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Method to Determine the Closed-Loop
Precision of Resonant Sensors From

Open-Loop Measurements
Tomás Manzaneque , Peter G. Steeneken, Farbod Alijani, and Murali K. Ghatkesar

Abstract—Resonant sensors determine a sensed parame-
ter by measuring the resonance frequency of a resonator. For
fast continuous sensing, it is desirable to operate resonant
sensors in a closed-loop configuration, where a feedback
loop ensures that the resonator is always actuated near its
resonance frequency, so that the precision is maximized even
in the presence of drifts or fluctuations of the resonance
frequency. However, in a closed-loop configuration, the pre-
cision is not only determined by the resonator itself, but
also by the feedback loop, even if the feedback circuit is
noiseless. Therefore, to characterize the intrinsic precision
of resonant sensors, the open-loop configuration is often
employed. To link these measurements to the actual closed-
loop performance of the resonator, it is desirable to have a relation that determines the closed-loop precision of the
resonator from open-loop characterisation data. In this work, we present a methodology to estimate the closed-loop
resonant sensorprecisionby relying only on an open-loopcharacterizationof the resonator.The procedure is beneficial for
fast performanceestimation and benchmarkingof resonant sensors,because it does not require actualclosed-loopsensor
operation, thus being independent on the particular implementation of the feedback loop. We validate the methodology
experimentally by determining the closed-loop precision of a mechanical resonator from an open-loop measurement and
comparing this to an actual closed-loop measurement.

Index Terms— Allan deviation, frequency precision, limit of detection, mass resolution, noise, phase-locked loop,
resonant sensor, resonator.

I. INTRODUCTION

DURING the last decades, the development of resonant
mechanical sensors has been driven by the need for

characterizing mass [1]–[3] and stiffness [4]–[6] of micro-
and nano-particles with high precision. In resonant mass
sensors, the mass of added particles results in a resonance
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frequency shift, and the minimum particle mass that can be
measured is referred to as the mass resolution or limit of
detection. For a mass change �m to be resolved via a res-
onance frequency shift �ωn , this frequency shift needs to be
significant compared to the resonance frequency imprecision
δω, which can be defined as the Allan deviation of a set of
measurements of the resonance frequency ωn , under constant
experimental conditions and mass [7]. At a frequency shift
equal to the frequency imprecision (�ωn = δω), the mass
resolution, imprecision or limit of detection is defined as
δm ≡ δω(dωn/dm)−1, and is found to depend on the frequency
imprecision δω and the responsivity of the resonance frequency
to the mass, dωn/dm. Since the responsivity of a mechanical
resonator is inversely proportional to the resonator’s effective
mass m, a common approach for improving the limit of
detection has been through miniaturizing resonators. It has
been shown that microresonators [8], [9] and nanoresonators
[10] can reach attogram and zeptogram mass resolution,
respectively. By harnessing the vibrations of suspended carbon
nanotubes, mass resolution down to yoctogram level has also
been demonstrated [11]–[13].

However, reduction of the resonator mass has the drawback
that it tends to increase noise-induced frequency imprecision
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[14], and the consequent miniaturization reduces the effective
sensor area. Therefore, besides maximizing responsivity, min-
imizing frequency imprecision δω is also of great importance
for optimizing the detection limit of resonant mass sensors.
The question of what the lowest achievable frequency impre-
cision is, was first addressed in the context of frequency
standards based on thickness-shear-mode quartz resonators
[15], [16]. Later on, the problem was studied for resonant
sensors based on micro beams [14], [17]. In these works,
different sources of imprecision are analysed, that can be
classified in three categories: thermomechanical noise, random
resonance frequency fluctuations, and instrumentation noise.
To analyze the effect of these sources of imprecision on
the final mass resolution, it is important to distinguish two
different cases: open-loop operation, and closed-loop operation
(see the abstract figure).

The open-loop method is rather straightforward to
implement, only needing an experimental setup to actuate
the resonator and measure its response. There are two typi-
cal open-loop resonant sensor readout configurations. In one
configuration, the driving frequency is swept across a range
around the resonance, and the resonance frequency is deter-
mined as the frequency at which the magnitude of the dis-
placement peaks, or at which its phase is shifted by −π/2
with respect to the driving force. The main drawback of this
configuration is that it is rather slow, since measurements
at many different frequencies need to be performed. In the
second open-loop readout method, the driving frequency is
kept constant at or near the resonance frequency, and the
phase difference between the response and the driving signal is
directly related to the resonance frequency shift. The drawback
of this method for practical applications is that the bandwidth
and measurement range is limited, even more than in the
first open-loop configuration, because the precision of this
method rapidly decays if the resonance frequency drifts away
significantly more than the peak width, ωn/Q, from the driving
frequency.

To increase the measurement range and speed, feedback
(i.e. a closed-loop scheme) is needed to continually adjust
the driving frequency, such that it stays near the resonance
frequency. Two types of closed-loop schemes for driving
resonant sensors can be found in the literature: direct feedback
oscillators [18], [19], and phase-locked loops (PLL) [20], [21].
The former need automatic gain controllers to avoid non-linear
behaviour at large amplitudes that would be detrimental for the
frequency precision, or even more sophisticated controllers to
operate the resonator at optimal points of the non-linear regime
[22], [23]. The latter rely on phase detection to control the
driving frequency, requiring fine tuning the phase detection
bandwidth and the controller parameters [21], [24]. Despite
requiring extra complexity in the implementation, closed-loop
schemes are preferred in most practical sensing scenarios,
where significant resonance frequency drifts occur over time,
and/or a high number of sensing events (e.g. mass additions)
need to be detected per unit time.

The importance of further analyzing precision in open-loop
and closed-loop systems is twofold. On the one hand, the
theoretical fundamental limits of precision are not the same
in both cases, as demonstrated in [21]. On the other hand,

when experimentally determining the frequency imprecision
of a resonator, different results are obtained from open-
loop and closed-loop schemes which are hard to compare.
Characterization methods based on open loop are desirable for
benchmarking resonators in a simple and standarizable way,
since they are rather immediate and do not rely on a particular
controller implementation. At the same time, as discussed
above, the closed-loop frequency imprecision is the important
one in most practical scenarios. Then, the question is: is it
possible to infer the closed-loop imprecision from an open-
loop measurement? To answer this question, we analyze the
transfer functions that govern the conversion of the different
noise sources to the final frequency imprecision of the resonant
sensor, both in open loop and closed loop. From this analysis,
we derive a method to extract the closed-loop imprecision from
an open-loop measurement of the resonator. The proposed
method captures the contributions of the different potential
noise sources in the system and extends beyond earlier studies
[14], by also providing valid imprecision estimates for inte-
gration times shorter than the resonator’s open-loop settling
time τc = 2Q/ωn . To test the applicability, an experimental
validation of the method is performed, using an atomic force
microscopy (AFM) cantilever as the test device.

II. FUNDAMENTALS

A linear single-degree-of-freedom resonator is fully defined
by its transfer function1 H (s), with effective mass m, stiffness
k, and damping c constants:

H (s) = X (s)

F(s)
= 1

ms2 + cs + k
. (1)

X (s) represents the displacement of the resonator from its
equilibrium position, and F(s) represents the sum of external
forces. The angular resonance frequency is ωn = √k/m,
with resonance frequency fn = ωn/(2π), and quality factor
Q = √km/c.

In this work, resonant sensors that determine mass from the
mechanical resonance frequency ωn are used as an exemplary
case. However, the presented analysis is applicable to other
types of resonant sensors too, where for example the sensing
functionality is based on changes in the effective stiffness k,
or where the resonance is not of a mechanical nature, like in
electrical L RC resonators, optical or electromagnetic cavity
resonators.

For resonant sensors, the resonance frequency must be
modelled as a time-dependent parameter, see Fig. 1(a), which
results in a parametric variation of the transfer function, like
H (s, ωn(t)). For sensor readout, a measurement scheme is
needed to determine the instantaneous value of the resonance
frequency. If a harmonic force with constant frequency ωa is
applied, it follows from (1) that, after a certain settling time of
the order of the resonator’s characteristic time τc = 2Q/ωn ,
a harmonic displacement x(t) = x0 sin(ωat − ϕ0) at the same
frequency is obtained, with amplitude x0 and a phase lag ϕ0
with respect to the force. Since this measurement scheme is
applied at a constant driving frequency ωa , in the absence of
feedback, the response is referred to as open-loop. When the

1Throughout the paper, capital letters, like X (s) with complex frequency
s, are used to denote the Laplace transform of the corresponding lower case
time-domain function, like x(t).
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Fig. 1. (a) Model of a resonator with a characterization setup in open loop. In addition to the applied force, the resonance frequency is regarded
as an input of the resonator (Ωn(s)). Inputs Vsrc(s), Fthm(s) and Vmsr(s) model respectively the noise from the signal source, the thermomechanical
noise in the resonator, and the noise introduced by the detector. (b) Phase-space model of the same system, linearized around the resonance
frequency. The noise inputs in (a) are referred to the phase of the carrier at the corresponding system branch in (b). (c) Phase-space closed-loop
system, obtained when a PI controller is connected between the output phase and the input frequency of the system in (b).

resonator is driven near resonance (ωa ≈ ωn), the resonance
frequency can be obtained from the phase of the displacement,
ϕ0, by the steady-state relation tan ϕ0 = ωaωn/(Q(ω2

a−ω2
n)).

For small frequency shifts �ω = ωa−ωn , a first-order Taylor
expansion can be used to obtain a linear relation between ϕ0
and �ω that can be used for the determination of ωn from the
measured phase:

ϕ0 = −π

2
− 2Q

ωn
�ω. (2)

For frequency shifts larger than the peak width (|�ω| >
ωn/Q), (2) does not hold and the phase slope |dϕ0/dωa|
reduces, which increases the imprecision of the method.
Therefore, for practical applications, a closed-loop approach is
usually preferred to increase the measurement range to values
beyond the peak width, and reach sensing speeds faster than
the open-loop settling time τc [25]. In addition, closed-loop
operation ensures that the resonator is actuated at resonance
maintaining minimum imprecision, even when resonance shifts
occur due to uncontrolled external conditions, like temperature
variations.

As discussed in the introduction, finding the limit of mass
detection δm involves determining the frequency impreci-
sion δω. These two quantities are linearly related through:

δm = 1

|Rm |δω, (3)

where Rm is the mass responsivity of the resonance frequency,
defined as

Rm = ωnm ≈ − ωn

2m
. (4)

For quantitative analysis, we set the Allan deviation σy(τ ) [26]
equal to the normalized frequency imprecision: δω(τ )/ωn =
σy(τ ), where τ is the gate time, or integration time, used in the
evaluation of the Allan deviation. Using (3) and (4), this results
in a mass imprecision δm(τ ) = 2mσy(τ ), which represents
the minimum mass that the sensor can resolve, or limit of
detection. In Appendix I we show how the Allan deviation can
be determined from a noisy displacement signal x(t). To model
the Allan deviation resulting from the open-loop and closed-
loop configurations of a resonant sensor, we describe below
the Laplace-domain representation of both systems.

The open-loop response of a resonant sensor can be ana-
lyzed by the block diagram in Fig. 1(a), consisting of an actua-
tor, a resonator and a detector. The system is driven by a signal
source producing a harmonic signal vin(t) = v0 sin(ωat).
At the output, a lock-in amplifier determines the phase dif-
ference ϕol(t) between the driving signal and the measured
resonator displacement, that can be used to determine the
resonance frequency by using (2) with ϕ0 = ϕol . It is worth
noting that significant phase shifts might appear in reality from
the actuator, the detector and the interconnections. However,
these can be assumed constant in time and thus uncorrelated
with the sensing events, so that they can be cancelled by
subtracting a constant value from 	ol(s). Four imprecision
sources affecting the system are modelled through different
inputs: signal source noise Vsrc(s), thermomechanical noise
Fthm(s), resonance frequency fluctuations 
n(s) and detector
noise Vmsr (s), whose descriptions can be found in Appen-
dix II. To simplify the analysis, all the signals are considered
approximately harmonic, and the system is linearized around
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its operating point ωa = ωn [21], [24]. This results in the
phase-space system shown in Fig. 1(b), that models the phase
and frequency variations over the operating point, and where
all components can be represented by additive terms and
invariant transfer function blocks. The transfer functions that
relate each of the inputs to the output ϕol(t) are derived in
Appendix II.

The described system can be operated in closed loop by
using the output phase ϕol(t) to control the frequency of the
driving signal ωa(t), introducing a proportional-integral (PI)
controller. This results in a PLL scheme as shown in Fig. 1(c),
in which ϕol(t) and ωa(t) are renamed as ϕcl(t) and ωcl (t)
respectively. The PI controller is configured to maintain an
output phase ϕcl = −π/2 in steady-state, that corresponds
to the resonant condition. Within the PLL bandwidth limit,
this ensures that the signal ωcl(t) follows ωn(t), such that
ωcl(t) can be used as measure for the resonance frequency.
As detailed in Appendix III, this system is stable with a
bandwidth ωpll , provided proper lock-in bandwidth and PI
controller constants are selected. The transfer functions that
relate each of the system inputs to the output frequency ωcl (t)
are also derived in Appendix III.

As outlined in Appendix I, the Allan deviation of the open-
loop and closed-loop systems can be evaluated from the out-
puts ϕol(t) and ωcl (t) respectively. With the transfer functions
obtained in Appendices II and III, the Allan deviation σy(τ )
resulting from the different noise sources included in our
model can be determined for both open-loop and closed-loop
configurations.

III. RELATION BETWEEN OPEN-LOOP AND

CLOSED-LOOP FREQUENCY IMPRECISION

In this section, we use the transfer functions from Appen-
dices II and III to obtain expressions for the phase and
frequency noise, and use those to determine the system’s Allan
deviation. From these expressions, a methodology is derived
to estimate the closed-loop Allan deviation from open-loop
measurements.

The open-loop phase noise can be characterized by the
two-sided power spectral density (PSD) Sϕol(ω) of the signal
ϕol(t). This is obtained for any of the four noise sources
considered, by using the corresponding transfer function from
(A.9)–(A.12) in Appendix II, and using the relation

Sϕol(ω) =
∣∣∣H ϕol

z ( jω)
∣∣∣2 Sz(ω), (5)

where z represents the subscript of the relevant noise
source. The equivalent frequency noise can be obtained
by time differentiation of the phase, which results in
a PSD

Sωol(ω) = ω2Sϕol(ω). (6)

The same can be done to obtain the closed-loop phase noise
PSD Sϕcl (ω) and frequency noise PSD Sωcl (ω) for the differ-
ent noise sources, by using the corresponding transfer function
from (A.13)–(A.16) in Appendix III. With these equations,
the relation between the phase and frequency noise PSDs in
open-loop and closed-loop is found for each noise source.

For instance, for thermomechanical noise (A.9) and (A.13)
lead to the following relation between the open-loop phase
PSD and the closed-loop frequency PSD:

Sωcl (ω)

Sϕol(ω)
= 1+ τ 2

c ω2

τ 2
c

(
1+ ω2

ω2
pll

) , (7)

where it is assumed that G(s) ≈ 1 for ω < ωpll . Using (A.10),
(A.14) for the resonance frequency fluctuations, (A.11), (A.15)
for the noise from the detector, or (A.12), (A.16) for the
noise from the signal source, the same expression as in (7)
is obtained. By applying (6), an equivalent expression that
relates the frequency noise in open loop to the frequency noise
in closed loop is reached:

Sωcl (ω)

Sωol(ω)
= 1+ τ 2

c ω2

τ 2
c ω2

(
1+ ω2

ω2
pll

) . (8)

A graphical representation of (7) and (8) can be found in
Fig. 2, where ωc = 1/τc. This result on resonant sensors
driven by a PLL resembles Leeson’s effect in direct-feedback
oscillators for timing applications [27].

As seen, we can distinguish two frequency ranges to be
analyzed: ωc � ω � ωpll and ω � ωc. In the former, the
relation

Sωcl (ω) = Sωol (ω) (9)

holds, while in the latter we have

Sωcl (ω) = ω2
c Sϕol(ω). (10)

The range ω > ωpll lacks practical interest, as there the PLL
cannot track resonance frequency shifts without significant
attenuation, see (A.14) in Appendix III. Interestingly, for
frequencies ω � ωc it is seen from Fig. 2(b) that the open-
loop frequency noise is lower than the closed-loop frequency
noise. This can be qualitatively understood from the fact that
the integral term of the PI controller ki/s dominates over the
proportional term kp for low frequencies. As seen in Fig. 1(c),
the integral part amplifies the phase noise at low frequencies
and feeds it back as frequency noise. As a result, the integral
term in the PLL configuration, that is needed to ensure that
the system operates near the point of minimum imprecision,
on the other hand degrades the frequency imprecision with
respect to the open-loop system.

The Allan deviation of an arbitrary signal z with carrier
frequency ωa can be obtained from the PSD of its frequency
noise Sωz(ω) through [28]

σ 2
yz(τ ) =

∫ +∞
−∞

Sωz(ω)

πω2
a

sin4 (τω/2)

(τω/2)2 dω. (11)

In our case, ωa = ωn is used. It is difficult to evaluate
this integral analytically, however one can estimate it by
considering that the weighing function sin4(τω/2)/(τω/2)2 is
a peak shaped function with its maximum at τω = 2.33 (i.e.
ωpeak = 2.33/τ) and a full width at half maximum (FWHM)
of 2.51/τ . This implies that the Allan deviation will be
dominated by the value of Sωz(ω) around ωpeak = 2.33/τ .

Authorized licensed use limited to: TU Delft Library. Downloaded on October 11,2021 at 11:29:06 UTC from IEEE Xplore.  Restrictions apply. 



14266 IEEE SENSORS JOURNAL, VOL. 20, NO. 23, DECEMBER 1, 2020

Fig. 2. Asymptotic behaviour in log-log scale of the conversion (a) from
open-loop phase noise to closed-loop frequency noise and (b) from open-
loop frequency noise to closed-loop frequency noise. These plots result
from (7) and (8) respectively. This behaviour is independent of the noise
source considered.

It follows that, for 2.33τc � τ � 2.33/ωpll , the range ωc �
ω � ωpll of Sωz(ω) is dominant, and therefore, to a good
approximation, (9) can be substituted in (11). The implication
is that the open-loop Allan deviation σyol is approximately
equal to the closed-loop Allan deviation σycl :

σycl ≈ σyol, for 2.33τc � τ � 2.33

ωpll
. (12)

By the same reasoning, the closed-loop Allan deviation for
τ � 2.33τc can be obtained by combining (10) and (11).
Using ωc/ωn = 1/(2Q), this results in:

σ 2
ycl≈

∫ +∞
−∞

Sϕol(ω)

8π Q2

sin4 (τω/2)

(τω/2)2 dω, for τ � 2.33τc.

(13)

The evaluation of the integral requires knowing the frequency
dependence of Sϕol(ω) [28].

With the goal of evaluating the closed-loop frequency
imprecision from an open-loop measurement, we now derive
an equation that translates the measured ϕol(t), into the equiv-
alent frequency perturbations ωcl(t) that the system would
experience if operated in closed loop. For that, we need to
enforce the PSD relation in (7), which for the particular range
of interest ω � ωpll is

Sωcl (ω)

Sϕol(ω)
= ω2 + ω2

c . (14)

Since Sωcl (ω) = |
cl( jω)|2, it follows that


cl(s)


ol(s)
= s + ωc (15)

meets (14). This expression translates into the time domain as

ωcl(t) = ωn + ϕol(t) ∗L −1{s + ωc}, (16)

where ∗ indicates convolution and L −1{·} indicates the
inverse Laplace transform. A constant term ωn has been
reintroduced, that had disappeared in the linearization of the
phase-space model. The solution of the last equation gives

ωcl(t) = ωn + ϕol(t)t + ωcϕol(t). (17)

A procedure to perform the conversion dictated by (17) on
experimental data of discrete nature is described in Appen-
dix IV. The derivations culminate in expression (A.31), which

Fig. 3. Graphical representation of a set of phase data points recorded
in open loop. An index d identifies each measured point. Time intervals of
constant duration are defined and identified with an index p. The average
fractional frequency is evaluated inside each interval for the calculation
of the Allan deviation. The gate time, τ , is defined by the duration of the
intervals, rτmin. As an example, r=2 is shown in the figure.

provides a general formula to obtain the closed-loop Allan
deviation σycl(τ ) from a set of measurements of the resonator’s
phase in open loop ϕol(t), recorded over a significant time span
for which the driving frequency stays close to the resonance
frequency.

IV. METHOD DESCRIPTION

Based on our analysis, we propose an experimental method
to evaluate the closed-loop Allan deviation from an open-loop
measurement, consisting in the following steps:

1) Implement an open-loop characterization setup for the
resonator, consisting of a signal source, an actuator,
a detector, and a lock-in amplifier as shown in Fig. 1(a).
Determine ωn and set the signal source to generate a
harmonic signal at ωn .

2) Record the phase values provided by the lock-in ampli-
fier under constant conditions. As depicted in Fig. 3, the
recorded values are labelled as ϕd , with d = 1 . . . D.
From these data, the Allan deviation can be evaluated
for gate times τ = rτmin , where τmin is the inverse
of the sampling rate and r takes integer values. The
maximum gate time will be τmax = T/η, where T is the
recording time and η is the minimum number of samples
needed for a proper evaluation of the Allan deviation (M
in (A.5)), e.g. η = 100. The bandwidth of the lock-in
amplifier must be ωh � 2.33/τmin .

3) Evaluate the deviation of the recorded phase values
from the initial value ϕ1. For large deviations caused
by resonance frequency drifts, the method is not valid,
and further measures need to be taken to ensure constant
experimental conditions. As seen in Appendix V, a rule-
of-thumb conservative limit can be set as max(ϕd −
ϕ1) < 5.7°.

4) For each τ = rτmin , define an index p = 1 . . . P ,
with P the integer part of (D − 1)/r . Apply (A.23)
and (A.28) over the recorded ϕd . The results obtained
are approximations for the closed-loop Allan deviation
valid for τ � 2.33τc and τ � 2.33τc respectively. Using
these results, evaluate (A.31) to obtain the closed-loop
Allan deviation valid for all τ ∈ [τmin, τmax ].
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Fig. 4. (a) Schematic of the experimental setup. The two relevant output signals, ωcl for the closed-loop experiment and ϕol for the open-loop
experiment, are labelled. (b) Top-view picture of the AFM cantilever used in the experiments. (c) Amplitude and (d) phase of the displacement around
the fundamental resonance, for an actuation voltage of 40 mV.

After having derived this method, it will be validated
experimentally in the next section.

V. EXPERIMENTAL VALIDATION

In order to test the described open-to-closed-loop transfor-
mation, a silicon AFM cantilever has been used. Fig. 4(b)
shows a top-view picture of this device, which has a length
of 245 µm and a width of 55 µm. As depicted in Fig. 4(a),
the experiments were carried out in a vacuum chamber at
0.01 mbar. The cantilever was mounted on a piezo-actuator
and the measurement of the vibrations was performed by a
laser Doppler vibrometer. The signal source, lock-in and PI
controller functions were implemented digitally by a Zurich
UFHLI lock-in amplifier. As a first characterization, the ampli-
tude and phase of the displacement around the fundamen-
tal resonance frequency were measured, and are shown in
Fig. 4(c, d). Fitting this response to the transfer function in (1),
the resonance frequency and quality factors were calculated,
giving fn = 165 kHz and Q = 6500. The phase data shows
a shift of ≈ 87° extrinsic to the resonator, as a result of the
phase shifts introduced by the piezo-actuator, the vibrometer
and the connection cables.

A PLL as described in Section II was implemented with
constants k p = 814 rad s−1 and ki = 65 135 rad2 s−2, that
ensured the stability of the loop and established a PLL
bandwidth f pll = 130 Hz (1/ f pll = 7.7 ms). The phase to
be tracked can be set to any value in a digitally implemented
PLL, by just subtracting a constant value from the lock-in
filter output. In our case, the phase set-point was selected
as the resonance value of −90°, after correcting for the 87°
shift introduced by the equipment. The lock-in filter bandwidth
was set to fh = 10 kHz with filter order α = 4. The signal
ωcl(t), that corresponds to 
cl(s) in Fig. 1(c), was recorded
with a sampling frequency of fs = 24.47 kHz over a period
of 15 minutes and it is shown in Fig. 5(a). A slow drift is
observed that can be attributed to uncontrolled experimental
conditions, e.g. pressure or temperature, that affect the res-
onance frequency. Importantly, the closed-loop phase signal
ϕcl(t), whose deviation from the phase set-point represents

the tracking error, was centred at zero and showed no drift
during the experiment. The Allan deviation was evaluated over
ωcl(t) for different values of τ . The result of this calculation
is denoted as σycl and it is shown in Fig. 5(c). Next, a sec-
ond experiment was performed in open-loop configuration.
In this case, the PI controller was removed and the driving
frequency was fixed to the resonance frequency. All other
experimental parameters were identical to those in the closed-
loop experiment. The recorded signal ϕol(t), that corresponds
to 	ol(s) in Fig. 1(b), is shown in Fig. 5(b). The maximum
deviation of the measured ϕol(t) from the initial value over
the recorded period was 2.5°. This ensures the validity of the
measurement according to the criterion set in Appendix V.
Over these data, the procedure described in Appendix IV,
using (A.31), was carried out to determine the closed-loop
Allan deviation. The result is an estimate of the closed-loop
Allan deviation obtained from the open-loop measurement and
is denoted as σycl←ol . In addition, (A.23) and (A.28) were
employed to evaluate the approximations for the closed-loop
Allan deviation for short gate times, σycl←ol |τ�2.33τc , and
long gate times, σycl←ol |τ�2.33τc , which are also plotted in
Fig. 5(c). The intrinsic open-loop Allan deviation σyol is also
represented by the light red solid line in Fig. 5(c), as (12) was
used in its derivation.

Fig. 5(c) shows the experimental closed-loop fractional fre-
quency Allan deviation (blue solid) and compares it to the
Allan deviation as determined from the open-loop experiment
by expressions (A.31), (A.23) and (A.28). A good agreement
between σycl and σycl←ol can be observed, providing evidence
for the usefulness of the presented method to obtain the
imprecision of practical resonant sensors operated in closed
loop from open-loop measurements. As seen, formulas (A.23)
and (A.28) are good approximations in their validity ranges,
separated by 2.33τc, whereas equation (A.31) is accurate over
the full range. Furthermore, as the gate time τ approaches
2.33/ωpll , differences between σycl and σycl←ol are observed,
of at most a factor 2 at the shortest gate times. This can
be explained by the smooth cut-off of the PLL transfer
function, that starts attenuating the noise (and also the signal)
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Fig. 5. Raw data recorded in the (a) closed-loop experiment and
(b) open-loop experiment. (c) The blue solid line represents the closed-
loop Allan deviation σycl obtained directly from the closed-loop experi-
ment as a function of the gate time τ . The dark red solid line represents
the closed-loop Allan deviation obtained from the open-loop experiment
σycl←ol, using (A.31). The light red solid and dashed lines represent
respectively the results provided by the approximated formulas (A.23)
and (A.28), applied over the data from the open-loop experiment. The
light red solid line in turn represents the open loop Allan deviation σyol.
Dotted vertical lines indicate the gates time that sets the validity region
for the PLL system operation, τ > 2.33/ωpll = 2.9 ms, and the gate time
that separates the validity regions for both approximations mentioned,
2.33τc = 29 ms.

in the closed-loop system for frequencies near and above
ωpll . The open-loop estimate of the closed-loop performance
is unaffected by this PLL-related artifact, and will only be
affected by the lock-in filter cut-off as ω approaches ωh (lock-
in filter bandwidth). Therefore, σycl←ol might be regarded
as a ‘cleaner’ estimate of the intrinsic sensor imprecision
in closed loop. From a practical point of view, benchmark-
ing a resonator through σycl←ol for a minimum gate time
τmin requires a lock-in amplifier with bandwidth ωh �
2.33/τmin . However, the direct evaluation of σycl involves the
more demanding requirement of implementing a PLL with
bandwidth ωpll � 2.33/τmin .

VI. DISCUSSION: VALIDITY OF THE METHOD

The conversion from open-loop phase noise to closed-
loop frequency noise dictated by (17), on which our method
relies, is valid for the noise sources included in Fig. 1. These
cover all the possible nodes of the system diagram in which
noise might be introduced. In addition, this noise relation is
equivalent to the Leeson’s formula found for direct feedback
oscillators [27]. The proposed method is therefore general and
can be applied for different types of open-loop and closed-loop
systems irrespective of the dominant noise source, provided
that the dominant noise source is present in both systems.
In this sense, for the PLL analyzed in this work, the method
would not be valid if the PI controller, which is present in the

PLL but not during the open-loop characterization, introduces
noise higher than that of the other system parts. In that case,
σycl would be higher than the predicted σycl←ol . Fig. 5(c)
shows that this is not the case in our experiments.

If a direct feedback oscillators is considered as closed-
loop system (instead of a PLL), care must be taken with
the noise introduced by the amplifier in the feedback loop.
In such case, the open-loop characterization scheme must
include the amplifier at the resonator’s output, in order to
capture its effects on the closed-loop imprecision predicted
by our method.

We note that the validity of the presented method depends
on the assumption made in the evaluation of the integral in
(11), which is reasonable unless the frequency noise Sωz(ω)
varies very strongly with frequency. Another important con-
sideration is that our method assumes that the open-loop
characterization is performed with actuation at the resonance
frequency so that (2) holds. Nevertheless, drifts experienced
by the resonance frequency may cause a large detuning for
long experiments, which can compromise the validity of the
method. In Appendix V, it is shown that by ensuring a phase
drift lower than 5.7° during the open-loop experiment, (2)
remains approximately valid with a maximum error of 1% in
the slope of the resonator’s phase curve. This is confirmed
by the fact that the phase recorded during our open-loop
experiment shows a drift of 2.5°, despite of what the method
remains valid as shown by the results in Fig. 5(c).

VII. CONCLUSION

In this work, the relation between the noise observed in
resonant sensors operated in open loop and closed loop is
investigated. While closed-loop operation allows for higher
measurement speed and range, it also entails poorer precision
with respect to open-loop operation, due to the change in the
system dynamics introduced by the feedback loop.

Based on the analysis of both open-loop and closed-loop
resonant sensors, we have derived expressions to estimate
the closed-loop Allan deviation based on open-loop measure-
ments. The procedure has been successfully validated using
experiments on an AFM cantilever. The presented method is
beneficial for fast estimation of the intrinsic precision and
benchmarking of resonant sensors, by excluding the effects
and efforts related to the implementation of a particular closed-
loop configuration.

APPENDIX I
DETERMINATION OF THE ALLAN DEVIATION

To analyse the frequency imprecision δω from a cer-
tain (noisy) displacement signal x(t), we determine the Allan
deviation σy in the following way [28]. Let x(t) be a signal
consisting of a harmonic carrier with superimposed noise.
If the noise power is much smaller than the carrier power,
we can write the noise in terms of the amplitude and phase
components, ax(t) and ϕx(t) respectively:

x(t) = x0(1+ ax(t)) cos(ωat + ϕ0 + ϕx(t)). (A.1)

Then, the instantaneous phase is ωat + ϕ0 + ϕx(t) and the
instantaneous frequency is its time derivative,

ωx (t) = ωa + ϕx(t)t . (A.2)
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The fractional instantaneous frequency is defined by normal-
izing ωx (t) by the carrier frequency:

yx(t) = ωx (t)

ωa
= 1+ 1

ωa
ϕx(t)t . (A.3)

We can now time average yx(t) over consecutive periods with
averaging time τ :

ȳx,k = 1

τ

∫ tk+1

tk
yx(t)dt, with tk+1 = tk + τ. (A.4)

For a large number of periods M , the Allan deviation σy(τ )
of the signal x(t) is defined by the relation

σy(τ ) =
√√√√ 1

M

M−1∑
k=0

(ȳx,k+1 − ȳx,k)2

2
. (A.5)

The Allan deviation can be interpreted as an estimator for
the imprecision of a signal’s fractional frequency δy(τ ) =
δω(τ )/ωa evaluated at a certain gate time τ .

APPENDIX II
OPEN-LOOP CONFIGURATION

Fig. 1(a) shows the block diagram that describes the open-
loop response of a resonator. A signal source is needed to
generate a driving voltage in the form vin(t) = v0 cos(ωat).
The noise of the signal source is indicated by Vsrc(s). A linear
actuation mechanism (e.g. piezoelectric, electrostatic or opti-
cal), translates the input voltage into force with a proportion-
ality constant Kact . The resonator is modelled by the transfer
function H (s), see (1), in which the resonance frequency is left
as a variable. The input resonance frequency 
n(s) accounts
for the time-dependent resonance frequency changes due to
variations in the sensed parameter (e.g. mass), and also random
fluctuations that limit the precision [29]. The additive force
Fthm(s) models thermomechanical noise, but can also include
external forces like those due to unwanted vibrations. At the
resonator output, a detector converts the displacement into the
voltage signal Vout(s), with a proportionality constant Kmsr ,
and adds measurement noise modelled by Vmsr (s). Finally,
a lock-in amplifier determines the phase of Vout(s) with
respect to Vin(s). The obtained phase, ϕol(t), can be translated
into an equivalent instantaneous open-loop frequency, yol(t),
by using (A.3). Then, the Allan deviation of yol(t), σyol(τ ),
can be obtained using (A.5).

In order to understand the open-loop response of the res-
onator to small changes in the resonance frequency, the model
in Fig. 1(a) must be linearized. Note that, even if the driving
voltage is harmonic and noiseless with frequency ωa and
the resonator conditions are kept constant, the instantaneous
frequency of the excitation force, ωF (t), has a random com-
ponent introduced by the thermomechanical noise Fthm(s).
For a resonator steadily driven at its resonance frequency
(
a(s) = ωn) and assuming small noise, 
F (s) ≈ ωn can be
assumed; therefore, the phase difference between displacement
and force on the resonator can be obtained in a similar way
to (2):

ϕx − ϕF ≈ −π

2
− τc(ωF − ωn), (A.6)

where τc = 1/ωc = 2Q/ωn is the characteristic time,
or settling time, of the resonator. Note that this equation only
reflects the steady state response of the resonator. The dynamic
relation between the resonator phase and the excitation fre-
quency is derived in [21] for ωF ≈ ωn:

	x (s)−	F (s) = −τc

1+ sτc
(
F (s)−
n(s)). (A.7)

The response obtained shows a single pole at s = −ωc,
indicating that a time of the order of τc is needed to reach
steady state. A schematic block diagram of the resulting lin-
earized system of differential equations is shown in Fig. 1(b).
This form of the resonator model is usually known as phase-
space model, since the variables involved are the phases and
frequencies of the different signals, assumed approximately
harmonic. Conversion from phase to frequency variables and
back can be done respectively by multiplication and division
by s in accordance with (A.2) and the properties of the
Laplace transform. In the phase-space model of Fig. 1(b), the
inputs Vsrc(s), Fthm(s) and Vmsr (s) have been expressed as
phase-referred noise sources. The constants Kact and Kmsr

do not appear in the phase-space model as they modify the
amplitude of the signals but not their phase. The signal source
can be represented by a voltage-controlled oscillator (VCO),
whose output frequency is controlled by the input 
a(s).
This input will help to extend the analysis to the closed-loop
configuration. For the open-loop case, the driving frequency
is fixed at the resonance frequency to reach the best precision
(
a(s) = ωn). The linearized model of the lock-in amplifier
determines the difference between the phases of the output
signal and the driving signal, and low-pass filters the resulting
signal with bandwidth ωh . This filtering is inherent to the
operation of phase detection. It is assumed that the low-pass
filter is chosen such that ωc � ωh � ωn . A transfer function
with an arbitrary number of poles α (the higher α the sharper
the filter roll-off above ωh ) is used to describe the lock-in
filter:

G(s) =
(

ωh

s + ωh

)α

. (A.8)

From the phase-space system described in Fig. 1(b), transfer
functions can be obtained in a straightforward manner to relate
each input to the output 	ol(s):

RCCC R H ϕol
ϕthm

(s) = 	ol(s)

	thm(s)
= 1

1+ τcs
G(s) (A.9)

H ϕol
ωn

(s) = 	ol(s)


n(s)
= −τc

1+ τcs
G(s) (A.10)

H ϕol
ϕmsr

(s) = 	ol(s)

	msr (s)
= G(s) (A.11)

H ϕol
ϕsrc

(s) = 	ol(s)

	src(s)
= −τcs

1+ τcs
G(s) (A.12)

Since the system is linear, the different contributions to 	ol(s)
are additive and the effect of each input can be analyzed
separately assuming the other inputs are zero. As seen, (A.10)
has its lowest frequency pole at approximately −ωc, which
implies that the resonator in open loop cannot respond to
changes in the resonant frequency at rates faster than τc,
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because it takes a number of periods of the order of Q to
reach steady state.

APPENDIX III
CLOSED-LOOP CONFIGURATION

In Appendix II, a set of equations has been derived to
relate the considered noise sources to the phase noise at
the system output, assuming the driving frequency and the
resonant frequency are constant and equal. In this Appendix,
we derive a set of equations equivalent to (A.9)–(A.12) for the
closed-loop system.

The PLL system works by continuously evaluating the
phase difference between the driving signal and the measured
displacement and adjusting the driving frequency such that
the resonant condition, which is identified by a phase dif-
ference of −π/2 between F(s) and X (s), is continuously
enforced. The open-loop system in Fig. 1(b) takes the driving
frequency 
a as input and gives the phase lag introduced
by the resonator 	ol as output. In the closed-loop system,
shown in Fig. 1(c), a controller is introduced to continuously
determine the driving frequency as a function of the phase
lag. As detailed in [21], this can be done by a proportional-
integral (PI) controller. 	cl(s) and 
cl(s) will be used to
denote respectively the output phase and input frequency of
the system under closed-loop operation, see Fig. 1(c). The
closed-loop frequency imprecision can then be determined by
calculating the Allan deviation σycl(τ ) of the time-domain
signal ωcl (t), defined as the inverse Laplace transform of

cl(s). The obtained Allan deviation defines the fractional
frequency imprecision for the closed-loop operation of the
resonator, δωcl (τ )/ωn = σycl(τ ).

The transfer function of the PI controller is HP I (s) =
kp+ki/s. This results in a total open-loop gain of the system,
including the controller that tracks the resonance frequency,
of H ϕol

ωn HP I . Therefore, the corresponding closed-loop trans-
fer function becomes H ωcl

ωn = −H ϕol
ωn HP I /(1 − H ϕol

ωn HP I ).
Choosing the PI constants in such a way that ki = k p/τc

results in a simplified transfer function for the closed-loop
system, by a zero-pole cancellation. As detailed in [21], this
choice simplifies the tuning of the PLL bandwidth ωpll , but
it does not affect the system behaviour within that bandwidth.
Setting the lock-in filter bandwidth as ωh � k p gives a PLL
bandwidth ωpll ≈ k p . To simplify expressions, kp = ωpll will
be used in the following. With these definitions, the closed-
loop transfer functions relating each of the inputs in Fig. 1(b)
to 
cl (s) are:

H ωcl
ϕthm

(s) = 
cl(s)

	thm(s)
= ωpll

τc(ωpll G(s)+ s)
G(s) (A.13)

H ωcl
ωn

(s) = 
cl(s)


n(s)
= −ωpll

ωpll G(s)+ s
G(s) (A.14)

H ωcl
ϕmsr

(s) = 
cl(s)

	msr (s)
= ωpll(1+ τcs)

τc(ωpll G(s)+ s)
G(s) (A.15)

H ωcl
ϕsrc

(s) = 
cl(s)

	src(s)
= ωpll s

ωpll G(s)+ s
G(s) (A.16)

Equation (A.14) shows that the system can indeed track
frequency shifts up to a bandwidth of approximately ωpll ,

provided ωh � ωpll (or G(s) ≈ 1 for ω < ωpll ). Thus,
in closed-loop configuration, the system can be set to achieve
shorter response times than the characteristic time of the
resonator τc by making ωpll > ωc.

APPENDIX IV
EVALUATION OF THE CLOSED-LOOP FREQUENCY

IMPRECISION FROM OPEN-LOOP MEASUREMENTS

A procedure to evaluate the closed-loop frequency impre-
cision from open-loop measurements is described. The proce-
dure starts from the time-domain phase recorded at the output
of the lock-in amplifier in the open-loop system of Fig. 1(b),
ϕol(t). As depicted in Fig. 3, we will identify each measured
phase value by a subscript d:

ϕ̄d = 1

τ

∫ (d− 1
2 )τmin

(d− 3
2 )τmin

ϕol(t)dt, (A.17)

with d ranging from 1 to D. τmin is the inverse of the sampling
rate, that sets the minimum gate time (integration time) τ for
which the Allan deviation can be evaluated. Gate times of
multiples of τmin are possible by using integration intervals
of duration τ = rτmin , with multiplication integer r . These
successive intervals will be identified by the subscript p, and
run from t = (p − 1)τ to t = pτ .

As deduced in (9), for 2.33τc � τ � 2.33/ωpll the
frequency noise in closed loop and open loop are equal, so we
can make ωcl(t) = ωol(t). Using the fractional frequency
definition in (A.3), we obtain ycl(t) = yol(t). With ωa = ωn ,
this results in

ycl(t)|τ�2.33τc = 1+ 1

ωn
ϕol(t)t . (A.18)

For each interval p, the average closed-loop average fractional
frequency ȳp,cl can be obtained as

ȳp,cl = 1

τ

∫ pτ

(p−1)τ
ycl(t)dt, (A.19)

with p = 1 . . . P . Then, the closed-loop average fractional
frequencies inside each interval, ȳp,cl , are obtained combining
(A.18) and (A.19), giving

ȳp,cl |τ�2.33τc = 1+ ϕol(pτ )− ϕol((p − 1)τ )

τωn
. (A.20)

By inspecting Fig. 3, it can be seen that the best estimator
for ϕol(pτ ) from the available data is ϕ̄1+pr , so that (A.20)
becomes

ȳp,cl |τ�2.33τc = 1+ ϕ̄1+pr − ϕ̄1+(p−1)r

τωn
. (A.21)

The closed-loop Allan deviation σycl can now be obtained by
calculating

σ 2
ycl(τ ) = 1

2(P − 1
)

P−1∑
p=1

(ȳp+1,cl − ȳp,cl)
2. (A.22)

By substituting (A.21) in (A.22), the closed-loop Allan devia-
tion can be expressed as a function of the recorded data points:

σ 2
ycl(τ )|τ�2.33τc =

1

2(P − 1)(τωn)2

P−1∑
p=1

(ϕ̄1+(p+1)r

−2ϕ̄1+pr + ϕ̄1+(p−1)r)
2. (A.23)
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For τ � 2.33τc, the values calculated with (A.21) do not
represent the frequency perturbations in closed loop. In this
τ range, the measured phase perturbations in open loop must
be translated into frequency perturbations in closed loop in
accordance with (10). This is ensured by using the relation

ωcl (t)|τ�2.33τc = ωcϕol(t), (A.24)

which with ωc/ωn = 1/(2Q) gives

ycl(t)|τ�2.33τc =
ωcl(t)

ωn
= ϕol(t)

2Q
. (A.25)

Introducing this expression in (A.19), the closed-loop average
fractional frequencies are

ȳp,cl |τ�2.33τc =
1

τ

∫ pτ

(p−1)τ

ϕol(t)

2Q
dt . (A.26)

Given the discrete nature of the measured data ϕ̄d , the best
approximation for this expression is obtained by averaging
the recorded phase values inside each interval:

ȳp,cl |τ�2.33τc =
1

2Qr

pr∑
d=1+(p−1)r

ϕ̄d . (A.27)

Expression (A.22) can be applied over these ȳp,cl to obtain
the closed-loop Allan deviation for τ � τc. Again, we can
express it as a function of the recorded data points ϕ̄d :

σ 2
ycl(τ )|τ�2.33τc =

1

8(P − 1)r2 Q2

P−1∑
p=1

⎡
⎣

⎛
⎝ (p+1)r∑

d=1+pr

ϕ̄d

⎞
⎠

−
⎛
⎝ pr∑

d=1+(p−1)r

ϕ̄d

⎞
⎠

⎤
⎦

2

. (A.28)

It must be noted that (A.23) and (A.28) describe the asymp-
totic behaviour of the closed-loop Allan deviation for short and
long τ . Equation (17) obtained in Section III provides an open-
loop to closed-loop transformation valid for the full range of
interest ω � ωpll , and can be expressed for the fractional
frequency as

ycl(t) = ωcl(t)

ωn
= 1+ 1

ωn
ϕol(t)t + ϕol(t)

2Q
. (A.29)

Resorting to the previous analysis, it can be seen that this
equation comprisses a first term equivalent to (A.18), and a
second term equivalent to (A.25). Therefore, (A.29) results in
the following expression for the average fractional frequencies:

ȳp,cl = ȳp,cl |τ�2.33τc + ȳp,cl |τ�2.33τc . (A.30)

By introducing these values in (A.22), the closed-loop Allan
deviation over the full range of τ longer than the PLL
integration time (all τ � 2.33/ωpll ) can be written in terms

of the measured open-loop phase data:

σ 2
ycl(τ )

= σ 2
ycl(τ )|τ�2.33τc + σ 2

ycl(τ )|τ�2.33τc

+ 1

2r(P − 1)Qτωn

P−1∑
p=1

[ (
ϕ̄1+(p+1)r−2ϕ̄1+pr+ϕ̄1+(p−1)r

)

×
⎛
⎝ (p+1)r∑

d=1+pr

ϕ̄d −
pr∑

d=1+(p−1)r

ϕ̄d

⎞
⎠]

(A.31)

Equations (A.23) and (A.28) can be used to evaluate the first
two terms.

APPENDIX V
EFFECT OF RESONANCE FREQUENCY DRIFTS DURING

OPEN-LOOP MEASUREMENTS

If in the open-loop measurements the difference between
the driving frequency and resonance frequency becomes too
large, the linear phase-frequency relation in (2) breaks down.
Thus, for the validity of our method, random perturbations and
drifts of the resonance frequency must remain small, so that
ωa ≈ ωn for the duration of the data recording. The maximum
frequency shift tolerated can be expressed as a fraction of the
peak width (ωn/Q):

|ωa − ωn |max < 

ωn

Q
, (A.32)

where 
 can be regarded as the safety coefficient. For small
values of 
, we can apply (2) to obtain that, within this range,
the maximum deviation of the resonator phase from−π/2 (the
value at resonance) is ±
. As an example, it can be calculated
from (1) that making 
 = 0.1 ensures that the slope of the
phase curve of H (s) deviates a maximum of 1% from−τc (the
value at resonace). This means a maximum phase difference
of ±
 = ±0.1 rad = ±5.7°. According to this criterion of
‘maximum slope deviation of 1%’, if the driving frequency is
set to the resonance frequency at the beginning of the open-
loop experiment, the recorded data points ϕ̄d must not deviate
more than ±5.7° from the initial value ϕ̄1.
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