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Post-2006 expert judgment data has been extended to 530 experts assessing 580
calibration variables from their fields. New analysis shows that point predictions as
medians of combined expert distributions outperform combined medians, and medians
of performance weighted combinations outperform medians of equal weighted com-
binations. Relative to the equal weight combination of medians, using the medians of
performance weighted combinations yields a 65% improvement. Using the medians of
equally weighted combinations yields a 46% improvement. The Random Expert Hypothesis
underlying all performance-blind combination schemes, namely that differences in
expert performance reflect random stressors and not persistent properties of the experts,
is tested by randomly scrambling expert panels. Generating distributions for a full set of
performance metrics, the hypotheses that the original panels’ performance measures are
drawn from distributions produced by random scrambling are rejected at significance
levels ranging from E−6 to E−12. Random stressors cannot produce the variations in
performance seen in the original panels. In- and out-of-sample validation results are
updated.

© 2020 The Author(s). Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Using expert uncertainty quantification (UQ) as sci-
ntific data with traceability and validation dates from
Cooke, 1987, 1991; Cooke et al., 1988) under the name
‘Classical Model’’ or ‘‘Structured Expert Judgment’’. The
istinguishing features include treating experts as sta-
istical hypotheses and evaluating performance with re-
pect to statistical accuracy and informativeness based
n calibration variables (a.k.a. seed variables) from the
xperts’ field to which true values are or become known
ost-elicitation. The procedure results in combinations of

∗ Corresponding author.
E-mail address: cooke@rff.org (R.M. Cooke).

1 Retired.
ttps://doi.org/10.1016/j.ijforecast.2020.06.007
169-2070/© 2020 The Author(s). Published by Elsevier B.V. on behalf of Inte
he CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
experts’ distributions (termed decision makers or DMs)
using performance-based weighting (PW ) derived from
statistical accuracy and informativeness and using equal
weighting (EW ). The reader is referred to Appendix 1
for specific details. This data enables the study of fore-
cast accuracy, statistical accuracy, and informativeness of
experts and of PW and EW combinations. Appendix 2
summarizes and updates in-sample validation results, and
Appendix 3 gives information and references for the post
2006 data.

Application highlights involved nuclear safety in the
1990s with the European Union and the United States
Nuclear Regulatory Commission, fine particulates with
Harvard University and the government of Kuwait in
2004–2005, food-borne diseases for the World Health
Organization (WHO) in 2011–2013, ice sheet dynamics for
rnational Institute of Forecasters. This is an open access article under
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Princeton University, Rutgers University and Resources
for the Future (Bamber et al., 2019), and volcanic hazard
levels in different parts of the world. The Classical Model
was a key decision-support procedure during the pro-
longed eruption on the island of Montserrat, West Indies,
in 1995–2018. Over the same period, expert elicitations
using the Classical Model have informed many issues
of public health policy, civil aviation safety, fire impacts
on engineered structures, and earthquake resistance of
critical utility facilities.

Validation is the cornerstone of science. A special issue
on expert judgment (Cooke & Goossens, 2008) focused
on this issue. Colson and Cooke (2017) gave an exten-
sive review of validation research and applied the cross
validation code of Eggstaff et al. (2014) to the 33 pro-
fessional studies post-2006 available at that time. These
studies comprised 320 experts assessing 369 calibration
variables. These numbers have since grown to 49 stud-
ies involving 530 experts and 580 calibration variables.
Recently, Wilson (2017) and Wilson and Farrow (2018)
used the pre-2006 data to study expert dependence and
its effect on validation both with regard to uncertainty
quantification and point predictions. They documented
inferior performance of equal weighting but note that
very few experts exhibit large error correlations between
questions. Their concern that expert performance may not
be a persistent property of experts is addressed here with
the updated dataset. Their researches into dependence
can hopefully be extended with the present data.

The best current summary and applications and val-
idation research on the Classical Model are published
by Colson and Cooke (2017, 2018); see esp. online sup-
plements2). The reader is referred to these sources for
older publications. Post-2006 studies are better resourced,
better documented, and more uniform in design than
the older studies. They provide a unique data base for
comparing expert predictions, and predictions of com-
binations of experts, with true values from the experts’
fields. All data, both pre- and post-2006, are available at
http://rogermcooke.net/.

The Classical Model aims at uncertainty quantification,
and the underlying performance measures are
designed to reward good uncertainty assessors. It is some-
times said that uncertainty quantification is not indi-
cated when the interest is only in point predictions. This
unique expert judgment data resource enables that idea
to be rigorously tested. In Section 2, it is shown that
uncertainty quantification (UQ) improves point predic-
tions in the following sense: combining expert median
assessments is inferior to taking the median of a combi-
nation of expert UQ’s. Equally weighted combination of
experts’ ‘‘best guesses’’ is the default predictor when UQ is
not employed. Against this benchmark (treating experts’
medians as ‘‘best guesses’’), using the medians of perfor-
mance weighted combinations yields a 65% reduction in
prediction error. Using the medians of equally weighted
combinations yields a 46% reduction.

2 See https://www.sciencedirect.com/science/article/pii/
S0951832017302090?via%3Dihub#s0065
 i
Section 3 briefly reviews and updates cross validation
results. Section 4 addresses the concern of Wilson (2017)
and Wilson and Farrow (2018). We test the hypothesis
that fluctuations in expert performance can be explained
by random stressors during the elicitation, termed the
Random Expert Hypothesis (REH). If REH were true, then
panel performance should be statistically unaffected by
randomly reallocating the individual assessments over the
panel members. Note that performance-blind combina-
tion methods such as equally weighting expert uncer-
tainties or combining expert quantiles with equal weight
are invariant under randomly scrambling the expert as-
sessments. Performance-weighted combinations on the
other hand depend on identifying the best performing
experts in a panel and assigning them high weight. The
hypotheses that panel metrics such as statistical accuracy
of best expert in a panel and standard deviation of ex-
perts’ performance are statistically unaffected by randomly
scrambling expert assessments are rejected at significance
levels ranging from E−6 to E−12. These tests are more
owerful than the previous out-of-sample cross validation
ests.

The driver behind virtually all these applications is
he validational aspect of the Classical Model. Although
he psychological community has long drawn attention
o cognitive biases inherent in expert UQ, and despite a
obust interest in validation research, there are barriers
o the use of performance measures. In the conclusion, we
peculate on possible explanations for this.

. Point prediction; a co-benefit of expert UQ

Statistical accuracy and informativeness are perfor-
ance metrics for quantifying uncertainty. There is
othing in these metrics that rewards proximity of the
edians to the true values. If these performance met-

ics enable more accurate predictions of the true values,
hen this is a collateral benefit, or co-benefit of per-
ormance weighting. The Median Distance for variable i
rom a distribution with Mediani is defined as MDi =

(Mediani − true valuei)|, where true valuei is the true
alue of the calibration variable i.
MDi is dependent on the scale of variable i; for ex-

mple, changing from meters to kilometers will affect
he value of MDi. To aggregate over variables with dif-
erent scales, the scale dependence must be removed. To
ompare the proximity of the medians of PW and EW
o the realizations, taking the ratio of MD for EW and
W (denoted as EWMD and PWMD, respectively) per
ariable removes the scale dependence. These ratios are
hen aggregated over all variables in a study by taking the
eometric mean (geomean):

EWMD
PWMD =

⌊∏N
i=1

EWMDi
PWMDi

⌋1/N

where N is the number of calibration variables.
The geomean is appropriate for aggregating ratios as

the geomean of inverse ratios is the inverse of the ra-
tios’ geomean and the geomean of ratios is the ratio of
geomeans. However, for 10 of the 580 predictions, the
tem specific PW (PWi, see Appendix 1) median was ac-
ually equal to the realization, making the above ratio
nfinite (this does not happen for other predictors). These

http://rogermcooke.net/
https://www.sciencedirect.com/science/article/pii/S0951832017302090?via%3Dihub#s0065
https://www.sciencedirect.com/science/article/pii/S0951832017302090?via%3Dihub#s0065
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Fig. 1. Responses of 48 experts in a recent CDC elicitation, showing the average of medians (533), the true value or Realization (200), and medians
of EW and PW combinations.
10 variables were therefore excluded from the compar-
isons, although this is prejudicial to PWi. For a few other
ariables, |PWi − true valuei| is so small as to render the
bove ratio very large. While these variables would dom-
nate the average of this ratio, the geomean is relatively
nsensitive to large outliers.

While the mean of a linear combination of distribu-
ions is the linear combination of their means, the same
oes not hold for the median. A recent elicitation on food
orne illness pathways at the CDC illustrates this differ-
nce. One of the 14 calibration questions was: ‘‘Between

Jan. 1, 2016, and Dec. 31, 2016, a total of 11,277 samples of
raw ground beef from 1,193 establishments were tested for
Salmonella spp. Of these samples, how many tested positive
for Salmonella spp?’’ The 5, 50, and 95 percentiles of the
48 participating experts, and EW and PW combinations
are shown in Fig. 1, as is the true value 200. The medians
of the EW and PW combinations are quite close to 200,
whereas the average of medians is 533.

Although quantile averaging is usually done unawares,
Lichtendahl et al. (2013) have recommend this as opposed
to ‘‘averaging probabilities’’. This has been shown to pro-
duce highly overconfident results (Colson & Cooke, 2017).
A brief explanation suffices; consider two experts with
5th and 95th percentiles of [0,1] and [10, 11], respectively.
Averaging their percentiles yields a 90% confidence inter-
val of [5, 6]; equally narrow but disjoint from each ex-
pert’s confidence interval. Experience in expert judgment
shows that such situations are not uncommon. ‘‘Averaging
the probabilities’’ requires knowledge of the entire dis-
tributions. It is more complex but produces distributions
more evenly spread over the interval [0, 11]. For purposes
of combining distributions, averaging quantiles is a very
common and rather severe mistake.

Finding simple point predictions does not require com-
bining distributions. One could simply take a simple linear
combination of the experts’ medians rather than first
combining their distributions. People will continue com-

bining quantiles in any case; therefore, it is useful to
assess the ensuing loss of performance. PWMDQ and
EWMDQ denote the performance weighted and equally
weighted combinations of the experts’ medians (‘‘Q’’ de-
notes quantile averaging), respectively. PWiMD represents
the ‘‘high end’’ predictor based on item specific perfor-
mance weights (see Appendix 1). EWMDQ is the ‘‘low
end predictor’’. It is the predictor most often applied for
expert judgment and is therefore chosen as benchmark.
Eliciting only a ‘‘best guess’’ should be discouraged. This
invites confusion as to whether the mode, median, or
mean is intended, and there is no reason to think that
performance of ‘‘best guesses’’ in point prediction is any
better than EWMDQ.

Fig. 2 plots EWMDQ/EWMD and EWMDQ/PWiMD per
study. Values greater than 1 indicate superior predictions
relative to EWMDQ. The geomean over all 570 predic-
tions of the prediction error ratio EWMDQ/PWiMD is 1.65
and that of EWMDQ/EWMD is 1.46. On aggregate, predic-
tions of PWiMD are 65% closer to the truth than those of
EWMDQ, and the improvement for EWMD is 46%. Even if
one is only interested in expert based point predictions, it
is preferable for the experts to quantify their uncertainty
and to combine their distributions with equal weights.
It is better still to measure performance as probability
assessors and form weighted combinations of their dis-
tributions. These studies have no common experts and
may be considered independent. However, taking the ge-
omean of forecast errors per study and then taking the
geomean of these geomeans over all studies over-weights
the studies with smaller numbers of calibration variables
and would result in slightly lower improvements (1.60
and 1.41, respectively).

To compare individual forecasts with realizations, the
absolute forecast error must be made scale independent.
Table 1 gives the absolute dimensionless forecast errors
|(forecast − true value)/true value| for each of the 569
forecasts for which the realization is non zero. A perfect
score would be zero. Averages and standard deviations are

strongly affected by large outliers. The geometric average
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Table 1
Average and standard deviation of absolute dimensionless forecast errors for item specific performance weights (PWi), global
performance weights (PWg), non-optimized global performance weights (PWn), equal weights (EW), performance weighted average
of medians (PWQ), and equal weighted average of medians (EWQ) (for definitions see Appendix 1). ‘‘rls’’ denotes ‘‘true value’’ or
realization.
Fig. 2. Ratios of EWMDQ/EWMD (red) and EWMDQ/PWiMD (blue) per study. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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(geomean) is insensitive to large outliers. Depending on
how one values large outliers, the laurels go to medians
of item specific performance weighting (PWi) or medians
of non-optimized global performance weighting (PWn).
In any event, the benchmark of equal weighted combi-
nations of experts’ medians is the poorest performer. If
one eschews UQ, one is condemned to quantile averaging
with a marked penalty in forecast error. UQ without per-
formance weighting avoids the effort of finding suitable
calibration variables but suffers a performance penalty.

The mass functions for forecasts whose dimensionless
absolute error is less than 5 are shown in Fig. 3. For PW i,
94 of the 569 forecasts have an absolute dimensionless
forecast error less than 0.1, and this number is 81 for EW.

. Out-of-sample cross validation

Considerable effort has been devoted to validating ex-
ert judgments. Unless the variables of interest can be ob-
erved shortly after completion of a study, out-of-sample
alidation comes down to cross validation. The calibration
ariables are split into a training set for initializing the
W and a test set for comparing PW and EW. The sets on
hich the performance weights are derived and evaluated
re thus disjoint. Early efforts with different methods pro-
uced uneven results as documented by Colson and Cooke
2017). Col. Eggstaff and colleagues produced an out-of-
ample validation code and applied this to all pre-2008
xpert data. To our knowledge, it is the only code that has
een benchmarked against the standard expert judgment
oftware. This code was applied to 33 post-2006 studies
y Colson and Cooke (2017) and is here extended to the

urrent set of 49 post-2006 studies. Understanding the i
trengths and limitations of cross validation is essential
o appreciate the contributions of testing the REH.

Many issues involved in choosing the training and
est set sizes are discussed in (Colson & Cooke, 2017),
o which we refer the interested reader. The upshot is
hat using 80% of the calibration variables as a training
et balances best the competing goals of resolving expert
erformance on the training set and resolving the perfor-
ance of combinations on the test set. The training set

hen has enough statistical power to reduce the variance
n the expert weights, thereby rendering the performance
eights similar to the weights based on all calibration
ariables. The test set loses statistical power for resolving
he PW and EW DMs, but with 10 calibration variables,
statistical accuracy scores for assessments of 5th, 50th,
nd 95th percentiles still vary by a factor of 31. Moreover,
igher resolution is of no value if the PW DM is very

volatile and unlike the PW DM of the full study. Of course,
the actual sizes of the training and test sets vary with the
total number of calibration variables. The 80% split makes
it easier to pool the results from all studies. With 10
calibration variables, there are 45 distinct 8-tuples of cal-
ibration variables to be used as training sets. Performance
is scored on the 2 remaining variables. The statistical
accuracy, the informativeness, and the combined score
(the product of the former two) are averaged over the
45 different test sets. Colson and Cooke (2017) show that
the average ratio of combined scores for PW and EW
is indistinguishable from the ratio of average combined
scores for fixed training set size. The ratio of combined
scores based on 80% of the calibration variables is called
the ‘‘Out of sample Validity Index (OoSVI)’’.

For 42 of the 49 studies, the ratio of PWcomb / EWcomb

s greater than 1. Under the null hypothesis that there
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Fig. 3. Dimensionless absolute forecast errors less than 5 and PWi (541 forecasts) EW (534 forecasts) and EWQ (498 forecasts). ‘‘rls’’ denotes
ealization or true value.
Fig. 4. Ratios of combined scores PWcomb/EWcomb averaged over all training sets sized at 80% of the calibration variables for 49 post-2006 studies
(left). Combined scores factored into ratios of statistical accuracy (SA) and informativeness (Inf) (Right).
is no difference between PW and EW, the probability of
eeing 42 or more ratios greater than 1 is 1.8E−7. The
ight panel of Fig. 4 shows that PW suffers a modest out-
f-sample penalty in statistical accuracy, which is more
han compensated by a boost of informativeness. Lest this
oost seem ‘‘small’’, it is well to note that a factor 2 in-
rease in informativeness corresponds roughly to halving
he length of the 90% confidence bands. If an assessor is
erfectly statistically accurate, his/her statistical accuracy
core is uniformly distributed on the interval [0, 1] with
xpected value 0.5. The mean out-of-sample statistical
ccuracy score (p value) for EW is 0.54, while that of PW
s 0.43. In a nutshell, CM is able to boost informativeness
ubstantially without sacrificing statistical accuracy.
As in (Colson & Cooke, 2017), the features which best

xplained the differences in the OoSVI were studied. The
esults echo those earlier findings; if PW concentrates all
he weight in the best expert (BE), the overall geomean of
oSV I for all studies (1.63) splits into 2.0 (PW = BE) and
.4 (PW ̸= BE). Similar results are obtained by splitting
nto studies in which BE’s statistical accuracy is above
0.5 (2.1) or below 0.5 (1.2) (see Fig. 5). Other features
such as number of experts, number of calibration vari-
ables, and plenary versus individual elicitation had less
effect. The quality of the best expert is the main determi-
nant for OoSVI. The rank correlation between OoSVI and
the in-sample ratio (PW/EW) of combined scores is 0.5;
these measures are related but not identical for reasons
addressed in the following paragraph.

Cross validation is essential for demonstrating the
value of PW relative to EW for out-of-sample prediction.
The necessity of splitting the calibration set into training
and test sets exacts a toll that is illustrated with the ‘‘Ice
Sheet 2018’’ study (‘ICE_2018;’ see Appendix 3) involving
20 experts and 16 calibration variables. With a training
set of 13 (80% of 16), there are 560 distinct training sets,
and 8 of the 20 experts were weighted on at least one
of these sets. For 7 of these 8, the difference between
their maximal and minimal weight was 1; that is, their
weights vacillated between 0 and 1. The PW combinations
evaluated on the 3 test variables still exhibit volatility and
deviate from the PW of the entire study. The most definite
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Fig. 5. Breakdown of OoSVI scores in Fig. 4 according to whether PW was identical with the best expert (PW = BE; left) and whether BE’s
statistical accuracy was greater than 50% (BESA>50%; right). The Geomeans of the 49 studies are shown for the of ratios of combined scores of
PWcomb/EWcomb evaluated study-wise for training sets sized at 80% of the calibration variables. Note. OoSVI refers to out-of-sample-validity index.
BE denotes the best expert, BESA denotes the statistical accuracy of the best expert.
assertion that can be made is that the OoSVI compares
he score of EW with the scores of a swarm of PWs,
hich loosely resembles the PW of the full study. The
ross-validation data validates the performance weighting
ethod, but not a specific PW combination.

. The random expert hypothesis

Expert judgment studies differ from simple surveys in
hat experts undergo a credentialing process before being
mpanelled. It is natural to believe that, once empan-
lled, experts should have an equal share in determining
he panel output. This in turn leads naturally to aggre-
ation schemes based on equal weighting. Against this
iewpoint is a mounting body of evidence that, with re-
ard to uncertainty quantification, experts’ performances
re very uneven. About three-quarter of the 530 experts

reviewed in Appendix 2, considered as statistical hypothe-
ses, would be rejected at the 5% level. From this perspec-
tive, avowals of degrees of confidence in outcomes based
on experts’ judgments are susceptible to and in need of
validation. This is hardly new. The US Defense Intelligence
Agency adopted expert subjective probabilities in 1976
and dropped them a few years later for lack of valida-
tion.3 Nonetheless, the theoretical debate over whether
and how to validate expert subjective probabilities con-
tinues.

Recently, a new approach to validation has emerged
(Marti et al., 2019). Whereas cross validation is ham-
pered by the two-sided loss of statistical power caused by
splitting calibration variables into training and test sets,
the new approach does not focus on the performance
of a combination of experts. Instead, it focuses on the

3 See https://www.resourcesmag.org/common-resources/iceman-
cometh/.
expert performances themselves and investigates the as-
sumption underlying all performance-blind approaches;
namely that performance measures are unable to make
meaningful distinctions in experts’ performances (the Ran-
dom Expert Hypothesis—REH). This may be because the
experts are all equally good or equally bad. It may also be
that any putative differences are swamped by the noise
inherent in expert judgment—experts are influenced by
random stressors, they may get distracted or fatigued,
their performance is affected by the particular choice of
calibration variables, etc. Concerns in this regard have
been raised by Wilson (2017) and Winkler et al. (2018).

Note that if experts’ differences in performance are
caused by factors local to the elicitation of calibration
variables, then the cross-validation results of the previous
section might not extend to the variables of interest.
Further, the low power of the test set means that the
DMs’ statistical accuracy scores are poorly resolved and
thus extra susceptible to random stressors. The new ap-
proach to validation focuses directly on REH without the
intermediary of performance-based combinations. Indeed,
the REH itself carries a heavy proof burden and can be
tested using expert performance provided by our 49 post-
2006 studies. Intuitively, if performance differences are
the result of noise, then randomly reallocating the ex-
perts’ assessments among the panel members will ran-
domly redistribute the random stressors. The fluctuations
in performance produced in this way should envelope the
performance in the original panels. It emerges that tests
of REH are much more powerful than the cross-validation
tests.

To make this idea precise, consider a random scram-
ble of an expert panel composed of 15 experts and 10
calibration variables. ‘Scrambled expert 1’ is created by
randomly choosing an assessment without replacement
from one of the 15 experts for the first variable, a sec-
ond random draw without replacement gives the second

https://www.resourcesmag.org/common-resources/iceman-cometh/
https://www.resourcesmag.org/common-resources/iceman-cometh/
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assessment for ‘scrambled expert 1’, and so on. ‘Scrambled
xpert 2’ chooses assessments in a similar way from the
ssessments not chosen by ‘scrambled expert 1’. The final
crambled expert, ‘scrambled expert 15’, gets the leftovers.
n this scrambled panel, we can measure the statistical
ccuracy (SA) and informativeness (Inf ) of each expert,
he combined scores (SA × Inf ), the average scores, and
the maximum, minimum, and standard deviation of the
scores.

For each study, we repeat the scrambling 1000 times
and build up a distribution for each performance metric.
This distribution reflects the variation we should see in
that performance metric if experts’ performance differ-
ences were only due to random stressors. Suppose we
compute the average SA for experts in each of the 1000
scrambled panels for a given study. The REH now asserts
hat the average SA in the original panel could just as
ell be any of 1000 averages in the scrambled panels.
here should be a 50% chance that the original average
A is above the median of the REH distribution, a 5%
hance that it is above the 95th percentile of the REH,
tc. Thus, REH expects that in 2.45 of the 49 studies, the
riginal average SA should fall above the 95th percentile
f the REH distribution. In fact, this happens in 20 of the
9 studies. The probability of 20 or more studies falling
bove the 95th percentile if REH were true is 6.6E−14.
EH fails if the differences in the experts themselves in
he original panel are greater than what can be produced
y scrambling the experts.
Note that random scrambling will have no effect on the

W combination. Assuming that EW is at least as good as
W implies REH. In consequence (modus tollens), if REH is
statistically) rejected, then so is the assumption that EW
s at least as good as PW. In this sense, REH provides a
ore powerful test of the assumption underlying the use
f EW. The same holds for the ‘‘averaging quantile’’ ap-
roaches (Lichtendahl et al., 2013) or indeed any approach
hich is performance-blind. If all experts in a panel are

‘equally good’’ or ‘‘equally bad’’, then REH may actually
e true for that panel. The use of PW depends on the fact
hat such panels are in the minority. Testing REH on a set
f cases allows us to gauge the size of that minority.
The data has been standardized in ways that do not

ffect the REH; experts who did not assess all calibration
ariables were dropped, reducing the number of experts
rom 530 in Figure A2.1 to 526. All background measures
re converted to uniform (most calibration variables al-
eady have uniform backgrounds). Whereas some studies
ssessed the 25th and 75th percentiles in addition to the
th, 50th, and 95th percentiles, Marti et al. (2019) showed
hat this had no effect on the REH, and so only the 5th,
0th, and 95th percentiles are used.
For each of the 49 studies, the following eight per-

ormance metrics shown in Fig. 6 are computed for the
riginal panel and for each of the 1000 scrambled panels:

1. Panel Average Statistical Accuracy
2. Panel Max Statistical Accuracy
3. Panel Standard Deviation of Statistical Accuracy
4. Panel Min Statistical Accuracy
5. Panel Average Combined Score
6. Panel Max Combined Score
7. Panel Standard Deviation of Combined Score
8. Panel Min Combined Score

For metrics not involving the Min, we are interested in
he quantile of the REH distribution realized by the metric
n the original panel. For metrics 4 and 8 we are interested
n the complimentary quantile, that is, the fraction of the
000 scrambled panels in which the original minimum is
ower than the scrambled minima. This is done so that
ll metrics have the same sense; numbers close to 1 are
avorable for PW. We test the REH against the alternative
hat experts’ performance differences are too large to be
xplained by random stressors and that high values are
ritical.
If REH were true, that is, if the original panel’s metrics

ere really drawn from the REH distributions, then the
uantiles in Fig. 6 should be uniformly distributed on the
nterval [0, 1]. The number of bars above the value 0.5
hould be statistically equal to the number below 0.5. The
‘amount of color’’ above 0.5 should statistically equal the
mount below 0.5.
There are two simple tests for the REH hypothesis.

he binomial test simply counts the number of values
reater than 0.5 for each metric and reports the p value for
he corresponding null hypothesis: the probability that half
f the random panels outperform the original panel metric is
.5. The binomial test does not consider how far above or
elow 0.5 the metrics are. The sum test simply adds the 49
riginal panel quantiles for each metric. Under REH, this
um should be (very nearly) normally distributed with
ean 49/2 = 24.5 and standard deviation (49/12)1/2 =

.02. For example, ‘Average Statistical Accuracy’ in the
riginal panel exceeds the median of the REH distribution
or ‘Average Statistical Accuracy’ in 42 of the 49 studies. If
he probability of exceeding the median were really 0.5,
he probability of seeing 42 or more ‘‘successes’’ would
e 1.81E−7. Summing the original panels’ 49 realized
uantiles in the REH distribution for ‘Average Statistical
ccuracy’ yields 38.36. The probability that a normal vari-
ble with mean 24.5 and standard deviation 2.02 exceeds
8.36 is 3.48 E-12. The sum test is much more powerful
han the binomial test. Table 2 collects the results for
he binomial and sum tests. Interestingly, departures from
EH seem more severe for the panel minima than for the
anel maxima. In other words, REH has more difficulty
eproducing the very low scores than the very high scores.
f course, both departures are highly significant. Suppose
e reject REH for each of the 49 studies. The sum of
he p values (1 − percentile of original panel) gives the
xpected number of false rejections. This number is 49 −

8.36 = 10.64. We might expect that REH is true in
ne-fifth of the studies.
Whichever test we use, the notion that putative differ-

nces in expert performance are due to random stressors
s overwhelmingly rejected. Table 3 examines the influ-
nce of the number of experts and number of calibration
ariables on the performance metrics.
With 49 samples, a rank correlation of 0.24 is signif-

cant at the 5% level. As seen in Table 3, the number of
xperts is not strongly associated with any of the met-
ics. The number of calibration variables does appear to
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Fig. 6. Quantiles of the REH distributions realized by the performance metrics for Statistical Accuracy (top) and Combined Score (bottom) by the
original expert panels, for 49 studies.
exert some influence. Table 3 implies that more calibra-
tion variables tend to make the differences between the
performance of original experts and randomly scrambled
experts greater.

5. Conclusions

Experts exhibit undeniable differences in their ability
to quantify uncertainty. These differences can readily be
measured and used to improve uncertainty quantifica-
tion and point predictions. The evidence is overwhelming.
However, there are two significant hurdles to applying
performance-based combinations: (1) time and effort re-
quired for performance measurement and (2) numeracy
demands on the analyst.

In most applications, the greatest time and effort is
spent in formulating clear questions with operational
meaning which address the issues at hand. It is useful to
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Table 2
p values at which REH is rejected for the seven performance metrics.

p values for tests of REH

Binomial test Sum test

Average statistical accuracy 1.81E−07 3.49E−12
Standard deviation of statistical accuracy 4.63E−06 6.76E−10
Maximum statistical accuracy 2.35E−04 2.85E−06
Minimum statistical accuracy 4.63E−06 2.99E−11
Average combined score 9.82E−07 3.21E−09
Standard deviation of combined score 9.82E−07 3.96E−08
Maximum combined score 1.92E−05 5.85E−07
Minimum combined score 4.63E−06 6.67E−12
Table 3
Spearman’s rank correlation between number of experts and number of calibration variables and percentile scores.

Quantile of
Avg SA

Quantile of
STD SA

Quantile of
Max SA

Quantile of
Avg. Comb

Quantile of
STD Comb

Quantile of
Max Comb

Rank correlation to # experts 0.24 0.13 0.03 0.18 0.05 −0.04
Rank correlation to # variables 0.40 0.39 0.39 0.31 0.34 0.31

Note. Avg denotes average, SA is for Statistical Accuracy, STD is the standard deviation, Comb. is for combined score, Max is for maximum.
C

think of expert judgment as a way of obtaining (proba-
bilistic) results from experiments or measurements which
are feasible in principle but not in practice. Describing
a ‘‘thought experiment’’ is the best way of making clear
what one is asking. These efforts should be made in
any case, but the need for operational meaning is easier
to ignore if there are no calibration questions. Having
formulated questions with clear operational meaning fa-
cilitates finding calibration variables from the experts’
field. The impractical experiments or measurements often
suggest experiments and or measurements which are
already performed though not published. Often, as in the
recent ‘Ice Sheet 2018’ study, more time is spent agreeing
on the best set of calibration variables than in gener-
ating them. That said, finding good calibration variables
does require a deep dive into the subject matter and is
greatly aided by having a domain expert on the analysis
team. Quigley et al. (2018) provide guidance on finding
calibration variables.

One-on-one interviews cost time and money, although
good online meeting tools bring these costs down sig-
nificantly. One-on-one elicitation enables the analysts to
better plumb experts’ reasoning. Supervised plenary elic-
itation in which experts meet, discuss, and then individu-
ally perform the elicitation offer advantages of speed and
disadvantages in loss of individual engagement.

Sending a questionnaire in the mail to a large set of
experts in the hope that a fair number will respond is
discouraged for purposes of uncertainty quantification.
Expert surveys should be sharply distinguished from
structured expert judgment.

Despite all this, the most difficult hurdle is the second:
finding qualified analysts. Mathematicians, statisticians,
engineers, and scientists know that the Classical Model is
not a heavy lift.4 Many have conducted successful stud-
ies in their chosen fields. The analyst must be able to
explain the method to the experts and to the problem
owners, so that they in turn can explain it up the chain.
If a problem owner is unable to explain the method to
his/her superiors, (s)he is unlikely to adopt it. The analyst
must be comfortable with certain relevant concepts such
as statistical likelihood, p values, Shannon information,
scoring rules, distributions, densities, quantiles, etc. Some
knowledge of foundations is needed to explain why un-
certainty is represented as subjective probability and not
as fuzziness, imprecision, degree of possibility, or cer-
tainty factors, to name a few.5 Writing up the results in
a clear an accurate fashion requires more than a nodding
acquaintance with all these concepts.

Appendix A. Supplementary data

Supplementary material related to this article can be
found online at https://doi.org/10.1016/j.ijforecast.2020.
06.007.

References

Bamber, J. L., Oppenheimer, Kopp, R. E., Aspinall, W. P., &
Cooke, Roger M. (2019). Ice sheet contributions to future sea
level rise from structured expert judgement. Proceedings of the
National Academy of Sciences of the United States of America, https:
//doi.org/10.1073/pnas.1817205116. https://www.pnas.org/content/
early/2019/05/14/1817205116.

olson, A., & Cooke, R. M. (2017). Cross validation for the classical
model of structured expert judgment. Reliability Engineering &
System Safety, 163, 109–120. http://dx.doi.org/10.1016/j.ress.2017.
02.003.

4 Cooke (2015) esp. the supplementary online information is written
to bring neophytes up to speed. The TU Delft launched a free online
course on expert judgment in October 2019.
5 See (Cooke, 2015) for a foundational discussion targeting potential

analysts.

https://doi.org/10.1016/j.ijforecast.2020.06.007
https://doi.org/10.1016/j.ijforecast.2020.06.007
https://doi.org/10.1016/j.ijforecast.2020.06.007
https://doi.org/10.1073/pnas.1817205116
https://doi.org/10.1073/pnas.1817205116
https://doi.org/10.1073/pnas.1817205116
https://www.pnas.org/content/early/2019/05/14/1817205116
https://www.pnas.org/content/early/2019/05/14/1817205116
https://www.pnas.org/content/early/2019/05/14/1817205116
http://dx.doi.org/10.1016/j.ress.2017.02.003
http://dx.doi.org/10.1016/j.ress.2017.02.003
http://dx.doi.org/10.1016/j.ress.2017.02.003


R.M. Cooke, D. Marti and T. Mazzuchi / International Journal of Forecasting 37 (2021) 378–387 387

L
Colson, A., & Cooke, R. M. (2018). Expert elicitation: Using the classical
model to validate experts’ judgments. Review of Environmental
Economics and Policy, 12(1), 113–132, https://doi.org/10.1093/reep/
rex022. https://academic.oup.com/reep/article/12/1/113/4835830.

Cooke, Roger M. (1987). A theory of weights for combining expert
opinions: Report 87-25, Dept. of Mathematics, Delft University of
Technology.

Cooke, Roger M. (1991). Experts in uncertainty; opinion and subjective
probability in science (p. 321). New York Oxford: Oxford University
Press, ISBN: 0-19-506465-8.

Cooke, Roger M. (2015). Messaging climate change uncertainty with
supplementary online material. Nature Climate Change, 5, 8–10,
http://dx.doi.org/10.1038/nclimate2466, Published online 18 De-
cember 2014 http://www.nature.com/nclimate/journal/v5/n1/full/
nclimate2466.html.

Cooke, Roger M., & Goossens, L. H. J. (2008). Special issue on expert
judgment. Reliability Engineering & System Safety, 93, 657–674,
Available online 12 May 2007, Issue 5, 2008.

Cooke, Roger M., Mendel, M., & Thijs, W. (1988). Calibration and
information in expert resolution. Automatica, 24(1), 87–94.

Eggstaff, J. W., Mazzuchi, T. A., & Sarkani, S. (2014). The effect of the
number of seed variables on the performance of Cooke’s classical
model. Reliability Engineering & System Safety, 121(2014), 72–82.
http://dx.doi.org/10.1016/j.ress.2013.07.015.
ichtendahl, K. C., Jr., Grushka-Cockayne, Y., & Winkler, R. L. (2013). Is
it better to average probabilities or quantiles?. Management Science,
59(7), 1594–1611.

Marti, H. D., Mazzuchi, T. A., & Cooke, R. M. (2019). Are Performance
Weights Beneficial? Investigating the Random Expert Hypothesis.
appearing in Hanea, Nane, French and Bedford.

Quigley, J., Colson, A., Aspinall, W., & Cooke, R. M. (2018). Elicitation
in the classical model. In L. K. Dias, A. Morton, & J. Quigley (Eds.),
Elicitation the science and art of structuring judgement (pp. 15–36).
Springer.

Wilson, K. J. (2017). An investigation of dependence in expert
judgement studies with multiple experts. International Journal
of Forecasting, 33(1), 325–336. http://dx.doi.org/10.1016/j.ijforecast.
2015.11.014.

Wilson, K., & Farrow, M. (2018). Combining judgements from correlated
experts. In A. Dias, & J. Quigley (Eds.), Elicitation the science and art
of structuring judgement (pp. 211–240). Springer.

Winkler, R. L., Grushka-Cockayne, Y., K.C., Lichtendahl Jr., & Jose, V.
R. R. (2018). Averaging Probability Forecasts: Back to the Future,
Working Paper | HBS Working Paper Series | 2018.

https://doi.org/10.1093/reep/rex022
https://doi.org/10.1093/reep/rex022
https://doi.org/10.1093/reep/rex022
https://academic.oup.com/reep/article/12/1/113/4835830
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb4
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb4
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb4
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb4
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb4
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb5
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb5
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb5
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb5
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb5
http://dx.doi.org/10.1038/nclimate2466
http://www.nature.com/nclimate/journal/v5/n1/full/nclimate2466.html
http://www.nature.com/nclimate/journal/v5/n1/full/nclimate2466.html
http://www.nature.com/nclimate/journal/v5/n1/full/nclimate2466.html
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb7
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb7
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb7
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb7
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb7
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb8
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb8
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb8
http://dx.doi.org/10.1016/j.ress.2013.07.015
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb10
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb10
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb10
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb10
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb10
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb11
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb11
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb11
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb11
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb11
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb12
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb12
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb12
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb12
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb12
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb12
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb12
http://dx.doi.org/10.1016/j.ijforecast.2015.11.014
http://dx.doi.org/10.1016/j.ijforecast.2015.11.014
http://dx.doi.org/10.1016/j.ijforecast.2015.11.014
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb14
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb14
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb14
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb14
http://refhub.elsevier.com/S0169-2070(20)30095-9/sb14

	Expert forecasting with and without uncertainty quantification and weighting: What do the data say?
	Introduction
	Point prediction; a co-benefit of expert UQ
	Out-of-sample cross validation
	The random expert hypothesis
	Conclusions
	Appendix A. Supplementary data
	References


