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Abstract

We propose a method for detecting laughter in spontaneous social
interactions using chest-worn accelerometers. Our approach compares
three segmentation strategies—padded, centered, different sliding win-
dows sizes and evaluates annotation modalities: No Audio, Only Audio,
and With Audio. Using time-domain features and Random Forests, we
reach up to 0.962 macro F1-score.

Longer windows and multimodal annotations improve performance
and generalizability. Key features include axis-wise means, deriva-
tives, and inter-axis correlations. These results support the potential
of motion-based laughter detection in privacy-sensitive environments,
while highlighting the importance of segment and label design.

1 Introduction
Laughter is a rich social signal involved in emotion regulation, bonding,
and group cohesion [4]. Detecting laughter automatically has become an
important goal in affective computing. While audio-based systems achieve
high accuracy in controlled settings, they suffer in real-world scenarios due
to noise, reverberation, and privacy concerns [11].

Wearable sensors offer a robust and privacy-preserving alternative. Chest-
mounted accelerometers can detect thoracic and respiratory vibrations dur-
ing laughter, without recording audio or facial expressions. Prior work
shows this method works both in lab settings and spontaneous social in-
teractions [6]. However, most studies rely on fixed-length windows, which
may split laughter events or capture unrelated motion, reducing accuracy.

Laughter annotation adds further complexity. Annotators may use video
only (No Audio), sound only (Only Audio), or both (With Audio), leading to
inconsistent labels depending on the sensory input. Combining these labels
into a single ground truth can further distort the concept of laughter [9].

These segmentation and annotation choices influence model performance
and must be studied in interaction. For example, a segmentation strategy
misaligned with how annotators perceived laughter may harm generaliza-
tion. Thus, we explore the interplay between segmentation, feature extrac-
tion, and label construction in the laughter detection pipeline.

Our central research question is:
How effectively can chest-worn accelerometer data be used to detect laugh-

ter in spontaneous social interactions?
To answer this, we address four subquestions:

• How do contiguous segments compare to fixed-size windows for detect-
ing laughter, and what duration yields the best performance?

• How do annotation strategies affect the performance and generaliz-
ability of models across inter-modality conditions?
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• How does segmentation type (contiguous, sliding, or centered) impact
model robustness?

• Which time-domain features carry the most predictive value for laugh-
ter detection from accelerometer data?

By aligning segments with behavioral boundaries and using interpretable
features, our method supports privacy-aware laughter detection in natural-
istic environments.

2 Related Work
Laughter detection has been widely explored, particularly in audio and au-
dio–visual domains. Early systems relied on hand-crafted acoustic features
such as pitch, energy, and spectral descriptors extracted from short fixed-
length windows [11]. With the rise of deep learning, convolutional and re-
current models operating on Mel-spectrograms have significantly improved
performance in controlled settings [11].

In privacy-sensitive and noisy environments, wearable sensors offer an
alternative modality. Chest-worn accelerometers capture mechanical chest-
wall vibrations correlated with laughter and respiratory patterns. Di Lascio
et al. [6] used 5-second windows with time- and frequency-domain features
to classify laughter, achieving approximately 81 percent accuracy in a lab-
based study.

Segmentation strategies critically impact performance. Sliding-window
approaches have been standard due to simplicity [3], but arbitrary win-
dow boundaries can dilute event-specific characteristics. In related domains,
contiguous-event segmentation has shown advantages: cough detection us-
ing acceleration data segmented by burst onset/offset outperformed fixed
windows [7], and gesture recognition benefited from run-length encoding of
annotated frames [3].

Annotation strategy plays a critical role in laughter detection. Multi-
annotator consolidation methods, such as majority voting, are commonly
used in affective computing but may suppress rare or ambiguous events. In
contrast, union voting emphasizes recall and has been employed in emotion
recognition to better capture subtle expressions [9]. Annotation consistency
and inter-rater agreement also depend heavily on the modality used. Provid-
ing annotators with synchronized audio previews for ambiguous accelerom-
eter segments has been shown to boost agreement by up to 20 percentage
points [9]. Each annotation modality reflects a distinct sensory input: No
Audio (video-only), Only Audio (audio-only), and With Audio (audio and
video). These modalities fundamentally influence how laughter is perceived.
For instance, No Audio often misses vocal or subtle laughter, while Only
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Audio may overlabel events lacking visual confirmation. The With Audio
condition generally yields more consistent and temporally precise labels [9].

Feature engineering for wearable sensors encompasses both time- and
frequency-domain representations. Signal magnitude area (SMA) and inter-
axis correlations have proven effective for general activity recognition [1].

Classification algorithms range from traditional random forests and sup-
port vector machines [2] to ensemble and deep architectures [11]. Random
forests remain popular in wearable analytics due to robustness and feature-
importance interpretability [2].

3 Methodology
We designed a complete data pipeline for detecting laughter from chest-
mounted accelerometer signals recorded in spontaneous social interactions.
The process includes signal preprocessing, annotation handling, segmenta-
tion, padding, time-domain feature extraction, and Random Forest classifi-
cation.

3.1 Dataset and Annotation

We use the ConfLab dataset [10], which features 48 participants engaged
in spontaneous social interactions while wearing lanyard-mounted 3-axis ac-
celerometers sampled at 56 Hz. Laughter events were annotated frame by
frame at 60 Hz by three independent annotators under three different per-
ceptual conditions—No_Audio, Only_Audio, and With_Audio—each rep-
resenting a different annotation modality.

3.1.1 Modalities

Each annotation modality (No_Audio, Only_Audio, With_Audio) was treated
as a separate labeling condition to preserve its perceptual perspective. We
did not fuse modalities but instead used cross-modality evaluation to assess
generalization beyond the original annotation context.

Within each modality, we combined the three annotators’ frame-level
labels using majority voting. This choice reduced false positives and elim-
inated unrealistically long laughter durations. For instance, union vot-
ing produced segments exceeding 200 seconds—far beyond typical laughter
episodes, which usually last under 10 seconds [8]. Majority voting brought
maximum segment lengths down to around 11 seconds, better aligning with
known laughter dynamics.
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3.1.2 Segmentation Strategy

We segment the accelerometer signal into contiguous regions of consistent
annotation—laughter (label = 1) and non-laughter (label = 0)—to preserve
the natural structure of the behavior. This strategy allows us to recover
the full temporal extent of each episode without arbitrary cuts, maintaining
alignment between the signal and the underlying event. It also enables us
to compute meaningful statistics over event durations, such as the average
and maximum length of laughter and non-laughter segments (Figure 1).

This is especially important in laughter detection, where episodes are
typically brief and burst-like. In our dataset, most laughter events last
under one second (median = 0.67s, mean = 0.97s), reinforcing the need to
preserve fine-grained temporal boundaries. By grouping consecutive frames
with the same label into a single segment, we ensure each window represents
a coherent perceptual unit. To reduce label noise, we discard segments
shorter than 200ms, as such brief instances are unlikely to reflect meaningful
laughter events. Prior research shows that genuine laughter typically unfolds
over longer intervals, both acoustically and behaviorally [8].

Figure 1: Duration statistics for contiguous laughter and non-laughter seg-
ments after filtering.

3.1.3 Padding Techniques

To prepare the data for statistical feature extraction and avoid biases intro-
duced by variable-length segments, we restructured all contiguous regions
into fixed-length windows of 1 s, 2 s, and 10 s. Most laughter events were
short, with a mean duration of 0.97 s, making 1 s a natural fit a window
size. The primary motivation for introducing longer windows was to pre-
serve more usable laughter data. By including 2 s (around 90 percent) and
10 s windows (around 100 percent), we are able to retain more laughter ex-
amples in their entirety, improving dataset coverage at the cost of additional
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padding. Additionally, we use these larger windows to explore whether seg-
ment length alone—independent of any temporal modeling—affects feature
stability or classification performance. While longer windows may dilute
the laughter signal when it occupies only a small portion of the segment,
they also offer a broader context for statistical aggregation and may enhance
discriminative power in some cases.

To prepare the accelerometer signal for classification, we explored three
segmentation strategies: padded segment blocks, timeline-centered
windows, which both come from continuous segments, and fixed-size slid-
ing windows, all tested in all three window sizes:

1. Padded Segments

This strategy starts from the annotated laughter or non-laughter seg-
ments and adjusts their length to a fixed window size. If a segment is
shorter than the target duration, we pad it by repeating the last value along
each axis to avoid sharp discontinuities. If it is longer, we split it into
multiple equal-sized chunks, padding the final one if needed. This ensures
that all training inputs have uniform length, while staying tightly aligned
with the temporal boundaries provided by the annotation. Padding with
repeated values is well suited to our statistical time-domain features (e.g.,
mean, variance, energy), which are less sensitive to such repetition than
frequency-based features [3]. A padded segment is considered positive if the
continuous segment was considered laughter, as can be deducted.

2. Timeline-Centered Windows

Here, instead of modifying the segment length, we use it to determine
where to extract a fixed-size window from the full accelerometer signal.
Specifically, we center the window around the temporal midpoint of each
annotated event and extract the desired duration from the surrounding sig-
nal. This means the window may include signal outside the continuous
annotation, especially when segments are short. No padding is applied, and
the extracted window reflects real signal values, including potentially noisy
or ambiguous transitions. This approach better simulates real-world condi-
tions where boundaries are not always clean, and models must learn to focus
on the most informative part of the signal. A timeline-centered segment is
considered laughter if the continuous segment was considered laughter.

3. Fixed-Size Sliding Windows

We also applied a traditional fixed-size sliding window approach, widely
used in activity recognition for its simplicity and consistency. While it may
not align with behavioral boundaries and can split short events like laughter,
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it remains a strong baseline. We used window lengths of 1, 2, and 10 seconds
with a 0.5-second overlap. A window was labeled as laughter if at least 10
percent of its frames were annotated as such—a threshold chosen to balance
capturing enough laughter signal while minimizing noise. This is important
to note: determining how much of a segment must contain laughter to justify
a positive label is not trivial; this thresholding decision is an open research
question with implications for both label quality and model sensitivity. To
address class imbalance, the resulting dataset was resampled to maintain a
10–90 positive-to-negative ratio as originally the.

3.2 Signal Preprocessing

Raw accelerometer signals were obtained from 9-axis IMUs worn by each
of the 48 participants at a sampling rate of 56 Hz. Following established
preprocessing practices [5], the signals underwent the following steps:

• Band-pass filtering (0.5–10 Hz): Applied a 4th-order Butterworth
filter to isolate laughter-related chest vibrations, effectively removing
low-frequency signals related to posture shifts or respiration and high-
frequency noise such as tremors and motion artifacts.

• Z-score normalization: Standardized each accelerometer axis (accelX_filtered,
accelY_filtered, accelZ_filtered) on a per-participant basis to account
for inter-subject variability in resting posture and sensor orientation.

The filtered and standardized signals were serialized into .pkl files for
efficient retrieval and reuse in subsequent analysis pipeline stages.

3.3 Feature Extraction

We extracted time-domain features from fixed-length segments of the stan-
dardized accelerometer signals (accelX_filtered, accelY_filtered, accelZ_filtered),
sampled at 56 Hz. These features follow prior work in physiological state
modeling with inertial sensors [3].

For each axis (X, Y, Z), we computed:

• Mean, Variance, Energy:

Energy =
N∑

t=1
x2

t

• Mean and Standard deviation of the first derivative

Additionally, we included:
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• Signal Magnitude Area (SMA) across all axes:

SMA =
N∑

t=1
(|Xt| + |Yt| + |Zt|)

• Inter-axis correlations (corr_xy, corr_xz, corr_yz), via Pearson’s
coefficient.

This results in a 19-dimensional feature vector per segment: 15 from
axis-specific statistics (5 per axis), plus SMA and 3 inter-axis correlations.

3.4 Random Forest Classification

We trained a Random Forest (RF) classifier from scikit-learn to distinguish
laughter from non-laughter segments based on the extracted features. The
RF classifier was chosen for its proven effectiveness in prior laughter detec-
tion studies, robustness to varying scales, efficiency with limited datasets,
and interpretability through feature importance analysis. The following pro-
tocol was employed:

• Participant-Disjoint Splits: A 75-25 training-test split was applied
specifically to sliding window datasets, ensuring no participant ap-
peared in both sets, thus preventing identity leakage and enhancing
generalization.

• Cross-Modality and Segmentation Testing: Since evaluations in-
cluded different modalities and segmentation strategies, the participant-
disjoint split was explicitly applied only when testing within the same
dataset.

• Hyperparameter Tuning: Optimized using Weights and Biases
(wandb), exploring parameters such as tree number and maximum
depth.

Each model was systematically trained and evaluated for every annota-
tion modality, window size (1s, 2s, 10 s), and segmentation strategy (padded,
centered, sliding). We reported average accuracy, F1-score, and feature im-
portance based on mean decrease in Gini impurity, explicitly addressing our
research questions regarding optimal segment duration, annotation strategy
generalizability, and predictive feature identification.

4 Results
We evaluate our Random Forest classifier for each window size, each modal-
ity, and each segmentation strategy. We report precision, recall, and F1-
score for both laughter and non-laughter classes.
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We structure our evaluation into three setups: intra-modality (training
and testing on the same annotation modality), inter-modality (training on
one modality and testing on another), and inter-segmentation (training
on continous segments and then testing on a spontaneous real life encoun-
ters).

4.1 Intra-Modality Performance

To evaluate the effectiveness of our approach, we trained separate Random
Forest classifiers for each annotation modality—No Audio, Only Audio, and
With Audio—across three window sizes: 1 s, 2 s, and 10 s, under three seg-
mentation strategies: centered, padded, and sliding. For each configuration,
we evaluated the macro-averaged F1-score (F1macro), as well as class-specific
metrics for laughter (F11, Recall1).

Figure 2 summarizes the performance across all configurations, with a
separate subplot per modality. Each line represents a segmentation strategy,
plotted across increasing window sizes.

Figure 2: Macro-averaged F1-score across window sizes and segmentation
strategies, trained and tested on the same modality.

We observe that the sliding window strategy consistently achieves the
highest performance across all modalities, particularly at the 10-second win-
dow. This suggests that overlapping windows provide greater temporal con-
text, enabling the model to detect laughter with higher reliability.

The padded strategy also performs competitively, especially in the 10-
second condition, confirming that aligning segment lengths with annotated
laughter intervals benefits statistical feature extraction. In contrast, the
centered approach yields lower F1 scores, likely due to limited contextual
information and potential misalignment with the laughter event.

Overall, longer and overlapping segments (10 s sliding) proved most effec-
tive, supporting the hypothesis that laughter detection benefits from broader
temporal integration. The differences between segmentation strategies fur-
ther emphasize the importance of segment design in modeling spontaneous
social behaviors.
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For completeness, detailed bar plots showing F1macro, Precision1, and
Recall1 for each modality and segmentation type are provided in Appendix A.

4.2 Inter-Modality Performance

We conducted an inter-modality generalization analysis by training a Ran-
dom Forest classifier on features extracted from one annotation modality and
testing on another. This setup is crucial to assess the robustness of models
across annotation perspectives—e.g., visual-only (No Audio), acoustic-only
(Only Audio), and combined cues (With Audio).

We evaluated all train-test combinations across three segmentation strate-
gies—padded, centered, and sliding—and three window durations: 1 s, 2 s,
and 10 s. For each configuration, we computed macro-averaged F1-score
(F1macro) and report the results grouped by train-test pair.

Figure 3 provides a visual summary of this evaluation. Each subplot
corresponds to a different train→test condition, with separate lines for each
segmentation strategy plotted across increasing window sizes.

Figure 3: Inter-modality macro-averaged F1-score across window sizes, seg-
mentation strategies, and modalities grouped by train→test condition.

We observe that longer window sizes (10 s) consistently led to improved
cross-modal generalization, particularly under the padded and sliding seg-
mentation strategies. Sliding windows often yielded the strongest general-
ization performance, especially when transferring from with_audio annota-
tions, which provide richer supervision due to the inclusion of both visual
and auditory cues.

In contrast, the centered segmentation strategy produced relatively flat
performance across durations and often underperformed in transfer settings,
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suggesting that limited temporal context harms generalization.
These results reinforce the importance of both window size and seg-

ment alignment strategy in building robust models for spontaneous behavior
recognition. Full precision results and bar plots per condition are included
in Appendix B.

4.3 Inter-Segmentation Performance

We evaluated the two continuous segmentation strategies—padded and cen-
tered—to test their robustness when applied to the sliding window frame-
work.

As shown in Figure 4, neither segmentation strategy achieved consis-
tently satisfactory results. Macro F1-scores rarely exceeded 0.5, and recall
was generally low across modalities and window sizes. The padded strategy
yielded higher accuracy overall, but this came at the expense of extremely
low recall—particularly for non-audio modalities—revealing a strong bias
toward predicting the dominant non-laughter class. Centered segmentation
slightly improved this trade-off by capturing better recall, but still suffered
from imbalanced precision and limited overall robustness.

While average performance was modest, certain modality-duration com-
binations stood out. Most notably, the with_audio modality under the
padded strategy achieved a remarkably high precision_1 of 0.83 with 10-
second windows. This indicates that when the model predicted laughter, it
was often correct—even if such predictions were rare. However, this came
with extremely low recall, suggesting a highly conservative classifier that
may only respond to more exaggerated or unambiguous laughter cues. These
modality-specific outliers highlight the importance of context: multimodal
annotations paired with longer input windows can lead to more confident,
albeit sparse, detections.

These findings suggest that behavioral alignment alone—whether padded
or centered—is not sufficient to overcome the inherent challenges of detecting
laughter from raw accelerometer signals. Segment duration and modality
both play important roles in shaping model sensitivity and bias. A more
detailed performance breakdown per segmentation and modality—including
precision_1 and recall_1—is available in Appendix B.4.
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Figure 4: F1-macro scores for each sampling strategy (padded and centered)
on sliding windows.

4.4 Feature Importance

To interpret the decision patterns of our Random Forest classifiers, we ana-
lyzed feature importances—measured via Gini importance—from the best-
performing models at each window size (1 s, 2 s, 10 s), across the three
segmentation strategies. Appendix C presents the corresponding plots.

In the padded condition, the classifier strongly favored mean-based fea-
tures—particularly accelY_filtered_mean, accelX_filtered_mean, and ac-
celZ_filtered_mean—across all window sizes. These features capture over-
all postural shifts, suggesting that laughter events tend to modulate average
chest movement. Derivative statistics and cross-axis correlations such as
corr_yz and corr_xy also ranked consistently, indicating their value in cap-
turing short-term coordination patterns during laughter.

In the event-centered strategy, a similar feature ranking emerged, but
with a slightly stronger emphasis on derivative-based features such as ac-
celX_filtered_deriv_std and accelZ_filtered_deriv_std. These highlight
intra-laughter movement variation that is well captured when windows are
precisely centered around the laughter segment. The use of SMA and axis-
specific variances suggests the model also benefits from integrating signal
energy and dispersion in these temporally aligned windows.

Under the sliding window approach, importance shifted toward deriva-
tive and variance-based descriptors, particularly in the 10-second window
condition. Features like accelX_filtered_deriv_std and accelY_filtered_deriv_std
dominated across durations, reflecting the method’s reliance on broader tem-
poral integration to capture patterns that may span beyond laughter bound-
aries. Compared to the other strategies, sliding windows favored dynamic
signal statistics over static posture descriptors.

Across strategies, features like axis-specific means, derivatives, and cross-
axis correlations carried the most predictive value. Their prominence con-
firms that laughter involves both posture shifts and dynamic motion signa-
tures, aligning with prior work on thoracic movement patterns.
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5 Responsible Research

5.1 Ethical Considerations

This project involved analyzing laughter behavior using accelerometer data
collected during spontaneous social interactions. All data used in this re-
search comes from the Conflab dataset [10], which was ethically approved
and collected in accordance with TU Delft’s human research ethics guide-
lines. Participants gave informed consent, and all data was anonymized prior
to release. No audio or video recordings were used directly; our analysis re-
lied exclusively on inertial motion data and externally provided annotations,
ensuring participant privacy throughout the study.

Furthermore, this work does not attempt to infer or identify personal
traits, emotions, or identities beyond detecting the presence of laughter. We
intentionally avoided training models for individual classification or demo-
graphic prediction, as such uses could lead to ethically questionable appli-
cations. Instead, our focus was strictly on behavioral event detection using
non-invasive, privacy-preserving signals.

5.2 Reproducibility and Research Integrity

To ensure reproducibility and scientific transparency, all components of our
pipeline—from signal preprocessing and annotation handling to segmenta-
tion, feature extraction, and classification—were implemented in Python us-
ing publicly available libraries such as scikit-learn, NumPy, and pandas.
Signal processing and filtering routines followed established practices and
are clearly documented.

The project was developed and executed in Jupyter notebooks, with
core functionality modularized into reusable classes. Annotated and fil-
tered signals were stored in serialized .pkl files, and all parameters (e.g.,
window sizes, segmentation types, filter cutoff frequencies) are explicitly de-
fined. Random Forest hyperparameters were tuned using Weights & Biases
(wandb), and all experiment runs were tracked with fixed seeds to support
consistent replication.

The full codebase, along with sample data loaders, annotation prepro-
cessing scripts, and experiment logs, will be made available upon request or
publication. Our evaluation protocol used participant-disjoint splits to pre-
vent data leakage, and all inter-modality experiments were performed with
rigorous cross-testing procedures to avoid overfitting. Through these design
choices, we aim to promote reproducible, interpretable, and ethically sound
research in wearable affective computing.
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5.3 Use of Language Models:

Large Language Models (LLMs) such as ChatGPT were used throughout the
project to assist with code debugging, data analysis brainstorming, and edit-
ing of scientific writing. All outputs from the model were critically reviewed,
validated, and edited by the researcher to ensure accuracy, originality, and
alignment with scientific standards. LLMs were treated as productivity-
enhancing tools rather than content generators, and no unverified model
output was included without modification or scrutiny.

6 Discussion
This section reflects on the implications of our findings within the broader
context of affective computing and wearable sensing. We present four cen-
tral discussion points—each addressing a key methodological or empirical
insight—followed by reflections on how these findings inform future research
directions.

6.1 Model Performance and Interpretability

Despite their simplicity, Random Forest classifiers achieved robust perfor-
mance across most configurations. This indicates that laughter generates re-
peatable, structured motion patterns that can be captured using statistical
features alone. The models’ reliance on time-domain features—such as axis-
specific means, variance, derivatives, and inter-axis correlations—provides
physiological interpretability, linking detection performance to respiratory
and thoracic movements.

However, this reliance also limits the model’s ability to capture tempo-
ral dynamics. Without access to sequential modeling or frequency-domain
features, the classifiers miss expressive characteristics like rhythmic oscilla-
tions or buildup. This was particularly evident when testing on different
segmentation strategies, where broader temporal integration often diluted
segment-specific information and reduced performance sharply.

6.2 Annotation Modality and Label Consistency

Training and testing across modalities highlighted the impact of perceptual
bias in laughter annotation. Models trained on multimodal annotations
(i.e., With Audio) consistently outperformed those trained on video-only
or audio-only labels, particularly when tested on different modalities. This
suggests that annotations grounded in richer perceptual information (both
audio and visual) produce more generalizable models.

Conversely, models trained on No Audio annotations showed weaker
transfer performance, likely due to their overemphasis on exaggerated visual
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cues that don’t always align with acoustic laughter. This reflects a key lim-
itation: while annotation modality affects model performance, the dataset
offers no definitive ground truth. The variation among human annotators
across modalities reveals how subjective the definition of laughter can be,
which challenges efforts to design consistent affective computing systems.

6.3 Segmentation Strategy and Temporal Scope

Our findings highlight a trade-off between segment duration and ecologi-
cal validity. Although models trained on 10-second segments consistently
outperformed those using 1- or 2-second windows, most laughter events in
the dataset were much shorter. The padded segmentation strategy extends
short events by repeating signal content to reach fixed durations, which im-
proves performance. However, this comes at a cost: artificial padding may
distort the temporal dynamics of laughter and delay response in real-time
applications.

Alternative strategies present different trade-offs. Centered windows re-
quire knowledge of laughter midpoints, which is impractical at runtime.
Sliding windows, by contrast, are runtime-friendly and performed best over-
all—particularly with longer durations—thanks to their broader temporal
coverage. While they may occasionally dilute label quality by overlapping
non-laughter motion, their consistent performance highlights the value of
overlapping, context-rich segments.

6.4 Robustness Across Temporal and Perceptual Conditions

We assessed model performance across annotation modalities and segmen-
tation strategies. Stronger generalization occurred when training on well-
aligned segments, such as 10-second padded windows or centered windows
with With Audio labels.

Despite these gains, reliance on fixed-size windows and same-modality
training limits broader deployment. Future models should adapt to noisy
labels and dynamic timing in real-world settings. This could be done by
testing more the robustness of sliding windows in laughter detection, its
ideal positive label interpretation, or resampling techniques, also enhance
model expressiveness through temporal architectures (e.g., LSTMs, TCNs)
or spectral features.

7 Conclusion
This project investigated the effectiveness of chest-worn accelerometers for
detecting laughter in spontaneous social interactions, focusing on the inter-
play between segmentation strategies, annotation modalities, and classifier
robustness. Our results show that even with a non-sequential model like a
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Random Forest, careful pipeline design can achieve high performance, with
macro F1-scores reaching 0.962 (Only Audio, 10s sliding windows).

We now revisit the central research question:

How effectively can chest-worn accelerometer data be used to
detect laughter in spontaneous social interactions?

Accelerometer data—when paired with appropriate segmentation, label
consolidation, and feature extraction—can reliably detect laughter while
preserving privacy. Our findings confirm the viability of this approach in
naturalistic environments.

Fixed-size windows, particularly 10-second sliding segments, consistently
outperformed behaviorally aligned contiguous ones. Although contiguous
segments reflect natural event boundaries, they introduced class imbalance
and label noise that hindered performance. Sliding windows, by contrast,
provided broader coverage and more diverse samples, which improved overall
detection—even when windows contained mixed content.

Annotation modality also played a key role in model generalization.
Models trained on With Audio labels achieved the best cross-modality re-
sults, likely due to richer perceptual cues combining visual and auditory
signals. In contrast, No Audio labels resulted in the weakest transfer, sug-
gesting over-reliance on visual exaggerations and overall lower label quality.

Among segmentation types, sliding windows delivered the most robust
and consistent classification results across durations and modalities. Padded
segments performed competitively when tightly aligned to laughter episodes,
while centered windows, despite being precisely located, lacked contextual
information and generalized poorly.

Across all conditions, the most predictive features included axis-wise
means and derivative-based statistics (e.g., accelY_filtered_mean,

accelX_filtered_deriv_std)—capturing both postural changes and mo-
tion dynamics. Features like cross-axis correlations and signal magnitude
area (SMA) also contributed, highlighting the high-energy and coordinated
nature of laughter events.

In summary, our study supports the use of wearable accelerometers for
laughter detection in real-world conditions. By addressing segmentation
fidelity, annotation subjectivity, and feature design, we provide a foundation
for privacy-aware and socially perceptive systems. Future work could explore
sequential models or real-time applications to further improve responsiveness
and reduce false positives.
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Appendix

A Intra-Modality Performance Across Segmenta-
tions

This appendix includes full bar plot results for each segmentation strat-
egy—padded, event-centered, and sliding—across all three annotation modal-
ities and three window sizes (1s, 2s, 10s). Each figure shows macro F1, F11,
and Recall1 per modality.

(a) No Audio modality (b) Only Audio modality (c) With Audio modality

Figure 5: Modality-wise performance using padded segmentation.

(a) No Audio modality (b) Only Audio modality (c) With Audio modality

Figure 6: Modality-wise performance using event-centered segmentation.

(a) No Audio modality (b) Only Audio modality (c) With Audio modality

Figure 7: Modality-wise performance using sliding window segmentation.
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B Inter-Modality Performance Plots
We report detailed bar plots of inter-modality classification performance for
all segmentation strategies (Padded, Sliding, Centered) and window sizes
(1s, 2s, 10s). Each plot visualizes the F1 Macro, Precision1, and Recall1
scores when training on one annotation modality and testing on another.
These results allow for a granular comparison of cross-modal generalization
under varying temporal and segmentation assumptions.

B.1 Padded Segmentation

Figure 8: Inter-modality performance (1s windows, Padded)
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Figure 9: Inter-modality performance (2s windows, Padded)

Figure 10: Inter-modality performance (10s windows, Padded)
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B.2 Sliding Segmentation

Figure 11: Inter-modality performance (1s windows, Sliding)

Figure 12: Inter-modality performance (2s windows, Sliding)
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Figure 13: Inter-modality performance (10s windows, Sliding)

B.3 Centered Segmentation

Figure 14: Inter-modality performance (1s windows, Centered)
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Figure 15: Inter-modality performance (2s windows, Centered)

Figure 16: Inter-modality performance (10s windows, Centered)

B.4 Inter-Segmentation Performance by Modality and Du-
ration

Figure 17 provides a detailed comparison of F1-macro, Precision, and Re-
call for each combination of segmentation strategy and modality, across all
window sizes. Each subplot isolates one segmentation strategy, showing
performance variations by modality and segment duration. These results
further illustrate that padded segmentation can yield high precision (e.g.,
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up to 0.83 for with_audio), but often at the cost of very low recall, especially
in non-audio modalities.

Figure 17: Performance scores (F1-macro, Precision, Recall) by modality
and window size, split by segmentation strategy.

C Feature Importance Plots
This appendix includes the detailed bar plots of feature importances for
each segmentation strategy (padded, event-centered, and sliding), evaluated
at all window sizes (1 s, 2 s, 10 s).
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(a) Feature importances across window sizes (1 s, 2 s, 10 s) for padded segmen-
tation.

(b) Feature importances across window sizes (1 s, 2 s, 10 s) for event-centered
segmentation.

(c) Feature importances across window sizes (1 s, 2 s, 10 s) for sliding segmen-
tation.

Figure 18: Feature importances from the best Random Forest model at each
window size. Importance scores reflect the average Gini reduction across
trees in the ensemble.

25


	Introduction
	Related Work
	Methodology
	Dataset and Annotation
	Modalities
	Segmentation Strategy
	Padding Techniques

	Signal Preprocessing
	Feature Extraction
	Random Forest Classification

	Results
	Intra-Modality Performance
	Inter-Modality Performance
	Inter-Segmentation Performance
	Feature Importance

	Responsible Research
	Ethical Considerations
	Reproducibility and Research Integrity
	Use of Language Models:

	Discussion
	Model Performance and Interpretability
	Annotation Modality and Label Consistency
	Segmentation Strategy and Temporal Scope
	Robustness Across Temporal and Perceptual Conditions

	Conclusion
	Appendix
	Intra-Modality Performance Across Segmentations
	Inter-Modality Performance Plots
	Padded Segmentation
	Sliding Segmentation
	Centered Segmentation
	Inter-Segmentation Performance by Modality and Duration

	Feature Importance Plots

