ordered. G is an Ar-
chimedean l.group. Let f be the function f (x) = max(—x,0) on [-1,1] and let g be
the function g(x) = 1 on [-1,1]. Then f, gaP and f ° s g° but there exists no com-
plement of f° in the interval [0

0
, g°]. Consequently, the lattice of the Ká classes of G

is not relatively complemented.
3. Any non-Archimedean fully ordered group is an l.group of which the lattice of

carriers is relatively complemented (in fact it consists only of two elements) but
of which the lattice of Ko classes (a chain with more than two elements) is not relatively
complemented.
4. A non Archimedean l.group in which the carriers are the Kó classes. Let G be the

additive group of real valued functions on [0, 1] such that f (x) 0 0 for at most
finitely many x in [0, 1] and let P be the set of all functions f in G such that f (0) > 0
or f (x) > 0. G is an l.group and it is easily leen that the carriers are the lto classes.
If f is the function f (x) = 0 for 0 x < 1 and f (1) = 1, and if g is the function
g(0) = 1 and g(x) = 0 for 0 <x 1, then f, gaP and nf < g for all ne N. This
shows that G is non-Archimedean. q

§ 5 The lattice of Archimedean classes

We investigate the structure of an l.group whose lattice of Archimedean classes is
relatively complemented.

THEOREM 5.1. If the lattice of Archimedean classes of an l.group G is relatively com-
plemented, then the Archimedean classes of G are the carriers of G.

Proof. The mapping y : a - --> a ^ from the lattice of Archimedean classes onto the
lattice of carriers of G is a lattice homomorphism with kernel K(y) = {0 - }. In fact
y can be considered as the product of the lattice homomorphism a of Theorem 2.4
and the lattice homomorphism f of Theorem 3.4. Since a lattice homomorphism of
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a relatively complemented lattice is determined by its kernel (Intr., 4) the mapping y
must be a lattice isomorphism. This proves the theorem. q

The following theorem gives a necessary and sufficient condition for the l.group G
for its lattice of Archimedean classes to be relatively complemented.

THEOREM 5.2. The lattice of Archimedean classes of an l.group G is relatively com-
plemented, if and only if for all a, beP we have V  _ ,(na n b) = V  =, (na n b) for
some keN.

Remark. The fulfilment of this formula for all a, beP requires firstly that
V n , (na n b) exists for all a, b eP (i.e. G is a full group cf. § 4 of this chapter) and
secondly that this l.u.b. of infinitely many elements can be written as ajoin of a finite
number of these elements.

Proof. Let the lattice of Archimedean classes of G be relatively complemented and
let a, beP. Let c - be the complement of (a n b) - in [0 - , b - ], i.e. c - A (a n b) - = 0 -

and c v (a A b) = b - . The first equality implies c A (a A b) = 0, so c and a A b com-
mute (Intr., 3, D). The second equality yields b - = {c+(a n b)} - (Theorem 1.3) and
as a consequence b <, k(c+(a A b)) = kc+k(a A b) for some keN. Otherwise written
b = b A {kc+k(a n b)} = b A {kc v k(a n b)} (Intr., 3, D). Hence if j > k, we have

jaAb =j(aAb)Ab (Intr., 3, I)

= j(a A b) A b A {kc v k(a A b)} (Intr., 3, A)

= b A [{ j(a A b) A kc} v { j(a A b) A k(a A b)} ] ((a n b) A c = 0 and

= b v {O v k(a A b)} Intr., 3, D)

= bAk(aAb) = kaAb.

But then V , (na A b) = V , (na n b) for all j >, k. This means V n = , (na n b) _
= Vn=,(naAb).

For the proof of the converse suppose a - < b - in the lattice of Archimedean
classes of G. If c = V „=1 (na A b) = V 1 (na A b) = ka A b we prove that (b — c)
(b—c is clearly positive) is the complement of a- in [0 - , b - ]. For the proof of
(b — c) A a = 0 we refer to the last part of the proof of Theorem 4.1. Since ka c,
we have b - <, (b—c+ka) - = (b—c) - v(ka) - = (b—c) - va - . But (b—c) - , a b -

so (b—c) - va - =b. q

For the following theorem we use the abbreviations and notations of the First inclusion
theorem (§ 4 of this chapter). Moreover we use the following abbreviations:
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"d rel. compl." means: the lattice d of Archimedean classes of G is relatively com-
plemented.

"a - = a^" means: the Archimedean classes of G are the carriers of G.
"a - = a°" means: the Archimedean classes of G are the K0-classes of G.
Then we have the

SECOND INCLUSION THEOREM. In an l.group G we have the following implications:

-*a-=a^-+a-=a°
d rel. compl. } -* d rel. compl.

-*full —* F rel. compl. )))

The converse of the simple implications does not hold. Consequently, each of the proper-
ties "a = a^" and "a - = a°" on the one hand are independentfrom each of the prop-
erties "full" and 'T rel. compl." on the other hand.

Proof. "d rel. compl. -* a - = a` is proved in Theorem 5.1.
"a - = a^" -+ "a - = a°" is a direct consequence of Corollary 2.7 and of Corollary 3.2.
"d rel. compl. -+ full" is a part of Theorem 5.2.
"Full -* T rel. compl." is proved in Theorem 4.1.
Finally the fact that "a - = a°" combined with "T' rel. compl." imply "d rel. compl.",
is trivial.

Just as for the First inclusion theorem we give a list of counterexamples in order to
prove the second part of the theorem.
1. Example 4 of the first inclusion theorem shows an l.group in which the Archi-

medean classes are the carriers but whose lattice of Archimedean classes is not
relatively complemented.
2. In a fully ordered non-Archimedean group the Archimedean classes are the

0-classes (Theorem 2.6) but they are not the carriers (except {0 - } = {0°} = {0 ^ }).
3. A full l.group of which the lattice of Archimedean classes is not relatively com-

plemented. Let G be the group of all real valued functions on [0, 1] with the point-
wise ordering. This is a conditionally complete l.group and so it cannot be but a full
l.group. If f and g are as in Example 2.1, then f - < g, but there is no complement
of f - in the interval [0 - , g - ].
4. That 'T rel. compl." does not imply "full" for an l.group G has already been

proved in the First inclusion theorem. q

The complete direct sum Y«EAL,. of fully ordered groups La is an l.group and is
called the cardinal sum of the La. A subdirect sum of the La is called a lattice ordered
vector group; this means that a lattice ordered vector group G is an l.subgroup of a
cardinal sum of fully ordered groups La such that for any a,EL, there exists an
element ae G with a-th component a,. (The restricted cardinal sum of fully ordered
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groups (p. 24) is a lattice ordered vector group, but not conversely). In the sequel we
will use the convention of making no distinction between an l.group G and a lattice
and group isomorphic image of G. Then an important theorem of A. H. Clifford
says that a commutative l.group is a lattice ordered vector group. Using this result
we can prove

THEOREM 5.3. If  the lattice of Archimedean classes of an l.group G is relatively comple-
mented, then G is an l.group of real valued functions on a set A with the pointwise
ordering.

Proof. If the lattice of Archimedean classes of G is relatively complemented, then G
is a full group (Second inclusion theorem), hence Archimedean (First inclusion theo-
rem) hence commutative (Intr., 3, H). Thus G is a subdirect sum of fully ordered
groups La, c nA (see above). We prove that the La are Archimedean. Suppose aa and
ba are positive elements of La such that na„ < ba for all ne N. Let a resp. b be elements
of G with components aa and b« in L. Then (na n b)„ = naa A ba = na„ for all n EN.

From the proof of the first part of Theorem 5.2 we know that there exists a knN
such that ka A b =ja n b for all j >, k. And so ka n b = (k+ 1)a A b. This implies
ka« = (ka n b)^ = {(k + 1)a A b}a = (k + l)aa hence aa = 0. Now Intr., 3, P7 implies
that L is Archimedean and by Intr., 3, H L is a subgroup of the reals. This proves
the theorem. q

If the lattice of Archimedean classes of an l.group G is a Boolean algebra, then this
lattice is relatively complemented (Intr., 2) and it also has a maximal element. So by
the foregoing theorem, G is a group of real valued functions on a set A, and by Theo-
rem 1.5 G has a strong unit u. Obviously since u is a positive element of G, all com-
ponents ua of u are positive and we assert that all uQ are strictly positive. Indeed,
let ua = 0 for some aeA and let ax be a strictly positive element of L. Now, there is
an element a e G with af-th component a a. For all n e N we have (nu)„ = nu„ = 0 < aa.
This implies a 4z nu for all neN, contradicting that u is a strong unit. Then the
mapping a = <..., aa , ...> — a' = <..., aju., ...> is a lattice and group isomorphism
from G onto an l.group G' of real valued functions on A with the pointwise order-
ing, such that u - u' = <..., 1, ...> (all components of u' are 1). Apparently, u' is
called the unit function on A. This proves

THEOREM 5.3a. If  the lattice of Archimedean classes of an l.group G is a Boolean
algebra, then G is an l.group of real valued functions on a set A, with the pointwise
ordering, and such that the unit functions belongs to G.

Let V be a vector space over the field of the real numbers R. Moreover, let V also be
a lattice ordered group in which a > 0 in V and A >, 0 in R imply A a 0 in V. Then
V is called a vector lattice.

A function lattice is a vector lattice of real valued functions on a set A, with the
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pointwise ordering. A simple function on a set A is a real valued function on A that
has only a finite number of values. (Obviously if A is a finite set, then all real valued
functions on A are simple functions). If f and g are simple functions on A, then
, f (A E R), f + g, ƒv g = max (f, g) and ƒ/\ g = min (f, g) are also simple functions
on A. Hence we can speak of a function lattice of simple functions on a set. In a
function lattice on a set A the unit function (f() = 1 for all aeA) will be denoted
by fi ; the zero function (i.e. the vanishing function on A) will be denoted by fo.

The next theorem characterizes vector lattices with a Boolean algebra of Archi-
medean classes.

THEOREM 5.4. A vector lattice V has a Boolean algebra of Archimedean classes, if and
only if Vis afunction lattice of simple functions on a set A such that V contains the unit
function on A.

Proof. Any vector lattice is a subdirect sum of fully ordered vector lattices (Birk-
hoff [1]). The vector lattice Vis also an l.group, hence the fully ordered vector lattices
meant in the preceding sentence are Archimedean (c.f. the proof of Theorem 5.3).
But then they are the fully ordered groups of the real numbers with the usual ordering.
Hence V is a function lattice on a set A. V also contains the unit function fl on A
(Theorem 5.3a), and (fl ) - is the maximal element of the Boolean algebra of Archi-
medean classes. If f is any element of V then 1 f I < Nfl . This implies that all
elements of V are bounded functions on A.

Suppose ge V and that g is not a simple function on A. Then g has an infinite num-
ber of values. Because g is a bounded function, the set of values must have an accu-
mulation point 2. Let f = Ig- 2f1I, then fE V, f> 0 and 0 is an accumulation point
of the values off. Now, for any function h e V such that h Af = f0, we then have that
0 is an accumation point for the values of h +f = h v f. This implies that we never
have n(h v f) > fl for n e N. Consequently, f - has no complement in the Boolean
algebra of Archimedean classes. This is a contradiction. The conclusion is that Vis a
function lattice of simple functions on A and such that fl e V.

Conversely let V be such a function lattice. The lattice of Archimedean classes of
Vis a distributive lattice with minimal element (f0) - (§ 1 of this chapter). Clearly fi
is a strong unit of V hence the lattice of Archimedean classes has a maximal element
(f1)

- (Theorem 1.5).
Let f be any positive element of V i.e. f is a positive simple function on A. Then

the finite set of strictly positive values of f contains a minimum t > 0. Let g =
= (fl — M - 'f) v fo , then g e V. We will prove that g - is the complement of f in the
lattice of Archimedean classes of V. Let aeA, then clearly either f(^) = 0 or
f(^) > ie i.e. g(a) = 0. Hence f n g =f0 and thus f - n g - = (f0)

- . Moreover, this
implies /2 -lfng = f; hence µ- lfvg = µ -1f+g. Then f - vg -  (,u -1f) v9 =
= (µ- lfv g) - = (g-lf+g) - = (fl v g - 'f )- = (fl ) - (using Theorem 1.3). Con-
sequently, the lattice of Archimedean classes is complemented. q
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§ 6 1.-ideals and normalizers

For some (fixed) element x of an l.group G we define ax = — x+a+x i.e. aX is the
image of a under the inner group automorphism induced by x. We know that
if and only if a >, 0 (Intr., 3, P3). So for any element aeP, it makes sense to speak
of the Archimedean class, the 0-class and the carrier of both a and a.,. The group
automorphism referred to above induces several lattice automorphisms.

THEOREM 6.1. Let x be any (fixed) element of an l.group G, then:
(i) the mapping a -+ ax from G onto itself is a group and lattice automorphism,
(ii) the mapping a - -* (ax) - Erom the lattice of Archimedean classes onto itself is a

lattice automorphism,
(iii) the mapping a° - (ax)° from the lattice of rt 0-classes onto itself is a lattice auto-

morphism,
(iv) the mapping a ^ > (ax) ^ from the lattice of carriers onto itself is a lattice auto-

morphism.

Proof. (i) We know that a - ax is a group automorphism. That it is also a lattice
automorphism, follows from

(avb) = —x+(avb)+x = (—x+a+x)v(—x+b+x) = axvbx

and (anb)x = axnbX.

(ii) First prove that the mapping a - (a') - is one to one i.e. if bea - , then
be(a) - and conversely. Since a,< nb implies aX = —x+a+x —x+nb+x =
= n(— x+ b + x) = nbx, we see that (a, b) e nN implies (aX , bx) e lrN. Therefore, b e a -

(this means (a, b) a xN and (b, a) e IrN) implies bx e (a')- . Conversely, if bx e (a') -, then
from the foregoing sentence it follows that b = (bx)_xe{(ax)_x}- = a-.

Next we have to prove that (ax) - v (bx) - = {(a v b)x} - and (ax) - A (bx) - _

_ {(a n b)X} -. Since both formules are proved in the same way we restrict ourselves
to the proof of the first. We have (a') - v (bx) - = (ax v bx) - (Theorem 1.3) and
ax v bx = (a v b)x (c.f. part 1 of this proof). Hence (ax) - v (bi) - = {(a v b)x} -.
(iii) Let (a, b)eir i.e. a = V,(nbAa), then ax = — x+a+x = —x+

+{V,(nbna)}+x = Vn ,{(—x+nb+x)n(—x+a+x)} = V„ ,(nb x nax). This
means (a',bx)cir . Therefore, bea° (i.e. (a,b)eit and (b,a)eir ) implies bXE(ax)°

The proofs of: bx e(ax)° implies bea° and the proofs of (ax)° v(b x)° = {(avb)x}° and
(a„)° A (b.)° = {(a A b) X}° are analogous to the proofs of the corresponding data for
Archimedean classes in part (ii).
(iv) As in part (iii) the only statement that has to be proved individually is:
(a, b) e 7r implies (a., bx) e rc,. So let y A b = 0 imply y A a = 0. Then ZA bx = 0 implies
(x+z—x)Ab = 0 and thus (x+z—x)Aa = 0. Consequently, zna. = 0.

This completes the proof. q
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COROLLARY 6.1. 1f the chain of Archimedean classes of a fully ordered group G
(Theorem 1.4) is well ordered, then every Archimedean class is a normal subset of G.
(c.f. also Fuchs [4] p. 82 Corollary 14).

Proof. Suppose there exists an element xe G such that the set of Archimedean classes
a- with a - (ax) - is not empty. Let b - be the minimal element of this set. Then
b- < (b„) - , hence (b_„) - < b - . The definition of b - implies (b_ x) - = {(b_ x)x} - =
= b - , and this contradicts (b_ x) - <b. Hence a- = (ax) - for all xeG and all aeP
i.e. the Archimedean classes are normal. q

An example of a fully ordered group in which the Archimedean classes are not
normal is given by Chehata [2].

The mapping a -* ax from G onto itself is the identity automorphism for all xc- G, if
and only if G is an abelian group. One might ask what happens if the mapping
a - -+ (ax) - from the lattice of Archimedean classes onto itself is the identity auto-
morphism for all xeG. One can put the same questions about the corresponding
cases á -^ (a„)° and a ^ -^ (as) 

A• 
These questions will be answered in the sequel.

An 1.-ideal of an l.group G is a normal and convex l.subgroup of G. Every l.ideal
of G is the kernel of a lattice and group homomorphism from G onto an l.group G',
and if two lattice and group homomorphisms of G have the same kernel, then they
are equal (in the sense of Intr., 4).

THEOREM 6.2. The following three propertjes are equivalent in any l.group G:
(i) The mapping a - - (a')

- Erom the lattice of Archimedean classes onto itself is the
identity automorphism for all xe G,

(ii) The Archimedean classes of G are normal subsets of G,
(iii) Every convex and directed subgroup is an 1.-ideal of G.

Proof. (i) Since a - = (as) - for all xeG means ar ea- for all xeG we have that
(i) and (ii) are equivalent.
(ii) — (iii) Let G be an l.group with normal Archimedean classes and suppose S is
a convex and directed subgroup of G. Obviously, S contains together with the positive
element a the Archimedean class a - of a. Since ar ea- for all xeG, we have a„eS
for all xeG. This implies that the positive cone of S is a normal subset of G. But S is
generated by its positive cone (Intr., 3, P4). Hence S is normal in G. P(S) is a sub-
lattice of G. Viz. if P(S) contains a and b, it also contains a+ b, and because a < a v b

a+b (Intr., 3, C) the convexity of S implies av beP(S). Trivially a n beP(S) (from
0 < a n b <, a). Using again that P(S) generates S, we may conclude from Intr., 3,
P5 that S is a sublattice of G.
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(iii) -* (ii) Suppose that the Archimedean class a - is not normal i.e. there exists
xcG such that (ax) -

^a - . Then we have two possibilities for (a,) - and a - : either
(ax) - a or (a')

- <a. In the first case the convex and directed subgroup con-
sisting of those elements beG with ibi < Na cannot be normal, for if this subgroup
were normal then we would have tax i = ax < Na i.e. (a„) - < a - , contradicting
(a.) 4a .
In the second case the convex and directed subgroup consisting of those b EG with
1 b1 < Nax is not normal, because this would imply 1(ax)_ xJ = a < Nax i.e. a <(ax)-,
contradicting (ax) - < a - . This proves that in either of the possibilities not all con-
vex and directed subgroups are l.ideals of G. q

COROLLARY 6.2. If the chain of Archimedean classes of a fully ordered group G is well
ordered, then every convex subgroup is an l.ideal of G.

Proof. Obviously, in a fully ordered group every subgroup is directed. So this
corollary is a direct consequence of Corollary 6.1 and Theorem 6.2. q

The closed l.ideals of an l.group G play the same role with respect to the suprema
preserving group homomorphisms of G as the l.ideals do with respect to the lattice
and group homomorphisms. This is seen from

THEOREM 6.3. The kernel of a suprema preserving group homomorphism p of an
l.group G onto an l.group G' is a closed l.ideal of G. Conversely, a closed l.ideal of
G is the kernel of a suprema preserving group homomorphism of G onto an l.group G'.

Proof If (p is a suprema preserving group homomorphism, then (p is a join homo-
morphism (Intr., 4) and a meet homomorphism (from cp(aAb) = (p(—(—av —b)) =
= — (— cp(a) v — (p(b)) = q(a) A cp(b)). Hence (p is a lattice and group homomorphism
from G onto G'. So the kernel K(q) of (p is an l.ideal of G. Let v aa^ exist for elements
aa eK(^p), then the suprema preserving property of (p ensures that (p(v a^) = v acp(a^,
hence v aaa cK((p). Consequently, K((p) is closed.

Let K be a closed l.ideal of G, then K is the kernel of a lattice and group homo-
morphism cp from G onto an l.group G'. Suppose v aas exists in G, then we will show
that (p(v aaa) = v a(p(aa) i.e. we will show that (p(v aa«) is the l.u.b. in G' for the ele-
ments cp(aa) of G'. Clearly, cp( v aa,) is an upperbound for the elements cp(a). Suppose
b'eG' is any upperbound for the elements (p(a). There exists beG such that b' = cp(b).
Then we have p{(aa v b)—b} = gp(aa v b) — p(b) = p(a^) v (p(b) — q(b) = b' —b' =0',
hence (a« vb)—beK. Because v a{(aa vb)—b} = {(v aaa)vb}—b (Intr., 3, F) exists
and because K is closed we have v a{(a„ v b) —b} EK. This implies
pp[v a{(aa vb)—b}] = (p[{(vaaa)vb}—b] = (p(v aaa)vb'—b' = 0'.
Consequently, (p( v aaj v b' = b' or otherwise written (p( v aa) <, b'. This proves
that cp( v aag) is the l.u.b. for the elements (p(aa), hence cp is suprema preserving. q
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The correspondence of the l.ideals and the closed l.ideals is also established by the
following analog of Theorem 6.2.

THEOREM 6.4. The following three properties are equivalent in any l.group G:
(i) The mapping a° -* (a)° from the lattice of tto classes onto itself is the identity

automorphism for all xeG,
(ii) The K 0- classes of G are normal subsets of G,
(iii) Every closed convex directed subgroup is a closed 1. ideal of G.

Proof. It is clear that (i) and (ii) are equivalent.
(ii) -* (iii) This is proved by replacing the word Archimedean class by K0-class, the
word convex and directed subgroup by convex and directed closed subgroup and
a - by a° in the proof of (ii) -+ (iii) of Theorem 6.2.

(iii) -> (ii) The last part of Theorem 6.2 yields the result by using the substitutions
of the preceding sentence and by simultaneously setting rtoa for Na. q

The analog of Theorem 6.2 for carriers instead of Archimedean classes is proposition
13 on p. 116 of Fuchs [4].

We know that the normalizer of any subset of a group is a subgroup of that group.
Of course, this remains valid in an l.group G. But then naturally the question arises
whether the normalizer of a subset of G is not only a subgroup, but also a sublattice
(hence an l.subgroup) of G. The next theorem gives a number of subsets of G, for
which this is the case.

THEoREM 6.5. The normalizer N(S) of a subset S of an l.group G is an 1.subgroup
of G in case S is an element, an Archimedean class, an 8ta class or a carrier of G.

Proof. The foregoing remarks make it sufficient to prove that the normalizers
mentioned in the theorem are sublattices of G. Let a be any element of G and assume
x, yeN(a) i.e. ax = ay = a. Then

ax „ y = - (x v y) +a+ (x v y) (Intr., 3, monotony law)

= {(- x +a+x) n (-y+a+x)} v {(-x+a+y) n (—y+a+y)} (ax=ay=a)

= a A {(-y+a+x) v (-x+a+y)}

= an {(-y+x+a) v (-x+y+a)}

= aA {I —y+xI +a} = a.

This proves x v y e N(a).
In case the subset S of the theorem is either an Archimedean class or an tto clans or

a carrier of G, then the assertions: xEN(S), yeN(S) imply xvyeN(S) are proved
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analogously. We will give the proof in case S is an Archimedean class. Let a - be
any Archimedean class of G and assume (ax) - = (a. ,)

- = a - . Then

(axv. ,)- = {— (xvy)+a+(xvy)}- (ax v y 
i 

0)

= [{—(xvy)+a+(xvy)}v0]-

= [{(—x+a+x)n(—y+a+x)}v{(—x+a+y)A(—y+a+y)}v0]-
(Intr. 3A)

= l[(— x +a+x) n {(—y+a+x) v 0}] v[{(—x+a+y) v 0} A(—y+a+y)]}

(Theorem 1.3)

_ [( — x +a+x) - A {(—y+a+x) v 0} - ] v[{(—x+a+y) v 0} - n(—y+a+y) ]

= [(ax)-A{(—y+a+x)v0}-]v[{(—x+a+y)v0}-A(ay)-]

((ax) _ (a ) = a
= a-A{(—y+a+x)v(—x+a+y)v0}-.

Since we have:

(—y+ a+x), (—x+a+y) (—y+a+x)v(—x+a+y)
it follows

0 < — y+2a+y = —y+a+x—x+a+y < 2 {(—y+a+x) v (—x+a+y)}
hence

(—y+ a+x) v (—x+a+y) >, 0 (Intr., 3, B)

We may continue as follows:

{(—y + a+x)v(—x +a+y)v0}- = {(—y+a+x)v(—x+a+y)}-
(Theorem 1.3)

= [2{(—y+a+x)v(—x+a+y)}]-
(Theorem 1.3)

(—y+2a+y) -

_ {2(—y+a+y)}-

_ (—y+a+y) - = a -

Since we found above (a )  = a - A {(—y+a+x) v (—x+a+y) v 0} - , this implies
(axv„) = a.

In all four cases for S (S is an element, an Archimedean class etc.) we know that
N(S) is a subgroup and that xeN(S), ycN(S) imply xvyeN(S). From xny =
= x—(xvy)+y (Intr., 3, C), we conclude that xeN(S), yeN(S) imply also
xnyeN(S). This proves the theorem. q
Remark. Because aea - ca° = a^ we have N(a) c N(a -) c N(a°) c N(a').
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It is possible to determine certain subgroups of G that are contained in the normali-
zers N(S) of the foregoing theorem. This means, for example, that if a is an Archi-
medean class of G we can indicate a subgroup H of G such that H c N(a - ). Of course,
for every element xeH the mapping a - -* (ax) - of Theorem 6.1 is the identity auto-
morphism. The last part of this paragraph will be devoted to this problem.

We start with the following observations: Let a be a positive element of G, then
all elements x with x A a = 0 commute with a (Intr., 3, D). So, if we denote the set
of these elements x by a*(i.e. a* = {xe G : x n a = 0 for aeP}), we conclude that
a` c N(a) c N(a -) c N(a°) c N(a^).

Next suppose that yea - , then (y v a) - = a - . Consequently, (-y+a+y) - =
= {-y+(avy)+y}- = [{-y+(avy)}+y]- = [y+{—y+(avy)}]- = (avy) - =
= a (the first equality follows from Theorem 6.1, and the third from Theorem 1.3).
This proves a - c N(a - ). In the same way it is proved that a° c N(a°) and
a^ c N(a^).

The intersection of any number of 1.subgroups of an l.group G is an 1.subgroup of
G. So we can speak of the l.subgroup generated by a subset S of G. This 1.subgroup
will be denoted by (S). The l.subgroup generated by the set theoretic union S u T of
two subsets S and T of G is denoted by (S+ T).

The foregoing remarks and the fact that the normalizers
N(a), N(a - ), N(a°) and N(a') are l.subgroups of G (Theorem 6.5) prove

THEOREM 6.6. In any l.group G we have for a 0
(i) (a") c N(a)
(ii) (a* +a - ) c N(a-)
(iii) (a* + a°) c N(a')
(iv) (a°+a^) c N(a'').

Remarks. 1. It can be proved that the 1.subgroup (a* +a - ) is the direct sum of the
1.subgroups (a*) and (a - ) i.e. (a` +a-) = (a*)O(a -). This follows immediately from
(a*) n (a-) = (0). The same is true for the 1.subgroups (a* +a°) and (a* +a^) appear-
ing in (iii) and (iv) of Theorem 6.6.
2. All four subgroups (a*), (a - ), (a°) and (a°) are convex. This implies that the

subgroups (a* +a - ), (a` +a°) and (a` +a^) are convex. The proof needs Intr., 3, G.
3. The set of elements which are orthogonal to all elements of a subset S of positive

elements of Gis denoted by S ` , and (S *)* is denoted by S. From this definition and
the definition of a^ it is clear that a^ c a** for ac-P. Hence (a^) c (a-). We prove
that (a**

) c (a ^ ). Let b e a*` and suppose x A a = 0, then x e a
*
. Hence x A b = 0.

This means b A < a A . Since (a ^) is convex this implies that b e(a ^ ). Consequently,
the positive cone of (a^) is contained in the positive cone of (a^), and therefore
(a**) c (a^). But then (by remark 1) the last part of Theorem 6.6 can be read as
(a* + a

**) _ (a*) (a**) c N(a").
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§ 7 Archimedean lattice ordered groups

We start with two importants theorems on lattice ordered groups.
1. An Archimedean l.group can be embedded lattice and group isomorphically in

a complete l.group.
2. A complete l.group is commutative.
Both theorems are based upon contributions of several mathematicians (c.f. Fuchs
[4] p. 136-140 and p. 146-149). An immediate consequence of these theorems is the
fact that an Archimedean l.group is commutative. We will give a fresh proof of this
result without using the embedding of an Archimedean l.group in a complete l.group.
The proof is based upon quite elementary theorems of Chehata [2] and Sik [13] and
on lemma 7.1 below.

The theorem of Chehata says:
In a fully ordered group we have for a, beP: nKKa,b>I < avb for all neN, where
<a, b> denotes the commutator of a and b.

The theorem of Sik that will be used is:
If the carriers of an l.group are normal, then the l.group is a lattice ordered vector group.
(For an easy proof of this theorem c.f. Fuchs [4] p. 124)

LEMMA 7.1. An Archimedean l.group is an l.group with normal carriers.

Proof. Suppose the carriers are not normal then there exist a, xe G a> 0 and x 0
such that; (— x +a+x) n a = 0 (Fuchs [4] p. 107). But then

(—IxI +a+lxl)na = {(—xnx)+a+(xv —x)}Aa

= [{(—x + a+x)n(x+a+x)}v{(—x+a— x)A(x +a—x)}]na

= {OA(x +a+x)}v{(—x+a —x)A0}

= O A {(x+a+x) v (—x+a—x)} = 0.

This last equality is valid because

(x +a+x) v (—x+a—x) > (x+a+x) v (—x—a—x) = I x +a+xl > 0.

So we find (—IxI +a+Ixl)Aa = 0 and this implies (Intr., 3, D):

(—Ixl +ma+IxI)Ama = 0.

It follows that (ma +lxj)n(Ixl+ma) = Ixl, which implies

ma = ma n (ma +IxI) A(Ixl +ma) = ma A ixl.
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Hence ma <, ixj for all meN and a, xl > 0.
This contradicts the Archimedean property. q
It is not difficult to extend the theorem of Chehata referred to above to a much

larger class of 1.groups. In fact we have

THEOREM 7.1. Ina lattice ordered vector group we have for a, beP: nl (a, b>l < avb
for all neN.

Proof. Let G be an 1.group which satisfies the conditions of the theorem (c.f. p. 32).
Let for any element ceG ca denote the component of c in La and suppose a, beP.
Then we have (nl<a,b>I)« = nl<aa,ba>l. By Chehatas' theorem we have
n 1 <a., b„> I < aa v ba = (a v b). for all n e N. Since this holds for all components we
find: nl<a,b>l < avb for all neN. q

Remark. An l.group in which this theorem is not valid can be found in Birkhoff [1]
p. 291.

A consequente of the foregoing lemma and theorem is

COROLLARY 7.1. An Archimedean l.group is commutative.

Pro of. Let G be an Archimedean l.group. We indicate the following steps:
1. G is an l.group with normal carriers (Lemma 7.1).
2. G is a lattice ordered vector group (theorem of Sik).
3. In G we have for a, beP: nl <a, b>l < avb for all neN. (Theorem 7.1).
4. Since G is Archimedean this leads to <a,b> = 0 for a,beP (Intr., 3, P7 and E).

So the positive elements of G commute.
5. G is commutative, since G is generated (as a group) by its positive elements

(Intr., 3, P5). q

42



APPENDIX

After the completion of the manuscript of this thesis our attention was drawn to the
preprint of a forthcoming book by W. A. J. Luxemburg and A. C. Zaanen [10] on
Riesz spaces. Some findings of the book are closely related to theorems of this thesis.
This appendix compares the relevant notions and results. The book by Luxemburg
and Zaanen will be referred to as L & Z.

A Riesz space is a vector lattice (c.f. p. 33 of this thesis). Otherwise stated: a Riesz
space V is a commutative l.group which is closed with respect to multiplication with
the reals and such that: 2(a + b) = Aa + Ab and 1(a v b) = Aa v 2b for A real and
a, b e V.

We copy the following definitions from L & Z.
A subset of S of V is called solid if aeS and Ibi < lal imply beS. A solid linear

subspace A of V is called an ideal in V.
The ideal A in V is called a o--ideal in V whenever it follows from a„nA (n = 1, 2, ...)

and a = V' ,a„ in V that anA.
The ideal A in Vis called a band in V whenever it follows from a„eA for all a in the

arbitrary index set {a} and a = V aaa that acA.
The smallest ideal (u-ideal, band) in V containing the element a e V is called the

principal ideal (principal o-ideal, principal band) generated by a.
If S is a subset of V, the set S' is defined as follows

Sd = {be V: Ibl n lal = 0 for all anS}.

Sd is called the disjoint complement of S. The set (S”) d will be denoted by S”

In the sequel we will make these definitions fit to an l.group G and we will show the
connections with the notions of Archimedean class, rt0-class and carrier.

Let G be an l.group. The meaning of the notions solid subset and disjoint comple-
ment of a subset of G will be the same as for a Riesz space.

A. The smallest solid subgroup, containing the element aeG, is called the principal
subgroup generated by a. The Archimedean class lal - is contained in the prin-

cipal subgroup generated by a and consequently, (lal -) is contained in this subgroup.
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But (lal - ) is a solid subgroup (in fact (lal -) = {beG:lbl - < lal - }) in which the
elements of lal - are the strong units. We conclude that the correspondence

H(a) -^ lal - = {the set of strong units in H(a)}

between the principal subgroups of G and the Archimedean classes of G is one to
one.

The inverse correspondence is

lal - -.> H(a) = (l a l )•

B. A solid subgroup H is called a-closed whenever it follows from a„c-H (n = 1, 2,

3, ...) and a = V ,a„ in G that ac-H. The smallest o-closed subgroup in G, con-
taining an element aeG, is called the principal u-closed subgroup generated by a.

The 8t0-class lal° is contained in the principle o-closed subgroup generated by a and,
consequently (lal°) is contained in this subgroup. But (lal°) is a a-closed subgroup
(in fact (lal°) = {beG: Ibl° < lal°}) in which the elements of lal° are the pseudo
strong units. We conclude that the correspondence

HQ(a) -* lal ° = {the set of pseudo strong units in HQ(a)}

between the principal o-closed subgroups of G and the td °-classes of G is one to one.
The inverse correspondence is

1a1 0
 -* H(a) = (1a10).

C. We recall that a solid subgroup H in G is closed whenever it follows from aaeH

for all a of the arbitrary index set {a} and a = v aaa that aeH. The smallest
closed subgroup in G that contains the element auG is called the principal closed

subgroup generated by a. Theorem 2.2 proves that an H0- class is closed and conse-
quently the subgroup (lal °) = H(a) is closed. Thus in an l.group the notions of
principal o-closed subgroup and principal closed subgroup coincide. This is the
analog in l.groups of the following theorem of L & Z: In a Riesz space the notions
of principal a-ideal and principal band coincide.

D. The set add for ac-G is a solid subgroup of G. The carrier lal ^ is contained in this
subgroup and, consequently, (lal ^) is contained in the solid subgroup a". But

(lal ^) contains the solid subgroup a" (this follows from (lal ^) = {beG: I bl ^ < lal^})
in which the elements of lal ^ are the weak units. Consequently, the correspondence

a" —> lal ^ = {the set of weak units of a"}
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between the solid subgroups ada for aeG and the carriers of G is one to one.
The inverse correspondence is

lal ^ - add 
= ( l a l ^)•

Remark. The set IaJ ** defined in § 6 of the second chapter is the positive cone of a'

E. Theorem 3.5 proves that in an Archimedean l.group the carriers are the Kà classes
while the converse is not true (example 4 in the proof of the First inclusion

theorem). By B, C and D this yields: If an l.group Gis Archimedean, then the principal
closed subgroup generated by a coincides with a"' for all ae G, but not conversely.
This theorem shows a correspondence with the following theorem on Riesz spaces
proved by L & Z. It says: A Riesz space V is Archimedean, if and only if A = A"'
for every band A in V.

From Theorem 2.6 and A, B and C above we derive: In a fully ordered Riesz
space the principal ideals coincide with the principal bands.

L & Z define in connection with a Riesz space the notion "principal projection
property" and prove: A Riesz space V has the principal projection property, if and
only if V n _ 1 (na A b) exists for all positive elements a and b of V. For l.groups this is
the definining property of a full l.group (c.f. p. 28).

L & Z proved that in a Riesz space the principal projection property implies the
Archimedean property but not conversely. We proved that if an 1.group G is a full
l.group, then the lattice of At a-classes of G is relatively complemented, and this, in its
turn implies the Archimedean property. Moreover, no one of these implications
holds conversely (First inclusion theorem).

If we apply this to the special case that the l.group G is a Riesz space V and if we
use the terminology of L & Z we conclude the following:

For Riesz spaces V the property "The distributive lattice of principal bands of V is
relatively complemented" is intermediate between "V has the principal projection
property" and "Vis Archimedean". That the first property does not coincide with the
second is seen from the first example in the proof of the First inclusion theorem; that
the first property does not coincide with the third follows from the second example
in the same pro of.
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SUMMARY

In this summary G denotes a lattice ordered group, P is the positive cone of G and a
stands for any element of P. Findings by others are put in accolades. All paragraphs
referred to are from the second chapter.

In § 2 the potion of an K o class of G is introduced. The §§ 1 to 3 deal with the follow-
ing: The Archimedean class a - of a is a subset of the K 0- class a° of a, and a° is con-
tained in the carrier a ^ of a. The structure of the Archimedean classes and the K,,-

classes of G is investigated. In a fully ordered group (and also in a restricted cardinal
sum of fully ordered groups) the Archimedean classes coincide with the K0-classes.

In an Archimedean lattice ordered group the tto classes coincide with the carriers. The
partially ordered set of the btw classes {resp. of the Archimedean classes and of the
carriers} is a distributive lattice. The mappings cp : a -* a from P onto the lattice of
Archimedean classes and i(i : a -^ a° from P onto the lattice of rto classes are examined.
{The corresponding mapping from P onto the lattice of carriers is studied by
P. Jaffard a.o.}

In § 4 the structure of G having a relatively complemented lattice of K0-classes is
treated. The First inclusion theorem (p. 29) shows the connection between this and
other properties of G.

In § 5 the structure of G having a relatively complemented lattice of Archimedean
classes is dealt with. The Second inclusion theorem (p. 32) correlates this and other
properties of G. If G is a vectorlattice, then it is proved that G is a function lattice of
simple functions such that G contains the unit function, if and only if G has a Boolean
algebra of Archimedean classes (Theorem 5.4).

In § 6 we start a study on normalizers in a lattice ordered group. The connection is
shown between properties of the lattices of the Archimedean classes and the Ato classes
on the one hand, and the l.ideals and closed l.ideals on the other hand. The normali-
zers of the subsets a, a - , a° and a^ turn out to be sublattices of G.

§ 7 describes an original and straightforward proof of the well-known property
of the commutativity of an Archimedean lattice ordered group.
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SAMENVATTING

In het onderstaande stelt G een traliegroep voor, P is de positieve kegel van G en a

is een willekeurig element van P. Reeds bekende resultaten worden in deze samen-
vatting tussen akkoladen vermeld. Alle hieronder genoemde paragrafen zijn uit het
tweede hoofdstuk.

In § 2 wordt het begrip 0-klasse van G ingevoerd. De §§ 1 t.m. 3 gaan over het
volgende: De archimediese klasse a - van a is een deelverzameling van de rto klasse
a° van a en a° is bevat in de zgn. „carrier" a ^ van a. In een volledig geordende groep
(en ook in een beperkte kardinale som van volledig geordende groepen) vallen de
archimediese klassen samen met de Kó klassen; in een archimediese traliegroep
vallen de X2 0-klassen samen met de carriers. De struktuur van de archimediese klas-
sen en de K o-klassen wordt nagegaan. De partieel geordende verzameling der Ko-klassen
{resp. van de archimediese klassen en van de carriers} is een distributief tralie. De af-
beeldingen (p : a -+ a - van P op het tralie der archimediese klassen en ifr : a -* a°

van P op het tralie der K o-klassen worden onderzocht {de overeenkomstige afbeelding
van P op het tralie der carriers is onderzocht door P. Jaffard e.a.}.

§ 4 heeft betrekking op de struktuur van G indien het tralie der 0-klassen relatief
gekomplementeerd is. De eerste insluitstelling (blz. 29) geeft de samenhang tussen de
genoemde eigenschap en andere eigenschappen van G.

§ 5 heeft betrekking op de struktuur van G indien het tralie der archimediese
klassen relatief gekomplementeerd is. De tweede insluitstelling (blz. 32) legt het ver-
band tussen deze en andere eigenschappen van G. Indien G een vektortralie is wordt
bewezen: G is een funktietralie van enkelvoudige funkties dat de eenheidsfunktie bevat,
dan en slechts dan als het tralie der archimediese klassen van G een algebra van
Boole is (stelling 5.4).

In § 6 wordt een begin gemaakt met de studie van de normalisatoren in een tralie-
groep. Het verband wordt gelegd tussen eigenschappen der tralies van de archi-
mediese klassen en de 0-klassen enerzijds en de normalisatoren van a- en á ander-
zijds. Voor de deelverzamelingen a, a - , á en a^ blijkt de normalisator een deeltralie
van G te zijn.

In § 7 wordt een nieuw en meer rechtstreeks bewijs gegeven voor de stelling dat een
archimediese traliegroep kommutatief is.
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a - , 15
a°, 21
a^, 26
Absolute value, 10
stoa, 18ff
Ko-class, 21ff, 27
Antisymmetric relation, 7
Archimedean class, 15ff, 24, 30, 36
- l.groups 10, 11, 27ff, 41ff
Automorphism, 13

Band, 43
Boolean algebra, 9, 33, 34

Cardinal sum, 25, 32
Carrier, 26ff, 30, 41
Chain, 7
- of Archimedean classes, 17,36,37
- of K 0- classes, 25
Classes of a preorder, 8, 15, 21, 26
- of a homomorphism, 13
Closed, 21, 26, 44
- interval, 9
- l.-ideal, 37, 38
Complement, 9
Complemented lattice, 9
Complete lattice, 8
Conditionally complete lattice, 9
Convex, 7

Directed, 9
Disjoint complement, 43
Distributive lattice, 8, 10, 15, 23, 26

Equivalence relation, 7

First inclusion theorem, 29
Full l.group, 28ff, 45
Full order, 7
Fully ordered group, 10, 17, 24, 25, 41
Function lattice, 33

g.l.b., 8
Group homomorphism, 13

Ideal, 43
Infinite distributive law, 11
Isomorphism, 13

Join, 8
- homomorphism, 13, 16

Kernel, 13

Lattice, 8
- automorphism, 13, 35ff
- homomorphism, 13, 16, 22, 23,

26, 27
- isomorphism, 13, 24
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STELLINGEN

I

a
De bewering van Birkhoff l dat het tralie der „carriers" van een kommutatieve tralie-
groep een algebra van Boole is, is onjuist. Zelfs voor een archimediese traliegroep
met een zwakke eenheid geldt de bewering niet.2

b
De bewering van Birkhoff 3 dat het tralie der „carriers" van een niet-kommutatieve
traliegroep niet noodzakelijk een algebra van Boole is, is juist. Het gegeven voorbeeld
is fout.¢

1 G. Birkhoff, Lattice Theory, 3rd edition (New York 1967), blz. 310.
De eerste insluitstelling van dit proefschrift, blz. 29.

3 ].c., blz. 311.
4 P. Jaffard, Contributions à l'étude des groupes ordonnés. J. Math. Pures

Appl. (1950) 203-280.

II

Luxemburg en Zaanen 1 bewijzen dat in een vektortralie V geldt:

2(101v Ibl) = la+bl+Ia—bl voor a, beV en 2(lal A Ibl) = Ila+bl—la—bll voor a, bEV.
1 W. A. J. Luxemburg and A. C. Zaanen, Riesz spaces, preprint (1967).

Een generalisatie van deze stelling luidt:

voor een traliegroep G zijn de volgende eigenschappen gelijkwaardig:

(i) G is kommutatief,
(ii) 2(Ial v lbI) = I a +bl +Ia—bi voor a, beG,

(iii) 2
(I a I i\ ] b i) = IIa + b i —la—bil voor a, bcG.

III

Stelt G een traliegroep voor, dan geldt voor a, beG:

l a l A I
b i = 0 dan en slechts dan als Ia+bl = la—bi = Ib+al = I — b +al

Voor het bijzondere geval dat G een vektortralie is, is deze stelling een direkt gevolg van de onder
II genoemde stelling van Luxemburg en Zaanen. Zie ook: Wiskundige opgaven 1964, opgave 192.



IV

Iedere rij {cn}, waarvan de elementen geschreven kunnen worden als en = na h b voor positieve
elementen a en b uit een traliegroep G, heet een basisrij in G. Zij {cn} een basisrij in G en {m(n)}
een monotoon stijgende rij van natuurlijke getallen, dan heet de rij {dn}, met dn = c n ( n) —cn , een
verschilrj in G. Voor de begrippen nulrij en fundamentaalrj wordt verwezen naar: L. Fuchs, Teil-
weise geordnete algebraische Strukteren, (Budapest 1966), blz. 150.

G is een archimediese traliegroep dan en slechts dan als iedere verschilrij in G een
nulrij is.
Deze stelling doet vermoeden dat in een archimediese traliegroep iedere basisrij een
fundamentaalrij is.

V

Ten onrechte beweert van Veen' dat de door hem genoemde voorwaarde voor de
lineaire afhankelijkheid van een stelsel funkties voldoende is.

1 Dr. L. Kuipers & Dr. R. Timman, Handboek der Wiskunde, 2e druk (Delft
1966). Hoofdstuk VIII: Dr. S. C. van Veen, Gewone differentiaalvergelij-
kingen (par. 5.4).

VI

De homologiese benadering van de theorie der abelse groepen verdient ruimere be-
langstelling; zij biedt niet alleen methodologiese voordelen, maar zij verschaft ook
een beter inzicht in de struktuur van belangrijke klassen van abelse groepen.

VII

Een van de paradoxen van Jones' luidt: „The more human-like a computer becomes,
the less work it does". De snelle ontwikkeling op het gebied van informatiebewerkende
automaten heeft het paradoxale karakter van deze uitspraak achterhaald. Het is een
onjuiste uitspraak.

1 P. D. Jones, Thirteen programming paradoxes. Datamation (1966).

VIII

Het is gewenst dat — in beginsel — alle leden van de wetenschappelijke corpora van
universiteiten en hogescholen, voor zover ze bij het onderwijs zijn betrokken, jaarlijks
optreden als gekommitteerden/deskundigen bij de eindexamens van scholen voor het
voorbereidend wetenschappelijk onderwijs. Deze werkzaamheid zou tot hun normale
taak moeten behoren.



IX

De samenstelling van de zogenaamde „groep", genoemd in het rapport-van Os,' is te
beperkt; er zouden ook studenten toe moeten behoren.

„Structuur van het wetenschappelijk corps". Rapport van de kommissie
ad hoc van de Academische Raad, herzien (1968).

X

Het gesprek over de medezeggenschap van de werknemers in de onderneming komt
in Nederland niet boven een akademies niveau uit. De vakvereniging, als meest be-
langhebbende, kan hierin verbetering brengen door een aantal ondernemingen in
eigendom te verwerven en deze in te richten als experimenteerbedrijven c.q. model-
bedrijven.

XI

Het minste dat de senaat der Technische Hogeschool Delft kan doen — en dus moet
doen — om de kosten van het promoveren te verlagen, is duidelijk en openbaar te
verklaren dat zij algehele vrijstelling geeft van de verplichting om het proefschrift te
laten drukken. Iedere wijze van vermenigvuldigen die goed leesbare kopieën van het
proefschrift oplevert, dient te worden goedgekeurd.




