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Abstract. Adversarial instances are malicious inputs designed to fool
machine learning models. In particular, motivated and sophisticated
attackers intentionally design adversarial instances to evade classifiers
which have been trained to detect security violation, such as malware
detection. While the existing approaches provide effective solutions in
detecting and defending adversarial samples, they fail to detect them
when they are encrypted. In this study, a novel framework is proposed
which employs statistical test to detect adversarial instances, when data
under analysis are encrypted. An experimental evaluation of our app-
roach shows its practical feasibility in terms of computation cost.

Keywords: Privacy · Adversarial machine learning ·
Homomorphic encryption

1 Introduction

Machine learning algorithms are generally constructed under the assumption
that models are trained on instances drawn from a distribution expected to be
the representative of test instances exploited for making the prediction. In an
ideal scenario, the training and test distributions are identical. However, this
hypothesis does not hold in the presence of adversaries. In a real scenario, every
learning-based system which is trained and employed over economic, political,
military, and security-critical data, is in the certain risk of attracting adversaries
who gain advantages by manipulating the system to influence its decisions [1].
Such activities include, but are not limited to, Spam detection [2], terrorist
Tweet analysis, adversarial advertisements, malware PDF file detection [3], and
sign detection in autonomous vehicles [4].

The problem of adversarial machine learning has attracted considerable
attention since 2014, when Szegedy et al. [5] showed that deep convolutional
c© Springer Nature Switzerland AG 2019
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neural network, utilized for object recognition, can be fooled by perturbed
input image which is visually indistinguishable. From then on a lot of work
has been devoted to this field, spanning from physical consequences of adver-
sarial instances presented in autonomous vehicles [6], the analysis of classifiers’
robustness against adversarial perturbation [7], to defenses designed to miti-
gate issues caused by adversarial instances [8]. Still, the majority of proposed
defenses, e.g. defensive distillation [9], are not effective in adapting to changes
in attack strategies.

To provide an arm race that is independent of the kind of attacks, Grosse et
al. [10] proposed an approach based on the intuition that adversarial instances
must inherently show some statistical differences with the correct data. More
precisely, an attacker generally designs adversarial instances in such a way that
it is similar to the training records labeled as he expects. These new fake ele-
ments – independently from how they have been created – must have different
distributions compared to the training data. Grosse et al. [10] showed that sta-
tistical tests work efficiently in detecting adversarial instances, even when these
instances have been generated through different adversarial instance crafting
techniques.

However, their proposed approach fails to detect adversarial instances when
they are crafted in an encrypted format. Generally, the primary organizations
who determine and mandate laws about the way sensitive data may be utilized,
such as European General Data Protection Regulation (GDPR)1, Payment Card
Industry Data Security Standard (PCI DSS)2, and the Health Insurance Porta-
bility and Accountability Act (HIPAA)3, permit the analysis of data only when
they are encrypted. Encryption mechanisms, which are defined based on rigorous
mathematical rules, provide the possibility of confirming security at every step
they are employed [11].

In this study, as a very first work in addressing issues caused by adver-
sarial samples in private setting, we propose encryption-based protocols, which
enable the system to detect adversarial instances when they are encrypted. The
proposed mechanism securely performs a statistical test on encrypted data to
measure the distribution difference between two datasets. In the case that the
difference is high, the crafted instances are suspicious of being designed by an
adversary.

The contribution of the current study can be summarized as follows:

– We propose a novel framework that can be deployed as a tool to securely
detect adversarial instances in private settings.

– We propose a mechanism for transforming a non-integer-based statistical test
into an integer-based one.

– We propose a new protocol for computing the exponential function. The secu-
rity proof for this protocol is provided.

1 https://www.eugdpr.org/.
2 https://www.pcisecuritystandards.org/.
3 https://www.hhs.gov/hipaa.

https://www.eugdpr.org/
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– We report the computation cost of our protocol for different values of adver-
sarial instances, number of features, and size of training data.

– Finally, we prove the security of our architecture.

The remainder of this paper is structured as follows. The next section presents
the preliminary notations utilized in the current study. In Sect. 3, the motivating
example and the architecture of our approach are proposed. In Sect. 4 the integer-
based representation of statistical test is reported. The security proof of our
architecture is presented in Sect. 5. We analyze the performance of our protocols
in Sect. 6, and in Sect. 7 we discuss the achievements and shortcomings of the
proposed framework. In Sect. 8 the related work is presented. Finally, Sect. 9
concludes by briefly proposing future research directions.

2 Preliminaries

This section provide the background knowledge used in this work, including
statistical detection of adversarial instances and Homomorphic encryption.

2.1 Statistical Detection of Adversarial Instances

To learn a classifier from training data, the real distribution of features DCi

real for
each subset Ci corresponding to a class i must be extracted. These subsets define
a partition of the training data. Due to the limited number of training instances,
each machine learning algorithm only learns an approximation of this real dis-
tribution, say learned feature distribution DCi

train. The existence of adversarial
instances is a manifestation of the difference between DCi

real and DCi
train. In this

way, an adversary finds a sample from DCi

real that does not adhere to DCi
train. Gen-

erally, an adversary has no knowledge about DCi

real, thus, the existing algorithms
for generating adversarial instances perturb the legitimate instances drawn from
DCi

train.
Independently of how adversarial instances have been generated, all adver-

sarial instances for a class Ci will constitute a new distribution DCi

adv of this
class. This means that DCi

adv is consistent with DCi

real, because each adversarial
instance for a class Ci is still a data point that belongs to this class. However,
for adversarial instances we have DCi

adv �= DCi
train.

Following this argument, statistical tests are a natural candidate for adver-
sarial instance detection [10]. The intuition is that adversarial instances have to
be inherently distributed differently from legitimate instances during training.

Maximum Mean Discrepancy (MMD) Test: The Maximum Mean Discrep-
ancy (MMD), as a well-known two-sample statistical test, is defined in terms of
particular function spaces that witnesses the difference between distributions
through kernel function [12]. Formally, for two distributions X = {X1, . . . , Xm}
and Y = {Y1, . . . , Yn}, the amount of MMD is computed as the following:
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MMD(X,Y) = (
1

m2

m∑

i,j=1

κ(Xi,Xj) − 2
mn

m,n∑

i,j=1

κ(Xi, Yj) +
1
n2

n∑

i,j=1

κ(Yi, Yj))
1
2

(1)

where κ(X,Y ) = exp(−‖X−Y ‖2

2σ2 ) represents the Gaussian Kernel function, in
which σ is generally (as in this study) considered to be 1 [12]. Trivially, if two
distributions are exactly equal in an ideal scenario, then MMD(X,Y) = 0. How-
ever, a threshold, say α, can be specified by an expert such that if MMD(X,Y) ≤
α, it is then said that the two distributions are close enough. It should be noted
that fixing this threshold is out of the scope of the current study.

2.2 Homomorphic Encryption

We define our secure computation protocols based on a semantically secure
homomorphic cryptosystem, named Paillier cryptosystem [13]. This scheme pre-
serves a certain structure that can be employed to process ciphertexts without
decryption. Given Epk(m1) and Epk(m2), a new ciphertext whose decryption
yields the sum of the plaintext messages m1 and m2 can be obtained by per-
forming a multiplication operation over ciphertexts under the additively homo-
morphic encryption scheme:

Dsk(Epk(m1) ⊗ Epk(m2)) = m1 + m2.

Moreover, exponentiation of any ciphertext with a public key yields the
encrypted product of the original plaintext and the exponent as: Dsk(Epk(m)e) =
e · m.

In the rest of this study, we denote the ciphertext of a message m by [m].
In what follows, we present two additive homomorphic-based protocols, named
secure comparison [14] and multiplication [15] protocols, which serve as building
blocks in our framework.

Secure Comparison Protocol: We use a secure comparison protocol (e.g., [14])
to compare two encrypted values. Given two ciphertexts [a] and [b], the secure
comparison between [a] and [b] is defined as follows:

SecureComp([a], [b]) =

{
[1] if a ≤ b,

[0] otherwise.

Secure Multiplication Protocol: We use a secure multiplication protocol (e.g.,
[15]) to compute the multiplication between two encrypted values. Given two
ciphertexts [a] and [b], the secure multiplication of [a] and [b] is defined as
Mult([a], [b]) = [a · b].
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3 Framework

This section presents the challenges in detecting adversarial instances over
encrypted data through a running example within spam detection, and then
an overview of our framework and security assumption is presented to address
the associated challenges.

3.1 Motivating Example

Spam messages cause several problems, spanning from direct financial losses to
misuses of Internet traffic, storage space and computational power. Spam emails
are also becoming a tool to perpetrate different cyber-crimes, such as phish-
ing, malware distribution, social engineering fraud, or propaganda distribution
(e.g. by terrorist group). To reach his goal, the spammer generally hides himself
behind infected devices (botnets) which send millions of spam messages with
similar text and template (spam campaign), against their users’ will (or even
awareness) at the spammer command. Identifying the devices which are part
of a botnet and consequent removal of malicious code from the device, helps in
strongly limiting the amount of generated spam traffic [16]. Along with, in some
dangerous scenarios, e.g. distributing terrorist messages, cyber-criminal police
is able to catch the spammer through a thorough analysis of spam campaign.
However, such an analysis brings several privacy implications resulting from this
fact that data analyzer (cyber crime police) should have access to all outgoing
users’ emails. To mitigate this issue, it is essential that the email server be able
to protect the confidential content of users’ emails, while at the same time the
data analyzer remains still capable in detecting dangerous spammers.

Our Solution: Homomorphic encryption serves as a privacy preserving technique
which enables data analyzer to perform some desired operations over protected
data, without needing them to be decrypted. Thus, email server homomorphi-
cally can encrypt a set of emails, belonging to a suspicious user, and send them
to (semi-trusted) data server. Cyber crime police also provides two separate col-
lections of records representing benign and spam messages. It also sends them
encrypted to the data analyzer. Without decrypting any email, the data server–
as an expert component in analyzing encrypted data– is capable to detect if data
belonging to a suspicious user shows considerable difference compared to benign
records sent by police.

3.2 Architecture and Workflow

To detect adversarial instances over encrypted data, we employ an interactive
privacy model in which two additional components (plus the data analyzer and
data provider) are needed to securely perform analysis. More precisely, this pri-
vacy model comprises four main components:

– Data-analyzer who is interested in detecting adversarial instances.
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– Data provider who provides a dataset suspicious to be designed by a potential
adversary

– Semi Trusted Party (STP) is a semi-honest component that generates public
(pk) and private (sk) keys. This component is assumed to have limited storage
and computation capabilities.

– Data Server (DS) is a remote component, generally in the cloud with high
storage capability that stores encrypted data. DS is controlled by an expert
who performs the analysis on encrypted data through secure communication
with STP.

Data Server (DS)Semi-Trusted Party (STP)

Data Provider (potential 
adversarial instances)

Data Analyzer

pk pk

pk

X1, … , Xm
Y1 , ..., Yn

[Y1], ..., [Yn ]

[X1], … ,[Xm]

Fig. 1. Reference architecture

Figure 1 shows the architecture underlying the interactive privacy model along
with the main components and their interactions. First, STP generates public
(pk) and private (sk) keys; it sends the public key pk to data analyzer, data
provider, and to DS. After receiving the public-key, data analyzer and data
provider encrypt their data and send the associated set of encrypted vectors,
denoted respectively as [X1], . . . , [Xn] and [Y1], . . . , [Ym], to DS. From now on,
the secure computation protocols are performed between STP and DS.

We assume a semi-honest security model, where all participants are honest-
but-curious. This means that all components follow the protocols properly, but
they are interested in learning the input of other parties. In our motivating exam-
ple, email server and cyber-criminal police can be considered as data provider
and data analyzer, respectively. Data server and Semi-trusted Party are two
external components expert in performing analysis over encrypted data. It is
noticeable that in this specific scenario, the data provider and STP can be one
unique component (the same for data server and data analyzer).

4 Private Detection of Adversarial Instances

This section transforms non-integer-based MMD statistical test to the integer-
based formula; it then presents secure computation protocols to compute it over
encrypted input.
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4.1 Integer-Based MMD Evaluation

Considering that homomorphic encryption techniques are only applicable on
integer numbers, and Maximum Mean Distance (Relation 1) is not defined based
on integer numbers, in what follows we propose a methodology to evaluate MMD
condition through an integer-based formula.

To this end, let’s suppose that two datasets D1 and D2, and their associated
encrypted versions as D′

1 and D′
2, respectively, are given. Let us denote the MMD

distance of D1 and D2 as MMD(D1,D2), and the (decrypted) MMD distance of
encrypted formats as MMD′(D′

1,D
′
2). It is expected that if the MMD distance of

two dataset as plaintexts is higher than α, then the MMD distance of equivalent
ciphertexts also be higher than α, or equivalently, if MMD′(D′

1,D
′
2) ≤ α then

MMD(D1,D2) ≤ α.
We first consider that xi’s are integer values. At the end of this section we

will explain if this condition does not hold, how the problem can be addressed
as well.

Given this assumption, the reason that Relation 1 may return a non-integer
outcome is resulted from Gaussian Kernel function defined as κ(X,Y ) =
e

−1
2 ‖X−Y ‖2

. In what follows, we transform it to integer-based relation.
By approximating the irrational value e− 1

2 with a rational value d (by round-
ing it to its t’th decimal number), we obtain d ≤ e− 1

2 ≤ (d+ δ), where δ = 10−t.
Therefore, by denoting the squared Euclidean distance of two vectors X and Y
as nXY = ‖X − Y ‖2, we have: dnXY ≤ κ(X,Y ) ≤ (d + δ)nXY .

Now, we are looking for α′ such that the satisfaction of the following relation,
results in the satisfaction of Relation 1.

n2
m∑

i,j=1

(d · 10t)nXiXj

(10t)nXiXj
− 2mn

m,n∑

i,j=1

(d · 10t)nXiYj

(10t)nXiYj
+ m2

n∑

i,j=1

(d · 10t)nYiYj

(10t)nYiYj
≤ α′

Theorem 1. By setting α′ =
√

α2 − 2dδ (for negligible δ), the satisfaction of
MMD′(D′

1,D
′
2) ≤ α′ ≤ α results in MMD(D1,D2) ≤ α.

Proof. Proof in Appendix. �

However, considering that additive homomorphic encryption does not provide
secure division protocol, we multiply both sides by the common denominator of
all fractions, i.e. τ = (10t)

∑m
i,j=1 nXiXj

+
∑m,n

i,j=1 nXiYj
+

∑n
i,j=1 nYiYj :

n
2

m∑

i,j=1
(d · 10t)

nXiXj τXiXj
− 2mn

m,n∑

i,j=1
(d · 10t)

nXiYj τXiYj
+ m

2
n∑

i,j=1
(d · 10t)

nYiYj τYiYj
≤ τα

′ = α
′′

where for all X,Y ∈ X,Y, we have τXY = τ

(10t)‖X−Y ‖2 , and since the phrase
appeared in the denominators of the fractions, exists also inside the numerator
as well, the outputs of this phrase is integer.

It is noticeable that although α is generally a decimal number (approximately
0.05), but since τ is a very big number, α′′ = τα′ will be an integer at the end.
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Thus, in the last relation all variables are integers. It also needs to be mentioned
that we supposed xis are integer numbers. If this hypothesis does not hold, it is
just enough to round them to t′’th decimal number and then multiply them by
10t′

. The value of t′ should be set beforehand from the context.

4.2 Preliminary Protocols

This section presents HE-based protocols, named secure scalar, Euclidean dis-
tance, and exponential protocol, which serve as preliminary protocols for evalu-
ating the satisfaction of integer-based MMD distance.

Secure Scalar Product: Bob owns two vectors of encrypted values as [X] =
([x1], . . . , [xk]), [Y ] = ([y1], . . . , [yk]), and he is interested in obtaining the scalar
product of [X] and [Y ] which equals to

[∑k
i=1 xi · yi

]
. We propose the following

formula to compute scalar product securely through the application of secure
multiplication protocol:

Scalar([X], [Y ]) =

[
k∑

i=1

xi · yi

]
=

k∏

i=1

Mult([xi], [yi])

Secure Euclidean Distance: Bob owns two vectors of encrypted values as [X] =
([x1], . . . , [xk]), [Y ] = ([y1], . . . , [yk]), and he is interested in finding the (squared)
Euclidean distance of these vectors in encrypted format. We remind that the
(squared of) Euclidean distance of two vectors X and Y is equivalent to X ·
X − 2X · Y + Y · Y , where “·”refers to the scalar product of two vectors. The
(squared) Euclidean distance of two encrypted vectors can be computed as the
following:

Dist([X], [Y ]) = Scalar([X], [X]) · (Scalar([X], [Y ]))−2 · Scalar([Y ], [Y ])

Secure Exponential Protocol: Suppose Bob owns encrypted number [b], and a is
a public integer number. Bob is interested in finding [ab]. We propose in Algo-
rithm 1 a new protocol for secure computation of [ab]. Our proposed procedure
is based on masking b with (κ + �)-bit random integer value r, and afterwards
secure multiplication protocol is applied to remove the noise.

4.3 Secure MMD Distance Computation

To detect adversarial instances over encrypted values, we design MMD protocol
according to the integer-based relation presented in Sect. 4.1 applying HE-based
building blocks. It is supposed that DS owns two sets of encrypted vectors,
coming from potential adversary and data analyzer as X = {[X1], . . . , [Xm]} and
Y = {[Y1], . . . , [Yn]}, respectively. The values m,n, t and α are known by DS.
The following steps are executed between DS and STP :
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Algorithm 1. Exp(a, [b]): Secure Exponential Function.
Data: Alice generates encryption keys. a is a public integer number. Bob owns

encrypted integer numbers [b].
Result: Bob obtains [ab].

1 Bob additively masks [b] with r and sends [b′] = [b + r] = [b] · [r] to Alice.

2 Alice decrypts [b′] and sends [ab′
] to Bob.

3 Bob obtains [ab] = Mult([ab′
], [a−r]).

– For 1 ≤ i, r ≤ m and 1 ≤ j, t ≤ n, DS first obtains the encrypted
values Dist([Xi], [Xr]), Dist([Xi], [Yj ]), and Dist([Yj ], [Yt]) through secure
Euclidean distance protocol. It then locally computes:

[Z] =
∏

i,r,j,t

Dist([Xi], [Xr]) · Dist([Xi], [Yj ]) · Dist([Yj ], [Yt])

– After obtaining [Z], for 1 ≤ i, r ≤ m and 1 ≤ j, t ≤ n, DS computes the
following encrypted values through secure communication with STP :

[τXiXr
] = Exp(10t, ([Z] · (Dist([Xi], [Xr])−1)))

[τXiYj
] = Exp(10t, ([Z] · (Dist([Xi], [Yj ])−1)))

[τYjYt
] = Exp(10t, ([Z] · (Dist([Yj ], [Yt]))−1))

At this step, by setting a = d ·10t, DS computes the encrypted value of MMD
distance through secure communication with STP , as the following:

[MMD] =
∏

i,r,j,t

(Mult(Exp(a,Dist([Xi], [Xr])), [τXiXr
]))n2

· (Mult(Exp(a,Dist([Xi], [Yj ])), [τXiYj
]))m·n

· (Mult(Exp(a,Dist([Yj ], [Yt])), [τYjYt
]))m2

– Finally, secure comparison protocol is applied as SecureComp ([MMD], [α′′]),
where the outcome [0] means that the data provider is suspicious to be an
adversary.

5 Security Analysis

In this section, we present a security sketch of the proposed privacy preserving
protocols in the semi-honest model, where parties are assumed to be honest
in following the protocol description, while they are curious to obtain more
information than they are entitled to.

Based on this assumption, we provide proofs to show that our secure Maxi-
mum Mean Discrepancy (MMD) protocol is simulation secure in the semi-honest
security model. By providing the simulation security, the probability that an
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adversary can learn private information from truly generated data by the par-
ties in our protocols is at most negligibly more than the probability that an
adversary can learn from given randomly generated data. We use the simulata-
bility paradigm [17] in our proofs, where the adversary takes the control of the
network and try to obtain the final result of the protocol by itself as the only
party in the protocol. In this paradigm, security is defined as a comparison of
computation work-flow in “real world” and “ideal world”. In real world, a pro-
tocol can be broken into sub-protocols or computations that are carried out by
each party throughout the protocol. Let us denote π as the MMD protocols; we
can split π into two parts: π = πDS and πSTP , which are performed in parties
DS and STP , respectively. πDS takes X, Y, γ′, and α′, which are the inputs, and
outputs 1/0 (let’s call this ϑ), [ϑ] ← πDS(X,Y, γ′, α′). πSTP decrypts the given
encryptions from DS, processes them, and sends their encrypted versions back
to DS. Thus, to perform MMD the encrypted messages flow from one party to
another party and together they generate the [ϑ] as the result of MMD. Assum-
ing DS is corrupted by an adversary A, then A has access to his inputs, and [ϑ].
Similarly, when STP is corrupted, the adversary has access to the intermediate
computation results.

In an ideal world, it is assumed that one of the parties is corrupted by an
adversary. Then, he uses a simulator to generate the outputs of the other party.
This would be similar to performing MMD with just one corrupted party. In the
ideal world, an adversary Á, who has control over DS, has only access to his
inputs and the garbage inputs given from simulated STP instead of the correct
result of πSTP . The goal is to show that A can learn equal or negligibly more
than Á, meaning that they are computationally indistinguishable, then we can
claim that MMD is a simulation secure protocol.

Definition 1. Let a ∈ {0, 1}∗ represents the parties’ inputs, n ∈ N to be a secu-
rity parameter, and X = {X(a, n)}a∈{0,1}∗;n∈N and Y = {Y (a, n)}a∈{0,1}∗;n∈N,
two infinite sequences of random variables, are probability ensembles. Then, X

and Y are computationally indistinguishable, denoted as X
c≡ Y , if there is a

polynomial p(.) for every non-uniform polynomial-time probabilistic algorithm
(nuPPT) D such that:

|Pr[D(X(a, n)) = 1] − Pr[D(Y (a, n)) = 1]| < 1/p(n) (2)

The Mult, SecureComp, and Equality sub-protocols are proved to be secure
in the same security setting [14,15], and [18], respectively. Moreover, since the
Scalar and Dist sub-protocols are both built by only using Mult, we can claim
that they are also simulation secure.

5.1 Security of SecureExp

Let denote the computation of b′ as DSf1 , [ab′
] as STPf1 , and [ab] as DSf2 .

Then, we have DSf = (Af1 , Af2), STPf = (Bf1), and f = (DSf , STPf ).
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Theorem 2. The protocol SecureExp is simulation secure and securely computes
the functionality f , when the DS is corrupted by adversary A in the presence of
semi-honest adversaries.

Proof. We need to show that DS cannot computationally distinguish between
generated messages and outputs from S2 that is the simulation of STP , and
randomly generated data. DS receives two outputs from S2, [ab′

] and result
of Mult sub-protocol. Given a, [b], and 1n (security parameter), DS works as
follow:

1. DS chooses uniformly distributed random number r;
2. DS executes DSf1 to obtain [b′], and sends it to S2;
3. S2 chooses a random number R, encrypts it and sends [R] to DS.

The output of simulation can be written as: SimDS(1n, a, [b],DSf , f) =
(a, [b], r; [c]; [ć];φ)). The real view of DS can be presented as viewf

DS(a, [b]) =
(a, [b], r; [ab′

]). And the output of the real view is outputf (a, [b]) = ([ab], φ). It
can be observed that DS cannot computationally distinguish between [ab′

] and
[c], since the underlying encryption scheme is semantically secure. Note that the
Mult sub-protocol is already proven secure in [15]. Therefore, we can claim that:

SimDS(1n, a, [b], Af , f)
c≡ {viewf

DS(a, [b];φ), outputf (a, [b];φ)}

�

Theorem 3. The protocol SecureExp is simulation secure and securely com-
putes the functionality f , when the STP is corrupted by adversary A in the
presence of semi-honest adversaries.

Proof. STP works as follow:

1. S1 chooses a κ + � + 1-bit random number r, encrypts it, and sends [r] to
STP .

2. STP executes STPf1 and sends the result back to S1.

Although STP has the decryption key, it cannot distinguish between r and b,
since b is masked with a (κ + �)-bit integer. Therefore,we can claim that:

SimSTP (1n, φ, STPf1 , f) = {viewf
STP (a, [b], φ, n), outputf (a, [b];φ)}

�

Since the SecureExp sub-protocol is proven to be secure, showing that simula-
tion security of MMD protocol is straightforward. MMD protocol uses Dist,
Exp, and Mult sub-protocols, which all have been proven to be simulation
secure; therefor, we can claim that MMD protocol is also simulation secure.
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6 Performance Analysis

To compute the computational complexity of MMD protocol, let us assume that
potential adversary and data analyzer uploaded m and n records on DS’s server.
Moreover, each record is a vector of size k, and each component of a vector
is expressed maximum in �-bit length. Based on MMD distance protocol, the
number of times that building block protocols are employed equals to:

N(m,n) = (m2 + m · n + n2)(Scalar + Dist + Add + SExp. + SExp. + Mult)
(3)

Our building block protocols require primitive operations addition, encryption,
decryption, and exponential, as the following:

– Multiplication protocol (Mult) requires 5, 4, 1, and 2κ+� addition, encryption,
decryption, and exponential, respectively.

– Scalar product (Scalar) needs 6k, 4k, k, and 2kκ+� addition, encryption,
decryption, and exponential, respectively.

– Exponential protocol (SExp.) employs 6, 7, 2, and 2κ+� addition, encryption,
decryption, and exponential, respectively.

– Distance protocol (Dist.) requires 2 and 1κ+� addition and exponential,
respectively.

Given the above argument, the number of times that Relation 3 employs addi-
tion, encryption, decryption, and exponential operations can be approximated
as follows:

N(m, n, k, �) = (m
2
+ m · n + n

2
)

(
(6k + 21)Add. + (4k + 20)Enc. + (k + 6)Dec. + (2k + 6)Exp.

)
+ �(Add. + Enc. + Dec.) (4)

We implemented addition, encryption, decryption, and exponential protocols
using C + + on a single machine running Ubuntu 14.04 LTS with 64-bit micro-
processor and 8 GB of RAM. The cryptographic key length of Paillier is selected
as NIST standard as 4096 bits. In our implementation, addition, encryption, and
decryption for 106 records required 8.3, 5.6, and 9 s, respectively. Moreover, by
considering κ = 112, each exponential operation needs 200 additions for element
with �-bit length equal to 20.

To assess the practical feasibility of our mechanism, we performed a number
of experiments. Grosse et al. [10] showed that 50 adversarial instances are enough
to infer a considerable MMD statistical distance between two datasets. Moreover,
according to standard dimensioning technique, proposed in [19], the minimum
size for a dataset to produce a reliable result is to dimension it as six times to
the number of features. Therefore, to get a better insight on computation cost
of the proposed approach, we consider the number of features to get their values
as k ∈ {20, 50, 100, 200}, while the number of data in training set (m) is set to
six times of k. The number of adversarial instances (n) varies from 50 and gets
its value as n ∈ {50, 60, 70, 80, 90}.
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Figures 2 and 3 show the computation costs (in log-scale) for different values
of n and k, respectively. As explained previously, m is considered as a dependent
variable to the number of features (m = 6k). From Fig. 2, it can be inferred that
for fixed values of k and m, the required runtime increases linearly (with a slight
slop) when n increases. On the other hand, for fixed value of n, when k varies
from 20 to 200, the runtime increases from 0.5 h to 288 h. Figure 3 confirms that
k has considerable impact on the computation cost. This result put the light on
the fact that application of appropriate feature selection technique, prior to the
adversarial instance detection over encrypted data, can noticeably reduce the
computation cost.
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Fig. 2. Computation time (in hour) for different values of adversarial instances (n).
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Fig. 3. Computation time (in hour) for different number of features (k).

7 Discussion

This section discusses some noticeable notions about the current study.
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– We adapted the results of work done by Grosse et al. [10], which through
mathematical explanation and experimental analysis proved the effective-
ness of MMD statistical test in detecting adversarial samples. Therefore, we
designed our experimental analysis not on detecting adversarial instances over
encrypted data, but on evaluating the feasibility and efficiency of the proposed
mechanism.

– Gaussian kernel is a de facto kernel which is employed in several data analy-
sis approaches, e.g. image/signal processing, computational chemistry, SVM
classifier, etc. Accordingly, the result of current study can be deployed in
the aforementioned studies when analysis is desired to be performed over
distributed encrypted data.

– The performance analysis of our approach shows that the proposed mecha-
nism is effectively feasible when the number of features reduces. This result
suggests that the application of an appropriate feature reduction technique
considerably reduces the computation cost of our mechanism.

– Due to the fact that the current approach requires at least 50 adversarial
samples from the attacker to be able to detect the adversarial instances, as
one future work we plan to construct a robust classifier with one outlier class
over encrypted data. The robust classifier is able to detect an adversarial
instance upon being received [10].

8 Related Work

In this section we present works in the literature related to Adversarial Machine
Learning and Encryption-based Mechanisms.

Adversarial Machine Learning: A growing body of work has been devoted
to the field of adversarial machine learning, trying to solve the problem from
different perspectives. A large number of work has been done (i) to develop
attacks against machine learning, both at training time (poisoning attacks) [20],
and at test time (evasion attack) [1], (ii) to design systematic methodologies for
evaluation of the robustness of machine learning algorithms against such kinds of
attacks [21], and (iii) to propose appropriate defense mechanisms for mitigating
these threats [22]. However, there is no work in the literature which studies
adversarial machine learning issues when the data under analysis are encrypted.

Encryption-Based Mechanisms: The main idea in encryption-based
approaches is to obfuscate the privacy-sensitive data prior to processing.
Cryptography-based techniques have been deployed in several domains of data
analysis. In [23] the possible scenarios of applying homomorphic encryption on
medical data is discussed. A working implementation of a prediction service in
the cloud which takes private encrypted health data and returns the probabil-
ity for suffering cardiovascular disease is returned in encrypted format. Erkin
et al. in [15] propose a privacy-enhanced face recognition system, which allows
to efficiently hide both biometrics and the result from the server for match-
ing operation. Cryptography-based approaches have also been widely utilized in
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constructing data mining algorithms collaboratively, e.g. constructing on whole
encrypted data a clustering algorithm [24], or a classifier [25], and collabora-
tive private feature selection [26]. These techniques also have been used in other
scenarios, e.g. private text analysis [27], the general framework for privacy pre-
serving distributed data analysis [28], etc. However, to the best of our knowledge
the problem of adversarial machine learning has not been addressed in private
setting.

9 Conclusion

This paper presents a framework for detecting adversarial instances which are
crafted through encrypted format. To this end, we employed statistical test which
measures the distance of two encrypted datasets’ distribution. Due to the fact
that the proposed approach is based on homomorphic encryption, we proposed a
mechanism to transform non-integer statistical test to an integer-based one. We
showed the practical feasibility of the proposed approach in terms of computation
cost.

In future research, we plan to address other challenges in adversarial machine
learning, e.g. constructing robust classifier, over encrypted distributed data. We
also plan to perform other statistical tests, e.g. energy distance, on encrypted
datasets, and compare their effectiveness and efficiency. Moreover, we are inter-
ested in applying efficient secure multi-party computation, e.g. data packing, to
speed up the process when size of data increases. We also plan to evaluate the
effect of feature selection techniques on accuracy and efficiency of our method-
ology.

Acknowledgment. This work was partially supported by the H2020 EU funded
project SECREDAS [GA #783119] and by the H2020 EU funded project C3ISP [GA
#700294].

Appendix

In what follows we prove Theorem 1, claiming that if we set α′ =
√

α2 − 2dδ

(for negligible δ), then from MMD′(D′
1,D

′
2) ≤ α′ we can conclude that

MMD(D1,D2) ≤ α.
Basically, we are looking for α′ such that if the following relation holds:

n2
m∑

i,j=1

dnXiXj − 2mn

m,n∑

i,j=1

dnXiYj + m2
n∑

i,j=1

dnYiYj ≤ m2n2α′2

We can conclude that:

n2
m∑

i,j=1

κ(Xi,Xj) − 2mn

m,n∑

i,j=1

κ(Xi, Yj) + m2
n∑

i,j=1

κ(Yi, Yj) ≤ m2n2α2
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To this end, we first find a relation between two above relations:

n2
m∑

i,j=1

κ(Xi,Xj) − 2mn

m,n∑

i,j=1

κ(Xi, Yj) + m2
n∑

i,j=1

κ(Yi, Yj)

≤n2
m∑

i,j=1

(d + δ)nXiXj − 2mn

m,n∑

i,j=1

dnXiYj + m2
n∑

i,j=1

(d + δ)nYiYj

= n2(
m∑

i,j=1

dnXiXj +
m∑

i,j=1

[
nXiXj

(nXiXj
− 1)

2
dnXiXj

−1
δ + . . .]) − 2mn

m,n∑

i,j=1

dnXiYj

+ m2(
n∑

i,j=1

dnYiYj +
n∑

i,j=1

[
nYiYj

(nYiYj
− 1)

2
dnYiYj

−1
δ + . . .])

From the application of binomial theorem, we obtain:

(n
2

m∑

i,j=1
d

nXiXj − 2mn

m,n∑

i,j=1
d

nXiYj + m
2

n∑

i,j=1
d

nYiYj ) + (n
2

m∑

i,j=1
[
nXiXj

(nXiXj
− 1)

2
d

nXiXj
−1

δ + . . .]

+ m
2

n∑

i,j=1
[
nYiYj

(nYiYj
− 1)

2
d

nYiYj
−1

δ + . . .]) ≤ m
2

n
2

α
2

This means that it is enough to set α′2 = α2 − 2δd, because:

⇒ α′ = m2n2α2 − (n2
m∑

i,j=1

[
nXiXj

(nXiXj
− 1)

2
dnXiXj

−1
δ + . . .]

+ m2
n∑

i,j=1

[
nYiYj

(nYiYj
− 1)

2
dnYiYj

−1
δ + . . .])

≤ m2n2α2 − (n2δ

m∑

i,j=1

d + m2δ

n∑

i,j=1

d)

= m2n2α2 − 2m2n2δd
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