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A B S T R A C T

Logistics service providers (LSPs) offering container transport to the hinterland of
the Netherlands face the challenge of efficiently using the capacity of the barge in
order to minimize cost, while part of the relevant information is still lacking at the
moment decisions have to be made. The existing infrastructure and the transporta-
tion activities are studied and modeled as an online optimization problem with
simultaneously vehicle routing and container-to-mode assignment. A characteristic
of great importance in the problem is the uncertainty element that reflects in the
requested appointment times that have to be confirmed by another agent in the net-
work. An online optimization approach is proposed, where the input data come in
sequentially and decisions have to be made in between, because new information
becomes available only after the decision has been made. At each decision moment,
the uncertainty element is converted to an offline optimization problem by disre-
garding the uncertainty or by simulating various potential future scenarios. Sub-
sequently, the problem is modeled as a multi-commodity network design problem
on a time-space graph. Four different solution methods are developed in order to
solve the online optimization problem. Three confirmation based methods concern
a model in which the uncertainty element is partially disregarded, by assuming that
each requested appointment time will be scheduled at a specific time relative to the
requested one. Alternatively, a much more complex method is developed in which
various future scenarios are simulated for the requested appointment times given
their probability vector. The simulation based model seeks robust solutions that
are resistant to change, i.e., feasible and (sub)optimal for every potential future sce-
nario that has been simulated. Using randomly generated (but realistic) instances,
the computational results show that the proposed simulation model surpasses the
simpler models both in terms of outcomes, robustness and reliability. However, the
practical relevance is somewhat restricted in the sense that the model is built on
several assumptions.

Keywords: intermodal transport, synchromodal transport, online optimization, multi-
period time window, simulation algorithm
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1 I N T R O D U C T I O N

In recent years, a remarkable growth is noticeable [32] in the number of containers
that have to be transported from one place to another by different kinds of resources,
e.g., trucks, trains and barges. A set of these resources linked together with the
purpose of transporting freight (or people) from one place to another, is called
a logistics network. Logistics networks are present almost everywhere around us.
The train you take to work each day, the handling of your baggage at an airport
(Figure 1.1), or the packages you order at webshops (Figure 1.2) are all part of such
complex networks.

Figure 1.1: Baggage handling Figure 1.2: Package service

A logistics network is usually run by a logistics service provider (LSP), who faces
the problem of delivering the right amount of freight in the right place at the right
time. Due to the ever-growing complexity of these networks, an LSP needs efficient
tools to support his decisions in order to strive for the optimal network performance
at minimal cost [14]. The decision making process could be classified into three lev-
els: strategic, tactical and operational. The levels are described by both Schmidt and
Wilhelm [31], and Crainic and Laporte [9]. The strategic level includes the design of
the physical network, the location and capacity of facilities and resource acquisi-
tion. The establishment of such designs requires a lot of money and effort, and
these decisions have a long-lasting impact on the network performance. Therefore,
the decisions at strategic level have long-term goals. The tactical level includes the
allocation and use of the established resources, and those decisions are considered
as the medium term decisions. The operational level is concerned with short term de-
cisions that need to be made by local management. The most important operational
decisions relate to scheduling the transport and maintenance services, routing and
dispatching of vehicles and allocating freigt to transport modes.

In order to make the decision making process at operation level more efficient, re-
liable and sustainable, the concept of synchromodal container transport is extensively
covered in Section 2.1. Briefly, synchromodal container transport includes two im-
portant characteristics [33]:

1. Customers will only tell the LSP when and where their freight needs to arrive,
therefore, entrusting the LSP with the planning.

2. Planners will use data that is real-time, and routes will become subject to
change in real-time when beneficial (in terms of time, costs and CO2 emis-
sions).

1



2 introduction

In other words, LSPs have the opportunity to switch mode of transport of the
containers based on the real-time data. Every day, every hour or every minute,
plans are adjusted when disturbances occur, but also, robust plans are made taking
potential future disturbances into account. The planning problems that arise due to
this added flexibility are synchromodal planning problems. In this thesis the focus
is mainly on synchromodal planning at operational level from the perspective of a
logistics service provider.

1.1 problem description
The challenge faced by a Dutch logistic service provider is the transportation of
containers from the eastern part of the Netherlands to the port of Rotterdam and
vice versa. Every day, multiple barges depart from the single inland terminal in the
east to different deep-sea terminals within the port of Rotterdam. The travel time
of such a long-haul trip is around twenty to twenty-four hours. Nowadays, most
barges transport containers from the single inland terminal to different deep-sea
terminals within the port and return to the inland terminal: a round trip. In such
a round trip each barge delivers containers and, simultaneously, collects containers
from the same, and possibly other, terminals. The collected containers are trans-
ported back to the inland terminal where the barge started its journey. Briefly, we
might consider the transportation of freight from (i) the single inland terminal to
multiple locations within a far away region, denoted by outland orders, and from
(ii) locations within the region back to the single inland terminal, denoted by in-
land orders. Notice that no freight needs to be shipped between any two deep-sea
terminals within the port of Rotterdam.

Besides the use of a limited number of barges, we assume that there is an unlim-
ited number of trucks that can be used for urgent freight which cannot be trans-
ported by barge. At each decision moment, a barge planner has to decide which
containers to allocate to which barges and/or trucks. This decision has to be made
in such a way that the network performance of the Dutch LSP is optimized over
time. For example, trucking a container to (or from) a given terminal right now,
even if it is possible to transport it by barge, might reduce the number of trucks
used in total. Indeed, trucking one container right now might prevent that multiple
containers have to be trucked at a later stage.

Figure 1.3: Location of barge terminals in the port of Rotterdam, including the container
terminal (TRot) operated by the Dutch LSP

The port of Rotterdam has about 33 container terminals, including empty depots.
These terminals are spread over a rather large port area. Spatial clusters of terminals
are found in the area of Eem- and Waalhaven, Botlek and Maasvlakte I and II, as
illustrated in Figure 1.3. The distance between Eem- and Waalhaven and Maasvlakte
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is about 40 kilometers on water, which is about two to three hours by barge [22]. In
addition to the single inland terminal in the Eastern part of the country, a container
terminal within the port of Rotterdam belongs to the Dutch LSP, denoted by TRot.
At this container terminal, freight could be temporarily stored or switch vehicles.

The region (the port of Rotterdam) is far away from the origin (the single inland
terminal), but locations within the region are close to each other. Thus the long-haul
trip from the origin to the region (and back) is the most challenging one. Further-
more, the terminals within the region are controlled by other agents, who confirm
the requested calls from the LSP with a delay of approximately half a day. Most of
the time, these confirmed calls deviate from the requested ones, which means that
the barge planners have to deal with some uncertainty in their available data.

To further clarify the uncertainty element, we will have a look into the process of
the orders. The LSP receives orders from clients on a daily basis. These orders con-
sist of one or more empty (or full) containers that have to be picked up at a certain
terminal in the port of Rotterdam, and then have to be transported to the client’s
warehouse located near the single inland terminal, where the freight is loaded (or
unloaded) at an agreed time. Thereafter, the full (or empty) containers have to be
transported back to a certain terminal in the port of Rotterdam. The pick-up and
delivery terminals might be different. When the LSP receives an incoming order,
the pick-up and delivery location are prespecified. The pick-up and delivery time,
however, are not known yet. The barge planner has to make a call towards the par-
ticular terminal(s) in order to request for an appointment, consisting of a specific
date and time. Moreover, the number of containers that have to be handled has to
be passed on. After some delay, the specific terminal responds to the request in the
form of a confirmed appointment time. As mentioned before, the confirmed ap-
pointment time often deviates from the requested one, implying that decisions have
to be made based on stochastic information. Even if an order is known a few days
in advance, the barge planners still make a call only 36 hours in advance relative to
the requested appointment time. Since the other agents in the region confirm the
calls only 24 hours in advance, regardless of the circumstances, the barge planners
have experienced that it does not benefit to call at an earlier stage.

Using the agreed time at the client’s warehouse for (un)loading and the request-
ed/confirmed pick-up and delivery times at the corresponding terminals, the or-
ders K of the clients could be split into inland orders Kin and outland orders Kout.
Each inland order k ∈ Kin consists of a

• pick-up location
• requested/confirmed pick-up time
• delivery location
• delivery time (i.e., due time1)
• size of the order

Notice that we could omit the delivery location, since every inland order has to be
transported to the single inland terminal in the eastern part of the Netherlands. The
trip from the inland terminal to the client, and vice versa, is always done by truck,
so we may disregard that part of the trip. Further, each outland order k ∈ Kout

consists of a

• pick-up location
• pick-up time (i.e., release time)
• delivery location
• requested/confirmed delivery time
• size of the order

1 The order has to be delivered before or at this time, so it is less strict than the confirmed delivery time
corresponding to an outland order.
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By the same reasoning, we could omit the pick-up location, since every outland
order has to be transported from the single inland terminal to a terminal in the port
of Rotterdam.

As mentioned before, the travel time of the long-haul trip between the single in-
land terminal and the port of Rotterdam is around twenty to twenty-four hours.
Since the other agents confirm the requested calls only 24 hours in advance, a plan-
ning may become subject to change when beneficial. For example, at some point
in time, the LSP assigns outland order k ∈ Kout to barge B, located at the origin,
while the order is not confirmed yet. At that time, based on the requested pick-up
and delivery times, the LSP benefits the most when the barge first picks up inland
order k′ ∈ Kin, then delivers the outland order and finally picks up inland order
k′′ ∈ Kin. However, when time passes by, the requested times are confirmed and
might deviate. Based on the real-time data it might be more beneficial to unload the
outland order at the container terminal TRot and deliver the order at the delivery
appointment by truck, such that the barge is able to visit some other confirmed ap-
pointments. Since the LSP has the ability to change the plan when beneficial, using
multiple modes of transport, the problem described coincides with a synchromodal
planning problem.

Our goal is to make use of all the practical information that is available in order to
formulate an optimization problem that suits the preferences of the barge planners.

1.2 base instance
To be able to deal with the big, real-life problem and to explore solution methods,
we start our work with a small base instance. We consider the following simplified
instance obtained by reducing the size of the real-life problem and introducing some
assumptions. The network under consideration, as shown in Figure 1.4, consists of:

• 1 single inland terminal operated by the barge planner, denoted by TOrigin,

• 1 container terminal in the Port of Rotterdam operated by the barge planner,
denoted by TRot,

• 3 deep-sea terminals (region D), denoted by T1, T2 and T3.

Figure 1.4: The network under consideration in the base instance

Observe that there is a main difference between the terminals operated by the
barge planner and the deep-sea terminals. At the terminals operated by the barge
planner, the barge planners have complete freedom. That is to say, barges can always
moor at these terminals and decisions can me made (or changed) last minute. At
the region D, however, a barge planner has to make a request for an appointment
at a specific deep-sea terminal. After some delay, half a day in our base instance,
a confirmed appointment time is returned, which may deviate from the requested
one. Only in case of a confirmed appointment a barge may visit a deep-sea terminal.
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To be able to send the containers through the network under consideration, the
barge planners have access to the following resources:

• 2 barges B1,B2 with capacity of 10 containers,

• 1 barge B3 with capacity of 20 containers,

• unlimited number of trucks with capacity of 1 container; there is a fixed cost per
time step (or kilometer) traveled by truck.

A characteristic of great importance in the problem is the uncertainty element that
reflects in both the requested appointment times that have to be confirmed and the
orders not announced yet. In order to address the presence of uncertainty, a multi-
period time window (MPTW) approach is introduced. The approach is a reactive
method that solves iteratively the planning problem by moving forward on the
MPTW after each decision made, assuming that the status of the system is updated
as soon as the stochastic and unknown elements (i.e., orders) become deterministic
and known, respectively.

In terminology we distinguish controlled time windows and single-period time
windows, that are both subintervals of the MPTW. A controlled time window (CTW)
is defined as the period between two consecutive decision moments, i.e., the part
of the planning that is actually performed. The time window containing all the
relevant information known at an arbitrary decision moment is defined as the single-
period time window (SPTW).

In Figure 1.5 the multi-period time window approach is visualized. At the start
of each decision moment t, a decision has to be made for the upcoming CTW, based
on the information available in the concerned SPTW, i.e., based on the state of the
system at the start of decision moment t. Observe that the information available
could be both deterministic and stochastic.

Figure 1.5: Solving the planning problem using a multi-period time window approach

In addition, to deal with the uncertainty, we need to simplify our mathematical
model by making several assumptions.

• The MPTW is divided into a finite number of time steps (i.e., discrete ap-
proach), where each time step corresponds to three hours in real-life. The
multi-period time window starts at time step 0 and covers nine days, until
time step 72.
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• Inland orders become known when the barge planners request an appoint-
ment, that is 12 time steps in advance relative to the requested appointment
time. Furthermore, the requested appointment is confirmed 4 time steps later,
i.e., 8 time steps in advance.

• Outland orders become known 12 time steps in advance relative to the release
time2. The corresponding requested appointment is confirmed in the same
way, i.e., 8 time steps in advance relative to the requested appointment time.

• The confirmed appointment time could be scheduled at the requested appoint-
ment time, earlier (at most one time step) or later (one until five time steps),
with probability distribution p = (p−1, p0, p+1, p+2, p+3, p+4, p+5).

• At each decision moment, a single-period time window of 32 time steps is
considered, which can be divided into three parts relative to the requested
appointment times, as shown in Figure 1.6.

part 1: Orders having a requested appointment time in the interval [0, 8]
that is confirmed already.

part 2: Orders having a requested appointment time in the interval (8, 12]
that is not confirmed yet.

part 3: Outland orders3 having a pick-up time in the interval [0, 12] and a
requested appointment time strictly greater than 12.

Figure 1.6: Example of the three parts in a SPTW, where the green, red and blue dots (and
intervals) correspond to the first, second and third part, respectively.

• The three deep-sea terminals in the region D may only be visited in case of a
confirmed appointment.

• The number of barges that may visit an appointment is restricted to 1. Observe
that the restriction does only apply to barges, visiting an appointment with
one barge and multiple trucks is allowed.

• The travel times of the barges are known and fixed. In particular, we assume
that the travel time between any two terminals in D ∪ TRot equals 1 time step
(i.e., three hours), and the travel time between the origin TOrigin and the con-
tainer terminal TRot equals 7 time steps (i.e., twenty-one hours).

• The travel times of the trucks are known and fixed. In particular, we assume
that the travel time between any two terminals in D ∪ TRot equals 1 time step
(i.e., three hours), and the travel time between the origin TOrigin and the con-
tainer terminal TRot equals 2 time steps (i.e., six hours).

2 In case an outland order would become known only 12 time steps in advance relative to the requested
appointment time, the release time would become known only a few hours in advance. There would be
an extra (unrealistic) stochastic element in our model that is not prefered.

3 By assumption, only outland orders could have a requested appointment time in the interval (12, 32].
Therefore, inland order are disregarded in the third part.
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• At any point in time, an unlimited number of trucks is available at every
terminal, which can (i) transport containers from the pick-up location directly
to their destination or to the container terminal or (ii) transport containers
from the container terminal to their destination. We charge costs for the use
of trucks.

• Containers could be temporarily stored or switch vehicles at the container
terminal TRot. However, handling time is taken into account for the unloading
and loading process, i.e., one time step for each processing.

• Handling time is taken into account for the unloading process at the origin
TOrigin, i.e., one time step.

1.3 research question
In the base instance, a MPTW of nine days (i.e., 72 time steps) is considered. At each
decision moment t, a decision has to be made for the upcoming CTW, based on the
state of the system at the start of decision moment t. Such a decision is established
by solving the SPTW. When time passes by, new information becomes available and
again a SPTW needs to be solved. To be precise, we need to solve multiple SPTWs
of length 32 time steps to gain suitable solutions (or decisions) for each CTW. At the
end of the multi-period time window, these decisions can be merged and combined
in order to gain a final solution for the entire MPTW. Therefore, we formulate the
following research question:

”What kind of solution methods can be used for the single-period time windows,
including uncertainty, to find an appropriate schedule and container assignment
for the entire multi-period time window (within an acceptable amount of time)?”

In order to answer the research question, the following sub-questions have to be
answered.

1. How can the base instance described in Section 1.2 be modeled in order to
meet all the assumptions made?

2. What solution methods can be used to obtain both a schedule and a container
assignment for every transportation mode in the network?

3. What can be said about the quality and practical relevance of the results ob-
tained by the solution methods?

4. What can be said about results obtained by the solution methods if the as-
sumption on the announcement time of orders is relaxed, i.e., when orders
are announced at an earlier stage?

5. Does the chosen approach successfully incorporate elements from synchro-
modality?

1.4 report structure
This thesis has been organized in the following way. Chapter 1 describes the general
problem under study, and presents a simplified base instance which will be studied
to explore solution methods. Chapter 2 gives a more detailed description of the
freight transportation concepts and sketches some methods for solving (integer) lin-
ear programming problems. In Chapter 3 we take a look at the existing literature
on intermodal and synchromodal problems. Chapter 4 discusses the field of offline
optimization, where all relevant information is known when solving the problem.
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Only ex post, when all information has become available, the truly optimal solution
can be computed offline, which can be used as a lower bound for the online opti-
mization. In Chapter 5 solution methods for the base instance will be explored by
entering the field of online optimization. In Chapter 6 results are presented, inter-
preted and discussed. Finally, Chapter 7 is dedicated to the conclusions and some
recommendations for follow-up study.



2 E S TA B L I S H I N G T H E C O N C E P T S

In this chapter a more in-depth study is presented on different concepts relating to
freight transport. In particular, the most widely used methods to transport freight
are intermodal and synchromodal transport. Furthermore, an introduction to inte-
ger linear programming is given, because it is the main mathematical tool that will
be used to solve the planning problem.

2.1 inter- and synchromodal freight transport

Over the years at least five concepts relating to freight transportation have been
introduced: multimodal, intermodal, combined, co-modal and synchromodal trans-
port. Recently, the Physical Internet (PI, π) and digital twin have generated a lot of
attention among both practitioners and academics. The paper by Reis [27] pinpoints
the main properties of the first five concepts. The original concept is multimodal
transport, and the most recent one is synchromodal transport. Every new concept
utilizes certain elements from the previous concepts and introduces new ones. In
Figure 2.1 the sequential relations between these five freight transport related con-
cepts are shown.

Figure 2.1: Sequential relations between freight transport related concepts, from [27]

The most widely used method to transport freight from one place to another is inter-
modal freight transportation. Intermodal freight transport involves the transportation
of freight in containers of standardized dimensions, using multiple modes of trans-
port (e.g., truck, barge or train), without any handling of the freight itself when
changing modes. The fundamental idea of intermodal freight transportation is to

9



10 establishing the concepts

consolidate freight for efficient long-haul transportation (i.e., the transportation of
containers between two different ports), while taking advantage of the efficiency of
local pick-up and delivery operations by truck [1]. For example, the freight may be
picked up by truck at the origin, then be placed on a barge or train, and then travel
the last part of the journey by truck again.

Synchromodal freight transportation is positioned as the next step after intermodal
transportation. The main difference is the ability to respond to uncertain distur-
bances (e.g., congestion, accidents, low water levels or maintenance) or other pos-
sible stochastic elements within the process, that could lead to delays and money
losses. Therefore, a planning is made using real-time information. In other words,
the plan will become subject to change when disturbances occur, but also, robust
plans are made taking potential future disturbances into account. It must be possi-
ble to re-evaluate plans at any moment [16].

The paper of Montreuil [25] defines the Physical Internet as an open global logistics
system founded on physical, digital, and operational interconnectivity, through en-
capsulation, interfaces and protocols. The paper starts with the assertion that the
way physical objects are currently transported, handled, stored, realized, supplied
and used throughout the world is economically, environmentally and socially inef-
ficient and unsustainable. Evidence supporting this assertion is exposed through a
set of key unsustainability symptoms. The vision that is presented in the paper is to
evolve towards a Physical Internet as a solution to the global logistics sustainability
grand challenge. In the Physical Internet freight is moved in a similar way as data is
transferred in the Digital Internet: smart, seamless and making use of the network
of others. The concept of synchromodality is one of the road-maps of the Physical
Internet [10].

The paper of Saddik [30] defines a digital twin as a digital replica of a living or
non-living physical entity. By bridging the physical and the virtual world, data is
transmitted seamlessly allowing the virtual entity to exist simultaneously with the
physical entity. Digital twins facilitate the means to monitor, understand, and op-
timize the functions of all physical entities, and provide humans with continuous
feedback to improve quality of life and well-being. For example, digital twin tech-
nology can help by the decision making process because it has the opportunity to
simulate the application before going live. The lessons learned and opportunities
uncovered through a digital twin can then be applied to the physical environment.
Moreover, digitial twins can revolutionize healthcare operations as well as patient
care. A digital twin of a patient or organs allows surgeons and health profession-
als to practice procedures in a simulated environment rather than on a real patient.
Sensors with the size of bandages can monitor patients, thus producing digital mod-
els, which is overseen by artificial intelligence, thus improving care [24].

Due to the improvements in data technology (e.g. digital twin), the interest in syn-
chromodality has increased. However, synchromodality faces several challenges
that keep it from being adopted in practice. The paper by Pfoser et al. [26] iden-
tifies seven critical success factors of synchromodality which ensure the effective
implementation of it.

• Network, Collaboration and Trust. One of the most important aspects in a syn-
chromodal network is the collaboration and trust between agents. However,
many agents are unwilling to cooperate with competitors. A rethinking pro-
cess is required to achieve a network in which the agents are aware of the
advantages of cooperation instead of competition.

• Sophisticated Planning. Logistics networks are complex. To be able to deal
with the preferences of the customers, unexpected disturbances and available
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resources of locations and transportation modes, forecasts and simulations are
needed in order to optimize the network performance.

• ICT and ITS Technologies. Sharing and mutually exchanging data is the key
to create a synchromodal network. However, issues dealing with data security
and data protection have to be addressed.

• Physical Infrastructure. The locations and capacity of facilities and available
resources influence the performance of the synchromodal network. Therefore,
the design of the network (e.g., strategic level decisions) forms the basis of an
effective implementation of synchromodality.

• Legal and Political Framework. What agents will be held responsible in case
of delay, loss or damage? When the transportation mode is switched un-
planned, such liability issues are not always clear.

• Awareness and Mental Shift. The willingness of the customers, to leave the de-
cision concerning which transportation modes to use up to the LSP, is another
important success factor. Therefore, awareness among customers has to be
raised on the advantages of synchromodal transport.

• Pricing, Cost and Service. The pricing of synchromodal services is quite com-
plex. Since the transporation mode(s) and the exact route is not known in
advance, it is difficult to set a price. But customers require assurance on the
price in advance, so new difficulties arise.

The results of Pfoser et al. suggest that there is quite a uniform agreement upon
importance and feasibility of various success factors with cooperation being the
most crucial success factor. Although the process to achieve a network in which
there is collaboration and trust between agents is outside the scope of this thesis, it
is not self-evident that such a network will be achieved in the future. Therefore it
is necessary to understand how much information is actually available and shared,
and what kind of optimization objective is aimed for.

Figure 2.2: Framework of the four different systems, from [18]

As described in [18], both the information and optimization objective could take a
local or a global view. In case of a local view, only own information is known and the
objective is only individually optimized. In case of a global view, information over
all agents is available and the goal is to achieve an optimal outcome for the entire
network. We may distinguish four different systems of a synchromodal network in
a framework, which are shown in Figure 2.2.
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Our focus will be on synchromodal planning at operational level from the per-
spective of a logistics service provider (i.e., sophisticated planning), who is inter-
ested in reducing its own overall costs and has some (stochastic) knowledge about
the decision making process of other agents in the network. Using Figure 2.2, the
system could be seen as a selfish one in which the information is mainly locally
available. In addition, the LSP utilizes some services of the other agents, which
adds some uncertainty into the model.

2.2 integer linear programming
This section is meant to give the reader some intuition about (integer) linear pro-
gramming and the branch-and-bound method. As mentioned before, it is the main
mathematical tool that will be used to solve the planning problem. For formal
proofs, theorems and definitions, we refer the reader to one of the many books
about (integer) linear programming that have been written, such as [5].

A linear programming problem may be defined as the problem of maximizing or min-
imizing a linear function, called the objective function, in real variables subject to
linear constraints. The constraints may be equalities or inequalities. The concepts
are illustrated by means of the following example.

Example 2.2.1. Maximize the linear function f (x1, x2) = 5 · x1 + 6 · x2 subject to the
(inequality) constraints

x1 + x2 ≤ 5,
4 · x1 + 7 · x2 ≤ 28,

x1, x2 ≥ 0.
(2.1)

Every point (x1, x2) ∈ R2 that satisfies the four constraints is called feasible. In
addition, the set of all the feasible points is called the feasible region, which is shown
in Figure 2.3 and denoted by S ⊂ R2.

Figure 2.3: The feasible region S

Observe that for any pair of points in the feasible region, the line segment between
those two points completely lies within the region, implying that the set of feasible
points is convex. In general, the set of feasible points for an arbitrary linear program
is a convex set (because each feasible region is the intersection of a finite number
of halfspaces and hyperplanes). The objective function f maps every point x ∈ S to
a value. A feasible solution x∗ ∈ S is called optimal if f (x∗) ≥ f (x) for all x ∈ S
(assuming the objective function is maximized). The goal of linear programming
is to establish if an optimal solution exists and to find one (or all of them). If a
linear programming problem has a finite optimal objective function value, then an
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optimal feasible solution is found on (at least) one of the vertices of the convex set1.
Since there are only two variables, we can solve this problem by graphing the set of
feasible points S in the plane and then finding which point(s) of this set maximizes
the value of the objective function f . The function 5 · x1 + 6 · x2 is constant on lines
with slope −6/5, i.e., the line 5 · x1 + 6 · x2 = 18 as plotted in Figure 2.3. As we
move this line further from the origin up and to the right, the value of the objective
function increases. Therefore, we seek the line of slope −6/5 that is farthest from
the origin and still touches the feasible region S. This occurs at the intersection of
the lines x1 + x2 = 5 and 4 · x1 + 7 · x2 = 28, which is the point (7/3, 8/3). The value
of the objective function is 27 2/3.

In general, a commonly used method for linear programming problems is the
simplex method, which is an algorithmic method that seeks a vertex corresponding
to an optimal solution [11].

However, if we add the condition that x1 and x2 have to be integers, the problem
changes into an integer linear programming (ILP) problem and the solution methods
used for the linear programming problems are no longer applicable, because the set
of feasible points is no longer a convex set, as it it can be seen in Figure 2.4a.

(a) Initial feasible region (b) The feasible region after branching on x2

Figure 2.4: Feasible regions before and after applying the B&B method

Just rounding down the optimal solution found in the linear programming prob-
lem is not the way to solve the problem, because (b7/3c, b8/3c) = (2, 2) is not the
optimal solution for the ILP. The branch-and-bound (B&B) method can help us to
find the best integer solution for this problem. It is a solution approach than can be
applied to a number of different types of problems. The B&B approach is based on
the principle that the total set of feasible solutions can be partitioned into smaller
subsets of solutions.

The B&B method starts by relaxing the condition that x1 and x2 are integers,
changing the problem into a linear programming problem. As determined above,
the solution for the problem is (7/3, 8/3) which gives the objective value 27 2/3. How-
ever, the solution is non-integer, hence infeasible. Therefore we need to branch
on one of the variables x1, x2 that is non-integer. In this case, both variables are
non-integers, so we may randomly pick one, say x2. The current value x2 = 8/3 is
infeasible, so the variable has to be less than or equal to 2 or the variable has to be
greater than or equal to 3, i.e., x2 ≤ 2 or x2 ≥ 3. In this way, the problem is divided
into two subproblems. Both subproblems include the original constraints and, in
addition, the new constraints x2 ≤ 2 and x2 ≥ 3 are added to subproblems 1 and
2, respectively. As can be seen in Figure 2.4b, the feasible regions S1 and S2 are
disjoint subsets of the original feasible region S.

Using the simplex method (or just the graphical method) the optimal solution for
subproblem 1 turns out to be (3, 2) which gives the objective value 27, as illustrated
in Figure 2.5.

1 Assuming the feasible region S is pointed, i.e., S has a vertex. This is always the case if the linear program
is in standard form.
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Figure 2.5: B&B method

The outcome of the linear programming
problem can be considered as an lower
bound for the ILP problem. Moreover, ob-
serve that the objective function maps every
integer point (x1, x2) to an integer value, im-
plying that the outcome of the integer linear
programming problem can be at most 27.

Because no better result can be achieved
in terms of the objective value, there is
no reason to proceed. However, for the
sake of understanding the entire process of
the B&B method, the process is continued
along the other branch x2 ≥ 3 until integer
valued points (x1, x2) are found. Although
the point (3, 2) is an optimal solution, for
now it is called a lower bound to the prob-
lem, because it is assumed that there might
be another solution which results in a better objective value. Again, using the sim-
plex method (or the graphical method) the optimal solution for subproblem 2 turns
out to be (7/4, 3) which gives the objective value 26 3/4. Since the point is not feasible
yet, because x1 is non-integer, the process is continued, as shown in Figure 2.6.

Figure 2.6: Continuation of the B&B method

At the end of the branch, the integer valued points (0, 4) and (1, 3) are found,
giving objective values 24 and 23, respectively. These solutions are not better than
the one previously found. We may conclude that (3, 2) is the optimal solution of
the ILP. Although we figured that out in the very beginning, you do not always
get that immediate solution in your first attempt. By constructing the entire tree,
we enumerate all feasible solutions to the original problem, implying that we are
guaranteed to find the optimal solution.

In general, stop investigating a subproblem if (i) the optimal solution is integer, if
(ii) the objective value of the optimal solution is worse than the best integer solution
found so far or if (iii) the subproblem is infeasible.



3 L I T E R AT U R E R E V I E W

Before we start exploring solution methods for the problem described in Chapter 2,
we take a look at the existing literature on intermodal and synchromodal problems.
We distinguish four different problems, as shown in Table 3.1. In addition, it is also
important to properly define the planning problem under consideration. Therefore,
we start by introducing a framework in which the model choices in our synchro-
modal planning ploblem can be classified, based on literature.

Deterministic Stochastic

Container scheduling I II

Container scheduling & vehicle routing III IV

Table 3.1: Problems in synchromodal transport

3.1 framework for synchromodal problems
When solving an optimization problem, it is important to first properly define it.
In [18] a framework for synchromodal transportation problems on a tactical or op-
erational level is presented. The framework aims to capture the essential model-
making decisions done in the model built, to represent the problem. Within the
framework resource and demand elements are considered. The resource elements re-
fer to available modes of transportation, which are mostly barges, trucks and trains.
The demand elements are elements related to demand, which are mostly freight
containers. The elements within the network can have different behaviour, we dis-
tinguish five.

• Controllable: Since we model a decision problem, at least one element of the
system must be in control and must take decisions. For example, the container-
to-mode assignment.

• Fixed: A fixed element does not change within the scope of the problem.

• Dynamic: A dynamic element might change over time or due to change in
the state of the system (e.g., the amount of containers might change the travel
time of a barge), but this change is known and computable beforehand.

• Stochastic: A stochastic element is not necessarily known beforehand. For
example, it is not known when an incoming order arrives, but the arrivals
occur according to a Poisson process.

• Irrelevant: It might occur that for certain problems not all elements are taken
into consideration to model the system. Then these elements are irrelevant.

We will accurately follow the list of elements presented in [18] in order to describe
all the elements occurring in the decision making process of the LSP. However, the
framework does not cover all the elements, so small clarifications are mentioned
where necessary.

15
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Resource elements

• Resource Type: In the problem under study, a finite number of barges (of dif-
ferent known capacities) and an infinite number of trucks is available.

• Resource Features:

– Resource Origin (RO): At the beginning of the MPTW the initial locations
of the barges are fixed. However, thereafter the resource origin is control-
lable, because it is a result of the decision made at the previous CTW.

– Resource Destination (RD): The barges do not have any restrictions, so the
resource destination is controllable.

– Resource Capacity (RC): Each resource has a fixed capacity.
– Resource Departure Time (RDT): Both the direction and the departure time

of a resource is part of the decision the LSP has to make. Therefore, it is
a controllable element.

– Resource Travel Time (RTT): For both barges and trucks, the travel time
between any two locations is fixed.

– Resource Price (RP): Only costs for the use of trucks will be charged, which
is a fixed price.

• Terminal Handling time (TH): At the two terminals that are operated by the
barge planner handling time is taken into account, both for unloading and
loading containers. The handling time is fixed, and independent of the num-
ber of containers that have to be (un)loaded.

Demand elements

• Demand Type: In the problem under study, only one type of container of stan-
dardized dimensions can be transported. Therefore, it is a fixed element.

• Demand-to-Resource allocation (D2R): The assignment of containers to the barges
(and trucks) is part of the decision the LSP has to make. Therefore, it is a con-
trollable element.

• Demand Features:

– Demand Origin (DO): When the LSP receives an incoming order, the pick-
up location (i.e., origin) is immediately known and fixed.

– Demand Destination (DD): Similarly, the destination is a fixed element.
– Demand Volume (DD): The number of containers (i.e., volume) is passed

on as well, so it is a fixed element.
– Demand Release Date (DRD): We distinguish two types of orders: in- and

outland orders. Inland orders have a stochastic pick-up time, and outland
orders have a fixed pick-up/release time.

– Demand Due Date (DDD): Again, distinguishing the two types of orders.
Inland orders have a fixed delivery/due time, and outland orders have a
stochastic delivery time.

– Demand Penalty (DP): Refers to costs that are incurred when the delivery
time at the destination for a container is not met. For each container, a
fixed penalty is taken into account.

Using the compressed framework notation presented in [18], most of the elements
occuring in the problem under consideration can be summarized as follows1.

R, [RD], [RDT] | D, [D2R], D̂RD, D̂DD | selfish(1+) | isolated

1 For furhter details, we refer the reader to Juncker et al. [18].
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3.2 container scheduling

In Problem I and II the transportation modes have fixed timetables. In that case, the
only goal is to solve a container-to-mode assignment such that all containers reach
their destination on time against minimal total cost.

In Problem I every element in the model is deterministic, i.e., every container has
got a prespecified release and due time that is known in advance and no distur-
bances are assumed to occur. The problem can be solved to optimality in a very
short time by solving the multi-commodity minimum cost flow problem (MCMCFP) on
an appropriate time-space graph [16, 19], as explained in detail in the upcoming
subsection.

In Problem II, the goal is the same but almost any element could be stochastic, e.g.,
travel times, release times or the requested calls that have to be confirmed. In the
work of Kooiman [23] the time-stamp stochastic assignment problem (TSAP) has been
studied. The study concerns the collection and delivery of containers between a
container terminal and inland ports by barges, where the barges make fixed round
trips, starting at the container terminal. At each terminal, the barges must decide
how many containers to load here, given that they may have to reserve space for
the next terminals, but not knowing exactly how many containers will be released
at those terminals by the time they arrive. To deal with the stochastic release times
of the containers a simulation algorithm is developed to decide whether a container
is assigned to a barge or not.

The work of Rivera & Mes [29] also addresses future assignments. They inves-
tigate the container transportation from the eastern part of the Netherlands to the
port of Rotterdam, and vice versa, in fixed long-haul round trips starting from the
single inland terminal. While delivering containers, the same barge picks up con-
tainers from the same, and other terminals, and transports them back to the inland
terminal where it started. They formulate the container-to-mode assignment prob-
lem as a Markov decision process (MDP) and approximate the solution by means of
approximate dynamic programming (ADP).

Multi-Commodity Minimum Cost Flow Problem

In general, the multi-commodity flow problem (MCFP) deals with the assignment of
commodity flows from source to destination in a network. MCFPs are highly rele-
vant in several fields including transportation and telecommunications. The multi-
commodity minimum cost flow problem (MCMCFP) is a type of problem that is related
to capacitated networks. A capacitated network consists of various nodes and arcs,
which can be seen as locations, and the waterways and roads connecting them. Each
of these arcs has associated costs and capacities. As mentioned before, the schedule
of the vehicles is known beforehand. In this network, commodities are transported
from one node to another within a certain period, depending on the release and due
times of a container. Therefore, it is necessary to model time variables appropriately.
In literature there are two ways to model time: continuous and discrete approaches.
In [16, 19] a discrete approach is obtained by introducing a time-space graph.

Definition 3.2.1. Let X be a set of locations, and let T ⊂ Z+ be a finite set of time
stamps. We call a graph G = (V, E) a time-space graph if its node set V is of the form
T × X, and every (directed) arc ((t, x), (t′, x′)) ∈ E satisfies t < t′. We refer to the
node (t, x) as location x ∈ X at time t ∈ T.

Moreover, considering multiple vehicles w1, w2, . . . , wn ∈ W having the same
travel time between locations x and x′ ∈ X, then a time-space multigraph has to
be used to distinguish arcs with the same begin and end node. The set of nodes



18 literature review

remains unchanged, but the set of (directed) arcs is somewhat extended. Every arc
e ∈ E is of the form

e =
[
(t, x), (t′, x′), w

]
∈ (T × X)× (T × X)×W, (3.1)

where W is the set of vehicles and t < t′.

Example 3.2.1. In the base instance the set of locations is given by

X = {TOrigin, TRot, T1, T2, T3}.

Let T = {0, 3, 6, . . . , 33, 36} ⊂ Z+ be a finite set of time stamps. In this example,
we have access to two barges, denoted by Bblue and Bgreen, having capacity 20 and
10, respectively. The schedule of the barges is fixed. One barge, Bblue, will start
at the container terminal and depart at time t = 9 to the single inland terminal,
where it arrives at time t = 30. The other barge, Bgreen, will start at the single inland
terminal and depart at time t = 12 to the container terminal, where it arrives at
time t = 33. Furthermore, an unlimited number of trucks having capacity one is
available. Although trucks can be used at any point in time, only the ones that
might be useful are shown in Figure 3.1 (the red dashed arcs).

Figure 3.1: Example of the MCMCFP

We need to transport two orders k1 and k2 consisting of 20 and 15 containers,
respectively. The source node s1 marks the pick-up time and location of the inland
order k1, and the sink node t1 marks the due time and destination of the order.
Equivalently, the source node s2 marks the release time and location of the outland
order k2, and the sink node t2 marks the delivery time and destination of the order.
We may assume that the cost for transporting a container by barge is zero, while
cost is added per container that is transported by truck. Due to the fact that the
model under consideration only has deterministic parameters, the only goal is to
minimize the cost such that the containers reach their destination on time.

Every MCMCFP can be solved to optimality by rewriting the problem as an inte-
ger linear programming (ILP) problem. In contrast to the single commodity flow problem,
where the linear programming relaxation always has an integer solution, the MCM-
CFP is NP-hard. NP-hardness can be no problem in practice, but the problems
might become too big very quickly. Each problem consists of a time-space graph
containing all the nodes and arcs in the network, and a set of commodities, denoted
by K. Without loss of generality, we may assume that every commodity k ∈ K has
one source node sk and one sink node tk. For every arc e ∈ E, the parameter ce is de-
fined as the capacity of the arc. The parameters fe,k are defined as the per container
cost of commodity k ∈ K transported via arc e ∈ E. The parameters dv,k equal dk
if v = sk, −dk if v = tk and zero otherwise, where dk is the quantity of commodity
k (i.e., the number of containers). The variables xe,k represent the magnitude of the
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flow of commodity k on arc e ∈ E. The objective function is to minimize the cost
using the parameters fe,k.

Before stating the problem as an ILP, some notation is introduced. For every node
v ∈ V, we define the set of incoming and outgoing arcs as

δ−(v) := {e ∈ E | e = (v′, v) for some v′ ∈ V}, (3.2)

δ+(v) := {e ∈ E | e = (v, v′) for some v′ ∈ V}. (3.3)

By making use of the notation, we can define the so-called flow conservation con-
straints, given by

∑
e∈δ+(v)

xe,k − ∑
e∈δ−(v)

xe,k = dv,k, (3.4)

for all v ∈ V and k ∈ K. The flow conservation constraints ensure that what flows
into the node, must also flow out, except for the source and sink nodes.

The MCMCFP can now be written as an optimization problem in ILP form, as
shown in (3.5).

min
xe,k

∑
k∈K

∑
e∈E

fe,k · xe,k

s.t. ∑
e∈δ+(v)

xe,k − ∑
e∈δ−(v)

xe,k = dv,k ∀v ∈ V, ∀k ∈ K

∑
k∈K

xe,k ≤ ce ∀e ∈ E

xe,k ∈ Z≥0 ∀e ∈ E, ∀k ∈ K

(3.5)

The problem described in Example 3.2.1 can be modeled and solved by means of
the presented ILP. As illustrated in Figure 3.2, the container transport from the deep-
sea terminal T2 to the container terminal TRot, and from the container terminal TRot
to deep-sea terminal T3 have to be done fully by truck. The long trip, however,
could be done largely by barge. Only five containers corresponding to the outland
order have to be transported by truck to the container terminal TRot, because the
size of the order exceeds the capacity of barge Bgreen. We end up with an objective
value of 600.

Figure 3.2: The optimal flows of commodities k1 and k2 (black arcs) on a time-space graph
of the MCMCFP of Example 3.2.1
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3.3 container scheduling and vehicle routing

The goal in problems III and IV is the determination of both the transportation
timetables (i.e., vehicle routing) and container-to-mode assignment. In other words,
the LSP must tell the barges and other vehicles where to go and when, and what
containers to take with them. The only restrictions for the transportation modalities
are the capacity and the initial position in the network.

In Problem III there are no unknowns, i.e., every container has got prespecified
release and due time that are known in advance and no disturbances could occur.
In other words, the field of intermodal freight transportation. The problem could
be modeled as a multi-commodity network design problem (MCNDP) on a time-space
graph [19], wich is explained in detail in Section 4.2.

The MCNDP is only one of the variants of network design problems. In the
paper of Johnson et al. [17] a universal definition of a network design problem
is formulated: ”Given a weighted undirected graph, we wish to find a subgraph which
connects all the original vertices and minimizes the sum of the shortest path weights between
all vertex pairs subject to a budget constraint on the sum of its edge weights.”

Figure 3.3: Different classifications of network design models, from [34]

As shown in Figure 3.3, network design models can be classified in many different
ways [34]. Some models are uncapacitated, whereas some of them impose shared
capacity on all of the commodities or capacities on each commodity. Some of the
network design models have fixed cost and some of them have only the variable
cost. In some models just one commodity must flow through the network, but
in others we might have several commodities. Furthermore, some network design
models are path-based [7, 8] and some of them are arc-based [12]. These two models
are equivalent to each other in terms of the objective function. The objective of
the path-based model is similar to the arc-based model, but the variable cost is the
sum of flows on paths rather than arcs. That is to say, in the arc-based models
there is a decision variable for every arc between any two nodes, while in the path-
based model there exists a decision variable between every flow path from origin to
destination. In addition, another variant is the unsplittable problem, in which each
commodity must follow exact one route from the origin to the destination.
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The network design problem we are interested in, is the multi-commodity, capac-
itated, arc-based and splittable variant without a budget constraint, but with fixed
cost (e.g. for the use of trucks). To refer to the universal definition of Johnson et al.,
the weighted undirected graph in Problem III coincides with the graph containing
every possible route of every vehicle (and every container). We wish to find a sub-
graph which connects every source (pick-up) and sink (delivery) node in the graph,
such that the sum of the cost incurred is minimized. Between any two nodes the
edge weight corresponds to the cost incurred if vehicle w ∈W travels that arc e ∈ E.
Instead of a budget constraint, capacity constraints are taken into account.

There is theoretical evidence that capacitated network design problems are NP-hard
[20, 21]. NP-hardness can be no problem in practice, but the problems we are in-
terested in get too big very quickly. Therefore approximate methods are needed to
solve them. However, such a solution method cannot guarantee the optimality of
the solution found. Heuristics and metaheuristics are the two classes of approximate
methods.

In the paper of Chouman and Crainic [4] an MIP-based heuristic for the designed-
balanced capacitated multi-commodity network design problem is introduced. The
heuristic combines a cutting-plane procedure that efficiently computes tight lower
bounds and a variable-fixing procedure feeding an MIP solver. The idea of the
heuristic can be used for all types of ILPs, but it is only effective if most variables
turn out to be zero in feasible solutions of the ILP.

A variation to the MIP-based heuristic is proposed in the work of Kalicharan [19].
He introduces the α B&C-and-fix heuristic, which does branch and cut instead of
only adding cutting planes. The first phase of the heuristic consists of doing branch
and cut for the ILP, while saving the variables that are used in every node of the
branch-and-cut tree. In the second phase the problem is solved restricted to the
variables that were non-zero in at least α nodes of the branch-and-cut tree.

In Problem IV, the goal is the same but almost any element could be stochastic. In
the work of Chiscop [3] a robust formulation is proposed to be able to do simultane-
ously vehicle routing and container-to-mode assignment uncluding uncertainty in
the release times. It is assumed that the release times of the containers belong to an
uncertainty interval, and no further statistical information is available. The robust
solutions found with the model correspond to transportation plans which remain
feasible for any realization of the release times within the prespecified uncertainty
interval.

In the work of Rivera and Mes [28] a planning problem of selecting services and
transfers in a synchromodal network has been studied. Freight has to be transported
from its origin to its destination, while minimizing the costs over a multi-period
time window. At each decision moment, the planner can make three possible deci-
sions for available freights at each location, where each decision incurs some form
of cost. The possible decisions are given by

1. transport the freight to its destination,
2. transport the freight to an intermediate terminal (i.e., switch service),
3. postpone the transport of the freight.

The optimal balance between direct and future costs guarantees the best perfor-
mance for the multi-period horizon. However, anticipating future cost is challeng-
ing. To model this stochastic and multi-period tradeoff, Rivera and Mes propose
a Markov decision process (MDP) model. Moreover, to overcome the computational
complexity of solving the MDP, an approximate dynamic programming (ADP) ap-
proach is proposed.

The paper by Fragkos et al. [12] generalizes the basic MCNDP to a multi-period
setting, where demand for each commodity expands dynamically over a discrete
time window. Arc activation decisions have to be taken in every single-period, and
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once an arc is activated it can be used throughout the remaining horizon to route
several different commodities. Though it is one of the few papers that introduces a
multi-period setting, the decision making process is done at a strategic level instead
of operational level. The decisions at strategic level have long-term goals, while
we are interested in short-term decision making where plans can be changed last
minute. Furthermore, each period the same commodities have to be transported
from their origin to their destination, only the size of the commodities expands
dynamically in time.

In the paper of Han et al. [13] a robust scenario approach is presented for the
vehicle routing problem (VRP) with uncertain travel times in case where the exact
probability distributions are not known, but the multiple range forecasts and the
probability of the occurrence of each range are available. In the approach, a scenario
is defined as a random travel time of each arc of the network being realized only in
one single range. For each realization of a scenario, they first find the robust route
that protects the solution against the worst case within the given ranges. Then the
optimal route with respect to the minimum expected worst case cost is determined,
where an expectation is taken over all scenarios. A branch-and-cut algorithm is
proposed to solve the problem.

3.4 contribution made by this work
The deterministic version of many network design problems has been studied ex-
tensively over the last decades. Due to the recognized practical importance of in-
corporating uncertainty, the uncertain version of network design problems has also
attracted increasing attention. Various problems have been formulated depending
on the uncertainty under consideration. For example,

1. uncertainty in customer presence,
2. uncertainty in demand,
3. uncertainty in travel time.

A comprehensive overview can be found in Cordeau et al. [6], and Häme and
Hakula [15]. Our work extends the traditional multi-commodity network design
problems by introducing a multi-period time window setting. Although such multi-
period network design problems can provide useful input for strategic and tacti-
cal decisions, finding their optimal solution is computationally challenging. We
propose a simulation based approach that explicitly seeks routes that are resistant
to change2 (i.e., vehicle routing), and implicitly effectuates a container-to-mode as-
signment. As mentioned before, only few papers are published that introduce a
multi-period setting. Most of the papers that do introduce the multi-period setting,
assume a fixed (time) schedule for the transportation modes in their network, which
coincides with Problem II. The work of this thesis is related to Problem IV.

We attempt to obtain new insights and knowledge into synchromodal planning
problems, including stochastic elements, by proposing a simulation based approach
on a multi-period time window. To the best of our knowledge, this research is the
first to address both vehicle routing (explicitly) and a container-to-mode assignment
(implicitly), including uncertainty in the pick-up and delivery appointments, by
generating potential future scenarios in order to obtain the best decision(s) that is
resistant to change. The uncertainty element in our model is based on probability
distributions, which has the benefits of incorporating distributional information
and hence results in less moderate solutions than the classical robust optimization
approaches where probability distributions are ignored, e.g., Han et al. [13].

2 See Definition 5.4.1 in Chapter 5.
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In the field of operations research a well known and commonly used distinction
is made between offline and online optimization. In offline optimization all relevant
information is known when solving the optimization problem involved, i.e., there is
no uncertainty about any input data relevant to the problem. In online optimization
the input data come in sequentially and decisions have to be taken while part of
the relevant information is still lacking, since it will only become available after the
decision has been made. Only ex post, when all information has become available,
the truly optimal solution can be computed offline [23]. Since the offline solution
can be used as a lower bound, we explore the field of offline optimization. The
gap between the offline and online solutions can be used to assess the quality and
practical relevance of the solution methods.

In this chapter we present a mathematical model to solve the optimization prob-
lem offline. Moreover, the mathematical model can be used as a starting point for
solving the optimization problem online. Before doing so, an explanation is given
about generating the instances that can be used to test the performance of the dif-
ferent solution methods.

4.1 creating in- and outland orders

The multi-period time window into consideration covers 72 time steps, where each
time step corresponds to three hours in real life. In other words, the goal is to
transport orders from their pick-up location to their destination within a time frame
of nine days. As stated in the problem description, each in- and outland order has
its own characteristics. For an order k ∈ K, we will denote the pick-up location
by χpu(k), the pick-up time by τpu(k), the delivery location by χdel(k), the delivery
time by τdel(k) and the size of the order by |k|. Given any number of in- and outland
orders, denoted by Nin and Nout respectively, the corresponding characteristics are
created as follows.

Let k ∈ Kin be an inland order. Notice that the delivery location is fixed, and
the pick-up time consists of both a requested and a confirmed time. The pick-
up location χpu(k) is chosen between T1, T2 and T3 with equal probability. The
requested pick-up time τ

req
pu (k) is discrete uniformly chosen between 1 and 59, i.e.,

τ
req
pu (k) =∼ U{1, 59}. (4.1)

Thereafter, the confirmed pick-up time τ
con f
pu (k) is chosen using the probability vec-

tor

p = (p−1, p0, p+1, p+2, p+3, p+4, p+5), (4.2)

where pi corresponds to the probability that the confirmed appointment time is
scheduled at time τ

req
pu (k) + i. The due time τdel(k) is discrete uniformly chosen

23
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between τ
req
pu (k) + 13 and τ

req
pu (k) + 20, and may not exceed the right border of the

multi-period time window1, i.e.,

τdel(k) =∼ U
{

τ
req
pu (k) + 13, τ

req
pu (k) + 20

}
. (4.3)

In addition to that, the size of the order k is discrete uniformly chosen between 1

and 5, i.e., |k| =∼ U{1, 5}.

Let k ∈ Kout be an outland order. Notice that the pick-up location is fixed, and
the delivery time consists of both a requested and a confirmed time. The delivery
location χdel(k) is chosen between T1, T2 and T3 with equal probability. The pick-up
time τpu(k) is discrete uniformly chosen between 0 and 62, i.e.,

τpu(k) =∼ U{0, 62}. (4.4)

The requested delivery time τ
req
del (k) is discrete uniformly chosen between τpu(k) + 9

and τpu(k) + 15, and may not exceed the right border of the multi-period time
window2, i.e.,

τ
req
del (k) =∼ U{τpu(k) + 9, τpu(k) + 15}. (4.5)

Thereafter, the confirmed delivery time τ
con f
del (k) is chosen using the probability vec-

tor p, and may not exceed the right border of the multi-period time window. In
addition to that, the size of the order k is discrete uniformly chosen between 1 and
5, i.e., |k| =∼ U{1, 5}.

Although it has been mentioned before, notice again that the generated times
correspond to the time steps in the model. For example, τ

req
pu (k) = 13 is equivalent

to saying that the requested pick-up time is 39 hours after the initial time at time
step 0.

High and low priority orders

When the due time of an inland order turns out to be τ
req
pu (k) + 13 and the con-

firmed appointment time is scheduled 5 time steps later, then the order has to be
transported within 8 time steps, which can be seen as an order having high priority.
When the due time turns out to be τ

req
pu (k)+ 20 and the confirmed appointment time

is scheduled 1 time step earlier, then the order has to be transported within 21 time
steps, which can be seen as an order having low priority.

In a similar way, when the requested delivery time of an outland order turns
out to be τpu(k) + 9 and the confirmed appointment time is scheduled 1 time step
earlier, then the order has to be transported within 8 time steps, which can be seen
as an order having high priority. When the requested delivery time turns out to
be τpu(k) + 15 and the confirmed appointment time is scheduled 5 time steps later,
then the order has to be transported within 20 time steps, which can be seen as an
order having low priority.

4.2 multi-commodity network design problem
In this section a mathematical model is introduced to solve the optimization prob-
lem offline. As mentioned in the previous chapter, Problem III can be modeled
as a multi-commodity network design problem (MCNDP), in which both a container-to-
mode assignment and vehicle routing is determined, and that is exactly the problem
we are interested in. That is to say, solving the base instance described in Section 1.2

1 If τdel(k) > 72, the order including all its characteristics is disregarded and a new order is generated.
2 If τ

req
del (k) > 72, the order including all its characteristics is disregarded and a new order is generated.
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disregarding the uncertainty elements that appear in both the requested calls and
the unannounced orders. First, the general MCNDP is presented as an integer lin-
ear program, then some practice-oriented constraints are added and, finally, the
objective function is obtained using some practical information.

4.2.1 General MCNDP

The MCMCFP introduced in Section 3.2 can be extended in order to solve the MC-
NDP as offline problem. In the work of Kalicharan [19] an extra layer of constraints
is introduced to provide a schedule for the barges of minimum cost which satisfies
both the strict pick-up and delivery appointments at the deep-sea terminals, and
the release and due times at the single inland terminal.

Because we assume that at any point in time, an infinite number of trucks is
available at every terminal, we may disregard the routes of the trucks. The objective
ensures that only the highly necessary truck arcs will be activated. The routes of
the barges, however, are not known in advance. Therefore, we need to extend the
edge space of the time-space graph. Let ∆x→x′ denote the travel time (in terms of
time steps) from location x to x′ by barge. That is to say, in the base instance we
have

∆x→x′ =

{
1 if both x, x′ ∈ TRot ∪ D or x = x′,
7 if one of the locations is the origin TOrigin.

(4.6)

Now, the edge space of the time-space graph could be extended as follows. For
every barge (or non-truck vehicle) w ∈ Wbarge, for every time step t ∈ T, and for all
locations x ∈ X we need to add the arcs

e =
[
(t, x), (t + ∆x→x′ , x′), w

]
, (4.7)

for all x′ ∈ X if t + ∆x→x′ ∈ T. Thus, for each barge a huge number of possible arcs
that could be travelled are added to the time-space graph. For the vehicle routing
problem we aim for selecting the right arcs such that the network performance is
optimal. Therefore, for every arc e ∈ Ebarge := {e ∈ E | w ∈Wbarge} we define design
variables ye , that are equal to 1 if the service at edge e is used, and 0 otherwise. In
other words, a design variable is equal to 1 if and only if the corresponding barge
travels the corresponding edge. Within the offline optimization process it will be
decided which design variables are equal to 1, i.e., which route the barge should
travel.

The previous model is extended by including the so-called design-balanced con-
straints. These constraints make sure that if a barge arrives at a certain location,
then it will also depart from it, except for the source and sink nodes of the barge.
The parameters bv,w equal 1 if v is the source node and −1 if v is the sink node3 of
barge w, and 0 otherwise. The design-balanced constraints are given by

∑
e∈δ+(v)∩Ebarge

ye − ∑
e∈δ−(v)∩Ebarge

ye = bv,w, (4.8)

for all v ∈ V and w ∈Wbarge.

3 There is no restriction imposed for the sink node of a barge, but this can easily be solved by introducing
a virtual sink node, where each possible sink node of barge w in the time-space graph is connected to
the virtual sink node.
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The MCNDP can now be written as an optimization problem in ILP form, as
shown in (4.9).

min
xe,k

∑
k∈K

∑
e∈E

fe,k · xe,k

s.t. ∑
e∈δ+(v)

xe,k − ∑
e∈δ−(v)

xe,k = dv,k ∀v ∈ V, ∀k ∈ K

∑
e∈δ+(v)∩Ebarge

ye − ∑
e∈δ−(v)∩Ebarge

ye = bv,w ∀v ∈ V, ∀w ∈Wbarge

∑
k∈K

xe,k ≤ ce · ye ∀e ∈ Ebarge

∑
k∈K

xe,k ≤ ce ∀e ∈ Etruck

xe,k ∈ Z≥0 ∀e ∈ E, ∀k ∈ K

ye ∈ {0, 1} ∀e ∈ E

(4.9)

Except the design-balanced constraints, other capacity related constraints are in-
troduced. The capacity of an edge e ∈ Ebarge is zero if the barge does not travel
the edge (i.e., if ye = 0), and the capacity is equal to the capacity of the barge ce if
the barge does travel the edge (i.e., ye = 1). In other words, the capacity of an arc
depends on the design variables.

4.2.2 Adding practice-oriented constraints

Although the MCNDP can now be modeled and solved by means of the presented
ILP, some extra contraints are required to be able to solve more practice-oriented
problems. The main reason to add those extra constraints is to ensure that freight
cannot suddenly switch vehicles. At the controlled terminals, constraints are added
in the form of handling time, whereas at the region D, another type of constraints
is added to ensure that at most one barge can visit an appointment. We may dis-
tinguish between constraints for the origin, the container terminal and the deep-sea
terminals within the region D.

In the work of Kalicharan [19] only unloading time is taken into account. In case
a barge has capacity left, it is still possible to pick-up containers at a terminal with-
out any handling time. At the container terminal in Rotterdam it could happen that
empty barges (or non-empty barges having capacity left) arrive, only load some
freight and leave immediately. Therefore, both unloading and loading time have to
be taken into account, implying some additional constraints are required. Before
stating the unloading and loading constraints, Definitions 3.2 and 3.3 on the incom-
ing and outgoing arcs have to be adapted a bit. For every node v ∈ V and every
vehicle w ∈W, we define the set of incoming arcs of type w ∈W and the outgoing arcs
of type w ∈W as

δ−w (v) := {e ∈ E | e = (v′, v, w) for some v′ ∈ V}, (4.10)

δ+w (v) := {e ∈ E | e = (v, v′, w) for some v′ ∈ V}. (4.11)

Given these adapted definitions, for all time-space nodes v = (t, x) with t ≥ 1, for
all commodities k ∈ K and for all vehicles w ∈ W, we add the unloading constraints
to the model, given by

∑
e∈δ+w (v)

xe,k − ∑
e∈δ−w (v)\{ê1}

xe,k ≥ dv,k, (4.12)
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where ê1 = [(t− 1, x), (t, x), w]. The constraints ensure that if a container wants to
switch from vehicle w ∈ W to w′ ∈ W\{w}, vehicle w has to wait at least one time
step at the corresponding terminal having the container on board.

Similarly, for all time-space nodes v = (t, x) with t ≥ 1, for all commodities k ∈ K
and for all vehicles w ∈W, we add the loading constraints to the model, given by

∑
e∈δ+w (v)\{ê2}

xe,k − ∑
e∈δ−w (v)

xe,k ≤ dv,k, (4.13)

where ê2 = [(t, x), (t + 1, x), w]. The constraints ensure that if a container wants
to switch from vehicle w ∈ W to w′ ∈ W\{w}, vehicle w′ has to wait at least one
time step at the corresponding terminal having the container on board. Observe
that in case a container wants to switch from one barge to another, it has to wait at
the container terminal at least two time steps, no matter what. Both barges cannot
fulfill their duty to wait at the same time step, because the waiting process includes
the restriction to have the container on board. For trucks, however, no handling
time is taken into account. Thus switching from barge to truck, or vice versa, forces
to wait only one time step.

At the origin it is sufficient to regard unloading (or loading) time only because we
may assume no empty barges will arrive at the origin. What we try to avoid is that
a barge, including some freight, could arrive at the origin and leave immediately
taking some other freight. Although constraint 4.12 could be used, there is a more
efficient way to implement the handling time at the origin. If design variable ye is
equal to 1 for some edge of the form e = [(t, TRot), (t + 7, TOrigin), w] for some barge
w ∈ Wbarge, then design variable ye′ has to be forced to be equal to 1 as well for
edge e′ = [(t + 7, TOrigin), (t + 8, TOrigin), w]. In general, for all time steps t ∈ T with
t + 8 ∈ T and for all barges w ∈W, we add the constraint given by

y[(t,TRot), (t+7,TOrigin), w] ≤ y[(t+7,TOrigin), (t+8,TOrigin), w]. (4.14)

The constraint ensures that a barge is forced to wait at least one time step at the
origin after arrival.

Although handling time could be added to the pick-up and delivery appoint-
ments at the deep-sea terminals in the region D, we may disregard that aspect in
the model. The (discrete) time steps of three hours include handling time, waiting
time and other unefficient components that vehicles face in the port of Rotterdam.
On the other hand, constraints are needed to ensure that freight cannot suddenly
switch vehicles at an appointment. Furthermore, the number of barges that may
visit an appointment is restricted to 1 because of practice-oriented reasons. There-
fore, for all time-space nodes v = (t, x) ∈ Vappointment, we add the constraint given
by

∑
e∈δ−(v)

ye ≤ 1. (4.15)

The constraint ensures that at most one of the design variables corresponding to the
incoming arcs is equal to 1, i.e., at most one barge could visit the node.

Instead of restricting the number of barges, a more general variant can be imple-
mented. The flow conservation constraints 3.4 could be somewhat extended for the
time-space nodes v = (t, x) ∈ Vappointments. The constraints are given by

∑
e∈δ+w (v)

xe,k − ∑
e∈δ−w (v)

xe,k = dv,k, (4.16)

for all v ∈ Vappointment, k ∈ K and w ∈ W. The constraints allow multiple barges
at an appointment, but do ensure that freight cannot suddenly switch vehicles any-
more. As mentioned before, we consider the previous restriction, both for practice-
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oriented and computational complexity reasons. Restriction 4.15 consists of only
| δ−(v) | variables, and only | Vappointment | constraints have to be added. Restric-
tion 4.16, however, consists of | δ+w (v) | + | δ−w (v) | variables, and

| Vappointment | · | K | · |W |

constraints have to be added.

4.2.3 Determining the cost structure

The objective function is based on the costs incurred during the decision making
process. The ratio between the potential costs incurred in the process has to rep-
resent the actual costs faced by the Dutch logistics service provider in practice. In
collaboration with the Dutch LSP, an estimate of the costs per TEU4 for the main
actions within the process are known. Since the actual costs were not allowed to
make public because of confidentiality, the cost ratios are presented in Figure 4.1.

Figure 4.1: Cost per TEU incurred for the main actions. The abbreviations LT and ST stand
for long trip and short trip, respectively.

As can be seen in the figure, trucks are relatively expensive, implying that the
use of trucks should be minimized. Notice that the use of trains is disregarded in
the model. The departure times of the train are fixed, so only an assignment of the
containers has to be done. Furthermore, the train departs only once or twice a week,
so does not impact the network that much.

Only additional costs are taken into account in the model, which means no costs
are charged for the use of barges, because the barges will travel through the system
regardless of the incoming orders. Only the use of trucks is taken into account. In
practice, we could distinguish between 20, 40 and 45 ft containers, i.e., 1, 2 and 2 1/4

TEU respectively. In the base instance, however, no distinction is made between any
type of containers. Every container has the same standardized dimensions, and the
capacity of each vehicle is just measured in terms of the total number of containers.

Due to computational complexity reasons the handling cost at the container termi-
nal is disregarded. Disregarding handling costs does not impair the representative-
ness of the model, since switching vehicles at the container terminal does implicitly
incur additional costs, since the model does charge (handling) time.

4 TEU stands for Twenty-foot Equivalent Unit which can be used to measure a ship’s cargo carrying
capacity. The dimensions of one TEU are equal to that of a standard 20 ft shipping container, i.e., 20 feet
long (≈ 6 meters) and 8 feet tall (≈ 2.5 meters).
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Since the actual costs were not allowed to make public, the actual costs incurred
for the use of trucks for long and short trips, say Ctruck,LT and Ctruck,ST , have been
multiplied by a random number ζ and rounded to a near integer. In the remainder
of this thesis, the assumed costs for the use of trucks for long and short trips are
given by

C̄truck,LT = 200.0 ≈ Ctruck,LT · ζ, (4.17)

C̄truck,ST = 175.0 ≈ Ctruck,ST · ζ. (4.18)

Given the practical information and assumptions made, the objective function can
be formulated. The goal is to minimize the costs over all long and short trips
travelled by truck, where a long trip corresponds to the transport of a container
from the origin to the container terminal in Rotterdam or vice versa, and a short
trip corresponds to the transport of a container between any two terminals in the
port of Rotterdam. Therefore, the objective function is given by

∑
k∈K

200 · ∑
e∈Elong

xe,k + 175 · ∑
e∈Eshort

xe,k

 . (4.19)

The set of flow arcs corresponding to the long trips travelled by truck is denoted
by Elong, and equivalently the set of flow arcs corresponding to the short trips trav-
elled by truck is denoted by Eshort.

4.3 approaching the lower bound
After implementing the ILP described in the previous section, the offline optimal
solution can be computed for various randomly generated instances and used as
a lower bound for the problem. However, the computational time significantly in-
creases for all instances considered when the number of orders and the length of
the time window increases. In other words, as the number of decision variables
increases significantly, it becomes quite time consuming to compute the offline so-
lution. Moreover, we could ask ourselves if the offline solution can be helpful at all
because of the substantial presence of the uncertainty elements. The uncertainty in
the model is twofold. On the one hand, there is uncertainty in the requested ap-
pointment times that have to be confirmed. On the other hand, there is even more
uncertainty in the orders that are not known yet. Since there is so much uncertainty
involved in the model, it is unlikely that the online solution would come even a
little bit close to the offline solution. Although we succeeded to gain the results for
the offline solution, a different benchmark approach is proposed in Section 5.2 in
order to approximate the lower bound. To investigate the benchmark approach is a
well-considered choice because of three reasons. The approach

1. is more realistic in terms of computational time,

2. is more realistic in terms of usefulness, i.e., to assess the quality of the models,

3. may provide advantageous information by dynamically changing the amount
of uncertainty.
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In this chapter several solution methods will be explored to solve the base instance
described in Section 1.2. In the base instance a MPTW of 72 time steps (i.e., nine
days) is considered, where the data comes in sequentially only after the decision
for the upcoming CTW has been made. Before doing so, some remarks on online
optimization will be stated, whereafter a benchmark approach is proposed which
is more realistic in terms of both computational time and usefulness.

5.1 some remarks on online optimization

The idea of the proposed online optimization approach is as follows. Instead of
solving the MPTW at once (by solving an immense ILP), multiple SPTWs need to
be solved iteratively. Observe that after solving a SPTW, we move forward on the
MPTW only the length of a CTW (as explained and visualized in Figure 1.5).

In the proposed benchmark approach, for example, the solution of each SPTW
will be obtained by solving a single ILP. Although each ILP provides a planning for
the upcoming SPTW, only the part within the CTW is actually performed. Each ILP
(or SPTW) provides a piece of the solution and eventually the final solution is ob-
tained. Observe that the ILPs (or SPTWs) cannot be solved simultaneously, because
the input of each ILP (or SPTW) depends on the output of the previous one.

By solving a single ILP, we are guaranteed to find the optimum. However, by solv-
ing multiple ILPs iteratively there is no optimality guarantee. Although each single
ILP is solved to optimality locally, it does not mean that the MPTW is solved to op-
timality globally. In fact, only in the unlikely case that all future realizations of the
missing or stochastic input data happen to coincide with the imputed expectations,
the online solution will match the offline solution.

5.1.1 The source node for shipped orders

In offline optimization, a source and a sink node in the time-space graph correspond,
respecitively, to the pick-up time and location, and the delivery time and location
of an order. In online optimization, however, the source node does not always cor-
responds to the pick-up time and location of an order. It could occur that an order
has been transported from the pick-up location to an intermediate location, imply-
ing that the source node corresponds to that intermediate location and the arrival
time. In that case, such a source node might have some extra restrictions, e.g., if it
is located on some barge or what its previous location was.

5.1.2 Varying the period between two decision moments

As mentioned before, we distinguish SPTWs and CTWs. The length of a SPTW
depends on the relevant information known at an arbitrary decision moment. By
the construction of the in- and outland orders (as explained in Section 4.1), the
length of a SPTW could be at most 32 time steps since every due or delivery time
lies in such a time frame. The length of a CTW, however, can be adjusted manually.

31
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It is defined as the period between two consecutive decision moments, i.e., the part
of the solution that is actually performed.

For example, the length of a CTW could be one or four time steps, implying that
a decision moment is performed every three hours or every half a day, respectively.
The first option would probably give better results, but the amount of work that has
to be done increases significantly. In case of a decision moment at each time step,
we need to solve 72 SPTWs, while in case of a decision moment every half-a-day,
only 18 SPTWs need to be solved. Therefore, an appropriate balance between the
solution performance and the running time performance needs to be found. The
length of a CTW is denoted by δ. Moreover, the period δ between two consecutive
decision moments defines what part of the solution, obtained by solving the SPTW,
is actually stored.

Let the interval [ta, tb] correspond to an arbitrary single-period time window,
where δ ∈ N≥1 such that ta + δ < tb. For every arc e = [(t, x), (t′, x′), w] ∈ E
satisfying t ∈ [ta, ta + δ), the flow variables xe,k and the design variables ye that are
non-zero are actually stored. Moreover, the non-zero variables corresponding to the
arcs satisfying t ∈ [ta, ta + δ) and t′ ≥ ta + δ determine the intitial nodes of both
the barges and the orders (having their pick-up time before ta + δ and their delivery
time after).

5.1.3 Unloading process

At the container terminal it is allowed to store containers temporarily or switch
vehicles. However, handling time is taken into account for both the unloading
and loading process. The unloading constraint ensures that if a barge wants to
unload one or more containers, it has to wait at least one time step at the container
terminal having the corresponding container(s) on board. In offline optimization,
where plans are made beforehand, such a restriction does not cause any trouble. In
online optimization, however, the constraint is weakened.

Suppose a certain barge arrives at the container terminal TRot and, based on the
information available, it is decided to unload some containers on board. Then
the barge is obliged to wait one time step at the container terminal including the
containers on board. After waiting, new information becomes available and a new
decision has to be taken. Due to the unloading constraint, it is now allowed to
send the barge to any location without the containers under consideration on board.
However, it is also allowed to send the barge to any location with the containers
under consideration on board, which contradicts the decision taken at the previous
time step. Therefore, if it is decided to unload some containers, constraints are
needed to ensure that both the barge and the containers wait at least one time step
at the container terminal, but without being on board of the barge.

Let the interval [ta, tb] correspond to an arbitrary SPTW, and let I := (ta, TRot) be
the initial node at the container terminal within the time-space graph. We define
WI as the set of barges located at the container terminal TRot at time step ta. In a
similar way, we define KI as the set of orders located at the container terminal TRot
at time step ta, where the order could be both on board of a barge w ∈WI or on the
quay of the container terminal.

For every barge w ∈ WI and for every order k ∈ KI , the realistic unloading con-
straints are defined by at most three constraints, given by

∑
x∈X

xe1,k − xe2,k = 0, (5.1)
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where

e1 = [(ta + 1, TRot), (ta + 1 + ∆TRot→x, x), w],

e2 = [(ta, TRot), (ta + 1, TRot), w].

Furthermore, if order k ∈ KI is on board of barge w ∈ WI , we need to add two
more constraints, given by

∑
x∈X\{TRot}

xe3,k = |k| · ∑
x∈X\{TRot}

ye3 , (5.2)

xe2,k + xe4,k = |k| · ye2 , (5.3)

where

e3 = [(ta, TRot), (ta + ∆TRot→x, x), w],

e4 = [(ta, TRot), (ta + 1, TRot), wait].1

Constraint 5.1 ensures that if a container is not unloaded at the beginning of the
single-period time window, it is forced to stay on the barge at least one extra time
step. Constraint 5.2 ensures that order k is forced to stay on board of barge w when
the barge decides to leave the container terminal at time step ta (because it is not
unloaded). Finally, constraint 5.3 ensures that the |k| containers corresponding to
order k (i.e., the magnitude of the flow of order k) can be fully or partially unloaded
when the barge decides to stay at the container terminal.

5.2 the benchmark approach
As mentioned before, the computational time grows substantially if the number of
decision variables increases. Although it is quite time consuming to compute the
problem offline, we succeeded to gain the lower bound to the problem. However, in
order to better assess the quality of the models and to gain some advantageous in-
formation about the impact of the uncertainty element on the system, a benchmark
approach model is proposed. In the model, the lower bound is approximated using
SPTWs in which there is no uncertainty in the requested appointment times. Only
uncertainty is available in the orders not announced yet. The solution of each SPTW
is obtained by solving a single ILP, whereafter we move forward on the MPTW the
length of a CTW. The length of the CTW is set to one, i.e., δ = 1.

We assumed that orders become known 12 time steps in advance. In practice
those orders include uncertainty. However, in order to approximate the lower
bound to the problem, we may disregard this uncertainty element, implying that
orders are confirmed immediately after they become known: the B12 model. Even
better approximations can be found when the orders are announced at an earlier
stage: the B16, B20, B24 and B28 model.

To clarify, the Bx model coincides with the method in which orders become known x
time steps in advance relative to their requested appointment time. The greater the
value of x, the more (deterministic) information available at each decision moment,
which will presumably lead to better performance (and increasing computational
time).

Only ex post, when all information has become available, the truly optimal solution
(i.e., lower bound) can be computed offline. In other words, the Bx model in which

1 The arc that corresponds to staying at the container terminal for 1 time step without being on board of
any vehicle, i.e., on the quay.
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orders become known 72 time steps in advance relative to their requested appoint-
ment times: the B72 model.

Figure 5.1 presents the average cost, obtained by using the objective function (4.19),
and the average number of trucks used in 11 randomly generated instances.

Figure 5.1: Approaching the lower bound by announcing orders at an earlier stage, where
the announcement time corresponds to the number of time steps in advance. The
horizontal dashed line corresponds to the average cost obtained in the B72 model,
i.e., the offline solution obtained ex post.

As can be seen, the results gradually converge to the results of the B72 model (i.e.,
the offline solution that can be obtained ex post). Observe that the number of trucks
smoothly decreases, while the average cost suddenly drops down at the B20 model.
It seems that the focus is shifted more to the use of cheaper trucks (i.e., the short
trips). In Chapter 6 a more detailed analysis on the benchmark models is presented.

5.3 confirmation based models
In this section three solution methods will be presented: the RC, EC and AC model.
The approach of the models is similar to the B12 model, in which the solution
of each SPTW is obtained by solving a single ILP, whereafter we move forward
on the MPTW the length of a CTW. However, this time the uncertainty element
of the requested appointment times has to be taken into account. In the models
this uncertainty element is partially disregarded, by assuming that each requested
appointment time will be scheduled at a specific time relative to the requested one.
In other words, the models are based on a confirmation that is made up by ourselfs.

5.3.1 RC model

The RC model (Requested as Confirmed) is the most obvious method to solve the prob-
lem. Here the uncertainty is fully disregarded. In other words, the requested ap-
pointment times are assumed to be the confirmed ones. Given that assumption, the
solution of each SPTW is obtained solving a single ILP, whereafter the part of the
solution within the CTW is actually stored.

Observe that a SPTW could be infeasible when a faulty decision was made at the
previous decision moment. This can happen in two different ways. If δ ≥ 2, it might
be possible that a container arrives at the container terminal TRot at the confirmed
appointment time, implying that the container is too late (i.e., it cannot be delivered
on time anymore). This could happen when the container is sent last minute by
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barge, relative to the requested appointment time, and the confirmed appointment
time is scheduled 1 time step earlier. Another possibility for infeasibility is based
on the container assignment at the origin, which is clarified by Example 5.3.1.

Example 5.3.1. Suppose that at decision moment t = 4 we decide to send a barge
from the origin to the container terminal including three assigned outland orders
k1, k2, k3 ∈ Kout. The characteristics of the orders that matter are given by

τ
req
del (k1) = 10, τ

con f
del (k1) = 12 and χdel(k1) = T3 (5.4)

τ
req
del (k2) = 12, τ

con f
del (k2) = 14 and χdel(k2) = T1 (5.5)

τ
req
del (k3) = 15, τ

con f
del (k3) = 14 and χdel(k3) = T2 (5.6)

An order is confirmed 8 time steps in advance relative to the requested appointment
time, implying that outland order k3 is the only order not confirmed yet. Observe
that the confirmation is done per order, not per ship2. Thus, at the decision moment
we assume that the appointment times are given by 12, 14 and 15, implying that the
orders can be sent by the same barge. In Figure 5.2 the planned route of the barge
is visualized.

Figure 5.2: The planned route of the barge at decision moment t = 4, that will become
infeasible if the requested appointment corresponding to order k3 is confirmed
at time step t = 7 (and turns out to be one time step earlier).

However, when time passes by, outland order k3 is confirmed and turns out to
be scheduled at the same time as order k2, but at different locations. Since there is
no time left to unload some containers, the single-period time window at decision
moment t = 7 (when order k3 is confirmed) will become infeasible.

If a single-period time window is infeasible, the order of smallest quantity, say
kin f easible, is send by truck retroactively and an additional penalty is charged. That
is to say, an amount of |kin f easible| · (175.0 + 200.0) is added to the objective value
since the order is sent by truck from its origin to its destination (i.e., both a long and
short trip). In addition, the penalty imposed is equal to the same amount, because
we may assume that the LSP has to pay the cost incurred to the client (or the port
of Rotterdam) to reimburse the ’damage’ (i.e., lateness). In summary, if an order
kin f easible causes infeasibility, then |kin f easible| penalties are taken into account. For
each penalty, an amount of

cpenalty = 2 · (175.0 + 200.0) = 750.0 (5.7)

is added to the objective function (4.19).

2 If an requested appointment time is confirmed, the mode(s) of transportation that will be used to pick-up
or deliver the order can still be chosen freely.
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5.3.2 EC model

For inland orders, the RC model works fine. For the outland orders, however, the
model has some disadvantages. As mentioned before, when the confirmed ap-
pointment time of an order turns out to be earlier than the requested one, and the
model had decided (based on the requested appointment time) to send the order
last minute to its destination, possibly unnecessary costs are incurred because the
order has to be trucked. Especially orders of large size may cause problems.

To ensure such problems will not occur, the EC model (Earliest as Confirmed) is
proposed. The model assumes that the confirmation of each requested appointment
time is the ’worst case’. In other words, the confirmed appointment time is assumed
to be the earliest possible appointment time.

Observe that the problem faced in the RC model does not relate to the inland
orders, so it would probably not benefit to assume the earliest possible appointment
time for both type of orders. Therefore, the requested appointment time belonging
to an inland order is assumed to be the average appointment time.

Although the first possibility of infeasibility is avoided, the second possibility
based on the container assignment at the origin could still occur.

5.3.3 AC model

For both the RC and EC model, to deal with the uncertainty, the assumption is
made to regard the requested appointment times in the beginning of the uncertainty
interval to ensure that the transportation of outland orders by barge is possible (and
no unnecessary costs are incurred). However, in most cases (to be precise five out
of seven3) the actual confirmed appointment time will be scheduled later than the
requested one.

Naturally, we do not charge any cost for being on time, but when an outland
order arrives at the container terminal way too early it is not beneficial. The con-
tainers corresponding to the order could stay on board of the barge the remaining
time or the containers could be (partially) unloaded at the container terminal. The
main drawback of the first option is the unnecessary use of the capacity, implying
that some other orders cannot be loaded (fully) on the barge. Moreover, a pick-up
appointment can only be visited if the delivery time does not collide with the de-
livery time of the outland order. The second option does avoid those drawbacks,
but another disadvantage does appear. In the model, handling time is taken into
account for both the unloading and loading processes at the container terminal, im-
plying that the barge has to wait at least one time step after arrival at the container
terminal. After the order has been unloaded, the order could be trucked to its desti-
nation, implying that cost has to be taken into account, or the order could be loaded
on another (or the same) barge at a later moment, and transported to its destination
without any cost, implying that this barge is forced to wait at least one time step at
the container terminal as well. In other words, the model does not charge cost for
being way too early, but the model does charge time, which could (again) lead to
extra costs.

Therefore, the AC model (Average as Confirmed) is added as a third model in or-
der to investigate if shifting to the middle of the interval (i.e., the average) does
benefit. Observe that the drawback of the RC model does emerge even more, and
infeasibility could occur again in both ways.

3 In the experiments, the probability vector p is uniformly distributed.
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5.4 simulation model
Alternatively to the simpler models above, a much more complex algorithm is devel-
oped in which future scenarios are simulated for the requested appointment times
given their probability vector p. A future scenario (or realization) is not a specific fore-
cast of the future, but a plausible description of what might happen. By analysing
various possible future scenarios, the planning and decision making process will
be more efficient. For example, given two potential decisions for some barge (i.e.,
routing and container assignment), say decision I and II, decision I might perform
better for certain scenarios, while decision II achieves better results for some other
scenarios.

Within the decision making process, the goal is to find the best decision(s) for
each CTW that is resistant to change, such that a proper solution is obtained for the
entire MPTW.

5.4.1 Definitions

In order to clarify the goal, the emphasized expression is defined in Definition 5.4.1.
Moreover, the term (sub)optimal, mentioned in the definition, is described in Defini-
tion 5.4.2 because it is interpreted differently here than in literature.

Definition 5.4.1. Let F be a set of potential future scenarios (or realizations). A
decision is called resistant to change if the decision is feasible and (sub)optimal for
every potential future scenario f ∈ F .

Definition 5.4.2. Let ND be the number of potential decisions at decision moment t,
and let F be a set of potential future scenarios. For every future scenario f ∈ F ,
the objective values obtained for the ND potential decisions4 can be reordered as

O1 ≤ O2 ≤ . . . ≤ OND . (5.8)

A decision i is called optimal if the objective value Oi = O1, and decision i is called
suboptimal if the gap between the objective value Oi and the optimal objective value
O1 is less than 10%.

The term robustness5 can be used to assess the quality of two different models
that perform similarly in terms of average cost. Before we define the expression, it
is clarified by means of Example 5.4.1.

Example 5.4.1. Suppose experiments for three various instances are performed to
assess the quality of two different models, denoted by A1 and A2. The models
strive to minimize a cost function. Let A∗ be the lower bound to the problem, i.e.,
the solution obtained ex post. The results are presented in Table 5.1.

A∗ A1 A1 −A∗ A2 A2 −A∗

Instance 1 300.0 400.0 100.0 305.0 5.0
Instance 2 400.0 500.0 100.0 425.0 25.0
Instance 3 200.0 300.0 100.0 470.0 270.0

Mean 300.0 400.0 100.0 400.0 100.0
S.D. 100.0 100.0 0.0 85.3 147.6

Table 5.1: Example to clarify the term robustness

As can be seen, both models perform similarly in terms of average cost. The
mean of model Ai is implicitly equivalent to the mean of Ai − A∗, where i = 1, 2.
The standard deviation, however, does not relate at all. The standard deviation of

4 If decision i is infeasible, we set Oi equal to ∞.
5 The term robustness is interpreted differently than in literature.
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the models A1 and A2 itself is not relevant, but the standard deviation of A1 − A∗

and A2 − A∗ certainly is. It is a measure to quantify the amount of variation or
dispersion of a set of data values. As shown in Table 5.1, model A1 is much more
steady than model A2. Although model A2 exceeds the other model for the first
two instances, the model gains bad performance for the third one. In case of similar
performance in terms of average cost, a more steady model is prefered, i.e., the
model that is more robust. That is one of the reasons why the results in Chapter 6

will be presented as the difference in results of the benchmark and the proposed
solution methods.

Definition 5.4.3. Given two models, say A1 and A2, and a set of corresponding data
values. The model A1 is called more robust than model A2 if

σ(A1 − A∗) < σ(A2 − A∗),

where σ denotes the standard deviation and A∗ the lower bound, i.e., the offline
solution obtained ex post.

Observe that the term robustness is mainly advantageous to compare models that
gain similar performance in terms of average cost.

5.4.2 Start of the algorithm

The decision making process consists of both a routing of the barges and a container
assignment to the barges (and trucks) such that the total cost is minimized over the
entire multi-period time window. Since the problem is twofold (vehicle routing
and container-to-mode assignment), the decision space grows rapidly. To be able to
manage this immense space, the container-to-mode assignment is not included in
the decision space explicitly, but is taken into account afterwards. In other words,
the routing problem is solved explicitly and the container-to-mode assignment is
obtained implicitly.

By using a flowchart of the algorithm, shown in Figure 5.3, the simulation based
model is presented and carefully explained. Due to complexity reasons, the length
of a CTW is set to one, i.e., δ = 1.

Although a MPTW consisting of 72 time steps is solved, it is sufficient to consider
only 55 decision moments. At the 55th decision moment (i.e., at time step t = 54)
no uncertainty is involved anymore. Just by the construction of the in- and outland
orders, every requested appointment time is scheduled before or at time step 62,
implying that every order is confirmed at time step 54. Therefore, the remaining
interval [54, 72] can be solved offline.

In the flowchart, the decision moment is denoted as period number (PeriodNr), but
it is equivalent terminology. For each period number less than 54, the algorithm
checks if a decision has to be made at all, which is almost always the case. Only if
all barges are on their way from the origin to the container terminal or vice versa,
the decision moment can be skipped until a barge arrives at one of the locations.

5.4.3 Decision space

In the base instance, a set of three barges is taken into account. At each decision mo-
ment ta, each barge could be located at the origin (ta, TOrigin), the container terminal
(ta, TRot) or one of the deep-sea terminals (ta, Ti)i∈I in the region D. Additionally, a
barge could be on the move from the origin to the container terminal or vice versa,
in case the initial node of the barge is, respectively, (t, TRot) or (t, TOrigin) for some
ta + 1 ≤ t ≤ ta + 6. In the latter case no decision has to be made for the barge under
consideration.
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Figure 5.3: Flow chart of the simulation algorithm
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If a barge is located at the origin, two possible decisions can be made. The barge
could depart to the container terminal or stay another time step at the origin. If
a barge is located at the container terminal, at most five possible decisions can be
made. The barge could depart to the origin, it could stay at the container terminal
or the barge could visit one of the three deep-sea terminals in case an appointment
is scheduled at the upcoming time step. In case a barge is located at one of the deep-
sea terminals, at most four possible decisions can be made. The barge could depart
to the container terminal or it could visit one of the three deep-sea terminals in case
an appointment is scheduled at the upcoming time step. From a theoretical point of
view it could happen that 53 decisions could be made. However, in practice such a
scenario would never happen. Moreover, due to symmetry, the number of decisions
can be reduced drastically. During the performed experiments, on average 3.14

decisions could be made at each non-trivial decision moment, having a maximum
of 20 decisions. In the model, a decision is denoted as a triple

(decisionB1, decisionB2, decisionB3), (5.9)

where the i-th element corresponds to the (potential) upcoming location of barge i.
Observe that the notation exludes the container-to-mode assignment.

Trivial decisions

Quite often there is only one possible direction for a barge, implying that the deci-
sion is trivial and fixed on forehand. Decisions could be trivial in different ways.
In case no appointment is scheduled at the upcoming time step, a barge located at
one of the deep-sea terminals can only return to the container terminal6. Moreover,
in case a pick-up appointment was scheduled at the current location, the order has
to be (partially) assigned to the barge based on its remaining capacity. In case a
barge, located at the region D, does have some containers on board corresponding
to an outland order having its delivery appointment at the upcoming time step,
the barge is obliged to visit the appointment. Observe that decisions belonging to
delivery appointments must be taken at an earlier stage. Furthermore, the decision
is trivial when a barge is located at the origin and its previous location was the
container terminal, i.e., the barge just arrived. Since a barge must stay at least one
time step at the origin to unload the containers on board (and possibly load some
new containers), the decision is fixed.

Decision (ta, TRot) to (ta + 1, TRot)

Although at first sight this might seem a trivial decision, it is not. At the container
terminal a barge is allowed to unload or load some containers, implying that the
decision includes the assignment of the containers located at the container terminal
and on board of the barge itself. Even orders may be split into suborders, which
causes some extra difficulties. Even if there is only one possible decision, the sim-
ulation process has to be done to reveal what containers to load and unload. For
each potential decision, in which at least one barge decides to stay at the container
terminal, we keep track of how frequently an order is transported by that barge.
If so, the order could be transported fully or partially. Therefore, the number of
containers per order is recorded as well. In the end, orders that occur in more than
half of the simulations are taken into account in the final decision. The actual quan-
tity equals the average number of containers transported by barge, rounded to the
nearest integer.

6 In case a delivery appointment is scheduled at the upcoming time step, but the barge under consideration
does not have any containers of the corresponding order on board, the appointment can be neglected.
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Decision (ta, Origin) to (ta + 7, TRot)

At the origin, the only prerequisite is that a barge has to wait at least one time step
after arrival (to unload the containers on board). After this, however, no loading
time is taken into account, implying that the assignment is not based on the freight
on board of the barge. Hence we need to determine what orders are, fully or
partially, transported to the container terminal by the barge under consideration.
As will be described in Section 5.4.4, the ILP used to find the (estimated) objective
value for each possible decision is a heuristic excluding the container flow from the
origin to the container terminal. The container-to-mode assignment has to be done
manually. Just as for the previous decision, we keep track of the frequency an order
is transported by that barge, including the number of containers per order. In the
end, orders that occur in more than α% of the simulations are taken into account
in the final decision. This percentage has to be significantly higher than before,
because we want to ensure that no conflicting appointments could occur, which
might lead to infeasibility. During the experiments, α is set to 95, 90 and 85.

Remaining decisions

The container assignment for the remaining decision space is straightforward. For
example, if a barge is located at the container terminal TRot and a potential decision
is: departure to the origin. In that case, only the containers on board of that barge
are forced to be transported to the origin. Just like for the delivery appointments
mentioned above, the assignment of the containers to the barge has to be done at an
earlier stage. In a similar way, the container-to-mode assignment for other decisions
is based on the freight on board of the barge.

5.4.4 Solving the ILP

If the decision is non-trivial, a prespecified number of simulations NS is performed
to seek the best decision(s) that is resistant to change. For every future scenario (or
simulation) and every decision, an ILP has to be solved. In case the number of
simulations and decisions increases, the computational time significantly increases.
Therefore a less time consuming heuristic is preferred. The output of each ILP
does not have to be precise, because we are only interested in finding the best
decision(s), given a possible future scenario. Therefore, an estimated objective value
is sufficient. The time-space graph is modified in two ways: the length of the
interval is decreased and the nodes at the origin are merged, which is illustrated in
Figure 5.4.

Figure 5.4: Visualization of the network setting in the ILP heuristic. Observe that the node in
the bottom right corner corresponds to the virtual sink node of the barges (since
there is no restriction imposed for the end point of the barges).
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Decrease interval length

Instead of 32 time steps, the interval has shrunk to only 17 time steps, which will be
denoted by [ta, tb], where tb = ta + 17. Because of this modification it could occur
that the delivery time of some in- and outland orders lie outside the interval. To
deal with those orders, an additional (virtual) node I is added to the time-space
graph. For the outland orders7, this node can be seen as a universal delivery node.
The node can be reached both by barge and truck, and cost is taken into account
for the use of trucks. The cost ck depends on the (requested) delivery time τ

req
del (k)

of the order k. Given the requested delivery time τ
req
del (k) ∈ [ta + 18, ta + 32], the cost

incurred is given by

ck =
⌊
−12.5 ·

(
τ

req
del (k)− ta

)
+ 400.0

⌋
. (5.10)

Because of this dependence, it is ensured that orders are handled in the correct
sequence. In addition, the outland orders located at the end of the interval do not
affect the outcome that much, since we may assume that these orders are likely to be
picked up by one of the barges after the shortened interval. Similarly, the (virtual)
node I can be used by inland orders having a delivery time8 after ta + 24. Given the
delivery time τdel(k) ∈ [ta + 25, ta + 32], the cost incurred is given by

ck =

⌊
−1

7
· (200.0 · (τdel(k)− ta) + 6400.0)

⌋
. (5.11)

Again, using this linear cost function it is ensured that orders having a delivery
time sooner are more crucial in the model than the ones at the end of the interval.

A minor downside is that a barge may transport both in- and outland orders
to the invisible node, even if the due time of the inland order conflicts with the
appointment time of the outland order.

Merge the origin nodes

The second modification is merging the nodes at the origin as one universal origin,
and removing the arcs from the origin TOrigin to the container terminal TRot. Thus,
in the adapted time-space graph it is not possible anymore to route any barge, truck
or container from the origin to the container terminal. Therefore, a preprocessing
phase has to be carried out, where all the barges are send to the region D before
solving the ILP. This will be explained in the following subsection.

Although no barges are located at the origin after the preprocessing phase, it could
occur that some outland orders still have to be picked up at the origin. That is why
the set of outland orders is distinguished into two subsets: outland orders at the
region D, denoted by Kout

D , and outland orders at the origin, denoted by Kout
Origin.

The outland orders located at the region D can be treated in the usual way, i.e., the
source and sink node correspond to the pick-up time and location, and the delivery
time and location of the order. The outland orders located at the origin, however,
can never reach their sink node, because the arcs from the origin to the container
terminal are removed. In order to deal with those orders, some things have to be
adapted to the source and sink nodes.

Suppose an outland order k ∈ Kout
Origin has to be delivered at time step τdel(k). If

the order is transported by barge from the origin to the container terminal (and
from the container terminal to its destination), the barge under consideration has
to arrive at the container terminal before or at time step τdel(k)− 1, implying that
the barge has to depart from the origin before or at time step τdel(k)− 8. Including

7 Observe that only outland orders located at the region (after ’sending the barges’) are taken into account,
but that is clarified later on.

8 Observe that a delivery time for an inland order corresponds to a due time, implying that the order can
be delivered at an earlier stage as well.
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unloading time at the origin, we may conclude that the barge under consideration
has to arrive at the origin before or at time step τdel(k)− 9. Therefore, in the ILP
heuristic, the source and sink node of each outland order k ∈ Kout

Origin are given by

sk = (ta, TRot) , (5.12)

tk =
(
τdel(k)− 9, TOrigin

)
. (5.13)

Moreover, the capacity of the barge has to be taken into account, but not for the
long trip from the container terminal to the origin, because no containers corre-
sponding to an outland order are on board of the barge during such a trip. There-
fore, except the capacity constraints for the inland orders, a second capacity con-
straint is added for each barge, which can be seen as a copy of the capacity what
can be filled virtually.

Sending the barges to the region

Let WOrigin be defined as the set of barges located at the origin at the start of decision
moment ta. Each barge w ∈ WOrigin has an initial availability, denoted by tw,0 which
is an element of the set {ta + 1, . . . , ta + 8}. The initial availability is defined as
the initial time step a barge could depart to the container terminal in Rotterdam.
For example, if for a certain potential decision, barge w is sent from the container
terminal to the origin, then the barge arrives at time step ta + 7. However, the barge
has to wait at least 1 time step to unload the freight on board, implying that the
initial availability equals tw,0 = ta + 8.

For each barge w ∈ WOrigin, we need to decide when the barge departs and what
containers are assigned to it. In case multiple barges are located at the origin,
the order of the decisions is based on the initial availability (and capacity) of the
barges. Since the outland orders are announced 12 time steps in advance relative
to their release time at the origin, the space of possible departure times is given by
S = {tw,0, . . . , ta + 12}, because it is not beneficial to depart after time step ta + 12.
In order to make a suitable choice, we define the vectors ρcap and ρloss consisting
both of |ta + 12− tw,0| elements.

For every t ∈ {tw,0, . . . , ta + 12}, we define ρcap(t) as the potential capacity if the
barge departs at time step t, and ρloss(t) as the 0-1 vector that tells us if time step t
is the very last option for some order to be transported by barge (i.e., a critical order).
In other words,

ρcap(t) := the number of containers that could be sent by the barge, (5.14)

ρloss(t) :=

{
0 if no critical orders,
1 if at least one critical order.

(5.15)

The pseudo code of the algorithm to construct the elements ρcap(t) and ρloss(t)
can be found in the appendix: Algorithm A.1.

Given these two vectors, we aim for a subset Spotential ⊆ S of potential departure
times for the barge. The subset is obtained by applying Algorithm 5.1. The algo-
rithm seeks the time steps at which the capacity is optimal used without losing any
containers, i.e., critical orders.

Example 5.4.2. Suppose we need to determine the space of potential departure
times at decision moment t = 36, where the initial locations of the three barges
B1,B2 and B3 (having capacity 20, 10 and 10) are given by

(41, TOrigin), (36, TRot) and (36, TOrigin),

respectively. Moreover, the previous locations were TRot, TRot and TOrigin, implying
that barge B3 may depart immediately, but barge B1 has to wait at least one time
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Algorithm 5.1: Determine the space of potential departure times Spotential

for all elements t in {tw,0, . . . ta + 12} do
if ρcap(t) = capw then

Append t to Spotential and break the for loop!
else if ρloss(t) = 1 and ρcap(t) > highest value so far then

”Check the previous values of ρcap..”
if t = tw,0 then

Append t to Spotential!
else

”Check if same capacity can be achieved earlier..”
while ρcap(t) = ρcap(t− 1) do

t← t− 1
end while
If t /∈ Spotential , append!

end if
end if

end for

step. In other words, the initial availabilities are tB3,0 = 36 and tB1,0 = 42. Based on
the initial availability, we get started with barge B3. After applying Algorithm A.1,
the following two vectors are found.

ρcap = (06, 07, 10, 10, 10, 09, 09, 04, 08, 08, 08, 09, 09), (5.16)

ρloss = (00, 01, 01, 00, 01, 00, 01, 00, 00, 00, 01, 00, 01). (5.17)

After applying Algorithm 5.1, we find Spotential = {37, 38}. In general, to determine
the space of potential departure times for barge B1, |Spotential | different subproblems
are created. Therefore, two different subproblems are created in which the orders
transported by barge B3 at time step 37 and 38, respectively, are removed. By
removing the orders transported at time step 37, we get

ρcap = (08, 03, 07, 07, 07, 08, 08), (5.18)

ρloss = (01, 00, 00, 00, 01, 00, 01). (5.19)

And by removing the orders transported at time step 38, we get

ρcap = (04, 04, 08, 08, 08, 09, 09), (5.20)

ρloss = (00, 00, 00, 00, 01, 00, 01). (5.21)

Again, by applying Algorithm 5.1, we may conclude that the space of potential
departure times is given by

Spotential = {(37, 42), (38, 44), (38, 47)} , (5.22)

where each tuple corresponds to the potential departure times of barge B3 and B1
respectively. As can be seen, the problem is divided into three subproblems. Instead
of solving one normal ILP, we need to solve three heuristic ILPs, where the outcome
having minimum objective value is the actual solution.

Although Example 5.4.2 suggests that the number of heuristic ILPs increases sig-
nificantly (compared to the normal ILPs), it is not. Given Spotential , the simulation
algorithm keeps track of the outcome of each ILP and stops automatically if the
outcome increases too much, implying that the costs incurred by the critical orders
influences the outcome too much. During the experiments only 1.36 heuristic ILPs
had to be solved on average. A more detailed analysis on the running time profit
can be found in Chapter 6.
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In order to compare the different solution methods developed, we have conducted
experiments for 11 randomly generated instances. In Section 4.1 it was explained
how these instances were generated. First, the offline results are presented in which
the lower bound is approximated by removing one part of the uncertainty in the
model, as described in Section 5.2. Additionally, the lower bound itself is included
as well. Thereafter, the online results are presented, interpreted and discussed.

The models described in Chapter 5 have been implemented in Python and solved
with the commercial solver CPLEX 12.7 through the Python API. The experiments
were conducted using 16 cores of 2.4 GHz each, working with 16 GB of RAM.

6.1 offline results

In this section the results are presented on approaching the lower bound to the
problem, explained in Section 5.2, in which the uncertainty in the requested ap-
pointment times is disregarded. In practice, barge planners announce orders 12

time steps in advance relative to their requested appointment times: the B12 model.
By shifting the announcement time of the orders to an earlier stage, even better
approximations can be found: the B16, B20, B24 and B28 model. The truly optimal
solution (i.e., the lower bound) that be computed offline is denoted by B72.

To check how steady the solutions perform, the complete process is repeated
11 times. At each process Nin = 30 inland and Nout = 30 outland orders were
generated. On average 91.3 containers corresponding to outland orders and 89.5
containers corresponding to inland orders had to be transported from their origin
to their destination1.

The results obtained for the Bx models in which only one part of the uncertainty is
taken into account, including the B72 model, are given in Table 6.1.

Cost (€) Trucks Short trips Long trips
Mean Mean Out In Out In

B12 13213.6 70.1 17.4 (24.8%) 14.8 (21.1%) 19.5 (27.8%) 18.5 (26.3%)
B16 12884.1 67.7 12.9 (19.1%) 13.5 (20.0%) 20.9 (30.9%) 20.4 (30.1%)
B20 12320.5 65.4 15.8 (24.2%) 14.3 (21.8%) 18.5 (28.2%) 16.8 (25.7%)
B24 12200.0 64.7 16.1 (24.9%) 13.7 (21.2%) 18.3 (28.2%) 16.6 (25.7%)
B28 12159.1 64.6 15.2 (23.5%) 15.5 (24.1%) 17.8 (27.6%) 16.1 (24.9%)

...
B72 12031.8 63.7 13.7 (21.5%) 14.8 (23.3%) 18.5 (29.1%) 16.6 (26.1%)

Table 6.1: Approaching the lower bound by shifting the announcement time to an earlier
stage. The average cost incurred using the objective function (4.19), the average
number of trucks used in general, and more detailed the average number of trucks
used for both short and long trips, and out- and inland orders are given. The
distribution of the type of cost in parenthesis.

1 The sample standard deviation of the number of containers was 10.6 and 6.0, respectively.
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As can be seen, the average cost (and number of trucks used) decreases as the
orders are announced at an earlier stage, and gradually converge to the B72 model.
Moreover, observe that the focus indeed shifted to the cheaper trucks (i.e., short
trips) from the B20 model, as perceived in Figure 5.1. Instead of 41.3 long trips,
only 35.3 long trips were carried out by trucks.

Although the optimality gap between the B28 and B72 model is only 1.06%, there
is quite some uncertainty left in the models. To clarify this, the amount of infor-
mation available at the beginning of the multi-period time window in each model,
expressed in percentages, is shown in Table 6.2. As can be seen, more than half of
the information is still missing at the initial decision moment in the B28 model.

B12 B16 B20 B24 B28 B32 B36 B40 B44 B48 B52
% 19.7 26.3 32.8 39.4 46.0 52.5 59.1 65.6 72.2 78.8 85.3

Table 6.2: The percentages of the average number of orders known at the beginning of the
MPTW, i.e., at decision moment t = 0

Something else stands out in Table 6.1. If we look at the last two columns, cor-
responding to the long trips, we expected that the number of trucks used for these
types of trips would decrease even further in the B72 model. However, the offline
results, obtained using the B72 model, show the opposite.

As stated before, the benchmark approach is more realistic in terms of both com-
putational time and usefulness. The computational difficulty is discussed in the
following subsection. The B12 model will be used to assess the quality and practi-
cal relevance of the solution methods, since it is the most realistic benchmark for
the problem. Moreover, we might benefit from analyzing the performance of the
even better models (B16, B20, B24, B28 and B72). By implementing common fea-
tures in the results of these models, the performance of the proposed simulation
model might exceed the B12 model. Although, the benefits of the common features
probably do not outweigh the impact of the uncertainty element.

Computational time

In order to obtain the results in Table 6.1, multiple SPTWs had to be solved itera-
tively2. As the orders are announced at an earlier stage, the length of the SPTW
increases and so does the computational time. Nevertheless, the number of SPTWs
that had to be solved reduces. In Table 6.3 the number of SPTWs that had to be
solved and the average computational time of the ILPs are presented. Observe that
in the benchmark approach solving a SPTW coincides with solving a single ILP
(excluding some processing of the in- and output).

ILP #SPTWs MPTW
B12 00048.41 s 51 01.00 h
B16 00079.45 s 47 01.52 h
B20 00122.13 s 43 02.19 h
B24 00179.95 s 39 03.27 h
B28 00270.06 s 35 04.41 h

...
B72 81063.12 s 01 22.52 h

Table 6.3: The average computational time (in seconds) of the ILPs solved during the exper-
iments, where the length of the SPTW is based on the announcement time of the
model. Besides that, the number of SPTWs and the average runtime (in hours) to
solve the entire MPTW is given.

2 Observe that the length of a CTW is set to one, i.e., δ = 1.
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What stands out from the results above is the increasing computational difficulty
of the models. Given the results of the B12, B16, B20, B24 and B28 models, we were
interested beforehand in the running time of the B72 model. By continuing the pro-
cedure of shifting the announcement time, assuming the running time has around
the same exponential growth (as in the first five rows), solving the MPTW instance
at once (i.e., the B72 model) would probably take around 4 hours. Nevertheless,
we expected beforehand already that the running time would probably explode in
practice.

Indeed, during the experiments3, solving the B72 model took almost 24 hours!
As mentioned in Section 3.3, the NP-hardness of the network design problems can
be no problem in practice, but the problems we are interested in get too big very
quickly, as experienced.

6.2 online results
In this section the online results of the different solution methods are presented, in-
terpreted and compared to the results obtained for the benchmark approach mod-
els. As stated before, the results are presented as the difference in results of the
B12 model and the proposed solution methods. Based on 11 randomly generated
instances of the problem, Tables 6.4 and 6.5 give an overview of the performance of
the proposed solution methods.

Cost difference (€)
Mean S.D. Gap

B72 -1181.8 780.4 -8.9%
...

B28 -1054.5 968.4 -8.0%
B24 -1013.6 1004.9 -7.7%
B20 -893.2 851.9 -6.8%
B16 -329.5 647.9 -2.5%
B12 0.0 0.0 0.0%
SIM 1647.7 1665.1 12.5%
AC 2134.1 1744.2 16.2%
RC 3102.3 2000.2 23.5%
EC 3815.9 1334.6 28.9%

Table 6.4: Comparison of the solution methods as the difference in results of the B12 model
and the other models. The average and the standard deviation of the cost incurred
using both the objective function (4.19) and the penalty function (5.7), and the gap
in terms of percentages are given.

As can be seen in Table 6.4, the difference between the B12 model and the sim-
ulation model is positive in terms of the average cost and the average number of
trucks used, implying that the B12 model has overall better results. Although there
was an impression to exceed the B12 model, the impact of the uncertainty element
is too much, as expected.

On the other hand, the simulation model surpasses the performance of the sim-
pler models. With the exception of one instance4, the results for the simulation
model were within 20% of the B12 model. As shown in the table, the optimality gap
was 12.5% on average, where for some instances the simulation model performed
even better than the B12 model (containing less uncertainty).

3 Observe that the experiments were conducted using 16 cores of 2.4 GHz each, so using a standard laptop
it would probably take several days.

4 For one instance the gap was 50.1%. However, the other models RC (64.4%) and AC (60.8%) performed
even worse. The uncertainty in the requested appointment times probably affects the model a lot.
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Additionally, the AC model performed much better than expected in terms of
average cost. Moreover, using Table 6.5, the AC model is the solution method that
used on average the least number of trucks for the long trips corresponding to
outland orders, which is the part dealing the most with the uncertainty element.

Trucks diff. Short trips Long trips
Mean S.D. Out In Out In ε

B72 -6.4 5.4 -3.6 0.0 -0.9 -1.8 -
...

B28 -5.5 5.5 -2.2 0.7 -1.6 -2.4 -
B24 -5.4 5.8 -1.3 -1.1 -1.2 -1.8 -
B20 -4.7 5.0 -1.5 -0.5 -1.0 -1.6 -
B16 -2.4 4.2 -4.5 -1.3 1.5 1.9 -
B12 0.0 0.0 0.0 0.0 0.0 0.0 -
SIM 8.6 8.7 3.5 -0.3 6.1 -0.6 0.0
AC 11.3 9.3 3.6 0.5 4.7 1.0 0.4
RC 16.1 10.7 0.1 2.0 5.3 3.6 1.3
EC 19.2 7.4 0.5 -0.2 13.1 4.7 0.3

Table 6.5: Comparison of the solution methods as the difference in results of the B12 model
and the other models. The average and standard deviation of the number of
trucks used in general, and more detailed the average number of trucks used for
both short and long trips, and out- and inland orders are given. The last column
indicates the average number of penalties ε.

What further stands out in Table 6.5 is that there is only one positive value in the
upper three rows (disregarding the B72 model), corresponding to the detailed trip
columns. At first sight, we might conclude that from a certain point, when enough
information is available, the focus is shifted to the other type of trips. Although the
B72 model refutes the argument, it shows that short trips corresponding to inland
orders do not benefit if the amount of information is increased.

As stated in Definition 5.4.3, to assess if model A1 is more robust than model A2,
we need to regard the standard deviation of the results as the difference in results
of the models and the lower bound. So far, the results have been presented as the
difference between the B12 model and the solution methods. However, in order to
obtain reliable results about the robustness of the models, it is more fair to represent
the results as the difference between the actual lower bound (i.e., B72 model) and
the solution methods, as presented in Table 6.6.

Cost difference (€)
Mean S.D.

SIM - B72 2829.5 1435.5
AC - B72 3315.9 1461.6
RC - B72 4284.1 1571.3
EC - B72 4997.7 953.9

Table 6.6: The solution methods as the difference in results of the B72 model and the other
models in order to compare the robustness more fairly

Observe that the EC model is the most robust solution method, but also has
the worst performance in terms of average cost, mainly caused by the long trips
corresponding to outland orders. Disregarding the EC model, the simulation model
surpasses the simpler models both in terms of average cost and robustness. Besides
that, no penalties occured for the simulation model, whilst for the other models
penalties did occur. We may conclude that the simulation model is evidently the
best solution method in terms of both performance and robustness.



6.2 online results 49

Trucks can be used for four different types of trips: long and short trips, and trips
transporting a container corresponding to an out- or an inland order. In Table 6.7
the distribution of the type of costs incurred is presented in terms of percentages.

Short trips Long trips
Out In Out In ε

B72 21.5% 23.3% 29.1% 26.1% -
...

B28 23.5% 24.1% 27.6% 24.9% -
B24 24.9% 21.2% 28.2% 25.7% -
B20 24.2% 21.8% 28.2% 25.7% -
B16 19.1% 20.0% 30.9% 30.1% -
B12 24.8% 21.1% 27.8% 26.3% -
SIM 26.4% 18.5% 32.4% 22.6% 0.0%
AC 25.8% 18.8% 29.7% 23.9% 1.8%
RC 20.3% 19.5% 28.7% 25.6% 5.9%
EC 20.0% 16.4% 36.5% 26.0% 1.2%

Table 6.7: The distribution of the type of costs incurred, using both the objective func-
tion (4.19) and the penalty function (5.7)

We already saw that in the benchmark approach models the least number of
trucks were used for the short trips corresponding to inland orders. However, the
percentages in Table 6.7 corresponding to the solution methods turn out to be even
lower. Apparently, including the uncertainty element of the requested appoint-
ments, the pick-up of inland orders at the deep-sea terminals is an easy way to
minimize the costs at each SPTW, i.e., locally. Logically, it makes perfect sense.
Visiting a pick-up appointment by barge can be decided last minute (only enough
capacity is required), while visiting a delivery appointment (or carrying out a long
trip) has to be decided already at an earlier stage because the containers have to be
loaded on board of the barge somewhere in between.

In the problem we face, the transportation of containers from the origin to Rot-
terdam (i.e., long trips for outland orders) is the part dealing the most with the
stochastic elements in the model. As can be seen, both the AC and RC models gain
better performance than the simulation model relative to that specific trip. This
can be explained quite easily, because of the risk factor taken into account in the
simulation model. There is a certain trade off between the amount of risk we dare
to take and the performance, which is clarified by Example 6.2.1.

Example 6.2.1. Suppose that in both the RC and simulation model, at decision
moment t = 10, we decide to send the same barge from the origin to the container
terminal TRot. At the origin, three orders k1, k2, k3 ∈ Kout can be assigned to the
barge, having characteristics

τ
req
del (k1) = 16, τ

con f
del (k1) = 18 and χdel(k1) = T3 (6.1)

τ
req
del (k2) = 18, τ

con f
del (k2) = 20 and χdel(k2) = T1 (6.2)

τ
req
del (k3) = 19, τ

con f
del (k3) = 21 and χdel(k3) = T2 (6.3)

In the RC model, the uncertainty element is not taken into account and the re-
quested appointment times are just assumed to be the confirmed ones. Hence it is
assumed that the orders have to be delivered at time step 18, 20 and 19, respectively,
because k3 is not confirmed yet. Therefore, all three orders are allocated to the barge
(and luckily no problems will occur).

In the simulation model, the uncertainty element is taken into account and vari-
ous future scenarios are generated and analysed in order to make the best decision
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that is resistant to change. Suppose 25 simulations are performed, and in 6 out of
25 cases the simulated appointment time of order k3 conflicts with one of the (con-
firmed) appointments of k1 and k2. In the simulation model, only orders that occur
in more than α% of the simulations are taken into account in the final decision. If
α ≥ 76, then order k3 is left behind at the origin, and is possibly sent by truck (or
later on by another barge).

The example shows that disregarding the uncertainty could lead to better assign-
ment, but in combination with a risk factor. That is why the RC model incurs
1.4 penalties on average per instance, while the simulation model is much more
reliable, because no penalties occured during the experiments. Moreover, the simu-
lation model has better performance overall. We may conclude that the benefits of
taking into account the future scenarios outweigh the downside of the safety level α.

6.2.1 Sensitivity analysis on the number of simulations

In the simulation algorithm several parameters can be tuned: the number of simula-
tions performed per non-trivial decision, denoted by NS, the number of simulations
after which a check is performed to throw away zero-frequency decisions (i.e., re-
duce decision space), denoted by Xcheck, and finally the safety level α.

During the experiments, presented in the tables above, the settings of the simula-
tions model were

NS = 25, Xcheck = 11 and α = 90. (6.4)

In other words, in case a barge decides to route from the origin to the container
terminal, then the actual container-to-mode assignment is based on the containers
that were assigned to the barge in at least 90% of the simulations. However, what
is the minimum number of simulations needed such that performance would not
deteriorate? Therefore, an analysis is performed on the number of simulations.

In total, 467 non-trivial decision moments are taken into account. The final (or ac-
tual) decision can be categorized into six different classes. At each decision moment,
the final decision could be the best decision in 25 out of 25 simulations (including
some other decision(s) having non-zero frequency). The final decision could be
the best decision in 11 out of 11 simulations (and all other decisions have zero fre-
quency). Additionally, the final decision could be the best decision in 8-11, 12-15,
16-19 or 20-24 out of 25 simulations. In that case we are interested in the simulation
number after which the final decision became the best decision ánd did not lose
that position anymore. In Table 6.8 an overview is given of the different classes.

Class Occurence Mean Best from
25 056 .025 / 25 1

11 207 .011 / 11 1

[08, 11] 002 08.5 / 25 24.0
[12, 15] 025 14.2 / 25 13.0
[16, 19] 059 17.8 / 25 05.9
[20, 24] 118 22.0 / 25 04.1

Table 6.8: An overview of the different classes. The number of occurences for each class, the
average number of simulations the final decision was the best decision, and the
average simulation number after which the final decision became the best decision
(ánd did not lose that position anymore) are presented.

As can be seen, in 81.6% (381 out of 467) of the cases the decision space contains
a decision which turns out to be the best decision (or one of the best) in at least 80%
of the simulations. Moreover, at 73.7% (344 out of 467) of the non-trivial decision
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moments, the final decision moment is already the best one (and stays the best)
after running only one simulation.

In order to come up with an appropriate answer, we are mainly interested in the
other 26.3% (123 out of 467) of the non-trivial decisions moments were the final
decision becomes the best one after at least two or more simulations. In Table 6.9 an
overview is given of the different classes where the non-trivial decision moments
that were the best after only one simulation are disregarded.

Class Occurence Mean Best from
[08, 11] 02 08.5 / 25 24.0
[12, 15] 24 14.2 / 25 13.5
[16, 19] 40 17.6 / 25 08.2
[20, 24] 57 21.9 / 25 07.5

Table 6.9: An overview of the different classes disregarding the non-trivial decision moments
that we are not interested in

Disregarding the two outliers, we may conclude that it should be enough to per-
form around 15 simulations. Although, notice that the analysis disregards the con-
tainer assignment at the origin and the container terminal, that are based on the
outcomes of the various future scenarios. Therefore, by reducing the number of
simulations, the quality of the container assignment could be affected.

For the same 11 randomly generated instances, the simulation algorithm is car-
ried out again, by setting

NS = 15, Xcheck = 7 and α = 85 (6.5)

In other words, in case a barge decides to route from the origin to the container
terminal, then the actual container-to-mode assignment is based on the containers
that were assigned to the barge in at least 85% of the simulations.

In Table 6.10 the results are presented as the difference in results of the B12 model
and the simulation models with different settings. The SIM25 and SIM15 model cor-
respond to the models in which, respectively, 25 and 15 simulations were performed
each non-trivial decision moment.

Cost diff. (€) Trucks diff. Short trips Long trips
Mean S.D. Mean S.D. Out In Out In ε

SIM25 1647.7 1665.1 8.6 8.7 3.5 -0.3 6.1 -0.6 0.0
SIM15 2215.9 1855.9 11.4 9.5 2.5 -0.2 8.5 0.5 0.0

Table 6.10: Comparison of the simulation models with different settings as the difference
in results of the B12 model. The average and standard deviation of the costs
and number of trucks used in general, and more detailed the average number of
trucks used for both short and long trips, and out- and inland orders are given.
The last column indicates the average number of penalties ε.

As can be seen, the SIM15 model cannot meet the performance of the SIM25

model. The extra costs are mainly caused by the increase in the number of trucks
used for the long trips, as expected. As mentioned before, the reduced number of
simulations affects the quality of the container assignment at the long trips. On the
other hand, we could benefit in terms of computational time, which is discussed in
the upcoming subsection.
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6.2.2 Computational time

Tables 6.11 and 6.12 give an overview of the computational time of the solution
methods, including the already treated benchmark models. However, some addi-
tional information is given and some results are written down again for comparison.

Running time per..
MPTW SPTW ∑∑∑ ILPs % on ILPs #ILPs

B72 22.52 h 81063.12 s 22.52 h 100.0% 1

...
B28 2.74 h 270.06 s 2.63 h 96.1% 35

B24 2.05 h 179.95 s 1.95 h 94.9% 39

B20 1.55 h 122.13 s 1.46 h 94.0% 43

B16 1.12 h 79.45 s 1.04 h 93.0% 47

B12 0.75 h 48.41 s 0.69 h 91.6% 51

AC 0.81 h 48.31 s 0.74 h 91.5% 55

RC 0.79 h 46.94 s 0.72 h 91.4% 55

EC 0.76 h 45.26 s 0.69 h 90.7% 55

Table 6.11: Comparison of the computational time of the simpler models, including the
benchmark models. The average running time per MPTW and per SPTW – which
is equivalent to the average running time of the ILPs – are given. Further, the
average running time spent on ILPs each instance including the percentages, and
the number of SPTWs that had to be solved each instance is denoted.

As can be seen in Table 6.11, the simpler models are quite similar to the B12

model. Only some more ILPs (i.e., SPTWs) had to be solved because of the stochastic
element in the requested appointment times. Furthermore, as the length of the
SPTW increases, the percentage spent on solving ILPs converges to 100%.

Running time per.. Amount of..
MPTW SPTW ILP ∑∑∑ ILPs % on ILPs ILPs Instances

SIM25 11.74 h 0.21 h 12.03 s 10.01 h 85.2% 2995.5 2199.2
SIM15 7.44 h 0.13 h 12.01 s 6.33 h 85.1% 1897.9 1397.6

Table 6.12: Comparison of the computational time of the simulation models. The amount
of instances and ILPs correspond to the average number of leaves in the tree
structure of the algorithm, where each leaf is again divided into one or more
subproblem(s), as explained in Section 5.4.4. In each subproblem an ILP needs
to be solved.

To put the running time of the simulation models into perspective, we should
realize that the running time per multi-period time window (MPTW) refers to the
transportation of containers distributed over the entire network. In actual applica-
tions, we are only interested in the running time per single-period time window
(SPTW), where a decision needs to be made for the upcoming hours.

Concerning the SIM25 model, almost all SPTWs can be solved within 10 minutes,
except for some outliers. In each instance, it might occur once or twice that the
decision space is quite large, implying that the number of ILPs that need to be
solved increases significantly.

For example, during the experiments, the decision space contained once a maxi-
mum of 20 potential decisions. It took 58 minutes to find the best decision, which is
too time consuming. Although 15 decisions were discarded after the first phase (i.e.,
after the check that is performed after 11 simulations), the computational time of the
first phase was 44 minutes. In this specific example, the five remaining contenders
had non-zero frequency already after three simulations. When the check was per-
formed right then, the computational time of the decision moment had shrunk to
34 minutes, where the first phase took only 12 minutes.
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Therefore, it might be a good idea to improve the first phase if the decision
space is large. This could be done by performing the check at an earlier stage, by
discarding decisions after one or two simulations when the objective value deviates
too much from the others or by taking into account the symmetry of some decisions
even more.

Additionally, because of the tree structure of the algorithm, the simulation model
can be parallelized easily. Around 85% of the computational time is spend on
solving ILPs, implying that the computational time on a PRAM computer [2] with
infinite many processors and zero communication cost is less than a minute. Al-
though it is unrealistic, it shows that the average running time per SPTW can be
reduced drastically.

As can be seen in Table 6.11 the simpler models are advantageous in terms of run-
ning time. Solving a SPTW takes only 48 seconds, because only one normal ILP has
to be solved. Finally, using Table 6.12, the heuristic ILP turns out to be almost four
times faster in terms of running time. Since the extra amount of ILPs that need
to be solved is increased only by a factor 1.36, the algorithm does benefit consider-
ably. Without using the heuristic, running the SIM25 and SIM15 model would take
around 28.85 and 18.34 hours, respectively, implying that the algorithm has been
speed up by a factor of approximately 2.25.

6.2.3 LP relaxation

The majority of the time, the algorithm is busy solving ILPs. In order to drastically
decrease the computational time, we might benefit from changing the ILP into the
LP relaxation. At first sight this might be possible because the (potential) decision
of each barge (i.e., the route within the CTW) is fixed before actual solving the pro-
gram. Although, notice that the fixed decision disregards the container assignment
at the origin and the container terminal. The assignment at the origin does not occur
any problems, because it is done manually. However, the container-to-mode assign-
ment at the container terminal raises problems. If multiple delivery appointments
are scheduled at the same time at different terminals (i.e., conflicting appointments),
the problem might become infeasible if containers corresponding to conflicting ap-
pointments are loaded on the same barge. Since in the LP relaxation it is allowed
to set design variables ye equal to 1/2, the barge can use half of its capacity to visit
one appointment and half of its capacity to visit another conflicting appointment
at the same time. Therefore, at first sight decisions might seem beneficial, but will
eventually lead to infeasibility.

6.2.4 Extending the amount of (uncertain) data

This section is dedicated to the fourth sub-question formulated in Section 1.3. In
practice, the barge planners request for an appointment only 12 time steps in ad-
vance, since they experienced that it does not benefit to call at an earlier stage.
However, it might be worth knowing what will happen if the assumption is relaxed,
i.e., when orders are announced at an earlier stage. Naturally, more deterministic
information will lead to better performance, but what does happen with the perfor-
mance if more information, even stochastic, is available?

Only experiments for the simpler models have been carried out. Due to the construc-
tion of the simulation algorithm, it was not possible to run experiments. The ILP
heuristic is based on the length of the SPTW assuming that orders are announced
12 time steps in advance. By announcing orders at an earlier stage, the simulation
model can only be solved using normal ILPs, which would probably take several
days.
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In Tables 6.13, 6.14 and 6.15 the results are presented for the RC, EC and AC
models, respectively, as the difference in results of the B12 model and the simpler
models. The announcement time relative to the requested appointment times in
parenthesis.

Cost diff. (€) Trucks diff. Short trips Long trips
Mean S.D. Mean S.D. Out In Out In ε

RC (12) 3102.3 2000.2 16.1 10.7 0.1 2.0 5.3 3.6 1.3
RC (16) 2215.9 2410.5 10.6 12.4 -3.4 -2.0 7.1 5.3 0.9
RC (20) 2238.6 2731.6 11.1 14.3 -2.5 0.0 6.5 3.8 0.8
RC (24) 1965.9 2061.0 9.8 10.4 0.0 -1.9 5.1 3.0 0.9

Table 6.13: Shifting the announcement time for the RC model

Cost diff. (€) Trucks diff. Short trips Long trips
Mean S.D. Mean S.D. Out In Out In ε

EC (12) 3815.9 1334.6 19.2 7.4 0.5 -0.2 13.1 4.7 0.3
EC (16) 2002.3 1838.4 10.3 10.1 1.5 -0.1 6.6 0.8 0.4
EC (20) 2904.5 1189.5 13.9 6.1 -2.8 -2.1 13.6 5.2 0.0
EC (24) 3059.1 1434.5 14.8 7.3 -0.8 -3.0 13.7 4.9 0.0

Table 6.14: Shifting the announcement time for the EC model

Cost diff. (€) Trucks diff. Short trips Long trips
Mean S.D. Mean S.D. Out In Out In ε

AC (12) 2134.1 1744.2 11.3 9.3 3.6 0.5 4.7 1.0 0.4
AC (16) 1815.9 1940.0 9.3 10.8 0.6 0.2 5.6 1.4 0.4
AC (20) 1884.1 1992.3 9.5 10.2 2.3 -2.0 5.1 2.7 0.4
AC (24) 1163.6 1991.1 5.5 11.0 -1.1 -3.1 5.0 2.1 0.6

Table 6.15: Shifting the announcement time for the AC model

Although on average better performance is obtained in the RC and AC models,
the EC models fluctuates quite a lot. Furthermore, in terms of robustness the models
do not perform satisfactory, e.g., for some instances the RC (12) model even exceeds
the RC (24) model (and similarly for the AC models). To clarify, the results of a
specific instance are shown in Table 6.16.

Cost (€)
RC (12) 13075.0
RC (16) 12350.0
RC (20) 10625.0
RC (24) 14050.0

Table 6.16: Results corresponding to a specific instance

We may conclude that more information, even stochastic, leads on average to
better performance for the RC and AC models, but it is certainly not guaranteed.
Just like in Example 6.2.1, in the simpler models there is a certain risk factor. Most
of the time (luckily) no problems occur, but when it does, performance will collapse
drastically.
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6.3 summary
In this section, the most important findings from the numerical experiments will be
summarized, and where necessary, more insight into the results will be provided
by closely inspecting the solutions.

The offline results showed that the lower bound can be approached by disregarding
one part of the uncertainty and shifting the announcement time of the orders to
an earlier stage. Although there is quite some uncertainty left in the B28 model,
the optimality gap was only 1.06%, implying convergence. What stood out was the
sudden change in the offline results (i.e., B72 model) in the use of trucks for long
trips corresponding to outland orders. We expected beforehand that these type of
trips would decrease even further, but the offline results showed the opposite.

In the online results the assumption about the focus on inland orders was validated.
Relatively, the proposed solution methods did even use more barges for short trips
corresponding to inland orders. The more uncertainty is present, the more the focus
is shifted to that type of trips. Apparently, including the uncertainty element(s), the
pick-up of inland orders at deep-sea terminals is an easy way to minimize the costs
at each single-period time window, i.e., locally. It makes perfect sense, because
visiting a pick-up appointment by barge can be decided last minute (only sufficient
capacity is required).

Furthermore, the simulation model SIM25 (in which 25 simulations were per-
formed each decision moment) surpasses the simpler models both in terms of out-
comes and robustness. In the simpler models infeasibility incurred due to poor
container assignment, while in the simulation model no penalties were given at all.
Besides that, with the exception of one instance, the results of the cost function for
the simulation model were within 20% of the B12 model. Moreover, the majority
of the SPTWs can be solved within 10 minutes. Only the exceptional decision mo-
ments were the number of potential decisions is huge (i.e., large decision space), the
computational time exceeds the time limit for applicability. Some recommendations
were given in order to deal with such exceptions.

A sensitivity analysis on the number of simulations suggested that 15 simulations
should be sufficient to obtain an adequate decision that is resistant to change, i.e., fea-
sible and (sub)optimal for every potential future scenario that has been simulated.
However, the analysis disregarded the container-to-mode assignment at the origin
and the container terminal, that are based on the outcomes of the simulations. This
was reflected in the results, that showed that the performance in the long trips de-
creased. On the other hand, a reduction in the number of simulations benefits in
terms of the computational time. The average running time per SPTW dropped
down from 12.81 to 8.12 minutes. Therefore, a reduction in the number of simula-
tions can be done if quick results are needed, but it has to be taken into account
that the quality of the solution is weakened.

In addition, by shifting the announcement time to an earlier stage, better results
were obtained for the RC and AC models in terms of average cost and average num-
ber of trucks used. However, a downside of the models is the fluctuation within the
results. More information, even stochastic, leads on average to better performance,
but it is certainly not guaranteed. The EC model even showed that on average the
results can fluctuate too.





7 C O N C L U S I O N

This chapter provides complete answers to the research questions formulated in
Section 1.3. Thereafter, some recommendations for future research concerning sim-
ulation techniques applied to synchromodality are given.

7.1 conclusions
The main goal of the thesis was to seek out the answer to the following research
question.

”What kind of solution methods can be used for the single-period time windows,
including uncertainty, to find an appropriate schedule and container assignment
for the entire multi-period time window (within an acceptable amount of time)?”

In order to answer the question, five different sub-questions were formulated, which
will be completely answered below.

1. How can the base instance described in Section 1.2 be modeled in order to meet all the
assumptions made?

An online optimization approach is proposed, where the input data come in
sequentially and decisions have to be taken while part of the relevant infor-
mation is still uncertain or unknown. At each decision moment, the uncer-
tainty element in the requested appointment times is converted to an offline
optimization problem by disregarding the uncertainty or by simulating vari-
ous potential future scenarios. Subsequently, the offline problem is modeled
as a multi-commodity network design problem on a time-space graph, that
minimizes the costs incurred by the use of trucks on each single-period time
window.

2. What solution methods can be used to obtain both a schedule and container assign-
ment for every transportation mode in the network?

Four different solution methods are proposed: the RC, EC, AC and simula-
tion models. The RC, EC and AC models are the simpler ones, in which the
uncertainty is partially disregarded. The models assume that the requested
appointment times will be confirmed at the requested, the earliest possible
and the average appointment time, respectively. Alternatively to the simpler
models, a much more complex algorithm is developed in which future scenar-
ios are simulated for the requested appointment times given their probability
vector p. The simulation model seeks the best decision(s) that is resistant to
change, i.e., feasible and (sub)optimal for every potential future scenarios that
has been generated.

3. What can be said about the quality and practical relevance of the results obtained by
the solution methods?

In order to analyse the performance, experiments were carried out for 11 ran-
domly generated instances. To say something about the quality and the practi-
cal relevance, the results were presented as the difference in results of the B12

57



58 conclusion

model and the solution methods. Although the B12 model does not guaran-
tee optimality, the outcome can still be used as a benchmark for the problem.
With the exception of one instance, the results of the cost function for the sim-
ulation model were within 20% of the B12 model. The gap was 12.5% on av-
erage, where some instances performed even better for the simulation model
than the B12 model (containing less uncertainty). Although not optimal, the
simulation model provides a reliable vehicle routing and a container-to-mode
assignment. Within the decision making process, the model finds the best
decision(s) that is resistant to change.

The practical relevance of the simulation model is restricted in the sense that
the model is build on several assumptions. Every order is announced ex-
actly 36 hours in advance, and confirmed exactly 12 hours later. In practice,
the announcement and confirmation times are more scattered. Furthermore,
the assumption is made that the confirmed appointment can only be sched-
uled within an uncertainty interval of length seven, where the confirmation
is based on the probablity vector p that is uniformly distributed. Finally, due
to the lack of real-world data, no adequate comparison can be made between
the decisions made by the simulation algorithm and the decisions that barge
planners would make in practice.

4. What can be said about results obtained by the solution methods if the assumption
on the announcement time of orders is relaxed, i.e., when orders are announced at an
earlier stage?

In practice, the barge planners request for an appointment only 12 time steps
in advance, since they experienced that it does not benefit to call at an earlier
stage. If the assumption is relaxed, more information, even stochastic, is avail-
able at a decision moment. Due to construction of the simulation model, it
was only possible to do experiments for the simpler models. On average bet-
ter results were obtained for the RC and AC models in terms of average cost
and average number of trucks. However, a downside of the relaxed models
is the fluctuation within the results, implying that some instances benefit, but
a considerable number of instances did not benefit or even had worse results.
We may conclude that more information, even stochastic, leads on average to
better performance for the RC and AC models, but the fluctuation affects the
robustness of the models a lot. The EC model even showed that on average
the results can fluctuate too.

5. Does the chosen approach successfully incorporate elements from synchromodality?

The online optimization approach that is proposed, definitely incorporates
elements from synchromodality. First of all, the approach incorporates un-
known and uncertain network elements that appear in the requested pick-up
and delivery appointment times. Furthermore, the proposed solution meth-
ods involve the transportation of freight in containers using multiple modes
of transport, that can be freely chosen by the barge planner. Finally, the barge
planner has the ability to respond to unexpected disturbances. For example,
if an order is confirmed at a much later time, the barge planner can decide
to unload the corresponding container(s) at the container terminal. It is possi-
ble to re-evaluate the plan at any moment. Not a single route of an order is
known or fixed beforehand.

7.2 recommendations
To conclude this research, we discuss some further research directions that may be
developed and possibly lead to future success or usefulness.
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First of all, the network under consideration can be extended to a more practice-
oriented model as shown in Figure 7.1. The extended network takes into account
the further away deep-sea terminals located in the Maasvlakte I and II. The blue
node in between can be seen as a waiting node on the water located in between the
two terminal clusters.

Figure 7.1: The extended network taking into account the Maasvlakte.

Besides that, the model can be generalized in terms of the number of barges and
orders or the size of the orders. Even more general, the simulation based model can
be applied to any multi-commodity network design problem including uncertainty
(based on probability distributions) using the idea of solving explicitly a vehicle rout-
ing problem and implicitly a container-to-mode assignment.

As mentioned before, when the size of the decision space increases, the computa-
tional time of a single-period time window grows significantly. Reducing the num-
ber of simulations affects the quality of the outcome, but improving the first phase
(i.e., the phase before the check after 11 simulations) might be a good idea. This
could be done by performing the check at an earlier stage, by discarding decisions
after one or two simulations in case the objective value deviates too much from the
others, or by taking into account the symmetry of some decisions even more.

Furthermore, a better comparision can be made if the probability vector p becomes
more practice-oriented. The most ideal would be when the probability distribution
can be extracted from the real-world data. If not, a sensitivity analysis could be
carried out for different kinds of probability distributions.

Finally, because of the tree structure of the algorithm, the simulation model can be
parallelized easily. By doing so, the algorithm should benefit in terms of computa-
tional time.





A P S E U D O C O D E

In Section 5.4 the vectors ρcap and ρloss have been defined. The pseudo code of
the algorithm to construct the elements ρcap(t) and ρloss(t), for some barge w ∈ W
having initial availability at time step tw,0, is stated in Algorithm A.1.

Algorithm A.1: Determination of ρcap(t) and ρloss(t)

for t = tw,0 to ta + 12 do
for k ∈ Kout

Origin do
if t in {τpu(k), . . . , τdel(k)− 8} and k fits on board then

if no appointment at time step τdel(k) then
Add |k| to ρcap(t) and set ρcap(min(τdel(k)− 8, ta + 12)) to 1

else if appointment at χdel(k) at time step τdel(k) then
Add |k| to ρcap(t)

else if appointment at different terminal at time step τdel(k) then
”Check if it is possible to unload..”
for tcheck in range(t + 8, τdel(k)− 1) do

if if no appointment at time tcheck and tcheck − 1 then
Add |k| to ρcap(t) and break current for loop

end if
end for

end if
end if

end for
end for
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