
Master of Science Thesis

Simulation of Wear in
Turbocharger Wastegates

Hanjiu Lin

Faculty of Aerospace Engineering · Delft University of Technology

mscconfidential

Simulation of Wear in
Turbocharger Wastegates

Master of Science Thesis

For obtaining the degree of Master of Science in Aerospace Engineering
at Delft University of Technology

Hanjiu Lin

11.01.2016

Faculty of Aerospace Engineering · Delft University of Technology

The work in this thesis was supported by BMWGroup Munich. Their cooperation is gratefully
acknowledged.

Copyright c© Hanjiu Lin
All rights reserved.

Delft University of Technology
Faculty of Aerospace Engineering

Department of Aerospace Structures and Materials

GRADUATION COMMITTEE

Dated: 11.01.2016

Chair holder:
dr. Sergio Turteltaub

Committee members:
dr. techn. Michael Wibmer

dr. Jos Sinke

dr. Mostafa Abdalla

Preface

This thesis report is the result of my work at BMW’s simulation department for the Devel-
opment of Turbocharging and Exhaust Systems from March to November 2015. I applied to
work on this project the previous year and was very fortunate to be accepted into a team of
exceptional colleagues and collaborators.
I would like to express my sincere gratitude to my supervisors Dr. Michael Wibmer and
Dr. Timo Schmidt for their extraordinary support and guidance throughout my thesis work.
They were extremely generous with their time despite many other commitments, and I could
always rely on their effective input and technical expertise. This project could not have been
successful without their dedication, good judgement and encouragement in stressful times.
In addition, I would like to thank Mr. Oliver Grabherr for admitting me into the company,
and Mr. Adrian Schmidt for assisting me with the compilation of my report. I wish Mr.
Schmidt best of luck for the continuation of this project and hope that my work will provide
some useful input for his Ph.D. dissertation.
Of course I am also indebted to Prof. Sergio Turteltaub from the TU Delft for his advice
and supervision, and to all members of the graduation committee for taking an interest in
my work.
Last but not least, I have to thank my X-tremely High Sisters for putting up with me for more
than five years. Their unfounded belief in my abilities is the primary reason why I managed
to graduate at all. I shall always be grateful for our time at TUD.

Delft, Hanjiu Lin
11.01.2016

viii Preface

Summary

This thesis report presents the detailed functions of a comprehensive Finite Element - based
methodology to simulate sliding wear in dynamic systems with non-uniform contact condi-
tions, such as the wastegate system of an automotive turbocharger.
Though sliding wear occurs due to many different microscopic mechanisms, the simulation
aims to depict the resulting macroscopic changes in geometry rather than individual modes
of material separation. The geometric modification is generated using Abaqus’ integrated Ar-
bitrary Lagrangian-Eulerian (ALE) adaptive meshing technique, where the location of nodes
in the entire mesh is shifted independently from the underlying material. For that purpose,
a user-defined subroutine UMESHMOTION was written to prescribe the the magnitude and
direction of node displacement at nodes on a part’s contact surface according to Archard’s
equation for sliding wear. The implemented algorithm for finding the proper node displace-
ment direction is valid for any open surface of a three-dimensional model with arbitrary spatial
orientation.
In contrast to most state-of-the-art wear simulation techniques, this study has produced a
wear simulation routine that is applicable to dynamic systems, i.e. models that cannot be
solved with a static or quasi-static analysis. The difficulty lies in adapting Abaqus’ integrated
ALE adaptive meshing technique for dynamic analyses. In order to apply this technique (and
the established UMESHMOTION subroutine) the results of the initial dynamic analysis have
to be passed on to an intermediate static analysis where geometric modifications are possible.
This data transfer is accomplished by calculating the wear displacement at each node in a
post-processing step after each dynamic cycle, such that UMESHMOTION is able to read
in the values in the subsequent static cycle. The modified geometry generated in the static
analysis is carried over to the next dynamic cycle by rewriting the node coordinates in the
initial input file. The devised “wear simulation loop" can be performed any number of cycles,
or can be carried out until a certain total sliding distance has been achieved. It was found
that the method is indeed able to qualitatively produce the expected wear profile found in
the critical lever/bushing interface of the wastegate device.
The routine also includes a simple extrapolation method to enhance the wear-induced geomet-
ric changes produced in each simulation cycle. Since wear damage commonly evolves over an
extended period of time - e.g. days or weeks of constant operation - the effects generated in a

x Preface

few simulation cycles (which at most covers a few seconds of real time) will in most cases not
result any significant geometric changes. The extrapolation method in the wear simulation
routine linearly amplifies the calculated wear depth in each cycle, until the contact geometry
is considered to have changed significantly such that additional load cycles are expected to
produce noticeably different results. In practice, all wear depth values are amplified until a
prescribed critical difference is reached across any single element. This critical difference is
specific to each system and the selected mesh refinement, and must therefore be determined
individually. This simple extrapolation scheme makes it possible to represent the effect of
thousands of cycles with a single computation cycle, since the overall simulation time (i.e.
the total number of cycles that have to be simulated) will depend on the extent of wear (e.g.
total wear depth or volume loss) rather than the real number of load cycles.
An evaluation of the derived simulation method has subsequently shown that the results
could be affected due to an inherent imperfection in the derived technique. While the mod-
ified geometry is transferred from one analysis to the next (i.e. from dynamic to static and
vice-versa), the stress state is not. Therefore, if the latest configuration is imported to the
next analysis, the solver detects a relaxed state even though all elastic deformations have
been imported, and the initial load case could produce an increasingly larger contact area.
A simple solution to this problem is to release the contact and all applied loads at the end
of each dynamic analysis. It was shown that the results will indeed tend towards the correct
solution if necessary precautions are taken.
This subsequent study assessed the impact of Archard’s wear coefficient and the material’s
elastic modulus in a parametric study of a simplified shaft/bushing assembly. The wear co-
efficient varied according to numbers found in an external experimental study on wear in the
wastegate’s lever/bushing interface, and the elastic modulus varied according to the proper-
ties of a common BMW wastegate material at different operating temperatures. The outcome
for increasing wear coefficient was unsurprising: First, the volume loss over one complete sim-
ulation progresses linearly for all considered magnitudes of the wear coefficient, as predicted
by Archard’s equation. Second, the total volume at the end of the simulation is also linearly
related to the magnitude of the wear coefficient. This also means that the total simulation
time required to produce the total volume loss in each instance is directly proportional to the
magnitude of the wear coefficient.
The parametric study on the elastic modulus, on the other hand, produced a rather un-
expected result: For most values of the material stiffness, the total wear volume and its
progression are extremely similar, with only minor differences in their time-history. How-
ever, there seems to be a lower threshold at which the total wear volume suddenly increases
significantly. This effect was found to be related to the extrapolation scheme and the mesh
refinement: For a certain range of material stiffness, the initial contact area is very small
and usually only contains a single node. The calculated extrapolation factor in the first cycle
is therefore very large and represents a large number of real cycles. At a certain critical E-
modulus, the initial contact area will suddenly contain two or more nodes due to larger elastic
deformations, resulting in a smaller extrapolation factor and an earlier onset of significant
material loss. It is possible that this phenomenon is also found in reality because a certain
number of cycles is required to produce an appreciable contact area, and this number is lower
if the initial contact area is larger.
Conclusively, the wear simulation routine developed in this study provides a practical basis
for experimental validation, feature extensions and fine-tuning.

Table of Contents

Preface vii

1 Introduction 1

2 Fundamental Principles of Wear and Wear Simulation Techniques 5
2.1 Essential Physical Properties of Wear . 5
2.2 Wear Mechanisms . 7

2.2.1 Abrasive Wear . 7
2.2.2 Adhesive Wear . 8
2.2.3 Corrosive Wear/ Oxidative Wear . 9
2.2.4 Fatigue Wear . 11

2.3 Relevant aspects for macroscopic FE wear simulations 13
2.4 Wear Simulations in Literature . 14

2.4.1 Geometry Update by Moving Surface Nodes Only 14
2.5 Geometry Update with Part Remeshing . 17

2.5.1 Wear Simulation with UMESHMOTION and ALE Adaptive Meshing . . . 18
2.5.2 Martinez et al: 3D Wear Simulation of Polymer Cylinder Sliding on Steel 21

2.6 Summary . 23

3 Wastegate Motion and Wear Characteristics 25
3.1 Wastegate components assembly and wear-inducing load cases 25
3.2 Summary . 30

4 Wear Simulation Methodology 31
4.1 Archard’s wear model applied to Finite Element simulations 31
4.2 Wear Simulation Techniques . 33
4.3 Geometric Part Modification with UMESHMOTION 34

xii Table of Contents

4.3.1 Definition of node shift directions . 37
4.3.2 Definition of Adaptive Mesh Constraint Regions 44
4.3.3 Wear simulation on both surfaces of a contact 45
4.3.4 Adaptive mesh controls and node type definitions 46

4.4 Combining Implicit Dynamic Simulations with ALE Adaptive Meshing 46
4.4.1 Alternating dynamic and static steps in the same analysis 47
4.4.2 Importing and Editing of Input Files . 49
4.4.3 Restarting the Analysis . 55

4.5 Extrapolation of Calculated Wear Depth . 57
4.6 Summary . 59

5 Verification and Performance Evaluation of Wear Simulation Methods 61
5.1 Verification of UMESHMOTION and Output Processing 61
5.2 Performance Assessment of Input File Method 65

5.2.1 Input file method performance and error investigation 67
5.3 Summary . 78

6 Wear Simulation Results in the Lever/Bushing Interface 81
6.1 Wastegate dynamics simulation vs. wear simulation 81
6.2 Simulation of sliding wear in the lever/bushing interface 85

6.2.1 Simulation set-up and inputs . 85
6.2.2 Results and evaluation of simulated wear profiles 88

6.3 Parametric Study on wear in the lever/bushing interface 93
6.3.1 Parametric Study I: Increasing wear coefficients 94
6.3.2 Parametric Study II: Decreasing elastic modulus 98

6.4 Summary . 102

7 Conclusions and Recommendations 105
7.1 Conclusions and Relevance of Simulation Methodology 105
7.2 Recommendations for future studies . 106

7.2.1 Improvements on work done in the current study 106
7.2.2 General topics to be considered in more advanced studies 107

References 108

A General Wear Simulation Script 111
A.1 Python Code for Input File Wear Simulation Method 111

B UMESHMOTION Subroutine 1 135
B.1 UMESHMOTION Subroutine 1: Node shift direction normal to contact surface . 135

C UMESHMOTION Subroutine 2 147
C.1 UMESHMOTION Subroutine 3: Node shift direction follows outer surface 147

List of Figures

1.1 Schwitzer-BorgWarner S3 turbocharger [1] . 1
1.2 Operating principle of a conventional turbocharger [1] 1
1.3 Wastegate system of a BMW four-cylinder gasoline engine [2] 2
1.4 Wear damage on the surface of a wastegate lever [3] 3

2.1 Mechanisms of abrasive wear: microcutting, fracture, fatigue and grain pull-out [4] 8
2.2 Process of material transfer due to adhesion [4] 9
2.3 Models of interaction between a corrosive agent and a worn surface; Possible

scenarios 1-4 [4] . 10
2.4 Wear particle formation due to growth of surface initiated cracks [4] 12
2.5 Subsurface crack initiation and growth [4] . 12
2.6 Pin-on-disk test rig [5] . 15
2.7 Pin-on-disk rubbing contact and the FE model structure [5] 16
2.8 FE model with applied normal brake force and rotation of rotor [6] 16
2.9 FE mesh of a hemispherical ring on a flat disk [7] 18
2.10 Modelling of a spherical pin revolving over a disk [7] 18
2.11 Flow chart of the Wear-Processor [7] . 19
2.12 Model set-up and mesh of pin-on-disk model [8] 21
2.13 Simulation flowchart of with UMESHMOTION subroutine [8] 21
2.14 FE model of the validation wear tribotests [9] 21
2.15 Implementation of the wear model for node i [9] 22

3.1 Wastegate assembly with most important parts 26
3.2 Gaspressure loads acting on the wastegate flap from the two channels of a twin-

scroll turbocharger (engine torque = 215 Nm, engine speed = 5980 rpm) 27

xiv List of Figures

3.3 Wear in lever/bushing interface showing pronounced adhesion [3] 27
3.4 Wear in lever/bushing interface leads to a significant change in the lever’s geometry

[3] . 28
3.5 Relative motion that leads to wear in the lever/bushing interface 28
3.6 Critical lever/bushing interface . 29
3.7 Cross-section of lever/bushing assembly shows contact at both ends [3] 29

4.1 UMESHMOTION common structure . 35
4.2 Change in geometry of a real solid cube (cross-section shown here) due to relative

sliding against a plate at different angles . 36
4.3 Wear direction is unclear in FE models if mesh is not extremely fine 36
4.4 Local coordinate system ALOCAL as defined by Abaqus 37
4.5 Incorrect node displacement for material loss from bottom surface 38
4.6 Correct node displacement for material loss from bottom surface 38
4.7 Local normal vectors (red) calculated based on planar vectors of connected elements 40
4.8 Detailed flowchart of tasks performed by UMESHMOTION for every node in adap-

tive constraint region . 41
4.9 Proper wear direction in case of oblique angle in geometry 42
4.10 Proper wear direction in case of oblique angle in geometry 43
4.11 Wear direction at edge nodes (green) . 44
4.12 Wear direction at corner nodes (green) . 44
4.13 Contact on adjacent sides requires separate definitions of the adaptive constraint

region . 45
4.14 Single analysis flowchart with a certain number of dynamic/static cycles 48
4.15 Flowchart for wear simulation based on editing the input file 51
4.16 Flowchart for wear simulation based on restart 55
4.17 Flowchart for finding the extrapolation factor in each simulation cycle 58

5.1 Simple model used for the verification of wear calculations 62
5.2 Volume loss with time at 10, 20, 40 and 100 step increments 64
5.3 Volume loss with total step time of t = 1.1 and and increments size ∆t = 0.1 . . 65
5.4 Cross-section of lever/bushing assembly shows increase in contact area 66
5.5 Simplified FE model of wastegate shaft and bushing 67
5.6 Tilted shaft for shaft/bushing contact at both ends 68
5.7 Complete rotational displacement in 1 cycle . 68
5.8 Wear profile at the end of static analysis (magnified 20 ×) 69
5.9 Wear profile left end . 70
5.10 Wear profile right end (magnified 20 ×) . 70
5.11 Bushing volume loss in rotation step . 71
5.12 Flowchart for input file based analysis of rod/bushing model 71

List of Figures xv

5.13 Material loss volume as more cycles are used . 72
5.14 Bushing contact area at time=1.0 . 73
5.15 Bushing contact area at time=2.0 . 73
5.16 Bushing contact area at time=3.0 . 73
5.17 Bushing contact area at time=4.0 . 73
5.18 Wear profile left end, applied in 1 cycle . 73
5.19 Wear profile right end, applied in 1 cycle . 73
5.20 Wear profile left end, 2 cycles . 74
5.21 Wear profile right end, 2 cycles . 74
5.22 Wear profile left end, 4 cycles . 74
5.23 Wear profile right end, 4 cycles . 74
5.24 Wear profile left end, 8 cycles . 75
5.25 Wear profile right end, 8 cycles . 75
5.26 Wear profile left end, 16 cycles . 75
5.27 Wear profile right end, 16 cycles . 75
5.28 Material loss volume as more cycles are used (with release step) 76
5.29 Wear profile left end with release step, 2 cycles 77
5.30 Wear profile right end with release step, 2 cycles 77
5.31 Wear profile left end with release step, 4 cycles 77
5.32 Wear profile right end with release step, 4 cycles 77
5.33 Wear profile left end with release step, 8 cycles 77
5.34 Wear profile right end with release step, 8 cycles 77
5.35 Wear profile left end with release step, 16 cycles 78
5.36 Wear profile right end with release step, 16 cycles 78

6.1 E-actuator signal over 2 hours . 82
6.2 E-actuator signal over 60 seconds . 83
6.3 E-actuator signal over 2 seconds . 83
6.4 E-actuator signal over 1 second . 83
6.5 Mesh for bushing . 84
6.6 Mesh for lever . 84
6.7 Applied load and rotational displacement in 1 simulation cycle 86
6.8 Flowchart for wear simulation in approximated lever/bushing system 87
6.9 Wear profile at upper right contact after 211m sliding distance 88
6.10 Wear profile at lower left contact after 211m sliding distance 88
6.11 Wear profile at upper right contact after 327m sliding distance 88
6.12 Wear profile at lower left contact after 327m sliding distance 88
6.13 Wear profile at upper right contact after 371 m sliding distance 89
6.14 Wear profile at lower left contact after 371 m sliding distance 89

xvi List of Figures

6.15 Side view of lever’s final wear profile at 371 m sliding distance 89
6.16 Wear damage on the surface of a wastegate lever [3] 90
6.17 Measured wear profile of wastegate lever after engine endurance run of 330 hours

(zoom in x and y not proportional) . 90
6.18 Sudden material loss due to fracture . 91
6.19 Wedging of shaft and bushing . 91
6.20 Volume loss vs. sliding distance . 92
6.21 E-actuator position adjustment due to wear in the lever 92
6.22 Extrapolation factor vs. simulation cycle . 93
6.23 Volume loss vs. sliding distance for different wear coefficients 95
6.24 Total volume loss vs. wear coefficient at 186 m sliding distance 96
6.25 Extrapolation factors for K = 2.2E-4 [mm3/Nm] calculated in each simulation cycle 97

6.26 Extrapolation factors for K = 3.1E-4 [mm3/Nm] calculated in each simulation cycle 97

6.27 Extrapolation factors for K = 5.0E-4 [mm3/Nm] calculated in each simulation cycle 98

6.28 Extrapolation factors for K = 7.2E-4 [mm3/Nm] calculated in each simulation cycle 98
6.29 Volume loss vs. sliding distance for various E-modulus 99
6.30 Volume loss vs. sliding distance for E = 73.9 GPa (at 1000◦) 99
6.31 Small elastic deformation: contact only registered at 1 node 100
6.32 Large elastic deformation: contact at multiple nodes 100
6.33 Extrapolation factors for E = 115.9 GPa calculated in each simulation cycle . . . 101
6.34 Extrapolation factors for E = 90.7 GPa calculated in each simulation cycle . . . 101
6.35 Extrapolation factors for E = 82.3 GPa calculated in each simulation cycle . . . 102
6.36 Extrapolation factors for E = 73.9 GPa calculated in each simulation cycle . . . 102

List of Tables

2.1 Classification of wear types and wear mechanisms according to Czichos and Habig [10] 7

5.1 Total volume loss with time at 10, 20, 40 and 100 step increments 64
5.2 Material input parameters . 69
5.3 Volume loss and relative errors with increasing numbers of cycles 72
5.4 Volume loss and relative errors with increasing numbers of cycles 76

6.1 Inputs to the wear simulation in the lever/bushing interface 86
6.2 Number of simulations and time required for different wear coefficients 97
6.3 E-modulus of material 1.4848 at different temperatures 99
6.4 Extrapolation factor in first simulation cycle for different E-moduli 100
6.5 Average extrapolation factor from 2nd to last cycle 102

xviii List of Tables

Chapter 1

Introduction

A conventional automotive turbocharger, as shown in Fig. 1.1, increases the power and
efficiency of a gasoline engine using the energy of its exhaust gases to add more oxygen to
the combustion chambers. A higher oxygen level means that more fuel can be burned and
thus more power is created by the combustion and transmitted to the wheels. This process is
known as forced induction [11]. Fig. 1.2 shows the basic operating principle of a turbocharger.

Figure 1.1: Schwitzer-BorgWarner
S3 turbocharger [1]

Figure 1.2: Operating principle of a
conventional turbocharger [1]

As one observes in Fig. 1.2, the exhaust gases flow from the engine cylinder towards the
turbocharger and drive the turbine (orange), which is connected via a shaft to the compressor.

2 Introduction

The compressor then draws in air from the environment (blue) which subsequently flows
through the intercooler back into the engine. An intercooler is necessary to improve the intake
air density and to avoid pre-detonation, since pressurization through the turbo’s compressor
also increases the air temperature. Because the amount of air supplied to the engine depends
on its exhaust gases’ kinetic energy, the turbocharger tends to provide too much boost at
high engine speeds and too little boost at low engine speeds. Automotive turbochargers
are usually designed such that even at low engine speeds a small amount of exhaust gas is
sufficient to create satisfactory boost pressures. This would however result in excessive boost
at high engine speeds [3]. A regulation device is therefore required that is able to control the
amount of pressure transmitted by the turbocharger. Conventionally, this is accomplished
with a wastegate device like the one shown in Fig. 1.3.

Figure 1.3: Wastegate system of a BMW four-cylinder gasoline engine [2]

Essentially, a wastegate is a valve for preventing a certain amount of exhaust gas from entering
the turbine. It is situated between the turbine and the turbocharger’s inlet. If the wastegate
flap is opened, part of the exhaust gases that would otherwise act on the turbine instead
flow through a bypass directly to the exhaust. The opening angle of the wastegate flap
can be controlled very precisely by either a pneumatic or an electric actuator such that an
optimum amount of boost is created at different engine speeds [3]. The control system detects
the requested engine torque (i.e. from the accelerator input), the engine’s operating point
(engine speed and torque), the ambient pressure and temperature as well as the pressure and
temperature at certain locations in the system and, based on those parameters, determines
the appropriate opening angle of the wastegate flap [3]. The actuator force is transmitted
over the wastegate linkage to the wastegate lever (shown in Fig. 1.3) which then rotates and
opens or closes the wastegate flap. The flap’s opening angle can be adjusted very precisely
such that optimum boost pressure is supplied to the engine at different operating conditions.

3

The relative movement of adjacent wastegate components leads to wear on their surfaces.
Fig. 1.4 shows a wastegate lever with a very pronounced wear damage profile:

Figure 1.4: Wear damage on the surface of a wastegate lever [3]

Damage to the wastegate’s lever and other parts impairs the proper functioning of the de-
vice, meaning that e.g. the bypass can no longer be completely sealed if required, or that
the desired flap opening angle cannot be adjusted precisely. Since the wastegate components
are located downstream of the exhaust gases, the operating temperature of the system is ex-
tremely high (up to more than 900◦C [3]). This precludes the usage of conventional lubricants
to decrease friction.
Wear in the wastegate system is a cost and safety critical problem. Continuous damage leads
to breakage of the components and might result in engine malfunction. It would thus be very
beneficial if one could somehow predict the extent of wear in the wastegate after a certain
time in operation, and find ways to reduce the damage.
The purpose of this MSc thesis project is to devise a method to simulate the changes in
geometry found in the most critical interfaces of the wastegate system. Since wear depends
primarily on the contact characteristics in a certain interface, the most reasonable approach
would be to quantify the extent of the damage in relation to different contact variables found
in a Finite Element Analysis (FEA).
As the surface geometry in the contact area continues to change due to material loss, the con-
tact conditions will evolve accordingly and thus will have to be re-determined with frequently.
This means that even for simple geometries, it is not sufficient or not possible to calculate the
necessary variables with analytic equations. A comprehensive FEA software package such as
Abaqus is able to solve nonlinear contact problems with great accuracy as well as perform
modifications to a part’s geometry with integrated and well established techniques. There-
fore, it is an extremely effective tool for the purposes of this study. The essential output of
this project is therefore a routine or a recipe that uses the Finite Element method to describe
the progress of wear in a way that is meaningful with regard to the characteristics of the
wastegate system. (In Ch. fundamentalPrinciples it will be shown that there are different
ways to approach the simulation of wear depending on the research objective.)
This report presents the findings of the thesis work in a coherent fashion such that the reader
will be able to understand why certain techniques and approaches were used. The next chap-
ter first provides a summary of the most essential fundamentals of wear from a scientific
perspective in order to establish some necessary background information. Following that, Ch.
3 will present a more detailed explanation on the motion and properties of the wastegate
system, which is necessary to clarify the main focus of this study, and Ch. 4 will subsequently

4 Introduction

discuss several options for the approach to the wear simulation. The most viable method is
then selected with regard to efficiency and flexibility. In Ch. 6, the simulation routine is then
used to study a simplified system that is representative of a critical interface in the wastegate
known to be susceptible to wear. The simulation results are qualitatively compared to the
wear damage observed in the real component. The same chapter also contains a parametric
study to investigate the effects of a few selected inputs. Finally, Ch. 7 summarizes the most
important outcomes and insights of this thesis project. It will also provide some recommen-
dations with regard to the future development of this subject matter and the most important
points for improvement.

Chapter 2

Fundamental Principles of Wear and
Wear Simulation Techniques

This chapter introduces the most important scientific principles of wear and also provides an
overview of some of the more prominent studies on the simulation of wear found in literature.
To understand the work done in this project within a broader context, the reader should be
familiar with some of the basic concepts of wear as a general physical phenomenon. Though
wear is an extensively studied damage mechanism due to its prevalence in industrial ma-
chines, it is often not clear what processes or effects are exactly involved. This chapter
therefore serves to provide some basic information on the topic and to identify the aspects
that are significant, or in fact feasible, to be simulated in a Finite Element analysis. It will be
shown that while many properties and mechanisms are relevant to material scientists study-
ing the micromechanical behavior of wear, for engineering purposes with an interest in the
macroscopic changes of a component a less detailed and more result-oriented approach might
be more useful.
In the second part of this chapter, it is shown how wear can be simulated with a Finite El-
ement approach according to various published papers. The methods and results presented
in those papers show that it is indeed possible to numerically replicate basic effects of wear
in a part’s geometry. Those studies are used as a reference since they contain several useful
techniques that can be adopted for the current thesis work.

2.1 Essential Physical Properties of Wear

In Engineering Tribology Williams defines wear as “the progressive damage, involving material
loss, which occurs on the surface of a component as a result of its motion relative to the ad-
jacent working parts" [12]. This description captures the effect of wear (progressive damage),
its manifestation (material loss), its location (surface of a component), and the requirement
for its occurrence (relative motion to adjacent parts). In other words, wear is associated with

6 Fundamental Principles of Wear and Wear Simulation Techniques

the removal of material from interacting surfaces of at least two bodies that move relative to
each other. Wear is traditionally quantified with W , defined as the total volume of material
loss. The concept of a wear rate w was originally defined in the works of Holm [13] (1946)
and Archard [14] (1956) on the wear of sliding metallic solids, and was given as the volume
loss per unit sliding distance. Archard’s basic equation predicts that the wear rate is linearly
related to the normal contact pressure and inversely related to the hardness of the material
surface:

w = W

s
= K

P

h
(2.1)

where W is the total volume loss in [mm3], P is the normal load in [N], H is the hardness
of the material (usually in units of the Vickers Hardness), s is the sliding distance and K is
the so-called wear coefficient, a constant that is usually determined by experiment for two
specific contact partners under certain environmental conditions.
Archard validated his equation for unlubricated sliding of metals, and since then this simple
relation has served as a starting point for more complicated models that describe various
wear phenomena. It is also the most frequently used constitutive relation for simple Finite
Element wear simulations.
Williams’ definition implies that wear occurs due to the interaction of solid “working parts",
though generally wear is also assumed to include damage arising from the interaction of solid
parts with fluids containing hard particles, most commonly referred to as “erosive wear" [10].
Williams identifies the relative motion between two entities as being necessary for wear to
occur, though “relative motion" is a macroscopic concept that does not explain how exactly
material is removed. To understand or to visualize the process, the contact surfaces have
been investigated by scientists using microscopy, which led to the identification of several basic
“wear mechanisms" that are responsible for most of the wear damage found for common types
of relative motion. While it must be noted that there is no agreement on an official terminology
in the study of wear - researchers are found to differ significantly over the classification of
similar micromechanical processes - some basic mechanisms are common to almost all wear-
related literature that have been consulted. They occur with unequal likelihood for different
types of relative motion, as summarized in Czichos and Habig’s Tribology Handbook, of which
an excerpt is shown in Tab. 2.1. In Tab. 2.1 “×" indicates that a particular wear mechanism
can become effective for a given wear type.

2.2 Wear Mechanisms 7

Elements in
system

Tribological
loading Wear type Effective mechanisms

Adhesion Abrasion Surface
fatigue

Tribo-
chemical
reactions

solid / solid

Sliding Sliding wear × × × ×
Rolling Rolling wear × × × ×
Impact Impact wear × × × ×
Oscillations Oscillation wear × × × ×

solid / particles
Sliding

Sliding wear/
Cutting wear/
Erosion

× ×

Rolling Particle
rolling wear × × ×

Griding Grinding wear × × ×

Table 2.1: Classification of wear types and wear mechanisms according to Czichos and Habig [10]

As shown in Tab. 2.1, for all types of relative motion between solids (i.e. sliding wear,
rolling wear, impact wear, and oscillation wear), the dominant microscopic wear mechanisms
are adhesion, abrasion, surface fatigue, and tribochemical reactions. Those are, in fact, the
same mechanisms that have been identified in most other textbooks on wear and tribology
by several authors. Therefore, to understand how wear occurs in most industrial machinery,
it is necessary that those crucial processes are described to some detail, whether or not they
are actually used for the thesis work presented later. The following discussion on each of
the four primary wear mechanisms are mostly based on the detailed expositions in the book
Engineering Tribology by Stachoviak and Batchelor [4].

2.2 Wear Mechanisms

2.2.1 Abrasive Wear

Abrasive wear refers to the removal of material from a soft surface due to its interaction with
hard asperities on the adjacent surface [4]. This can happen in several ways, as illustrated in
Fig. 2.1.

1. Microcutting:
The most obvious way of material removal is microcutting where, upon relative tangen-
tial movement of the macroscopic bodies, the asperities carve into the softer surface to
remove a thin strip of material while leaving behind a groove. The hard asperities may
be formed by the peaks and troughs in the microscopic surface topology of the harder
surface or may consist of hard particles protruding from the surface. This process is
comparable to the manufacturing technique of cutting (e.g. turning, milling, sawing).
The largest part of abrasive wear is typically caused by microcutting.

8 Fundamental Principles of Wear and Wear Simulation Techniques

Figure 2.1: Mechanisms of abrasive wear: microcutting, fracture, fatigue and grain pull-out [4]

2. Fracture:
When moving over a surface the hard asperities on the adjacent solid might initiate
cracks on the surface and subsurface. These cracks propagate upon repeated interaction
with the asperities and eventually lead to the separation of fragments. The extend of
abrasive fracture depends on the contact loads (more fracture if loads are high), the
shape of the asperities (asperities with sharp edges lead to more cracks) and the hardness
of the wear surface (hardened surfaces might experience more abrasive fracture wear
due to increased brittleness).

3. Fatigue:
Abrasive fatigue wear occurs when the micro asperities repeatedly deform the material
in a groove, causing fatigue and the associated crack growth and eventual fracture. The
effect is therefore similar to abrasive fracture though the cause is different (microscopic
cracks caused by cyclic strain rather than high loads). Abrasive fatigue wear is typi-
cally less significant than other forms of abrasive wear as it requires several cycles of
deformation for a small chunk of material to break off.

4. Grain pull-out:
Grain pull-out occurs when micro asperities dislodge weakly bonded grains close to the
wear surface. This form of abrasive wear is mostly observed in ceramics.

2.2.2 Adhesive Wear

Adhesive wear involves a chunk of material being removed from one solid because it sticks
tightly to the other contact member [4]. The extracted material therefore migrates from one
surface to another. For metal/metal contacts (which is the material combination relevant
for this thesis project) adhesion between surfaces is usually prevented by an oxide layer and
other contaminants in the contact interface. However, if this oxide layer is rubbed off through
relative sliding, the underlying surfaces come into direct contact. Adhesion will eventually
occur when a certain minimum gap distance is reached between the micro surfaces (e.g. if

2.2 Wear Mechanisms 9

the surfaces are pressed against each other with a normal force). The main cause of adhesion
in metal/metal interfaces is attributed to the free electrons inherent to the microstructure
of metals. Since valence electrons of metals are not bonded to their atoms, they can easily
migrate to a different body if the distance is small enough. The electrons are then able to
bond even dissimilar metals. Once adhesion is established, the force required to separate the
surfaces is often significantly higher than the initially applied contact force, and often higher
than the cohesive force in the weaker material. Relative movement of the bodies will thus lead
to the extraction of material from the weaker surface by the stronger surface. The sequence
of events associated with adhesive wear is shown schematically in Fig.2.2.

Figure 2.2: Process of material transfer due to adhesion [4]

It has been found that adhesive wear is associated with a strong increase in the coefficient
of friction µ between the interfaces. Up to about µ = 1.0 the presence of friction can be
explained by adhesion itself, meaning that frictional resistance is caused by asperities coming
into contact and adhering to one another. Higher coefficients of friction are explained by
the theory of asperity junction growth which predicts a further increase in friction due to the
plastic deformation of asperities. Initially, the yield criterion is reached due to the application
of a normal force. Any additional tangential forces will therefore easily lead to more plastic
deformations and thus quickly increase the microscopic contact area between the asperities.
The increased contact area in turn is able to carry higher tangential loads, i.e. higher frictional
shear stresses which lead to even more plastic deformation. In some cases this vicious cycle
may eventually result in an unstable growth of µ until friction becomes so high that relative
motion between the surfaces is arrested, which is known as seizure. There exists an analytic
equation that expresses the increase in asperity contact area in terms of the friction force,
the normal force and an empirical constant with magnitude of about 10. Based on this
equation it is possible to assess the likelihood of the onset of seizure, but for brevity’s sake
this discussion is omitted here. More details can be found in Stachowiak and Gwidon’s
Engineering Tribology [4].
Adhesive wear in combination with seizure is one of the most common failure modes seen in
bearings, gears or cams. In a wastegate system the lever/bushing interaction is fundamentally
a shaft rotating in a bushing with a small clearance, so one can reasonably expect adhesive
wear to be a highly significant wear mechanism.

2.2.3 Corrosive Wear/ Oxidative Wear

Corrosive or oxidative wear is said to occur if the wear process involves chemical reactions of
the interacting materials with its environment or interface medium [4]. While corrosive wear

10 Fundamental Principles of Wear and Wear Simulation Techniques

refers to any wear process affected by corrosion, oxidative wear is a more specific term describ-
ing wear due to a material’s surface reacting with oxygen. Naturally these wear mechanisms
are commonly found in metallic contacts where the formation of an oxide layer is inevitable
in most environmental conditions. Interestingly, depending on the stability of the oxide layer
the extend of wear can be increased or decreased. As shown in Fig. 2.3 the development of
an oxide layer may lead to different scenarios as relative motion of the bodies continues:

1. The created oxide layer is relatively thin and stable such that direct contact between
the mating surfaces is prevented. As discussed in the previous section, this outcome is
rather favorable as it counteracts adhesion which often leads to severe wear. The oxide
film may also act as a lubricant and decrease friction.

2. The created oxide layer is unstable and easily rubbed off from the surface. Over the
duration of the interaction a new oxide layer is repeatedly built and destroyed such that
wear is exacerbated by the oxidation.

3. When parts of the oxide layers are removed, a galvanic coupling is established between
the broken interface of the film and the underlying material, resulting in additional local
corrosion. Severe pitting is consequently observed on the worn surface.

4. If the oxide layer is very weak and removed easily it does not directly contribute to
wear. In this case other wear mechanisms act independently and local corrosion on the
worn surface may add to the material loss.

Figure 2.3: Models of interaction between a corrosive agent and a worn surface; Possible scenarios
1-4 [4]

Though sometimes oxidation may be favorable for decreasing wear (scenario 1, upper left
picture in 2.3), the most common result of oxidation is scenario 2 in 2.3 where oxide layers
are continuously formed and ablated. If an existing oxide layer prevents adhesion the wear
rate is found to be relatively low and is thus labelled “mild wear". Otherwise if oxide layers

2.2 Wear Mechanisms 11

are abraded and adhesive wear occurs the process is called “severe wear". Over the duration
of metal/metal interaction one frequently observes a transition from mild wear to severe wear,
characterized by a sudden increase in the wear rate [14].

Temperature Effects on Oxidative wear

Oxidation and thus oxidative wear is known to be affected by temperature. Since the waste-
gate valve is located in the turbine housing downstream of the exhaust gases, its operating
temperature is exceptionally high. It is therefore appropriate to briefly discuss the general
influence of high temperatures on oxidative wear.
At low temperatures (typically up to 200◦C for steels) the formation of the oxide layer is
enabled by a position exchange between the oxygen and iron atoms in the oxide film’s crystal
structure. This process is only effective over thin oxide films, so their thickness is limited to a
few nanometers. At higher temperatures, however, the atoms have much more kinetic energy
and can be transferred effectively over thick oxide films. Upwards of 500◦C the thickness of
oxide films is therefore not limited and can reach several micrometers. The thin, protective
oxide film associated with mild wear is thus found primarily at low temperatures while high
temperatures usually lead to severe wear. On the other hand, at high temperatures of a few
hundred degrees centigrade fine wear debris might oxidize again and form a second protective
layer, called the “glaze layer", over the original oxide layer. In this case a transition back
to mild wear may be observed. For example, Nimonic 80A (a nickel-based alloy used for
high-temperature engine components) was observed to transition to mild wear at 250◦C after
a glaze layer is formed.

2.2.4 Fatigue Wear

Material loss might also occur directly due to fracture, meaning that chunks of material are
separated from the surface by micro cracks [4]. When two solids slide over each other, large
deformations and grain reorientations in the direction of sliding are found close to the contact
surfaces. The original grain structure is transformed and develops cells separated by accu-
mulated dislocations. The boundaries of those dislocation cells are weak spots along which
cracks are likely to nucleate (due to the presence of voids) and propagate as a result of cyclic
loading. Eventually particles may be removed due to a crack that started either on the surface
or in the subsurface of the material, which is known as fatigue wear. Surface and subsurface
crack nucleation have distinct characteristics which are discussed here briefly.

Fatigue Wear due to Surface Cracks
If asperities move repeatedly over a surface, cracks may be initiated at microscopic points of
stress concentration that exist due to the surface’s inherent roughness (microscopically a sur-
face always exhibits an uneven topology). A crack can easily grow into the subsurface along
boundaries of dislocation cells, occasionally splitting into two or more cracks that propagate
in different directions. When the crack eventually reconnects with the surface, a block of
material is separated and easily removed. A schematic is shown in Fig. 2.4.

Fatigue Wear due to Subsurface Cracks
Surface cracks might not be initiated if surface asperities are worn off quickly. Additionally,

12 Fundamental Principles of Wear and Wear Simulation Techniques

Figure 2.4: Wear particle formation due to growth of surface initiated cracks [4]

one often finds a compressive, hydrostatic stress state as well as significant plastic deforma-
tions close to the surface, both of which are known to counteract crack growth. At a certain
depth from the surface conditions are often more favorable for crack nucleation and prop-
agation. Cracks are often created at points with sufficient tensile stresses or at dislocation
cell boundaries where voids have developed due to the accumulation of dislocations. With
additional load cycles a subsurface crack can propagate over a significant distance without
being visible from the outside, such that the wear debris attains the shape of a long strip once
the crack has finally reached the surface. This form of fatigue wear is therefore also known
as delamination wear. The progression of crack initiation, crack propagation and wear debris
formation from the subsurface is shown schematically in Fig. 2.5.

Figure 2.5: Subsurface crack initiation and growth [4]

For metals such as copper or iron it was found that higher levels of oxygen in the environment
leads to more severe fatigue wear. This can be explained by the fact that rapid oxidation in
cracks prevents a natural crack closure process where separated grains manage to reconnect.
For more inert metals, such as gold, increased oxygen does not lead to more fatigue wear as
the metal is less reactive to oxygen.
Wear mechanisms discussed in the previous sections are the most prominent ones that are
observed for the interaction of solids, and there are many others that pertain to e.g. solids
and fluids, solids and liquids or solids and gases. For example, erosive wear is a well-known
mechanism that results from macroscopic particles impinging on a solid part (as e.g. seen in

2.3 Relevant aspects for macroscopic FE wear simulations 13

grit-blasting). In solid/fluid interactions this mechanism is more specifically known as cavi-
tation erosion, describing wear of the solid due to impingement of liquid or gaseous bubbles.
These processes are not discussed in detail since they are not relevant to the project. Most
of the wear observed in the wastegate system result from the interaction of solid parts.

2.3 Relevant aspects for macroscopic FE wear simulations

The central issue of this project is to simulate geometric changes in the parts of a wastegate
due to wear. Having discussed the most commonly occurring wear mechanisms for solid/solid
interactions, one realizes that their distinctions are only apparent on a microscopic scale.
If this was a scientific study with the objective to, for example, simulate how a piece of
material might be removed if certain wear-inducing forces are applied to a part’s surface, it
would certainly make sense to consider all the wear mechanisms that have been explained
previously. In this case the simulation would be concerned with a very small part of a contact
surface and attempt to portray the behavior of both the remaining surface and the piece of
separated material.
However, this is clearly not the goal of the current thesis project. Instead of looking at the
detailed ways in which material is removed, the focus is on reproducing the changes in the
macroscopic shape of wastegate components that are subject to a certain environments and
loading conditions. The investigation is therefore conducted on a much bigger scale than
would be adequate if one intends to, for instance, distinguish between abrasive or adhesive
wear. In conclusion, the wear mechanisms that are essential to e.g. tribological research are of
little interest for the purposes of this study. To depict the geometric changes of macroscopic
parts, one must concentrate on processes that take place on a similar scale.
In Tab. 2.1 one observes that all wear mechanisms are classified under certain types of relative
motion: sliding, rolling, impact, and oscillation. Those interactions can be easily distinguished
by observing the motion of real parts. For example, according to camera recordings and
dynamic simulations of the wastegate’s motion, the wear damage in the wastegate lever occurs
primarily due to oscillatory sliding against the inner surface of the bushing, whereas in the
flap/lever interface impact wear seems to be more critical. The solution variables pertaining
to those two types of relative motion are readily available from the output of an FE contact
analysis. Simply by looking at the names of the types of motion one might infer that relative
sliding distance and impact velocity are most likely relevant variables. One realizes, therefore,
that the macroscopic wastegate wear simulation should be classified on the level of relative
motion rather than on the level of wear mechanisms. The severity of wear will of course
depend on the effective or dominant wear mechanisms in a certain interaction, but it is not
strictly necessary to be aware of their individual contributions to the damage overall. As
shown in Tab. 2.1, most likely all four mechanisms will be effective to some degree. In this
case it is more practical to investigate their combined effect and incorporate it into one or
two coefficients found by experiment under different loading conditions. Certainly, if it was
possible to conduct extensive physical testing, one might eventually be able to separate the
effects of different wear mechanisms and devise more detailed models based on those findings,
but for this project it is more reasonable to consider on the aggregate effect.
Having established the focus of the wear simulations, the next sections will review several
published studies that investigated different simulation techniques and characteristics. The

14 Fundamental Principles of Wear and Wear Simulation Techniques

goal of the discussion is to present a few viable approaches to simulating wear within the
possibilities of Finite Element Modelling.

2.4 Wear Simulations in Literature

The most essential task of the thesis project is to develop a numerical routine that is able to
simulate material loss in various wastegate interfaces. Since the wastegate components form
a system with a complicated geometry and load collective, it is not possible to calculate wear
analytically by simply applying the equation. A numerical calculation scheme employing the
Finite Element Method (FEM) is a much more viable approach. The current chapter presents
a compilation of the methods for wear simulation found in literature.

2.4.1 Geometry Update by Moving Surface Nodes Only

The most important parameters to calculate and replicate in the simulation are 1. the volume
or mass of the removed material and 2. the change in surface geometry due to material loss.
The change in geometry in particular will affect the contact conditions for the next simulation
cycles (e.g. contact pressure, shear stresses etc.), which will in turn affect the further progress
of the wear rate. The change in geometry of an FE model must be accomplished by somehow
adjusting the position of individual nodes. The most basic approach is to simply move the
nodes on the contact surfaces of the model based on contact solutions found on each node.
Several studies that follow this approach have been published in the past and shall be discussed
in this section.

Podra and Andersson: Sliding Wear Simulation of Pin-on-Disk Tribometer

A standard device for the investigation of tribological parameters is the pin-on-disk tribome-
ter, where a small pin is made to slide on a large circular disk. The set-up is shown schemat-
ically in Fig. 2.6.

The uniform sliding performed by the pin is easy to model and experimental validation results
are readily available. Podra and Andersson modelled the pin-on-disk sliding wear using the
FEM tool ANSYS and a simple assembly: a two-dimensional cross-section of the pin is made
to slide at uniform velocity over a flat surface with a constant normal force acting on the pin,
as shown in Fig. 2.7 [5]:

In Fig. 2.7, both solid parts are modelled with quadrilateral, 4-node elements with two trans-
lational degrees of freedom per node (PLANE42 elements in ANSYS), while special contact
elements - 2D point-to-surface elements (CONTAC48) in this case - are used to model the
contact surfaces between pin and disk.
After the general contact problem is solved internally by ANSYS, the wear depth (i.e. the
displacement of the contact nodes) is calculated in a separately coded post-processor accord-
ing to Archard’s equation (the derivation of an FE-adapted version of Archard’s equation for
will be shown in Ch. 4).
Podra and Andersson were able to obtain results that agree reasonably well with those ob-
tained by experiment, though a relatively large deviation of ±40 − 60% was found for the

2.4 Wear Simulations in Literature 15

Figure 2.6: Pin-on-disk test rig [5]

depth of the wear profile. This discrepancy is not very surprising since a constant wear coef-
ficient was assumed for Archard’s equation for the entire simulation. In reality, one typically
finds two or more periods where the wear rate changes from one steady value to a different
one (and by extension also the wear coefficient). In order to improve the results one could
therefore consider either conducting more detailed tests to find the evolution of K with re-
spect to the duration of wear (or the sliding distance), or apply a more advanced analytic
model.

SÃűderberg and Andersson: Wear Simulation at the Pad-to-Rotor Interface in a
Disk Brake

Soderberg and Andersson simulated wear on the pad-to-rotor interface in a disk brake using
ANSYS again using Archard’s equation. This wear simulation considers a more complicated
system with multiple components and interfaces. All contact surfaces were modelled with
a layer of contact elements on top of the parts’ solid elements. Fig. 2.8 shows the model
assembly of the back plate, brake pad and rotor with the applied brake force and rotation of
the rotor.

In the simulation is was assumed that 1. the rotor wear is negligible, thus only the brake pad
wear is modelled, and 2. the rotor rotates with a constant velocity, which corresponds to test
conditions rather than real braking conditions where the wheel is slowed down by the braking
force. The incremental sliding distance ∆si,j in time increment j of each surface node i can
therefore be calculated using the rotor’s angular displacement and the position of the node
with respect to the center of the rotor:

16 Fundamental Principles of Wear and Wear Simulation Techniques

Figure 2.7: Pin-on-disk rubbing contact and the FE model structure [5]

Figure 2.8: FE model with applied normal brake force and rotation of rotor [6]

∆si,j = nj2πri (2.2)

where nj is the number of rotor revolutions during the jth step and ri is the distance of node
i to the center of the rotor. It seems, therefore, that one wear increment may contain multiple
rotations of the rotor, which would be reasonable if the rotor spins at a high velocity.
A notable assumption made by SÃűderberg and Andersson in this study is that the brake
pad’s contact nodes are simply moved perpendicular to the initial surface. The authors note
that it would be more accurate to compute the local normal vector at each node and apply the
wear depth in that direction, since the local normal direction might change over the course
of the simulation. One observes, for example, that the nodes farther away from the center
of the rotor should lose more material since they experience a longer sliding distance per
revolution. In reality, the surface on the outer side of the brake pad should therefore attain a
slightly different orientation as wear progresses. However, SÃűderberg and Andersson justify
their assumption on the grounds that 1. the initial surfaces of pad and rotor conform to each
other and 2. the wear depths are expected to be extremely small compared to the brake pad’s
surface dimensions. For the implementation of an external wear simulator, calculating the

2.5 Geometry Update with Part Remeshing 17

local surface normal for each node could significantly complicate the coding, especially in 3D
models. One should therefore evaluate for one’s own purposes whether simplifications can be
made.

As mentioned, the simulation routines discussed in this subsection follow a rather simple
technique where only the surface nodes are displaced by a calculated wear depth. This ap-
proach is viable as long as the wear depths are small compared to the size of the surface
elements [15] [6]. In order to simulate substantial wear with a significant change in geome-
try one would need rather large surface elements. This, in turn, would be disadvantageous
for achieving a good contact solution [16] [7]. In most contact problems it is for example
common to apply a finer mesh in the contact region than in the rest of the model such that
good approximations of the contact pressure and shear stress distributions can be achieved.
The following section presents a studies where this problem is solved by remeshing the part
geometry.

2.5 Geometry Update with Part Remeshing

If one attempts to simulate a large number of wear cycles, at some point the surface nodes of
the contact elements will be displaced so much that these elements become severely distorted
or are even completely consumed. This, of course, will lead to inaccuracies in the solution and
eventually nonconvergence. To maintain an adequate mesh quality it is therefore necessary
to also adjust the positions of the nodes lying beneath the contact surface. A straightforward
way to accomplish this is to generate a new mesh if a certain wear depth is reached. The
following paragraphs are going to address two studies that employ such a remeshing approach.
The paper by Hegadekatte et al. provides an in-depth discussion on the applied technique
and will thus be discussed in detail.

Hegadekatte et al: Simulation of Dry Sliding Wear

Hegadekatte et al. developed a post-processor routine (the so-called “wear processor") that
works in conjunction with the commercial FE software Abaqus to simulate dry sliding wear
in both a 2D and a 3D model [7]. The 2D model depicts a curved ring in steady rotation
against a flat surface, while the 3D model approximates the pin-on-disk tribometer set-up
shown in Fig. 2.6. The FE models are shown in Figs. 2.9 and 2.10.

The simulation routine used by Hegadekatte et al. can be summarized as follows: Like in Po-
dra and Andersson’s study, the basic contact problem is first solved using Abaqus/Standard,
whereupon the contact pressure and sliding distance are obtained at each contact node. The
wear depth is subsequently calculated using the wear processor in a post-processing step. The
wear processor then checks if the wear depth has reached a critical percentage δ of the surface
element height; if that is the case, then the part is remeshed, where the calculated wear depth
is applied as a displacement boundary condition to the contact nodes (this method is known as
the boudary displacement method and is traditionally used for structural optimization prob-
lems. A detailed explanation can be found in [17] and [18]); if the critical wear depth has
not been reached, the wear simulation proceeds to the next step and a greater value of the

18 Fundamental Principles of Wear and Wear Simulation Techniques

Figure 2.9: FE mesh of a hemispherical
ring on a flat disk [7]

Figure 2.10: Modelling of a spherical
pin revolving over a disk [7]

wear depth is calculated. After remeshing, the static contact problem is solved for the next
increment and the simulation continues until the maximum sliding distance smax is reached.
The flow chart for the whole simulation routine is shown in Fig. 2.11.

The remeshing technique used in this routine allows for an arbitrarily large wear depth and a
good mesh refinement such that realistic contact stress distributions can be obtained. How-
ever, remeshing obviously adds significantly to the computational expense of the wear simu-
lation. One observes, for example, that the nonlinear contact problem has to be solved each
time the part is remeshed. Therefore, the smaller the contact elements are the more frequent
the remeshing becomes, and consequently the more contact problems have to be solved.
In conclusion, while remeshing solves the problem of having a “wear limit", it is computa-
tionally expensive and difficult to implement. Thus it is fortunate that Abaqus provides an
in-built function that is able to perform automatic mesh smoothing in accordance with user-
prescribed node shifting. This techniques is known as Arbitrary Lagrangian Eulerian (ALE)
adaptive meshing and is going to be discussed in the following section.

2.5.1 Wear Simulation with UMESHMOTION and ALE Adaptive Meshing

In Abaqus/Explicit and Abaqus/Standard the ALE mesh smoothing algorithm is generally
used to improve the mesh quality in response to distortions for whatever reason. While
it is used in Abaqus/Explicit to maintain the mesh quality for large material deformations
(for example in part forming simulations), in Abaqus/Standard it is especially well suited
to simulate surface material ablation (the other main application being the adjustment of
acoustic meshes). As the name suggests, ALE adaptive meshing in Abaqus/Standard employs
both the Langrangian and the Eulerian method of analysis. In each increment the solver first
applies the conventional Lagrangian method, where the mesh follows the underlying material,

2.5 Geometry Update with Part Remeshing 19

Figure 2.11: Flow chart of the Wear-Processor [7]

in order to obtain an equilibrium solution. The mesh is subsequently updated in the Eulerian
step where the nodes are able to move independently from the material. The Eulerian analysis
is further divided into a mesh sweeping step and an advection step. Mesh sweeping describes
the actual procedure of shifting the nodes to recover the mesh quality. Each node in the
adaptive mesh domain is adjusted according to Eq. (2.3):

xi+1 = NNxN
i (2.3)

where xi+1 is the new position of a node, xN
i are the positions of the neighboring nodes from

the last mesh sweep step, and NN are weight functions that are obtained using either the
Original configuration projection algorithm (where the node is repositioned while trying to
minimize its distance to a projection of the mesh back to its original configuration), or the
Volume smoothing algorithm (where the repositioning is performed based on a weighted av-
erage of the volume of neighboring elements), or a weighted combination of those functions.
The number of mesh sweeps per increment may be specified by the user. Multiple mesh
sweeps per increment might be beneficial if large element distortions are expected. Mesh
sweeping in ALE adaptive meshing only modifies the position of the nodes, meaning that the
type, number, and connectivity of the original elements remain unchanged.
Following the mesh sweeping step, the solution variables obtained in the Lagrangian analysis
are mapped onto the new mesh in a process known as advection [19]. The mapping is done
using the Lax-Wendroff method, where the nodal point quantities are transformed to material
point quantities and subsequently mapped by relating their spatial derivative to their time
derivative. More details on the Lax-Wendroff method can be found in [20].

20 Fundamental Principles of Wear and Wear Simulation Techniques

The ALE adaptive meshing technique in Abaqus/Standard allows the user to prescribe spe-
cial nodal displacements at the boundaries of the adaptive mesh domain by defining so-called
adaptive mesh constraints. Simple constraints - such as Lagrangian constraints to prevent
node repositioning, or specific displacement or velocity values - can be specified in Abaqus/-
CAE (Abaqus’ GUI). To define more complicated constraints - such as wear depths that
have to be calculated based on nodal solution variables - one must code the node shift with
a separate user-defined subroutine, known as UMESHMOTION. The operating principle of
UMESHMOTION is discussed briefly in the following.

Defintion of Wear using UMESHMOTION [21]

UMESHMOTION is a simple subroutine that makes it possible for the user to freely define
the magnitude and direction of the displacement of certain nodes, which is exactly what is
necessary for the simulation of material ablation at contact surfaces. In a wear simulation
one would commonly obtain certain nodal point quantities (e.g. contact pressure and sliding
distance) by calling different inbuilt utility routines, calculate the wear depth according to an
analytic equation, and finally apply the wear depth in a certain direction as nodal displace-
ments. The nodal displacements are expressed in the vector ULOCAL, which is defined in
the local coordinate system ALOCAL (a 2×2 or 3×3 matrix listing the unit vectors in global
coordinates).
The wear simulation approach provided by Abaqus can therefore be summarized as follows:
Subroutine UMESHMOTION prescribes surface node displacements according to analytic
wear models, such that the ALE adaptive meshing algorithm can adjust the nodes in the rest
of the part domain in order to maintain a good mesh quality. This method has been applied
by many researchers in recent years for wear simulations in simple geometries. The following
section shall discuss a small selection of those studies.

Bortoleto et al: 3D Wear simulation of flat pin-on-disk sliding

UMESHMOTION combined with ALE adaptive meshing was used by Bortoleto et al. to
simulate wear on a disk surface resulting from uniform sliding of a flat pin [8]. The model
set-up and simulation flowchart are shown in Figs. 2.12 and 2.13:

As one observes in Fig. 2.12, the mesh size of the model is smaller at locations where the pin
is expected to be in contact with the disk, which is possible because the mesh in the regions
comprised of 8-node brick elements is adjusted continuously. The flowchart in Fig. 2.13 shows
that in principle, it is only necessary for the user to specify the analytic wear model at the
contact nodes in UMESHMOTION. Abaqus will access the same UMESHMOTION for each
individual contact node and adjust the rest of the mesh according to the ablation depth.
Bortoleo et. al were able to approximate the changes of the disk’s surface topology with this
approach and using Archard’s wear equation. The wear coefficient K was calibrated with pin-
on-disk experimental data for three different normal loads. However, at higher normal loads
(35N, 70N and 140N) the numerically predicted wear volume deviated from experimental
results by approximately 100% (overestimated). The authors attribute this error to inaccu-
racies in the estimation of the wear coefficient K, which was calibrated without accounting
for the running-in period, where the global wear coefficient is typically higher than during

2.5 Geometry Update with Part Remeshing 21

Figure 2.12: Model set-up and
mesh of pin-on-disk model [8]

Figure 2.13: Simulation flowchart of with
UMESHMOTION subroutine [8]

steady material ablation.

2.5.2 Martinez et al: 3D Wear Simulation of Polymer Cylinder Sliding on Steel

Martinez et al. used Abaqus’ ALE adaptive meshing technique and UMESHMOTION to
simulate wear of a thermoplastic polyurethane elastomer (TPU) sliding on a steel block, and
validated their results in a tribometer test. The TPU is modelled as a linear elastic material
since Abaqus has difficulties with advection of hyperelastic material parameters in adaptive
meshing [22]. The 3D model set-up and the structure of the implemented UMESHMOTION
subroutine are shown in Figs. 2.14 and 2.15.

Figure 2.14: FE model of the validation wear tribotests [9]

With carefully calibrated wear and friction parameters, Martinez et al. observed in their
validation an average deviation of 15% between the simulated and experimental results. It
was also observed that the accuracy of the numerical predictions are very much dependent
on how well the initial running-in phase is replicated, since the wear rate in that regime
varies considerably. The authors therefore recommended to use more simulation steps in the

22 Fundamental Principles of Wear and Wear Simulation Techniques

Figure 2.15: Implementation of the wear model for node i [9]

running-in phase to properly characterize the wear constants at that stage.
The short overview of simulation methods were presented in this section to show some ex-
amples of state-of-the art wear simulations studies that were conducted by professional re-
searchers. A brief discussion on the ALE adaptive meshing technique provided in the Abaqus
software package explained how it can be used to change a part’s geometry based on solution
variables obtained during the analysis. It turns out that the implementation of a basic wear
simulation program based on adaptive meshing is very simple and efficient compared to other
possible approaches: The displacement of surface nodes, which is the fundamental process
through which the geometry is modified, does not have to be coded directly to be consistent
with the rest of the mesh domain. Instead, the user is only required to specify the magnitude
and direction of node shift, and the algorithm of adaptive meshing will map all relevant solu-
tion variables to the new node locations. Also, a good mesh quality is maintained throughout
the analysis since the entire mesh is adjusted to accommodate the surface node displacements.
Compared to other techniques, adaptive meshing is also much more efficient since the part
does not have to be reconstructed in each cycle. Its effectiveness was demonstrated by several
wear simulation studies published in recent years. Due to the simplicity and efficiency, the
adaptive meshing technique is selected as the basic procedure for geometric modifications.

2.6 Summary 23

2.6 Summary

This chapter introduced some of the most fundamental principles and mechanisms of wear.
To understand the focus of the work done in this thesis project, it is necessary to be somewhat
familiar with its scientific context. Therefore, the primary goal here was to provide the reader
with some basic information on the most common processes that induce wear damage. It was
eventually concluded that the most effective and sensible approach for the current study is to
focus on the macroscopic types of relative motion that lead to wear, rather than the actual
microscopic wear mechanisms that are more prominently featured in Tribology textbooks and
articles. The primary reason for that distinction is that the client company is more interested
in reproducing the changes in the wastegate components’ geometry due to wear. The detailed
ways in which small amounts of material can be separated are less important. Consequently,
Archard’s simple wear equation was found to be a suitable analytic model for calculating the
volume of material loss due to wear. This simple relation can be easily implemented in an FE
simulation routine because the result depends on output variables that are directly obtained
from the numerical contact solution.
The second part of this chapter discussed different wear simulation routines presented in sev-
eral scientific papers. It was found that the basic approach for simulating wear was to modify
the position of contact nodes where relevant output variables had been registered. While the
node displacement can be accomplished in different ways, it was concluded that the Arbitrary
Lagrangian-Eulerian adaptive meshing technique is the most efficient and practical method.
With this integrated Abaqus capability, the mesh is adjusted rather than reconstructed in
each turn to accommodate the geometric changes at the contact surface. To accomplish a
simple wear simulation it is only necessary to specify the magnitude and direction of node
displacement in a user-defined subroutine. The work presented in the following chapter of
this report is therefore fundamentally based on the adaptive meshing technique.
Having introduced the fundamental principles of wear as well as some conventional wear sim-
ulation techniques, the next chapter will investigate the motion and wear characteristics of
the wastegate system itself in more detail.

24 Fundamental Principles of Wear and Wear Simulation Techniques

Chapter 3

Wastegate Motion and Wear
Characteristics

To understand what is required of the wear simulation as well as what kind of meaningful
results can be produced with the available resources, it is important that the wastegate’s
system characteristics are explained in more detail. This chapter will thus take a closer look
at the loads acting on the wastegate and the behavior of the most critical interfaces in the
system. The discussion also serves to provide the reader with more background information
such that they are able to gain some insight into a rather obscure automotive device.

3.1 Wastegate components assembly and wear-inducing load cases

The FE model in Fig. 3.1 shows the complete assembly of the wastegate system with all
essential components, as well as the primary load case during operation:

26 Wastegate Motion and Wear Characteristics

Figure 3.1: Wastegate assembly with most important parts

As shown in Fig. 3.1, the primary components of the wastegate are:

1. the exhaust gas inlets, where the exhaust gases are transferred to the turbocharger’s
turbine. For a twin-scroll turbocharger, the exhaust gases are supplied in alternating
pulsations from the two channels.

2. The wastegate flap, whose opening angle determines the amount of exhaust gas trans-
mitted to the turbine

3. the wastegate lever, which serves to lift or lower the flap according to the requested
amount of boost pressure

4. the wastegate bushing, which serves as a casing for the lever

5. the linkage system that transmits the displacement of the control actuator to the lever
(a detailed description is omitted here)

The wastegate is evidently a complicated system consisting of many individual subcompo-
nents. The dynamic gas pressure loads and actuator displacements act on opposite ends of
the device and are transferred through the entire assembly. For example, the amplitudes of
the gas pressure loads acting on the flap over approximately two crankshaft rotations (720◦)
are shown in Fig. 3.2:

One can imagine that variations in the external loading (such as the gas pressure in Fig.
3.2) will induce a relative motion between all parts shown in Fig. 3.1 that are not rigidly
attached to each other. As explained in Ch. 2.4, this relative motion can induce different wear
mechanisms that lead to a loss of material from the contact surfaces. The most pronounced
wear damage occurs in the following interfaces:

3.1 Wastegate components assembly and wear-inducing load cases 27

0	

0.5	

1	

1.5	

2	

2.5	

0	
 15
	

30
	

45
	

60
	

75
	

90
	

10
5	

12
0	

13
5	

15
0	

16
5	

18
0	

19
5	

21
0	

22
5	

24
0	

25
5	

27
0	

28
5	

30
0	

31
5	

33
0	

34
5	

36
0	

37
5	

39
0	

40
5	

42
0	

43
5	

45
0	

46
5	

48
0	

49
5	

51
0	

52
5	

54
0	

55
5	

57
0	

58
5	

60
0	

61
5	

63
0	

64
5	

66
0	

67
5	

69
0	

70
5	

G
as
	
 p
re
ss
ur
e	

[b
ar
s]
	

Cranksha0	
 rota3on	
 angle	
 [deg]	

Gas	
 pressure	
 varia3ons	
 ac3ng	
 on	
 wastegate	
 flap	

Gas	
 pressure	
 from	
 1st	
 channel	

Gas	
 pressure	
 from	
 2nd	
 channel	

Figure 3.2: Gaspressure loads acting on the wastegate flap from the two channels of a twin-scroll
turbocharger (engine torque = 215 Nm, engine speed = 5980 rpm)

1. The interface between the flap and the lever, primarily due to repeated collisions

2. The interface between the lever and the bushing due to relative sliding.

While impact wear damage in the contact surfaces of flap and lever is quite noticeable, it
is less severe compared to the sliding wear damage that occurs between lever and bushing.
In fact, wear between lever and bushing is a critical damage mode that tends to disrupt the
wastegate’s motion such that the control actuator often has to accommodate the change in
geometry by adjusting its position to achieve the required flap opening angles.
In 2011 Meyer published an extensive empirical study on wear in the wastegate’s lever/bushing
interface and was able to derive wear characteristics for different material pairings. Figs. 3.3
and 3.4 show some of the wear profiles documented in Meyer’s dissertation:

Figure 3.3: Wear in lever/bushing interface showing pronounced adhesion [3]

As shown in Figs. 3.3 and 3.4, the wear profile generated by relative sliding can be rough

28 Wastegate Motion and Wear Characteristics

Figure 3.4: Wear in lever/bushing interface leads to a significant change in the lever’s geometry
[3]

or smooth, depending on the dominant wear mechanisms that were effective in the process.
For example, the rough profile in Fig. 3.3 is characteristic of adhesive wear as one observes
distinct pits in the surface where patches of the lever’s material was spontaneously removed.
Fig. 3.4, on the other hand, shows a relatively smooth profile that was most likely a result of
extensive abrasive wear. Those findings are certainly very interesting from a material science
perspective and might be useful for designers to improve the wear resistance of certain material
pairings. However, as discussed in Ch. 2.4 the microscopic topology is simply too intricate
for the purposes of the current project, so they will not be addressed in more detail for the
remainder of this report.
The result that is of interest for an FE wear simulation is the overall change in geometry (or
the shape of the part) that is produced by the primary external load cases. Fig. 3.5 shows
the critical relative motion that leads to wear in the lever/bushing interface in more detail:

Figure 3.5: Relative motion that leads to wear in the lever/bushing interface

One observes that the actuator displacement induces a translational motion in the linkage,
which is then transformed into a rotational displacement in the lever such that the opening
angle of the wastegate flap can be adjusted. In addition, the gaspulsation loads acting on the
bottom surface of the flap will push the lever against the bushing such that the lever is tilted
counter-clockwise until it is in contact with the bushing’s interior surface at the ends of the
interface.

3.1 Wastegate components assembly and wear-inducing load cases 29

Figure 3.6: Critical lever/bushing interface

The sketch in Fig. 3.7 (obtained from Meyer’s paper) illustrates the contact conditions more
clearly:

Figure 3.7: Cross-section of lever/bushing assembly shows contact at both ends [3]

By observing Figs. 3.5 and 3.7 one realizes that wear in the lever/bushing interface is the result
of the combined effect of the gas pressure and the actuator displacement. The gas pressure
acts on the flap to create contact between the two parts and the actuator displacement induces
the relative sliding. In fact, for the wastegate of a BMW B48 turbocharger model it was found
that lever and bushing are in constant contact at the engine operating point that generates
the most severe wear damage [2] (this happens to be the engine load that produced the gas
pressure variations shown in Fig. 3.2, i.e. at a 215 Nm torque and 5980 rpm engine speed).
The goal of this thesis project is therefore to derive a simulation method that is able to
reproduce a similar change in geometry as shown in Fig. 3.4. Since it is not possible to
perform extensive testing in order to obtain wear coefficients and other relevant inputs, the
results obtained in this study can only be assessed in a relative or qualitative sense, meaning
that it will not be possible to directly compare or validate the simulations with experimental
data. Conclusively, the essential outcome of this project is to demonstrate that the derived
simulation method has the potential to generate the expected geometric changes due to wear
if the correct inputs are provided. A detailed investigation to determine those inputs and to
adjust them to the simulation is left to future projects.
Using existing gaspressure and actuator displacement boundary conditions, Wibmer et al.

30 Wastegate Motion and Wear Characteristics

have performed a simulation of the dynamic motion of the entire wastegate system which can
be used to derive essential inputs for the interaction between lever and bushing [2]. Certainly,
the most obvious approach is to use the same dynamic simulation to generate the necessary
contact outputs for the wear simulation. However, the time period that can be reasonably
covered by the dynamic simulation proved to be much too short for a conventional wear
simulation (as will be explained in more detail in Ch. 4.5 and 6). In order to produce
appreciable wear damage with a manageable computation time it is therefore also important
that the derived wear simulation routine contains some method to expedite the progress of
damage.

3.2 Summary

This chapter introduced the individual components of the wastegate and the most critical load
cases that induce wear damage in their interfaces. It was found that the interface between the
wastegate’s lever and bushing is especially susceptible to sliding wear because it is subjected
to a contact pressure and a simultaneous sliding motion. The discussion in this chapter led to
the conclusion that the simulation routine developed in the thesis project should be able to
qualitatively reproduce the wear damage found in the lever/bushing interface. If this outcome
is accomplished, it should in theory be possible to also quantitatively predict or estimate wear
in the same interface once applicable wear coefficients become available.
The next chapter will thus present the most essential work done in this thesis project.

Chapter 4

Wear Simulation Methodology

This chapter presents all methods and techniques that make it possible to carry out a wear
simulation that is appropriate for the properties of the wastegate system. Starting with basic
considerations for achieving an accurate representation of geometric changes as a result of
sliding wear, the discussion then moves on to the derivation of a global simulation routine for
dynamic systems, and concludes with the proposal for a simple wear extrapolation scheme as
a means to accelerate the simulation.
As shown in Ch. 2.4, Abaqus’ integrated ALE adaptive meshing capability is the most efficient
and accessible wear simulation technique that provides a reliable mathematical foundation
for geometric modifications and mesh adjustments. ALE adaptive meshing in combination
with the UMESHMOTION subroutine is therefore used as the starting point for all additional
features. Therefore, all methods discussed in this chapter serve to augment the basic adaptive
meshing technique such that it can be applied (in theory) to more complicated systems such
as the wastegate device.
But before simulation routines are discussed in more detail, it is first necessary to establish an
equation that describes the magnitude of nodal displacements based on an analytic model for
sliding wear. The following section shows the derivation of the node displacement equation.

4.1 Archard’s wear model applied to Finite Element simulations

Archard’s simple model for sliding wear has been introduced in Ch. 2, where it was also shown
that it is used for most Finite Element wear simulations found in literature. As explained,
this model is very favorable for FE applications due to its simplicity and its dependence on
contact solution variables rather than micro-mechanical parameters. The most recognizable
form of Archard’s equation is shown in Eq. 4.1:

W = K
P

H
s (4.1)

where W is the volume of lost material in [m3] (the “wear volume"), P is the normal load in
[N] acting on the contact surface, H the hardness of the softer material (most commonly in

32 Wear Simulation Methodology

units of the Vickers hardness), s is the relative sliding distance in [m], and K is a dimensional
constant that is usually determined by experiment.
In most cases, the hardness of a material cannot be determined in a straight-forward manner.
But since K is in any case a proportionality constant that is found through curve-fitting, it is
reasonable to simply incorporate H in K, such that the wear volume is linearly related to the
product of the normal force and the relative sliding distance between two contact surfaces.
For FE simulations, Archard’s model must be transformed to describe the one-dimensional
displacement of the contact surface, i.e. the displacement of nodes on the contact surface.
This can be accomplished by dividing both sides of Eq. 4.1 by the contact area A. Though
this is not exactly accurate for three-dimensional bodies whose top and base surfaces are not
parallel (as compared to e.g. cuboids, cylinders or prisms), on a small scale - that is if the
mesh size is sufficiently small - it is valid to approximate the lost volume as the product of the
contact area and the wear depth. The nodes on the contact surface must therefore be moved
by an amount equal to the wear depth to replicate said volume loss. This approximation
is used in most wear simulation related studies found in literature. However, to keep errors
limited it is necessary to ensure that the mesh is sufficiently refined such that the contact
area is not too irregular.
Dividing both sides of Eq. 4.1 by A, one observes that while the wear volume becomes the
wear depth, normal force P becomes normal pressure p acting on the contact surface. Eq.
4.2 shows the form of Archard’s model that is useful to an FE simulation:

h = KH
P

A
s = KHps (4.2)

where h is the wear depth in [m], p in [N
m2] is the contact pressure, and KH is Archard’s wear

coefficient corrected by material hardness H. From Eq. 4.2 one also observes that the unit
of KH is [m3

N], which may be interpreted as the volume of lost material per newton.
The contact pressure and relative sliding distance are calculated as nodal quantities in Abaqus’
output database and can be obtained during the analysis by calling utility routines GETVRN
or GETVRMAVGATNODE from UMESHMOTION. Contact pressure CPRESS is defined in
Abaqus as the current magnitude at each increment, and the relative slip in two directions,
CSLIP1 and CSLIP2, are defined as the total relative slip accumulated up to the current
increment. The wear depth incurred in each increment i should thus be calculated using the
average contact pressure between two increments and the incremental vector magnitude in
the two slipping directions:

∆hi = CPRESSi−1 + CPRESSi

2

√
(CSLIP1i − CSLIP1i−1)2 + (CSLIP2i − CSLIP2i−1)2

(4.3)

This basic equation shall be used in all wear simulations to calculate the displacement of
contact nodes due to sliding wear. If additional wear models are used - such as models for
impact or fretting wear - the methods discussed in the following are still valid. Essentially,
it is a matter of obtaining and combining relevant nodal output variables specified in the
corresponding wear equation.
In Abaqus, surfaces are discretized with either nodes or elements. If a node-based surfaces is

4.2 Wear Simulation Techniques 33

defined, Abaqus will use the node-to-surface formulation to calculate contact variables, while
element-based surfaces allow for both node-to-surface as well as surface-to-surface contact
formulations.

4.2 Wear Simulation Techniques

The methods discussed in the following have been considered with regard to their feasibility,
flexibility and general validity. In order to understand the motivation behind the discussed
procedures, the main problems or difficulties are first explained briefly.
In Ch. 2.4 it was shown that most studies on wear simulations so far have considered relatively
simple systems where simple geometries are subjected to quasi-static load cases. For those
systems, such as the cylinder sliding on a steel plate investigated by Martinez et. al [9] or even
the adapted pad-to-rotor model studied by Soderberg and Andersson [6], UMESHMOTION
and ALE adaptive meshing can be applied directly with very few adjustments. The wastegate
system, on the other hand, consists of many parts with arbitrary orientations in space that
are in addition expected to change with time. As will be explained shortly, this complicates
the definition of an appropriate direction for node shift as compared to a simple part with
constant surface orientations.
Also, the components in the wastegate are subjected to irregular, high-frequency gas pressure
loads that cannot be reasonably converted to a quasi-static load case. While it might be very
difficult to relate the original dynamic load case of the wastegate to the wear simulation (due
to reasons explained later in Ch. 6), the goal here is to derive a procedure that is potentially
applicable to any dynamic system, such that it can still be used once suitable adjustments
are found.
As mentioned, Abaqus does not support ALE adaptive meshing for dynamic analyses. How-
ever, if one intends to ensure that wear occurs due to the exact solution-dependent variables
as the ones generated by the actual dynamic load case, it is necessary to include the orig-
inal dynamic simulation in the routine. An approximation of the dynamic loading with a
quasi-static load might in theory be possible, but would in itself require extensive investiga-
tion. It is in particular very difficult to predict the impact of the changes in geometry on the
progression of the stress state and kinematics of the system, and to then transform it into
some quasi-static condition. Conclusively, it perhaps simpler to just use the original dynamic
analysis to obtain the correct outputs.
The two central problems that have to be solved can thus be summarized as follows:

1. Devise a way to accurately replicate the changes in geometry as a result of material loss
from surfaces with arbitrary spatial orientations.

2. Find a method to apply wear-related effects from the original dynamic simulation in a
static step that allows for ALE adaptive meshing, preferably in such a way where the
accuracy is not inherently limited and can be adjusted according to the needs of a specific
system. To clarify: Since geometric modifications cannot be performed simultaneous
to the dynamic analysis, it is necessary to obtain wear-related outputs and apply those
separately with a certain frequency. As will be shown in Ch. 5.2, if the resolution is very
high, i.e. if geometric modification is performed many times throughout the analysis, the

34 Wear Simulation Methodology

simulation should approximate the case where mesh movement is performed in parallel
to the actual load case.

The next section will first address the challenge of finding a proper direction for node shift.

4.3 Geometric Part Modification with UMESHMOTION

As dicussed in Ch. 2.4, while ALE adaptive meshing is used in many different applications
to maintain a good mesh quality, the change in part geometry is accomplished in Abaqus/-
Standard by imposing adaptive mesh constraints. With UMESHOMTION the user is able
to describe the movement of nodes in the adaptive mesh constraint region based on solution
dependent variables. In wear simulations, the part geometry is changed by moving appro-
priate surface nodes a certain distance away from the contact surface based on a calculated
wear depth. According to this displacement, the mesh in the rest of the part domain is then
adjusted according to the algorithm of ALE adaptive meshing such that severe element dis-
tortions are prevented. The essential function of UMESHMOTION is therefore to prescribe
the magnitude and direction of the surface nodes’ displacement vector.
If a user-defined adaptive mesh constraint is activated for a given surface, UMESHOMTION
will access each node individually and move it by a certain distance according to the user’s
specifications. The magnitude of the displacement can be defined in many different ways.
If one intends to simply apply the geometric modification in the same analysis step, the
procedure is usually rather straight-forward: In each increment UMESHMOTION will call
integrated utility routines (GETVRN, GETNODETOELEMCONN and GETVRMAVGATN-
ODE) that will deliver relevant solution variables for the particular node under considera-
tion, and using a certain analytic equation the amount of displacement is then calculated in
UMESHMOTION itself and applied to the vector ULOCAL. The ULOCAL vector is defined
in the local coordinate system ALOCAL, which Abaqus calculates internally for each indi-
vidual node.
A UMESHMOTION file with a set-up as shown in Fig. 4.1 had been developed previously
by Schmidt [23] at BMW and was consulted as a basis for the the UMESHMOTION code for
this project:

As one observes in Fig. 4.1, an important parameter that needs to be defined in UMESH-
MOTION is the direction of node displacement, i.e. the direction that results in the most
reasonable change in geometry. Defining this so-called “wear direction" is not trivial, as it
involves approximating the loss of material from a continuous surface of a real part through
rearranging nodes that make up a discretized surface. Problems occur primarily at macro-
scopic surface discontinuities such as edges and corners. Consider for instance the change
in geometry of a real part as a result of relative sliding. Fig. 4.2 shows the 2-dimensional
cross-section of a solid cube.

As shown in Fig. 4.2, the surface that is produced by sliding the cube against a flat plate
is expected to conform to the orientation of the flat plate (if sliding wear is considered).
This should be the logical outcome in almost all cases if contact between plate and cube is
maintained by an external load (indicated as contact pressure in Fig. 4.2). If the plate’s
surface is parallel to the cube’s lower surface, as shown in the images at the bottom of of Fig.
4.2, it is easy to see that material loss should occur perpendicular to that interface.

4.3 Geometric Part Modification with UMESHMOTION 35

Figure 4.1: UMESHMOTION common structure

The situation is less obvious if the plate is instead acting on the edge of the cube, as shown
in the images at the top of Fig. 4.2. On a microscopic level, the edge of the real cube will
first deform slightly such that a microscopic contact surface is established, and if the plate’s
initial angle is maintained, this contact surface will become larger over time and always
assume the same orientation as the plate. In theory, the “wear direction" should therefore
be perpendicular to the local normal of the deformed contact surface. This concept works in
reality because real parts do not have actual discontinuities at their edges and corners. There
will always be some small surface that first deforms to fit with the other contact area.
In an FE model, on the other hand, the edge of the cube is be discretized with a finite number
of elements that give rise to actual discontinuities. If the edges and corners of the model
are not meshed with an extremely large number of elements such that rounded, continuous
regions are formed, there will be no microscopic surface that conforms to the plate to provide
a “natural" local normal. As a result, Abaqus will not be able to distinguish contact from
different angles, as shown in Fig. 4.3.

36 Wear Simulation Methodology

Figure 4.2: Change in geometry of a real solid cube (cross-section shown here) due to relative
sliding against a plate at different angles

Figure 4.3: Wear direction is unclear in FE models if mesh is not extremely fine

One observes that if the mesh is not extremely fine, it will not be possible for Abaqus to
find the proper wear direction by default. However, it is in most cases not reasonable or

4.3 Geometric Part Modification with UMESHMOTION 37

indeed not possible to introduce a large number of elements at edges and corners since the
dimension of the rounded discontinuities are usually extremely small. The part would have
to be meshed with an extremely large number of elements in order to avoid sharp transitions
that, on a big scale, are actually sharp transitions. One observes that in most cases it is much
more reasonable to define the wear direction at corners and edges according to some specific
prescription. The following section will therefore discuss two solutions to this problem.

4.3.1 Definition of node shift directions

Abaqus conveniently provides a local coordinate system called ALOCAL at each node that
is calculated based on the average of the local element surface orientations. The first and
second directions are parallel to the averaged element face orientation adjacent a particular
node, and the third direction is normal to the first two directions and points outward from
the part surface. Fig. 4.4 shows typical directions of ALOCAL defined at different nodes in
the FE model of a cube.

Figure 4.4: Local coordinate system ALOCAL as defined by Abaqus

The only way to define the displacement at each node in UMESHMOTION is to specify
appropriate values for the three components of the vector ULOCAL, which is defined in the
respective ALOCAL system. One observes that for nodes that are not located between sudden
changes in the surface orientation (i.e. nodes that are not located at edges or corners, such as
node A in Fig. 4.4), it is reasonable to simply apply the calculated node shift in the opposite
direction as ULOCAL(3). For example, if one imagines the cube in Fig. 4.4 to be sliding
over a plane on its bottom surface, a node shift perpendicular to the contact surface would
reasonably approximate the change in geometry for surface nodes such as node A. In this
case, the magnitude of displacement is simply equal to -ULOCAL(3).
However, for edge and corner nodes such as nodes B or C, a shift only in the ULOCAL(3)
direction would not reproduce the geometry that is likely going to result from sliding the real
cube on its bottom surface. Figs. 4.5 and 4.6 shows the a reasonable versus an unreasonable
change in node shift at edge and corner nodes.

38 Wear Simulation Methodology

Figure 4.5: Incorrect node displacement
for material loss from bottom surface

Figure 4.6: Correct node displacement
for material loss from bottom surface

One observes that if the part had an extremely fine mesh, the sharp corners and edges of the
cube would be approximated with many small elements, and in that case ULOCAL(3) would
indeed still be appropriate. However, this is usually not the case since most geometries do
have abrupt transitions in their outer surfaces, and in order to use ULOCAL(3) as the wear
direction in all cases one would have to introduce small fillets to all edges and corners. In the
actual physical part those fillets might be so small that they cannot be distinguished visually.
An extremely fine mesh would also significantly increase the computational effort.
As discussed, a far better option is to redefine the wear direction at edge and corner nodes
using some reasonable criteria. There are two ways to do that:

1. Define the wear direction at edges and corners to be in the normal direction to the
contact surface

2. Define the wear direction at edges and corners to follow the outer surface of the part,
i.e. the part’s shape itself.

In the following both techniques shall be discussed briefly.

Wear direction based on local normal

The idea for the first method is quite simple: by excluding surfaces that are not expected
to be in contact, the local normal at edge and corner nodes are calculated only based on
the orientation of a single contact surface. For example, the correct deformed geometry Fig.
4.6 was produced by pre-determining a local normal at the edge and corner nodes which is
perpendicular only to the bottom surface where the adaptive mesh constraint is activated.
However, it turns out that the process of finding this normal vector is less straight-forward.
UMESHOMTION will still take surfaces into account where adaptive mesh constraints are
not defined (see Fig. 4.5), and the only way to move any node is by defining the vector ULO-
CAL, which is always defined in the ALOCAL system. The most convenient way is to find the
appropriate direction in the global coordinate system and then rotate this global vector into

4.3 Geometric Part Modification with UMESHMOTION 39

the local system. The transformation itself is not difficult, since the basis vectors of the ALO-
CAL system are passed into UMESHMOTION for each node at each increment. To rotate
from the global to the local system, one can simply use the following matrix multiplication:

nL = A−1nGn1
n2
n3


L

=

b1,1 b2,1 b3,1
b1,2 b2,2 b3,2
b1,3 b2,3 b3,3


−1n1

n2
n3


G

(4.4)

where nG and nL are the normal vectors in the local and global coordinate system, respec-
tively, and A is the transformation matrix of ALOCAL. bi, j are the components of ALOCAL’s
basis vectors bi, and ni are the components of the normal vectors in the global (G) and local
(L) systems. Since the basis vectors of ALOCAL are orthonormal, the inverse of the ALO-
CAL matrix is simply its transpose. The same transformation is used in several examples
found in Abaqus’ manual [22] [24].
To obtain the normal vector in ALOCAL by transformation, one must first find the vector in
global coordinates. For a simple, stationary system such as a cube sliding on a flat plate, it is
perhaps sufficient to define a constant normal vector (in the global system) as one does not
expect the orientation of the contact surface to change significantly over time. After all, the
cube does not rotate in space and wear is expected to be almost uniform over the contact sur-
face. However, in general one cannot make those assumptions. The wastegate in particular is
a dynamic system where the orientation of any surface can change continuously over a series
of simulations. In addition, depending on where contact actually occurs, the extent of wear
evolves very unevenly over a single surface. The accumulated change in geometry due to wear
itself might significantly change the initial local surface orientation, thus invalidating the ini-
tial normal vector. One realizes, therefore, that a reasonable normal vector must be redefined
in each time increment at each node in order to minimize inaccuracies. Conceptually, the
most accurate normal vector would be defined in terms of the local element surface. In each
new increment, the normal vector at an edge or a corner node should be perpendicular to the
edges that are part of the contact surface and belong to immediately adjacent elements. Fig.
4.7 illustrates the concept:

Consider the edge node E in Fig. 4.7. To find the appropriate normal vectors at E, one would
first need to determine the vectors e1 and e2 along the edges of the two connected elements,
as well as the perpendicular, in-plane vector ep. By cross-multiplying ep with e1 and ep with
e2, one obtains two normal vectors that either point inward or outward from the bottom
surface. To find the correct inward vector (since the + or - direction of a vector is determined
by the order of multiplication which is difficult to determine for arbitrary elements), it is
necessary to define an additional vector s (purple) which points from E to a subsurface node
S (it does not matter if S lies inside the cube or on its outer surface). One then computes the
angle between both normal vectors and s, and if the angle exceeds 90◦, it must be pointing
outward and should thus be flipped to the opposite direction. Having determined the correct
orientation for both normal vectors, the wear vector n (normalized) is then defined to be in
the average direction of the two normal vectors. For the cube in Fig. 4.7 the angle between
the two element normals must be extremely small, but for a general part where there might
be a larger difference between the orientations of two adjacent element faces, the angle could

40 Wear Simulation Methodology

Figure 4.7: Local normal vectors (red) calculated based on planar vectors of connected elements

be much larger, and their average direction would therefore be a better approximation of the
wear direction.
The procedure for calculating the local normal at corner node C is very similar. Since only
one element is connected to such a corner node, the wear direction is appropriately defined by
the cross product of any two of the three vectors c1, c2, or c3. In general it is not obvious how
to immediately distinguish between edge vectors c1 or c2 and diagonal vector c3 (one could
compare their lengths and use the shorter two vectors, which should usually be the edge vec-
tors), but the distinction is not strictly necessary since all vectors lie in the same element face.
This approach for calculating the appropriate local normal vector was introduced by Hegadekat-
ted et al. who used it to determine the wear direction for all nodes [7], as they did not use
UMESHMOTION which provides the correct node shift direction for all but edge and corner
nodes.
To determine any vector in Fig. 4.7, one must first find the relevant node that defines the
vector’s direction. For example, there must be a general way to find node S and its coordi-
nates, such that vector s can be formed between S and E. For simple, linear brick elements
defined by eight nodes, all relevant nodes can be distinguished by performing some simple
exclusion operations on the model’s basic element connectivity (A matrix that defines an
element in terms of the nodes connect to it. It can be easily extracted from the model or
output database). Having found the appropriate node numbers from the element connectivity
information, UMESHMOTION will then call its utility routine GETVRN to obtain all three
global components of a certain node. The flow chart in Fig. 4.8 summarizes the detailed
steps towards finding the wear direction in ALOCAL.
As one observes, this rather long-winded procedure for finding the wear direction is usually
unnecessary since most of the nodes are not located at part boundaries. Edge and corner nodes
usually comprise a small proportion of the adaptive constraint region, so the calculations are
not expected to have a significant impact on the overall computation time:

4.3 Geometric Part Modification with UMESHMOTION 41

	

How many elements
are connected?

UMESHMOTION

1st Run: count nodes
in adaptive constraint

region

Read wear depth
values for each node

in adaptive
constraint region

Read element
connectivity information

Wear depth
text file

Element connectivity
text file

Find element numbers
connected to current node

1 2 4

Current node is
corner node

Current node is
edge node

Current node is
surface node

Find all nodes
connected to

single element

Differentiate:

Angle < 90°?

Nodes in adaptive
constraint region

Find surface vectors
to current node

Nodes not in adaptive
constraint region

Take 1 node, find
subsurface vector

Cross-multiply
surface vectors to
find normal vector

Find angle between normal
vector and subsurface vector

Yes

Flip vector by
180°

No

Rotate vector to
ALOCAL system

Apply wear depth
to rotated vector

Apply wear depth
to ULOCAL(3)

Figure 4.8: Detailed flowchart of tasks performed by UMESHMOTION for every node in adaptive
constraint region

42 Wear Simulation Methodology

It must be noted, however, that the algorithm used to find all nodes and vectors as described
in Fig. 4.8 only works if the model is defined such that:

1. All elements in the adaptive mesh constraint region are defined by only eight nodes. The
required nodes could not be distinguished with such simple methods if e.g. nonlinear
elements with more than eight nodes are used. This should not be a severe limitation
since in any case ALE adaptive meshing in 3D is only supported for linear elements [19].

2. In the model definition all nodes and elements must have a unique label (i.e. tick “ Do
not use parts and assemblies in input files" in the model attributes settings). This is
because an external element connectivity text file must be generated prior to applying
the wear simulation, and the node and element labels read by UMESHMOTION from
that file must agree with Abaqus’ internal labelling that is accessed by utility GETVRN.

3. In the part geometry itself, the angle between the adaptive constraint surface (i.e.
the contact surface) and its adjacent surfaces should not deviate too much from 90◦.
Otherwise the normal vector found by cross-multiplying vectors on the contact surface
will not provide the most reasonable wear direction.

While constraints 1. and 2. are quite self-explanatory, item 3. might require some clarifica-
tion as it relates to the second way of defining the wear direction.

Wear direction based on part geometry

Fig. 4.9 illustrates the problem that could arise if the wear direction is always assumed to be
perpendicular to the contact surface:

Figure 4.9: Proper wear direction in case of oblique angle in geometry

Fig. 4.9 shows a block with a slanted side where edge and corner nodes are connected to
surfaces that do not form a right angle. Consider again uniform sliding wear at the bottom
surface: For an accurate representation of the change in geometry, node C should in this
case move in the direction of the outer edge instead of perpendicular to the contact surface.
This means that a node on the contact surface’s periphery should preferably move towards
the node that is located immediately above it on an adjacent outer surface. For node C, the

4.3 Geometric Part Modification with UMESHMOTION 43

appropriate “wear direction node" should thus be node S. Moving node C perpendicular to
the contact surface would in this case change the angle of the edge that is connected to C
and thus fail to capture the most realistic change in geometry.
This approach is actually easier to implement in practice: To define the wear direction, one
only needs to find the location of the “wear direction node" S, so it is no longer necessary
to define multiple vectors and to cross-multiply them. The flowchart in Fig. 4.10 shows all
steps that have to be included in UMESHMOTION if this method is used (the first part is
identical to Fig. 4.8 and is thus omitted):

Figure 4.10: Proper wear direction in case of oblique angle in geometry

As shown in Fig. 4.10, this method relies on finding the correct S node by evaluating the
lengths of vectors within an element. Since S is always located immediately above or below
the node that is currently considered by UMESHMOTION, the vector to S should be the
shortest of all vectors that are formed in each case. The concept is illustrated in Figs. 4.11
and 4.12:

The blue and green vectors in Figs. 4.11 and 4.12 are vectors that are formed with all
nodes that can be narrowed down using the element connectivity information and the node
numbers in the adaptive constraint region. As one observes, the relevant node S is in both
cases associated with the shortest vector.
The downside to this method is that it relies on the general shape of a brick element. Should

44 Wear Simulation Methodology

Figure 4.11: Wear direction at edge nodes
(green)

Figure 4.12: Wear direction at corner
nodes (green)

an element become significantly distorted at some point such that the distance to node S is no
longer the shortest, the computed wear direction would consequently be incorrect. However,
severe mesh distortions are usually not expected to occur since the purpose of the ALE
adaptive meshing technique is to prevent such distortions in the first place. Therefore, this
method should be valid in most cases.
The outer surfaces of most parts in the wastegate assembly - such as the lever or the bushing
- intersect at right angles, which means that it is appropriate to use the first method. The
second method should only be used if a given contact surface forms oblique angles with any
adjacent surfaces.
Apart from defining the proper wear directions, there are a few additional aspects that should
be considered when applying UMESHMOTION to a system with multiple parts and contact
surfaces. Some of the issues that have been encountered are discussed briefly in the following
paragraphs.

4.3.2 Definition of Adaptive Mesh Constraint Regions

Both methods discussed in the previous section require that a distinction can be made between
nodes that belong to the adaptive constraint region (i.e. the contact surface) and those who
do not. This implies that any contact is assumed to be effective on the same continuous
surface, meaning that one must not include discontinuous planes in the same adaptive mesh
constraint region. For example, in Fig. 4.13 a single adaptive mesh constraint must be defined
to contain only one of the six outer surfaces of any element. If a contact is expected to occur
on two or more adjacent surfaces, it is necessary to define a separate adaptive mesh constraint
as well as a separate contact interaction, such that the direction of node displacement can be
clearly distinguished between contacts that are expected to change the geometry in different
directions. An illustration of this concept is shown in Fig. 4.13.

For a part with adjacent contact surfaces, such as surfaces A and B in Fig. 4.13, one must
therefore perform the node displacement separately such that nodes 1 and 2 can move in the
correct directions according to the effect of the two distinct contact interactions. If a single
adaptive mesh constraint contains two different contact surfaces, edge and corner nodes will
move randomly either perpendicular to one or the other surface (in case the first method for
finding the wear direction is used).

4.3 Geometric Part Modification with UMESHMOTION 45

Figure 4.13: Contact on adjacent sides requires separate definitions of the adaptive constraint
region

4.3.3 Wear simulation on both surfaces of a contact

For two surfaces in contact, it is sufficient in many cases to consider material loss from only
one of them. As shown in 2.4, most scientific studies investigated some specific properties of
the wear simulation (e.g. time incrementation, extrapolation etc.), where the results can be
easily compared to experimental data. However, the objective of the company that commis-
sioned this project is to ultimately replicate or predict wear on all parts of the system that
are susceptible to damage, which means that the simulation should be set up with as few
constraints as possible. At part interfaces of the wastegate system, wear is frequently seen on
both parts of an interaction, which means that the UMESHMOTION routine should be able
to perform node shift on both surfaces that are involved in a contact.
The main issue to be considered is that in Master/Slave interactions, the relative slip (CSLIP1
and CSLIP2) can only be obtained for nodes on the slave surface. If this contact formulation
is selected, it is necessary to define a symmetric contact, meaning that the interaction must
be defined twice such that master and slave surfaces are switched in the second interaction.
Since solving contact problems is often the bottleneck in terms of computation speed, one
can imagine that a symmetric contact will significantly increase the computational effort since
each contact interaction now has to be solved twice. This approach is in most cases unprob-
lematic for the user, but is not recommended for very large models (such as the wastegate
model).
An easy solution is to use the general contact formulations, for which contact outputs are
recorded on both contact surfaces. This general contact formulation was previously only

46 Wear Simulation Methodology

available for Abaqus/Explicit, but has since been extended to Abaqus/Standard. If one finds
that the solutions obtained with the general contact formulation is robust and reliable, it is
recommended to use this option if one intends to investigate wear on both contact partners.

4.3.4 Adaptive mesh controls and node type definitions

It is important to note that node displacement is not always influenced by adaptive mesh
controls. Amongst other things, adaptive mesh controls are a means to modify the criteria
by which a certain node in the adaptive mesh domain is recognized as either a surface node,
an edge node, or a corner node. This classification is based on a threshold angle between
two element faces (details can be found in the Abaqus User Manual [19]), and not on the
number of connected elements. Most importantly, the mesh controls will affect the node
displacement only if adaptive constraints are not defined by UMESHMOTION. For example,
in other applications one might apply a fixed displacement or velocity constraint parameter
on a particular surface that does not depend on solution variables (e.g. variables from the
contact solution). In that case, if a node is identified as an edge node, it is constrained to
only move along that edge. If it is identified as a corner node, it is prevented from moving in
any direction.
However, if user-defined adaptive mesh constraints are applied, all nodes in the adaptive
constraint region will move in the direction given by UMESHMOTION, regardless of their
classification. Therefore, it makes sense to use an appropriate adaptive mesh control on the
entire adaptive mesh domain such that one may influence the motion of nodes that lie in the
boundary regions but do not belong to the constraint region. For example, a node at the front
edge of the top surface of the cube in Fig. 4.7 can only move horizontally along that edge
(if it is recognized as an edge node), but node E at the edge of the bottom surface will still
move according to the direction given by UMESHMOTION as it belongs to the user-defined
adaptive mesh constraint region).
Adaptive mesh controls have no effect on the definition of ALOCAL. In fact, it is most
likely the other way around since the angle between local normals is used for the node type
classification. (So there is no inbuilt function in Abaqus to compute the correct wear direction
in all cases.)
A more detailed description of how exactly the node types are determined can be found in
the Abaqus User Manual [19], and is omitted here because it does not directly affect the
magnitude or direction of wear.
Having reviewed some fundamental issues that relate to the basic principles of the wear
simulation, one must now derive a valid method to integrate this technique into a global
simulation routine. The next section will explain in detail the different approaches that were
considered.

4.4 Combining Implicit Dynamic Simulations with ALE Adaptive
Meshing

As mentioned in the introduction to this chapter, ALE Adaptive Meshing in Abaqus/Standard
is currently only available for general static analysis, steady-state transport analysis, coupled
pore fluid flow and stress analysis, and coupled temperature-displacement analysis [19]. While

4.4 Combining Implicit Dynamic Simulations with ALE Adaptive Meshing 47

the possibilities of ALE adaptive meshing seem to be more extensively developed in Abaqus/-
Explicit, wear simulations are exclusive to Abaqus/Standard.
The wastegate’s dynamic motion, as discussed in Ch. 3, was simulated so far with an implicit
dynamic analysis in Abaqus/Standard. Due to the time-dependency of the load cases and the
importance of the inertia loads, the simulation cannot be reasonably converted to a general
static analysis or a steady-state transport analysis. Therefore, the most sensible approach
here is to document relevant contact outputs from the dynamic simulation and apply those
in a subsequent general static analysis where ALE Adaptive Meshing is possible. Essentially,
after completing the dynamic analysis one would extract relevant solution parameters from
the output database and compute the accumulated wear depth for each node in a so-called
“post-processing step". The wear depth values will then be used by UMESHMOTION in the
following static analysis.
Apart from the obvious reason that adaptive meshing cannot be used in a dynamic analysis,
there is an additional motivation to separate the calculation of the incurred wear depth from
the actual wear simulation. As earlier discussions have implied, clearly visible wear damage
that might impair the wastegate’s performance develops over a very long period of time.
For example, damage in the wastegate’s lever/bushing interface investigated by Meyer was
generated by driving a car several tens of thousands of kilometers. Similarly, wear damage
in the specimens available at BMW formed in engine endurance runs that lasted up to two
weeks (which converts to approximately 26000 km driving distance at a reasonable car speed
of 80 km/h). Clearly, even if one assumes that the simulation is as fast as real time (meaning
that, for example, simulating the system’s behavior over 1 second would also take 1 second
of computation time), it would still be extremely impractical to run a simulation over several
weeks. (In reality though, computing the dynamic behavior of a large model requires much
longer than the represented real time, as will be shown later.)
If the wear simulation is therefore performed in the conventional way where the wear depths
are directly calculated in UMESHMOTION and applied immediately, it would be not be
possible (or at least it would be very difficult) to process the numbers in any meaningful way.
As will be shown later, the extrapolation scheme derived for enhancing the calculated wear
depths relies on the presence of a post-processing step where the numbers can be evaluated.
The following sections will discuss several possibilities to combine the wear simulation with a
dynamic analysis. The most viable method is eventually selected for implementation.

4.4.1 Alternating dynamic and static steps in the same analysis

The most obvious way to insert an intermediate wear simulation is to define alternating steps
in the same analysis, such that each dynamic step is always followed by a general static step.
This approach is simple and well-established, and all solution outputs as well as geometric
modifications from one step would be automatically propagated to the next step. A simple
flowchart in Fig. 4.14 illustrates this concept.

48 Wear Simulation Methodology

Figure 4.14: Single analysis flowchart with a certain number of dynamic/static cycles

Even though this method seems rather straight-forward, there are several reasons why it is
inadequate for the wear simulation:

1. With this method, it is only possible to perform a fixed number of steps that are defined
in advance, since the complete input file has to be created before a job is submitted. It
is not possible to decide on the number of steps based on, for example, the outcome of
previous calculations.

2. The transfer of solution variables from the dynamic to the static step is problematic,
since it is not possible to read or post-process results from the output database be-
fore the the wear simulation is performed. It is usually very easy to request output to
be written to the output database, and obtaining those variables in post-processing is
equally uncomplicated. If there was a “break" before the static analysis is launched,
one could access the odb, perform some operations on solution dependent outputs, and
calculate the accumulated wear depth for each node. In the static analysis, UMESH-
MOTION would read in those values and perform the node displacement accordingly.
However, while the analysis is still ongoing, conventional post-processing is not possi-
ble. Therefore, it would be necessary to simultaneously create solution outputs in files
other than the odb whilst running the dynamic analysis. Two ways to accomplish this

4.4 Combining Implicit Dynamic Simulations with ALE Adaptive Meshing 49

have been considered, but upon close examination both are either not feasible or very
impractical:

(a) One could define outputs using the subroutine UVARM such that the wear depth
numbers are stored internally and accessed by UMESHMOTION later. UVARM
is another Abaqus subroutine that allows the user to define additional solution
variables based on outputs from the analysis’ results file (the .fil file).
This approach could have been feasible if it was possible for UVARM and UMESH-
MOTION to call the same utility routines. While UMESHMOTION is able to
call utilities GETVRN for variables defined at nodes or GETVRMAVGATNODE
to access solution variables defined or averaged at nodes, UVARM can only call
GETVRM to obtain material point information defined at element integration
points [21]. The problem is that contact variables such as contact stress (CSTRESS)
and relative slip (CDISP) are only defined as nodal outputs and thus cannot be
accessed by GETVRM and UVARM. Therefore, contact outputs cannot be stored
or processed during the dynamic analysis with UVARM.

(b) Another possibility would be to request contact data to be written to the .dat
file during the dynamic analysis, such that UMESHMOTION can simply read the
.dat file in the next step. This option is possible in theory but certainly not very
practical. For one, UMESHMOTION can only obtain raw data from the .dat file,
i.e. unprocessed values of CSTRESS, CDISP etc. This means that, depending on
the model size and number of time increments, UMESHMOTION would have to
read in an extremely large amount of data (at least three output variables per node
per increment if Archard’s equation is used).
In addition, wear depth calculations would also have to be performed in UMESH-
MOTION itself, which could significantly complicate the coding of the initially
simple and straight-forward subroutine. In addition, finding the correct numbers
in a complicated file like the .dat file is not trivial and could easily lead to errors:
Apart from the specified solution variables, the .dat file contains a copious amount
of additional information, which means that UMESHMOTION must be equipped
with a sophisticated reading technique to extract the useful outputs. It would be
much easier to read a simple text file that only contains one parameter for each
node.

Considering the inherent downsides to this method, one realizes it is not worthwhile to
pursue it any further. While the technical difficulty of transferring solutions between
different steps could be solved with some effort and a more thorough investigation,
the fact that only a fixed number of cycles can be performed each time means that
this approach is unfit for the purposes of this study. One should thus focus on a
fundamentally different procedure.

4.4.2 Importing and Editing of Input Files

As shown in the previous section, the single-analysis approach is not very promising and also
difficult to implement. The alternative is to consider ways by which results can be transferred
between two different analyses. As mentioned previously, it is imperative that several cycles of
dynamic and static simulations can be performed in an automated way, such that the outcome

50 Wear Simulation Methodology

of the previous analysis can be transferred as an input to the next analysis. Independent of
the exact method, all relevant operations should thus be integrated in a scripted loop such
that they can be performed repeatedly according to some predefined criteria.
The first approach based on this principle is straight-forward and easy to implement, even
though it has a few drawbacks that will be discussed later. The key method here is to simply
change the initial coordinates of each node in the input file such that the nodes’ spatial
positions are redefined to be the the coordinates in the final configuration of the previous
analysis. Since neither the dynamic nor the static analysis will add or subtract nodes from
the original mesh, this process should be quite robust in most cases. Fig. 4.15 illustrates
the working principle of this approach, which will be henceforth referred to as the input file
method.

4.4 Combining Implicit Dynamic Simulations with ALE Adaptive Meshing 51

	

Input File with original
dynamic analysis

Import input file into new
model

Dynamic Analysis Pre-processing:
Edit model to adapt to the needs of the wear

simulation:
o Select relevant step
o Define relevant sets and elements
o Discretize load case and apply relevant part
o Request history output for relevant contacts

Write input file of model

Submit static analysis job with
UMESHMOTION subroutine

Post-processing:
Produce wear depth output for relevant nodes:
o Obtain contact outputs from odb
o Calculate wear depth using contact outputs
o Calculate appropriate extrapolation factor
o Scale wear depth by extrapolation factor
o produce element connectivity file

Static Analysis Pre-Processing:
o Import undeformed model from previous odb

o Define general static step
o Define ALE domain, adaptive mesh constraints and controls

Write input file

Submit dynamic analysis job

Post-processing:
o Obtain node coordinates from static odb

o Produce new input file by copying initial input
file and inserting new node coordinates

Wear depth file + element
connectivity file

Change node coordinates in input file to
coordinates in the deformed configuration

from previous dynamic analysis

Figure 4.15: Flowchart for wear simulation based on editing the input file

52 Wear Simulation Methodology

The most important task units in described in Fig. 4.15 are now going to be discussed in
detail.

1. Dynamic Analysis Pre-Processing
The input file method essentially relies on Abaqus/CAE to repeatedly generate new
models by importing information from an existing input file. The new model can be
easily modified with simple Python scripting, which makes it very easy to add new
features (such as adaptive meshing) or to suppress elements that are not essential to
the current analysis. The input file method is therefore very flexible. In principle, one
can import any arbitrary input file and tailor the newly created model to the needs of
the wear simulation.
In most cases, there are a few pre-processing tasks that have to be performed for all
models if the relevant items are not already defined in the original input file. First,
if multiple steps exist in the input file, it is necessary to first select the one for which
wear-relevant outputs should be requested. For example, in most input files that define
the wastegate’s dynamic simulation, there are several analysis steps that are supposed
to reflect some type of characteristic motion. Those might include, for instance, a step
for opening the flap to the desired initial angle, stationary steps where the flap does
not move, or steps for different ways of closing the flap. However, the step that is
of interest is usually the one in which time-varying gaspulsation loads act on the flap
while the lever is moved by the displacement of the actuator (see Ch. 3). In a wear
simulation that focuses on the effects of a particular load case, all non-essential steps
should therefore be suppressed.
Having selected the relevant step, one should subsequently decide on how to process
the loads and boundary conditions defined in the original input file. For example, if the
objective is to achieve a high accuracy in the wear simulation, one can subdivide the
load into several parts (with respect to the time) and apply them in separate simulation
cycles, meaning that the next part of the load is applied after the geometry has been
modified by the previous wear simulation. If this is unnecessary, the original load case
can of course also be be maintained.
Finally, the pre-processing code should define a history output request for all contact
solution variables that are going to be relevant for calculating the wear depth. Of course,
it is also possible to request any additional outputs that one intends to evaluate later.

2. First Post-Processing
Once the first dynamic simulation is completed, the script proceeds to perform some
essential post-processing tasks. The wear depths for all nodes in contact are calculated
in this step by extracting the history of relevant contact solution variables from the
output database and combining them according to the selected wear equation. For
simple sliding wear, the post-processing script should therefore perform the following
tasks:

(a) Obtain the history output for CPRESS, CSLIP1 and CSLIP2,
(b) Calculate the average value of CPRESS between consecutive time increments,
(c) Calculate the incremental relative sliding distance for CSLIP1 and CLIP2 by sub-

tracting the value at increment i-1 from the value at time i. Then calculate the
vector magnitude of the incremental CSLIP1 and CSLIP2, and finally:

4.4 Combining Implicit Dynamic Simulations with ALE Adaptive Meshing 53

(d) Calculate the wear depth with Archard’s equation and the predefined wear coeffi-
cient K

To speed up the wear simulation, the calculated wear depths are often amplified with a
certain “extrapolation factor". The calculation of this factor and the rationale for using
it will be discussed more extensively in Ch. 4.5. For now it suffices to say that in most
cases, the calculated wear depths are uniformly scaled up with a certain integer. The
final values for the wear depth at each node in the adaptive constraint region are finally
written to a simple external text file that is read later by UMESHMOTION.
In addition to the wear depths, the post-processing will also generate a text file con-
taining the element connectivity definitions of all elements that belong to the adaptive
constraint region. As discussed in Sec. 4.3.1, this information is needed to determine
the wear direction at corner and edge nodes.

3. Static Analysis Pre-Processing
Once the first post-processing step is completed, the model for the wear simulation can
be set up in a static analysis. The only purpose of the static analysis is to move the
contact nodes according to the wear depths calculated in the post processing step whilst
maintaining the position of all parts at the end of the previous dynamic analysis. This
means that all rigid body motions should be carried over to the new “wear simulation
model" such that the next dynamic cycle is able to continue the motion of the system
from where it was interrupted in the previous cycle.
The most obvious way to transfer the latest position of the assembly is to import the
parts in their deformed configuration in the last increment of the last step of the dynamic
analysis. However, the deformed configuration can only be imported as parts but not
as models. This means that all sets and surfaces that have been conveniently defined in
the original input file will be lost and have to be re-constructed in the new model. For
mesh-based parts created by the import function, finding the appropriate surfaces and
element domains turns out to be rather difficult and tedious. It would thus be much
easier if the original definitions could be maintained.
To solve this problem, one first imports the undeformed assembly as a complete model
the same way it was done at the beginning of the routine. Subsequently, the code
performs all the necessary pre-processing tasks for setting up the wear simulation, such
as defining adaptive mesh domains and constraint regions, requesting relevant history
outputs (for example the volume loss), and removing unnecessary loads and constraints
that might conflict with the adaptive meshing. Once the model is thoroughly prepared,
the script then creates a job and instructs Abaqus/CAE to write the input file for this
new job. This input file now contains all relevant wear simulation inputs as well as the
sets and surfaces from the dynamic analysis.
In a subsequent step, the script will extract the coordinates of all nodes in the last
time increment of the previous dynamic simulation and insert them into the latest wear
simulation input file. In practice, the script creates a second wear simulation input
file where only the node coordinates are different. This copied input file can now be
submitted for the wear simulation analysis, where it is of course essential that the
appropriate UMESHMOTION subroutine is specified.

4. Second Post-Processing
After completing the static analysis where the modified geometry is established, one

54 Wear Simulation Methodology

must again find a way to transfer the deformed geometry to the next simulation cycle. As
discussed earlier, importing the deformed part directly is impractical because everything
except what is included in the part would be lost. This issue is even more problematic
here since one would also have to redefine the all the loads and boundary conditions
for the next dynamic analysis. Therefore, the most efficient method is again to edit
the input file. This time, the script generates a copy of the original input file where all
loads, boundary conditions and interactions are conveniently defined, and only inserts
the node coordinates from the last time increment of the static wear simulation. In the
next cycle this modified input file is imported by Abaqus/CAE and overwrites the first
dynamic model. This whole process can be performed any number of times.

One observes that this method of importing and rewriting the input file repeatedly is very
flexible and versatile since the model is rebuilt after each wear simulation. One can add,
delete or redefine any set and surface that was initially imported with the original input
file. If necessary, one may also apply new loads or boundary conditions to any step in the
new model without problems. To include anything new, it is only necessary to add a few
commands to the python script, though one should of course be consistent and ensure that
new sets or load case definitions do not conflict with existing ones. In most cases there are
ways to adjust everything to avoid inconsistencies.
A notable feature that cannot be changed is the number of nodes and elements. When the
input file is rewritten, the script assumes that the number of nodes is the same from one
analysis to the next. Therefore, removing or adding new nodes or elements in any pre-
processing step will most likely lead to unpredictable errors. Though it is not recommended,
the mesh may be changed slightly using the editMesh function of Abaqus/CAE if the operation
does not affect the total number and labelling of the nodes. This is possible because all parts in
imported models become mesh-based parts. For more details on the mesh editing tool please
refer to the Abaqus/CAE User’s Guide [25] and the Abaqus Scripting Reference Guide [26].
The input file method therefore provides the user with a lot of freedom to customize the
model and the output of the analysis. The python routine can also be easily transformed into
a general script that is able to work with a variety of structurally similar input files such that
it may serve as a quick tool to assess the effects of different parameters (e.g. a different wear
coefficient, load case, extrapolation factor etc.). However, as indicated earlier, this approach
has a major flaw: By simply rewriting node coordinates in the input file, nothing except
the modified geometry can be transferred to the next cycle (the same applies if the “import
deformed part" function is used). This means that the entire stress state of the system is lost
whenever a new model is created. Also, in addition to the required rigid body displacements,
the routine will also transfer all elastic deformations incurred in the previous analysis. In each
subsequent cycle the load is therefore reapplied to the deformed part as if it was undeformed,
which might introduce significant errors in the contact solution (as will be shown in Ch. 5.2).
The error generated by this problem is demonstrated and evaluated extensively in Ch. 5.2,
and a straight-forward solution will be suggested for a simple system.
To avoid any errors by default, it is necessary to preserve not only the change in geometry but
also the overall stress state of the system in subsequent cycles. In Abaqus, this is typically
done with a restart analysis. As the next section will show, a wear simulation routine based
on restart is very difficult to implement and also less flexible than the input file method, but
would in theory be the most legitimate approach.

4.4 Combining Implicit Dynamic Simulations with ALE Adaptive Meshing 55

4.4.3 Restarting the Analysis

RESTART is the standard method to continue an analysis from a specific step or increment.
In the first analysis one would request restart data to be written with a certain frequency
(e.g. every second increment, or based on a time interval), such that a second analysis may
then continue the calculations from any recorded state with a new step and/or a new load
case. In the context of wear simulations, the idea is to perform the wear simulation analysis
- i.e. the static analysis where ALE adaptive meshing is applicable - as a restart from the
final step of the dynamic analysis where contact solution outputs have been recorded. This
approach would also allow for access to the output database in a post-processing step, where
the wear depths for each node can be calculated and documented in an appropriate fashion.
The routine for the restart method is illustrated in Fig. 4.16:

Figure 4.16: Flowchart for wear simulation based on restart

As one observes in Fig. 4.16, the simulation routine based on restart is decidedly shorter than

56 Wear Simulation Methodology

the input file method discussed in the previous section. The restart method only requires a
single post-processing phase in order to calculate the wear depths since the modified geometry
is carried over by default. One would start with an initial model and its load case, perform
the dynamic simulation whilst producing restart data, generate wear-related results by read-
ing the odb in the same way as described for the input file method, and finally restart the
analysis from the last increment of the dynamic step. The simulation would in this case con-
tinue with an added static step where all parameters related to adaptive meshing is defined,
and then simply append the next dynamic cycle as an additional step to the same analysis.
In the appended dynamic step the script must request restart data to be generated again in
order to continue the loop. With this method, the changes in geometry as well as the most
recent stress state are automatically carried over to the next step (which is actually the point
of a restart analysis). It is therefore also no longer necessary to manually change the node
coordinates.
The restart-based simulation routine therefore appears to be much simpler and mathemati-
cally more accurate than the input file method, but it is in fact subject to many restrictions.
Unlike the input file method, adding sets and load cases to the model with Abaqus/CAE
proved to be quite problematic in the restart routine. For example, in a restart analysis new
sets and surfaces can only be defined with names that include the name of the assembly in
the initial analysis. If the initial model is created by e.g. importing an arbitrary input file (as
most wastegate models are defined with input files), a simple python code that adds a new
step to the model for the restart analysis might induce Abaqus/CAE to generate an invalid
input file. The most frequently encountered input file errors involved incorrect naming of sets
and surfaces or redundant definitions of previously defined amplitudes. In many cases it was
necessary to manually correct for the errors generated by CAE. (Of course it is possible to
write a code to do the correction automatically, but the correction is most likely specific to
each model).
Apart from input file definition errors, the restart routine also encountered several unexpected
problems. For example, propagation of displacement boundary conditions and adaptive mesh
constraints over more than two analysis cycles proved to be problematic, since they have
to be de- and reactivated many times over. For instance, if a general static step with ALE
adaptive meshing is followed immediately by another general static step, the next static step
with adaptive meshing failed to produce any output if the adaptive mesh constraint was deac-
tivated in the second step. In most cases, the restart loop was not able to run automatically
since the execution had to be paused to manually correct the CAE-generated input files. In
subsequent dynamic/static cycles, the analysis also sometimes failed to converge due to un-
known reasons.
Due to the many difficulties encountered, attempts to implement a continuous and automated
simulation routine based on restart unfortunately have not been successful. The most critical
problem in the end was that the dynamic analysis in the third cycle unexpectedly terminated
in the first increment.
In conclusion, the restart routine turned out to be very unpredictable and difficult to auto-
mate. It is likely that a functioning routine can be established with more time and effort,
but this approach is still less flexible than the input file method due to the restrictions to
the definition of sets and surfaces. Unlike the input file method, it would certainly be very
challenging to set up a restart routine that is able to work with any predefined input file. If a
solution can be found for the stress state problem, the input file method would certainly be
preferable. As will be shown in Ch. 5.2, at least for simple systems the errors generated by

4.5 Extrapolation of Calculated Wear Depth 57

the input file method can be corrected quite easily.

In conclusion, the input file method seems to be the only feasible approach that makes it
possible to perform repeated wear simulations based on contact outputs from a dynamic
analysis. The results obtained with this simulation routine is therefore going to be investigated
in detail in Chapters 5 and 6.
As mentioned in the introduction to this chapter, another important element that should
be included in a wear simulation routine is a sensible approach to the “extrapolation" of
the calculated wear depths. The next section introduces a simple technique that is able to
significantly speed up the progression of wear.

4.5 Extrapolation of Calculated Wear Depth

A simulation of the wastegate’s dynamic motion covers a significantly shorter time than
is required for wear damage to become apparent. With a mesh that is sufficiently refined
to ensure a reasonably accurate contact solution, simulating the system’s behavior in 0.08
seconds real time could take up to 19 hours. However, significant changes in the wastegate
geometry due to wear usually occurs after several days or weeks in operation. For example,
the distinct wear damage on the wastegate lever occurred in an engine endurance run that
lasted approximately two weeks.
As mentioned before, even if one could reduce the computation time to being equal to the
real time it describes, it would still take an extremely long time to finish one complete wear
simulation. Clearly, the geometric changes that are produced in a single simulation cycle
must be enhanced in some way.
The straight-forward solution is to simply scale up the calculated wear depth by some constant
factor. But what number is reasonable and how should it be determined? Of course it
is possible to choose the factor arbitrarily, but without some logical criteria it would be
impossible to know if the extrapolation could significantly affect the accuracy of the results. As
shown by Mukras et al., one could start by considering the impact on the contact solutions [27].
Most analytic equations for calculating wear are closely related to solutions from the contact
problem. If Archard’s equation is used, wear occurs only at nodes where contact pressure
(CPRESS) and relative slip (CDISP) are found simultaneously. It is obvious, therefore, that
apart from the coefficients in the wear equation itself the accuracy of the wear simulation will
largely depend on the mesh refinement and the contact solution variables.
If the wear incurred over a certain time period is very small, the positions of the contact nodes
will be approximately the same as what they were in the beginning. This means that even
if the nodes are shifted, the contact solutions resulting from the same external loading also
will not have changed noticeably. Therefore, it is reasonable to assume that this very slightly
modified contact will again produce approximately the same wear depth. This means that
the initially calculated wear depths can be increased linearly to represent the accumulated
effect of many cycles without actually having to perform the calculations for all those cycles.
Clearly, the extent of wear can only be amplified until there is a significant, i.e. unacceptable,
error in the contact solution. One observes that if all wear depth numbers are multiplied
by a single factor, the differences between those initial values will also have increased, thus
making the contact surface increasingly rough, or less smooth. However, at least in uniform

58 Wear Simulation Methodology

sliding wear with no other significant damage mechanisms, the contact surface should in
theory always be macroscopically smooth, meaning that one should always find a relatively
continuous distribution of the contact stresses over the wear profile. Mukras et al. therefore
decided to evaluate the contact pressure found at adjacent nodes in the contact area and
selected the extrapolation factor based on a critical pressure difference [27]. The technique
could have been adopted for the work in the current study, but it turns out that this approach
would be rather inefficient since the wear depths are calculated outside of the analysis. To
evaluate the contact pressure, one would have to insert an additional contact analysis after
the wear simulation, which could significantly increase the overall computation time.
Since the method proposed by Mukras et al. is based on a rather arbitrarily defined difference
in the contact pressure, it should also be legitimate to apply a critical difference directly to
the calculated wear depth. If the difference in wear depth between adjacent nodes is found
to exceed this limit, one can assume that the smoothness of the wear profile - and therefore
the smoothness in the contact pressure distribution - is also severely affected. Therefore, the
following tasks are performed in the post-processing step to find the appropriate extrapolation
factor:

Figure 4.17: Flowchart for finding the extrapolation factor in each simulation cycle

As one observes in Fig. 4.17, the extrapolation factor N is always calculated such that it
amplifies the maximum wear depth difference to just about the critical limit. All other wear
depth numbers will be multiplied by the same factor to represent the effect of N loading
cycles. The average difference in node shift across any element should therefore always be
lower than the specified critical limit. The extrapolation factor is rounded down to the
nearest integer because it does not make sense to include the effects of some fraction of a
cycle. Including a fraction means that in theory the system configuration has not returned
to the final configuration in the simulation, so the next cycle should actually continue from
that position and not from the beginning. In practice, however, the extrapolation factors
are usually very large (typically around 1000 - 5000) such that the effect of the decimals are
negligible.

4.6 Summary 59

Of course, the interesting question is how to select the critical difference limit. The most
reasonable thing to do is to investigate the contact stress distributions beforehand to see
which maximum height difference over a single element would still generate an acceptable
pressure variation. Though in the end it will mostly depend on how much accuracy one is
prepared to sacrifice for computation speed.

4.6 Summary

This chapter elaborated on all relevant methods and techniques that have been investigated
for wear simulations applied to a dynamic system. First, Archard’s fundamental equation for
sliding wear was adapted to the the needs of an FE simulation by making a few reasonable
assumptions. Second, it was found that the basic structure of UMESHMOTION has to be
improved with an additional feature in order to correct for the wear direction at surface dis-
continuities. Two methods have been suggested to determine a reasonable vector for node
displacement at edges and corners: 1. by using the local normal vector, or 2. by following a
subsurface node. The former method is more reliable but only strictly applicable to perpen-
dicular surfaces, and the latter is less robust but in principle also valid for sides at oblique
angles. The UMESHMOTION subroutine code for both methods can be found in Appx. B
and C.
The discussion then proceeded to a number of secondary issues that follow from the derived
operating principles of UMESHMOTION. It was found that certain rules have to be followed
in the definition of interactions and adaptive constraint regions in order to be consistent with
the way in which the wear directions are defined. In addition, wear on both surfaces of a
contact was found to be possible by using the general contact formulation, or by defining a
symmetric contact formulation if master/slave contact pairs are used.
In the second part of this chapter, several methods to integrate the wear simulation with a
dynamic analysis were considered. Techniques that have been investigated include: simple
stacking of dynamic and static steps within a single analysis, repeated importing and chang-
ing of input files with intermediate post-processing steps, and a routine based on Abaqus’
restart capability. Though the input file method contains an inherent error, it was found
to be the most feasible and flexible approach, and was therefore fully implemented and pa-
rameterized for general input files. Finally, a simple extrapolation scheme to accelerate the
wear simulation was proposed. This extrapolation scheme calculates a single extrapolation
factor to linearly amplify the wear depths found with Archard’s equation and is limited by
a critical difference in the wear depths of adjacent nodes. This limit is used to ensure a
reasonably smooth contact surface and contact stress distribution. The Python script for the
wear simulation routine according to the input file method can be found in Appx. A.

60 Wear Simulation Methodology

Chapter 5

Verification and Performance
Evaluation of Wear Simulation

Methods

As discussed in the last chapter, the techniques derived for solving different problems of the
wear simulation are effective in producing the required output but are limited in their ac-
curacy. This chapter will specifically assess the performance of the newly devised input file
method and demonstrate the error that arises due to the loss of the stress state between
consecutive analyses. If one chooses to use this method to predict the progression of wear
in a certain model, one should be aware of its shortcomings and attempt to take those into
account in the evaluation of the results.
However, before any observations are made it is necessary to first verify that all calcula-
tion procedures have been implemented correctly. This is demonstrated by comparing the
program’s output to a very simple case where the result can be calculated analytically.

5.1 Verification of UMESHMOTION and Output Processing

While the input file method itself is inherently flawed, the calculation of wear based on Ar-
chard’s equation should produce the expected result in very simple applications where all
parameters are known. By showing this one confirms that any discrepancies in the analysis of
more complicated systems are not due to programming errors. This section will verify 1. the
calculation of accumulated wear depth in the post-processing step of the input file method,
and 2. the coding of subroutine UMESHMOTION where the magnitude and direction of
node shift are determined.

62 Verification and Performance Evaluation of Wear Simulation Methods

Verification model: cube sliding on flat surface

In order to verify the numerical data produced by Abaqus one must select an example where
the result can be easily calculated analytically. This is possible with the model shown in Fig.
5.1:

Figure 5.1: Simple model used for the verification of wear calculations

In Fig. 5.1, a force of 100 N is acting at the center of the top surface of a cube with side lengths
of 0.3 m. All nodes on the top surface are coupled to the node where the force is applied such
that they experience the same displacement. Also, the cube is fixed on two sides in x and z,
respectively, such that the isotropic elastic material (assumed here to be Aluminum 6061-T6,
though the numbers are not important) expands uniformly when a normal force is applied in
y. A surface-to-surface contact is defined between the analytic rigid surface below the cube
and the cube’s bottom surface, where a “hard" contact relationship is used for the normal
interaction and “frictionless" for the tangential relationship in order to prevent nonuniform
sliding. Additionally, due to the applied boundary conditions in x an z at only two edges
of the cube (in order to ensure uniform deformation) the contact pressure tends to become
higher on the left side of the contact surface and lower on the right side when the rigid surface
is moved to the left. This is prevented by specifying in the contact properties that the surfaces
should not be allowed to separate after contact is established, which does indeed correspond
with reality.
If the rigid surface is now moved by 0.2 m to the right, and the contact region is defined at the
bottom surface of the cube (red square), the presence of a contact pressure and simultaneous
relative sliding should generate a uniform loss of material from the bottom surface. Assuming
a reasonable value of 5.0E-13 [m3/Nm] for the wear coefficient (approximately the average
value found in Meyer’s study for different wastegate material pairings [3]), the lost volume
according to Archard should be:

5.1 Verification of UMESHMOTION and Output Processing 63

W = KFNs = 5.0E − 13
[
m3

Nm

]
× 100 [N]× 0.2 [m]

= 1.0E − 11
[
m3
]

= 0.01
[
mm3

] (5.1)

where W is the wear volume (volume of lost material), K is Archard’s wear coefficient, FN is
the normal force and s is the sliding distance.
In Ch. 4.1 it was explained that for FE applications, Archard’s equation has to be modi-
fied to describe the wear depth instead of the wear volume. The equation implemented in
UMESHMOTION is shown again for convenience:

hnode = Kpavg∆s = K

(
pi−1 + pi

2

)
(stotal,i − stotal,i−1) (5.2)

where hnode is the wear depth at a particular node, pavg = 1
2pi−1 + pi is the average contact

pressure at that node between the current and the previous time increment, and similarly,
∆s = stotal,i − stotal,i−1 is the incremental relative slip from time i-1 to time i.
Since all nodes at the bottom surface experience the same sliding distance, the lost volume
produced using the adapted Archard equation for wear depth should be the same as the
number calculated in Eq. 5.1. As shown in Ch. 4, the wear simulation in this study is
performed after the accumulated wear depths at all nodes have been calculated using the
contact solutions from the previous analysis (and Eq. 5.2). Since normal force and contact
area are constant over the complete sliding distance, the wear volume in this case should
be independent of whether the node shift is performed simultaneous to the sliding or in a
subsequent step.
Indeed, the post-processing script calculates the same total wear depth of h = 1.1111E-10 m
for all nodes at the bottom contact surface, with minor differences only in the fifth decimal
place. The cube has a constant side length of 0.3 m, so the wear depth induced by a uniform
upward node shift of 1.1111E-10 mm should be:

W = hA = (1.1111E − 10[m]) (0.3[m]× 0.3[m]) ' 1.0E − 11[mm3] (5.3)

where A is the contact area of the cube. This results verifies that the post-processing calcula-
tions are correct, as the wear depth corresponds to the analytically determined wear volume.
To find out whether UMESHMOTION itself has been implemented correctly, the wear depth
is now applied to the unconstrained cube in a general static analysis where the adaptive mesh
constraint region is activated on the contact surface in the previous analysis (the bottom
surface, shown in Fig. 5.1). The step time in this “wear simulation" is first specified to be
1.0, and the total wear depth numbers read in from the external file are applied incrementally
such that in each increment i the node is shifted by a fraction ∆hi of the total depth htotal:

∆hi = ∆ti × htotal

hi = hi−1 + ∆hi
(5.4)

64 Verification and Performance Evaluation of Wear Simulation Methods

Therefore, with a step time of 1.0 the nodes should have shifted by the value specified in
the external text file. Fig. 5.2 shows the volume loss over the wear simulation step for an
increasing number of step increments:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−11

time [−]

vo
lu

m
e

lo
ss

 [m
3]

10 increments
20 increments
40 increments
100 increments

Figure 5.2: Volume loss with time at 10, 20, 40 and 100 step increments

As one observes in Fig. 5.2, the total volume loss is in fact not exactly equal to the calculated
value of 1.0E-11 m3, but always slightly lower. The total volume loss for the total increment
numbers in Fig. 5.2 is given in Tab. 5.1:

Number of step increments 10 20 40 100
Volume loss [m3] 9.0E-12 9.5E-12 9.75E-12 9.9201E-12

Table 5.1: Total volume loss with time at 10, 20, 40 and 100 step increments

Fig. 5.2 and Tab. 5.1 show that there is apparently an error in the calculated volume loss
that depends on the the number of step increments. The error evidently becomes smaller
as more increments are used. By observing Tab. 5.1 closely, it becomes apparent that
the difference between the analytically calculated volume of 1.0E-11 m3 and the simulation
outputs is always equal to the volume that is incurred in a single time increment, i.e. a
difference of ∆V = ∆t × Vtotal. In addition, for all graphs in Fig. 5.2 the volume loss does
not start at time = 0 but at a slightly later time. In fact, it turns out that node shift does
not occur until the second increment (which is also shown by the history of displacement U
at the contact nodes), even though UMESHMOTION does in fact return the correct node
shift magnitude from increment 1 if the numbers are written to an external text file. This
seems to be a rather curious glitch in the internal programming of adaptive meshing as no
other reason was found. If no correction is made, the error in the incurred volume loss will

5.2 Performance Assessment of Input File Method 65

therefore always be proportional to the increment size in the step.
A simple solution to this problem is to simply apply an additional increment such that the
total specified wear depth can be still be attained at the end of the step. For example, if an
increment size of 0.1 is initially used for a total step time of 1.0, it is necessary to reset the
time to 1.10 in order to achieve the wear depth that was calculated in the post-processing
script. Similarly, the time should be set to t = 1.05 for an increment size of ∆t = 0.05, t =
1.025 for ∆t = 0.025, t = 1.01 for ∆t = 0.01 and so on. The graph in Fig. 5.3 shows the
history of volume loss for an increment size of ∆t = 0.1 applied for a total step time of t =
1.1 such that the total number of increments is 11 instead of 10:

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−11

time [−]

vo
lu

m
e

lo
ss

 [m
3]

Figure 5.3: Volume loss with total step time of t = 1.1 and and increments size ∆t = 0.1

As one observes in Fig. 5.3, even though there is still no volume loss at t = 0.1 (increment
1), the final volume loss is now equal to 1.0E-11, which is corresponds to the analytically
calculated value. Since the time used in the general static analysis does not represent a real
time and is only used for the application of different loadings and, in this case, geometric
modifications, it is legitimate to use any step time that will result in the correct node dis-
placement. It is thus verified that the UMESHMOTION subroutine is indeed able to produce
the predefined wear depths if a correction in the wear simulation’s step time is applied.
Having verified that there are no errors in the implementation of UMESHMOTION and the
post-processing script, it is now time to assess the performance of the input file routine itself
for contact conditions that are more complicated than the uniform cube/plate interaction.

5.2 Performance Assessment of Input File Method

The idea of using Abaqus/CAE to import and edit the input file repeatedly was found to
be the only viable technique among several others that seemed more obvious and less trou-

66 Verification and Performance Evaluation of Wear Simulation Methods

blesome at first. As discussed in Ch. 4, the single-analysis method was not suitable for the
needs of the current application, and the restart method unfortunately could not be success-
fully automated. The input file method is the only simulation routine so far that is able to
process a given model an arbitrary number of times based on parameters that are determined
automatically in post-processing. However, it is inhibited by a significant drawback.
As pointed out in Ch. 4, between successive analyses the procedure can only transfer a part’s
deformed geometry but not its latest stress state. In the most elementary system, such as
the cube/plate model used for verification in Sec. 5.1, this problem does not exist as it is not
necessary to rerun the analysis multiple times in the first place: Since the applied load and
the initial contact area do not change, the pressure and relative slip experienced by each node
is constant, and thus the outputs can be collected and multiplied to obtain the accumulated
wear depth in a single step. However, in most systems the contact area changes with the
progression of wear. For example, in the wastegate’s lever/bushing interface the contact area
is very small in the beginning (it would be single point if elastic deformations are neglected)
and expands as the curved surfaces of lever and bushing are flattened due to material removal.
A schematic is shown in Fig. 5.4:

Figure 5.4: Cross-section of lever/bushing assembly shows increase in contact area

As wear progresses, contact pressure and relative slip will therefore spread to nodes that have
not been in contact initially (unlike the cube/plate system where the contact surface will
always contain the same nodes). For such systems with varying contact areas it is therefore
necessary to perform the wear simulation in multiple steps, or else changes in the contact
conditions cannot be taken into account.
Because the stress state is never maintained from one analysis to the next, an error is intro-
duced with each new cycle if the loads are simply continued from where they stopped in the
last cycle. In practice, one should therefore try to restore the stress state before the actual
loading is continued and additional contact outputs are recorded. In systems with a simple
load case (such as the shaft/bushing model investigated in the next paragraphs) the error can
be eliminated with a simple trick. However, in more complex systems like the full model of
the wastegate it is not always clear at what point the stress state can be considered restored.
In those cases it is necessary to carefully inspect the system’s behavior to find a reasonable
state for continuation.
The following case study of a shaft rotating in a bushing will demonstrate the error introduced
in each new cycle of the input file method. It is also shown how one could, in this particular
case, attempt to correct for this error.

5.2 Performance Assessment of Input File Method 67

5.2.1 Input file method performance and error investigation

In order to assess the performance of a certain technique, one would conventionally compare
its results to those obtained with a more reliable procedure. The input file method was
developed mainly to account for simulations where ALE adaptive meshing is not possible,
but if it is really applied to a dynamic analysis, similar results could not be obtained with
any other method. Therefore, this investigation will consider a static analysis where the wear
simulation can be performed in parallel. In this way, the results obtained from the input
file method can be directly compared to the fundamentally more legitimate results of the
standard method.
The investigated model is a simplified version of the wastegate’s lever bushing assembly and
approximately has the same dimensions. The model set-up and load case are shown in Fig.
5.5.

Figure 5.5: Simplified FE model of wastegate shaft and bushing

For the simultaneous wear simulation analysis which will serve as the reference case for com-
parison, two general static steps are applied:

1. Tilting the shaft in the bushing by applying a concentrated force of 1 kN in opposite
directions to the center of the rod’s circular ends (nodes at the ends are coupled to
the center node). A very small contact area is established initially at both ends of
the assembly. This configuration is similar to the wastegate’s lever/bushing interaction
which produces sliding wear in the real part. Fig. 5.6 shows a cross section of the model
at the end of step 1:

68 Verification and Performance Evaluation of Wear Simulation Methods

Figure 5.6: Tilted shaft for shaft/bushing contact at both ends

2. Rotating the shaft four times back and forth by 30◦ using a rotational boundary con-
dition applied to the reference point at the center of the left side (see Fig. 5.5). This
step lasts for 4 cycles, where a 30◦ rotation back and forth is completed in 1 cycle. Fig.
5.7 shows the complete rotational displacement in 1 cycle:

Figure 5.7: Complete rotational displacement in 1 cycle

For a shaft diameter of 9 mm the shaft’s total sliding distance stotal induced by the
rotation is:

stotal = 4× 2× 0.542[rad]× π9[mm]
12 = 18.45[mm]. (5.5)

ALE adaptive meshing is applied during this rotation step. The inside surface of the
bushing is selected as the adaptive mesh constraint region where nodes are shifted by
UMESHMOTION according to local contact solutions in each time increment. The
contact regions in the bushing are located right at the edges of the part and can be seen
more clearly.

The magnitude of the loads and displacements imposed on the system are selected such that
a reasonable amount of wear can be generated. Table 5.2 lists all additional input parameters
related to the material:

5.2 Performance Assessment of Input File Method 69

Parameter E-modulus [GPa] Poisson’s ratio friction coefficient wear coefficient [m 2/N]
Magnitude 90.8 0.3 0.1 1.0E-11

Table 5.2: Material input parameters

At the end of the wear simulation the wear profile produced by the simple static analysis is
shown in Fig. 5.8. For improved visibility of the wear profile only the inside surface of the
bushing is shown and the wear depth is visually magnified by a factor of 20. Figs. 5.9 and
5.10 show the detailed wear profile at the front and back ends (left and right in Fig. 5.6) of
the bushing.

Figure 5.8: Wear profile at the end of static analysis (magnified 20 ×)

70 Verification and Performance Evaluation of Wear Simulation Methods

Figure 5.9: Wear profile left end

Figure 5.10: Wear profile right end (magnified 20 ×)

As one observes in Fig. 5.8, the wear profile created by applying node shift in each increment of
the analysis is relatively smooth even when magnified 20 times, which agrees well with reality
and confirms that the mesh is sufficiently refined. The maximum wear depth is found at the
upper right contact of the bushing where the contact pressure is highest. The progression of
volume loss over the duration of the rotation step is shown in Fig. 5.11:

5.2 Performance Assessment of Input File Method 71

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−10

time [s]

V
ol

um
e

lo
ss

 [m
3]

Figure 5.11: Bushing volume loss in rotation step

At the end of the rotation step the total volume loss is equal to 0.171734 mm3. The wear
profile and volume loss obtained with the simultaneous wear simulation can now be assumed
as a reference to which results obtained from the input file method are going to be compared.
For the input file method, the rotational displacement of the shaft is divided into an increasing
number of cycles such that the result should, in theory, become increasingly similar to Figs.
5.8, 5.9 and 5.10. A simple flowchart in Fig. 5.12 clarifies the process.

Figure 5.12: Flowchart for input file based analysis of rod/bushing model

Using the input file method, the wear simulation is first performed as described in Fig. 4.15
on the deformed configuration of the bushing. Fig. 5.28. The four cycles of rotation applied
in the reference simulation are consecutively divided into 1, 2, 4, 8, and 16 cycles such that
node shift occurs after every 18.45 mm, 9.225mm, 4.6125 mm, 2.3 mm, or 1.153 mm of sliding.
The total volume loss obtained at the end of each complete run is plotted in Fig. 5.28 vs. the
number of cycles used. The blue line represents the 0.1816 mm3 from the reference analysis.

72 Verification and Performance Evaluation of Wear Simulation Methods

0 2 4 6 8 10 12 14 16
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

number of cycles used

V
O

LC
 in

 [m
m

3]

Input File Method
simultaneous

Figure 5.13: Material loss volume as more cycles are used

Two observations can be made from Fig. 5.28:

1. If only 1 cycle is used, the wear volume is underestimated by approximately 29.06%.

2. However, each time the number of cycles is doubled the wear volume is increasingly
overestimated. The relative errors for cycles 2 - 16 are shown in Tab. 5.3:

Number of cycles used Reference Value 2 4 8 16
Total volume loss [mm−3] 0.17173 0.1933 0.2309 0.2818 0.3191
Relative Error in % - 12.57 34.46 64.08 85.79

Table 5.3: Volume loss and relative errors with increasing numbers of cycles

The underestimation of the wear volume in case only 1 cycle is used is simply because the
discretization of the rotation load case is insufficient. The reason is obvious and has been
explained at the beginning of this chapter: As material is removed from the bushing, the initial
contact area should become larger over time, meaning that contact pressure and relative slip
should be registered at more nodes. This leads to a wider wear profile and a larger wear
volume. The increase in contact area can be observed in the reference simulation where node
shift happens in parallel. Figs. 5.14 - 5.17 show the contact area at the front end of the
bushing at different steps times in the reference analysis:

5.2 Performance Assessment of Input File Method 73

Figure 5.14: Bushing contact area at
time=1.0

Figure 5.15: Bushing contact
area at time=2.0

Figure 5.16: Bushing contact area at
time=3.0

Figure 5.17: Bushing contact
area at time=4.0

This expansion of the contact area does not happen if the geometry is not changed by material
loss during the analysis. Therefore, if only 1 cycle is used the small initial contact area is
maintained throughout the rotation step and only a small number of nodes will be shifted in
the subsequent wear simulation. Figs. 5.18 and 5.19 show the narrow wear profiles produced
using 1 simulation cycle (displacements are again magnified 20 times):

Figure 5.18: Wear profile left
end, applied in 1 cycle

Figure 5.19: Wear profile
right end, applied in 1 cycle

One observes that the wear profiles shown in Fig. 5.18 and 5.19 are also much steeper than
the wear profiles from the reference simulation in Figs. 5.9 and 5.10. Since the contact area is

74 Verification and Performance Evaluation of Wear Simulation Methods

smaller, the applied force has to be supported by fewer contact nodes that in turn experience
a higher contact pressure. The calculated wear depth is correspondingly also larger, leading
to a steep wear profile.
The second observation is a consequence of the error that is introduced by repeatedly import-
ing the part’s deformed configuration. By importing the deformed coordinates of all nodes,
one also acquires the elastic deformations incurred in the previous analysis. However, since
the stress state is lost, the next analysis will assume that the imported configuration is in fact
undeformed. If the initial force is re-applied in the next cycle to restore the stress state, it
will induce more elastic deformation on top of what was obtained from previous cycles. For
this particular system, the shaft is being pushed more into the bushing with each new cycle.
This will in turn increase the contact area, and thus the wear profile becomes wider and more
material is lost. Figs. 5.20 - 5.27 show the wear profiles produced by using 2, 4, 8, and 16
cycles (again magnified 20 times).

Figure 5.20: Wear profile left
end, 2 cycles

Figure 5.21: Wear profile right
end, 2 cycles

Figure 5.22: Wear profile left
end, 4 cycles

Figure 5.23: Wear profile right
end, 4 cycles

5.2 Performance Assessment of Input File Method 75

Figure 5.24: Wear profile left
end, 8 cycles

Figure 5.25: Wear profile right
end, 8 cycles

Figure 5.26: Wear profile left end, 16
cycles

Figure 5.27: Wear profile right
end, 16 cycles

One observes that the area affected by wear becomes much wider the more cycles are used.
At 8 and 16 cycles, the profile looks significantly different from the reference profiles in Figs.
5.9 and 5.10. Conclusively, if the input file method is used for this system it is necessary
to somehow reverse the elastic deformations incurred in the previous analysis. Also, one
cannot simply use the undeformed configuration since the rigid body motions should be still
be transferred to the following steps (specifically, in this case, the rotated position of the
shaft).
The most straight-forward method is to introduce an additional step where the forces are
removed and the part is allowed to relax such that the shaft is released from its contact with
the bushing before node shift occurs. In each “rotation analysis" the following steps are thus
performed:

1. Tilting step, where forces left and right act on the center of the circular ends of the rod

2. Rotation step, where the rod is made to rotate

3. Release step, where the forces applied in the tilting step are removed such that the
elastic deformations “spring back"

With the additional release step one ensures that all elastic deformations are reversed such
that the “tilting step" in the next cycle will not induce excessive deformations. Fig. 5.28
shows the volume loss obtained with the modified set-up:

76 Verification and Performance Evaluation of Wear Simulation Methods

0 2 4 6 8 10 12 14 16
0.12

0.13

0.14

0.15

0.16

0.17

0.18

number of cycles used

V
O

LC
 in

 [m
m

3]

Input file method
Reference method

Figure 5.28: Material loss volume as more cycles are used (with release step)

Fig. 5.28 shows that the volume loss obtained in this case is consistently lower than the
0.171734 mm3 from the reference simulation. This can be explained by the fact that the
contact area is not continuously increased as it should be, but only after each wear simulation
analysis. So this is again the effect of the discretization error that was discussed earlier. As
more cycles are used the numbers get closer to the reference value, which indicates that it is
indeed possible to achieve the correct results with the input file method. The numbers and
their relative errors compared to the reference value of the volume loss are shown again in
Tab. 5.4:

Number of cycles used Reference Value 2 4 8 16
Total volume loss [mm−3] 0.17173 0.1255 0.1258 0.1564 0.1687
Relative Error in % - 26.94 26.74 8.94 1.79

Table 5.4: Volume loss and relative errors with increasing numbers of cycles

As one observes in Tab. 5.4, the relative errors compared to the reference value become
smaller as more cycles are used. While the numbers do not change much from 2 to 4 cycles,
the error drops significantly going from 4 to 8 cycles. At 16 cycles the difference is less than
2%. Interestingly, one observes that at 2 Cycles the error is in fact larger by 14.37% than
what was obtained without the added release step (see Tab. 5.3). It seems that if elastic
deformations are not removed prior to performing the wear simulation, at a certain point
the discretization error and the error due to the artificially increased contact area tend to
counteract one another.
Figs. 5.29 - 5.36 show that the wear profiles in this case also become increasingly similar to
the reference wear profile shown in Figs. 5.9 and 5.10:

5.2 Performance Assessment of Input File Method 77

Figure 5.29: Wear profile left
end with release step, 2 cycles

Figure 5.30: Wear profile right
end with release step, 2 cycles

Figure 5.31: Wear profile left
end with release step, 4 cycles

Figure 5.32: Wear profile right
end with release step, 4 cycles

Figure 5.33: Wear profile left
end with release step, 8 cycles

Figure 5.34: Wear profile right
end with release step, 8 cycles

78 Verification and Performance Evaluation of Wear Simulation Methods

Figure 5.35: Wear profile left
end with release step, 16 cycles

Figure 5.36: Wear profile right
end with release step, 16 cycles

In the shaft/bushing system, the error introduced by the input file method was easily corrected
by releasing the loads at the end of the first simulation. However, in more complicated
systems with multiple load cases the problem might be more challenging since the release and
restoration of the stress state might be extremely impractical and computationally expensive.
For example, if one considers a dynamic system with a complicated load history, it is not
clear how to re-establish a contact condition that is similar to the one that existed at the end
of the last dynamic cycle.
In many dynamic systems (such as the wastgate device) there is also a considerable transient
period where the motion of the individual parts have not yet reached a stable and periodic
state. If the system is completely relaxed each time before the wear simulation is performed, in
each cycle one would have to wait for that stage to complete first before the contact solutions
are recorded again because the transient state would not exist had the loading not been
interrupted. For a large models, the additional computation time might be unacceptable.
However, it is perhaps not always strictly necessary to restore the exact stress state. In
this particular case, a systematic error was generated due to a mismatch between elastic
deformations and the lack of a proper stress state, which repeatedly increased the contact
area. If a different model or a different load case is considered, contact between two parts
might not be continuous, and thus might not be significantly affected by the imported elastic
deformations. In any case one must ensure that contact conditions are not substantially
altered when the load case is re-applied in subsequent cycles.

5.3 Summary

The purpose of this chapter was to 1. show that all basic calculations had been implemented
correctly in UMESHMOTION and the post-processing step, and 2. evaluate the capabilities
and limitations of the input file method. In the first instance, it was found that the FE
analysis is able to compute a volume loss that agrees with the analytic prediction of a very
simple system. While there are slight deviations due to the coding in the subroutine, the
error is rather small and within acceptable boundaries.
In the second instance, the input file method was applied to a more complicated model that
involved a change in the contact geometry due to the progression of wear. It was shown here
that two types of errors are introduced if the wear simulation is not performed in parallel
with the actual load case: First, resolution errors are noticeable if the load case is not divided

5.3 Summary 79

into sufficiently small cycles. A change in the contact area will naturally affect the contact
conditions, so if the geometry is not modified frequently the contact solutions will deviate
from their true state. This error is found in any discretized process and can only be reduced
by increasing the number of simulation cycles.
Second, it was demonstrated that the input file method contains a deficiency that might in-
troduce a systematic error with each additional simulation cycle. The essential problem is
the routine’s inability to transfer stress states from one analysis to the next, even though
deformations and node displacement are in fact carried over each time. In systems with a
simple load case it was shown that this error can be corrected by removing all elastic deforma-
tions before performing the wear simulation and re-introducing them at the beginning of the
next cycle. Even though the solution might not be as straight-forward in more complicated
systems, in most cases the final result might be acceptable if one ensures that the contact
conditions are not systematically altered from one cycle to the next. For a simple system
and a simple load case, it should not be extremely difficult to adjust the analysis such that
severe changes are avoided. As will be explained in the next chapter, an intricate system with
an extremely complicated load history might not be suited for wear simulations in general,
simply because the computational expense would be unacceptable.

80 Verification and Performance Evaluation of Wear Simulation Methods

Chapter 6

Wear Simulation Results in the
Lever/Bushing Interface

Having assessed the performance and shortcomings of the derived simulation method, it is
now interesting to observe what the wear simulation will predict if it is applied to a critical
interface in the wastegate. As mentioned previously, the study will focus on the interface
between the wastegate’s lever and bushing since sliding wear is most pronounced at that
location and can be suitably represented by Archard’s equation. Also, the final simulation
results can be qualitatively compared to an existing component with wear damage that was
produced by a familiar load case.
Clearly, the results should be most accurate if the existing dynamic simulation of the entire
system is used. The simulated motion has been validated with high-resolution camera record-
ings and should therefore generate the most authentic contact conditions in all interfaces [2].
In that case, the contact solutions obtained from that system would be applied directly to
calculate the wear depth for each node. However, it turns out that the dynamic simulation
of the wastegate assembly in its basic state is not entirely suitable for the wear simulation.
The main difficulties are briefly explained in the next paragraphs.

6.1 Wastegate dynamics simulation vs. wear simulation

The most critical problem with the wastegate’s dynamic simulation lies in the time scale
discrepancy: In order to validate the simulated motion of the wastegate flap with camera
recordings of the real part, it was necessary that variations in the high-frequency gaspulsa-
tion loads are captured precisely [2]. For that reason, all dynamic simulations are set up to
depict the system’s behavior within a few crankshaft rotations (i.e. multiples of two rotations,
or 720◦). At ordinary engine speeds (2000 to 6000 rpm) the dynamic simulation covers an
extremely short period of real time. For example, the critical operating condition that causes
wear in the lever/bushing interface occurs at 5980 rpm, meaning that one simulation cycle of
2 rotations would describe the system’s behavior in 0.02 seconds.

82 Wear Simulation Results in the Lever/Bushing Interface

On the other hand, wear is a process that evolves over a very long period of time. The wear
profile shown in Fig. 4.2, for example, occurred over an engine endurance run that lasted for 2
weeks (330 hours). Of course, if one dynamic simulation cycle can be computed very quickly
(e.g. within a few minutes), there would be no problem with using it to obtain the most realis-
tic and accurate contact conditions. However, due to the high frequency of the loading as well
as the complexity of the model (as the wastegate contains many individual parts and contact
interactions), simulating 4 rotation cycles, or 0.08 seconds, requires approximately 19 hours.
If no extrapolation is used, simulating all of 330 hours would require over 32000 years. The
relatively simple extrapolation technique introduced in section 4.5 multiplies the calculated
wear depth by a certain factor in each cycle, based on a limit that represents the smoothness
of the contact surface. Wear is essentially “extrapolated" in only one dimension. However,
in most interfaces wear evolves in three dimensions, meaning that one finds an expansion in
the affected area as well as an increase in the wear depth (for the lever/bushing interface this
effect was shown in Ch. 5.2). To produce a realistic wear profile, the system must therefore
always first reach a state where the proper contact area is captured, which requires a large
number of simulation cycles despite the extrapolation scheme (as will be shown in the next
sections).
Apart from the time problem, the results in this case are not necessarily going to be im-
proved by using extremely precise boundary conditions. There are several reasons for that
assumption, as will be discussed in the following.

1. Incompatibility of boundary conditions
Sliding wear occurs at each node where contact pressure and relative slip coincide. If one
insists on being as accurate as possible, one should evidently try to match the movement
of the E-actuator (which generates the relative sliding between shaft and bushing) to
the variation of the gaspulsation load (which generates contact pressure) within the
same time duration, i.e. 0.02 - 0.08 seconds. Even if one (reasonably) assumes that the
gaspulsation cycles are perfectly repetitive, the same assumption cannot be made for the
E-actuator movement. Figs. 6.1 - 6.2 show the measured E-actuator displacement signal
that corresponds to the damage found in the lever/bushing interface with increasing time
resolution (please zoom in to read the axis labels).

Figure 6.1: E-actuator signal over 2 hours

6.1 Wastegate dynamics simulation vs. wear simulation 83

Figure 6.2: E-actuator signal over 60 seconds

Figure 6.3: E-actuator signal
over 2 seconds

Figure 6.4: E-actuator signal
over 1 second

Fig. 6.1 shows the complete range of available E-actuator data over 7200 seconds,
where the high-frequency blocks describe the critical sliding movement between shaft
and bushing. On this zoomed-out scale, it seems that the signal could be periodic within
a single block. However, as one continues to zoom in on one of the blocks (in this case
the second block), it becomes apparent that the variations are highly irregular even
over a relatively long period of one minute, as shown in Fig. 6.2. While a minute seems
quite short, it must be noted that the gaspulsation loads are only given for 0.03 % of
a minute.
If one zooms in to the scale of a few seconds, as shown in Figs. 6.3 and 6.4, one
observes that over a period of 20 milliseconds the signal is reduced to single peaks with
very different amplitudes. This means that if one arbitrarily selects a certain peak and
applies it together with the gaspulsation signal, it would only be precisely accurate for
that particular time period. Of course one could repeat the same peak in the next cycle,
but it would not correspond to reality since the E-actuator movement is not repetitive on
that tiny scale. Conclusively, any extrapolation of such calculations, or any adaptation
of the E-actuator signal, would inevitably introduce errors, thus defeating the purpose
of using extremely accurate gaspulsation load variations in the first place.

2. Insufficient mesh refinement

84 Wear Simulation Results in the Lever/Bushing Interface

For the purposes of the wear simulation, the objective of using precise boundary con-
ditions is to generate very accurate contact solutions such that they can be used to
calculate the wear depth. However, accurate contact solutions cannot be achieved if the
mesh size is not small enough. The original mesh of the lever and bushing used in the
model that took 19 hours to complete is shown in Figs. 6.5 and 6.6.

Figure 6.5: Mesh for bushing Figure 6.6: Mesh for lever

As one observes in Figs. 6.5 and 6.6, both bushing and lever are discretized by 30
elements over its circumference. This means that a single element, or two nodes, would
cover more than 8 %, or 12◦, of the parts’ perimeter. For the E-actuator it was found
that a displacement of 0.96 mm - which is approximately the range of the wear-inducing,
high-frequency displacements in Fig. 6.1 - produces a rotation of 3.1◦. This means that
the lever would not be able to rotate over a single element. As mentioned previously,
the initial contact area is extremely small, so according to the mesh in Fig. 6.5 and 6.6
the contact would extend over perhaps one or two nodes. This is not to say that the
mesh size is not acceptable at all, but in order to achieve the degree of accuracy that
one intends to produce by using the precise gaspulsation variations, it is most likely
necessary to refine the mesh significantly. However, doing so would most certainly
exacerbate the computation time problem.

3. General uncertainty of wear equations and input parameters
The work of the current thesis project is mostly based on values that were estimated
by consulting relevant literature. For example, Archard’s wear coefficient is obtained
from Meyer’s experimental study where the wear damage between a wastegate’s lever
and bushing interface was investigated for different material pairings [3]. The validity of
this coefficient is very questionable since it was not found for the same material pairing
as the one used for the relevant model at BMW. (It is a very rough estimate based on
similar materials.) Also, it is very likely that the wear coefficient will change as the
contact surface continues to evolve. In future studies it will definitely be necessary to
experimentally determine the variation of the wear coefficient for the specific material
pairing. It is clear that the currently assumed wear coefficient might not even be close
to the real value. Given this considerable uncertainty it seems unlikely that using very
precise boundary conditions would make a significant difference in the accuracy of the
results.

The issues discussed above are meant to explain why it is impractical to use the actual loads
and boundary conditions of the existing dynamic simulation for the purposes of this project.
One could certainly overcome or mitigate all those difficulties with elaborate techniques (e.g.

6.2 Simulation of sliding wear in the lever/bushing interface 85

mesh refinement, submodelling, remeshing etc.), but investigating and implementing them
would exceed the scope of this thesis project. Also, the discrepancy between the time scale
of the dynamic simulation and the time scale that is required for the wear simulation is still
the most critical problem for which there is no straight-forward solution.
In order to derive any meaningful statements about the progression of wear under differ-
ent circumstances, it is necessary that a representative wear profile is generated within a
manageable computation time. The model and the load cases must therefore be simplified
considerably. Since sliding wear is most apparent in the wastegate’s lever/bushing interface,
those parts should be isolated and investigated with a very simple load case that reasonably
approximates the effects of the gaspulsation loads and E-actuator movements. The model
used in the last chapter to assess the errors of the input file method is designed to have ap-
proximately the same dimensions as the lever and bushing of the relevant wastegate model,
so it is in fact appropriate to use it for further investigations. First, it is interesting to see
if the input file method combined with the extrapolation technique discussed in Ch. 4.5 is
indeed able to produce a wear profile that is qualitatively similar to the wear damage found
in a real component.

6.2 Simulation of sliding wear in the lever/bushing interface

6.2.1 Simulation set-up and inputs

To approximate the loading in the lever/bushing interface of the wastegate, two equal but
opposite forces are again applied to the ends of the lever. In this case, the magnitude of the
forces are calibrated to generate a contact pressure that is similar to the average value found
in the dynamic simulation of the full model, which was approximately equal to 50 MPa. It
was found that a force F of 238 N on both sides will induce approximately 50 MPa at the
single node of the lever that is initially in contact with the bushing. The rotation that induces
relative sliding is caused by the E-actuator’s oscillatory motion. According to the displacement
signals shown in Figs. 6.1 - 6.3, the high-frequency, wear inducing translational movements
are limited to an estimated range of 0.96 mm (which is approximately the converted amplitude
of the high-frequency signal blocks). For the lever this would correspond to a rotational range
of 3.1◦, which is applied as a displacement boundary condition at the center node on the left
side of the lever (as shown in Fig. 6.7).
Finally, it was mentioned previously that wear damage found in the real part that is available
for comparison occurred in an engine endurance run of 330 hours. This means that the
simplified model should be able to show the effect of the applied load case in 330 hours.
Using the displacement signal of the E-actuator, one can determine the total rotational sliding
distance of the lever in that time and apply it as the limit that is to be represented by the
simulation.
Assuming that the signal given for 7200 seconds (or 2 hours) is continuously repeated for
330 hours, it is found that a total sliding distance of approximately 371.6 m is induced
between the lever and the bushing. Clearly, this number could never be reached without any
extrapolation since one cycle only generates 0.245 mm of sliding (corresponding the 3.1◦ of
rotational displacement and circular diameter of 9 mm for the lever). Therefore, is is essential
that the extrapolation scheme described in Ch. 4.5 is applied in each post-processing step.
It was found that a critical value of 0.1 [mm], or approximately 30% of the element size,

86 Wear Simulation Results in the Lever/Bushing Interface

is sufficient for creating a relatively smooth wear profile. The sliding distance after each
simulation cycle is assumed to be equal to the extrapolation factor times the 0.245 mm.
The applied loads and boundary conditions are summarized in Fig. 6.7:

Figure 6.7: Applied load and rotational displacement in 1 simulation cycle

Tab. 6.1 summarizes all input parameters that are used for this wear simulation:

Load Case Inputs
External forces for contact [N] 238.0
Rotational displacement in 1 cycle [deg] 3.1
Total sliding distance [m] 371.6
Material and contact parameters
E-modulus at 800◦C [GPa] 90.7
Poisson’s ratio [-] 0.3
Estimated friction coefficient µ [m] 0.3
Estimated wear coefficient K [mm3/Nm] at 800◦C 2.2E-4
Critical wear depth difference for extrapolation [mm] 0.1

Table 6.1: Inputs to the wear simulation in the lever/bushing interface

The simulation uses material and contact properties at a temperature of 800◦C since it is
closest the nominal operating temperature of the wastegate. Also, it is the highest tem-
perature for which Meyer experimentally determined wear coefficients for different material
pairings. The applied value of K = 2.2E-4 [mm3/Nm] is an approximate average of the wear
coefficients found for eight different material pairings, since the wastegate materials used at
BMW could not be matched exactly to the ones studied by Meyer at VW. As mentioned, in
future studies it is essential that the appropriate value is determined experimentally for the
specific materials under consideration.
The flowchart in Fig. 6.8 clarifies the steps in the simulation routine:

6.2 Simulation of sliding wear in the lever/bushing interface 87

	
 Apply dynamic simulation
with tilting force of 238 N

and rotational displacement
of 3.1 degrees (0.245mm)

Calculate wear depth for
each node in contact

Post processing

Calculate extrapolation
factor based on maximum

wear depth found

Calculate extrapolation
factor based on maximum

wear depth found

Calculate “represented” sliding
distance s with:

s = extrapolation factor x 0.245mm;
calculate total sliding distance

Multiply all wear depths
with extrapolation factor

Perform wear simulation
with UMESHMOTION,

rewrite original input file to
change node coordinates

wear depth
text file

Total sliding
distance = 371.6 m?

Yes

Exit

No

New
input file

Figure 6.8: Flowchart for wear simulation in approximated lever/bushing system

88 Wear Simulation Results in the Lever/Bushing Interface

The simulation loop in Fig. 6.8 is executed repeatedly until a total sliding distance of 371.6
m is reached.

6.2.2 Results and evaluation of simulated wear profiles

Figs. 6.9 - 6.14 show the lever’s wear profile after 211m, 327m, and 371.6 m sliding distance.

Figure 6.9: Wear profile at up-
per right contact after 211m slid-
ing distance

Figure 6.10: Wear profile at
lower left contact after 211m slid-
ing distance

Figure 6.11: Wear profile at up-
per right contact after 327m slid-
ing distance

Figure 6.12: Wear profile at
lower left contact after 327m slid-
ing distance

6.2 Simulation of sliding wear in the lever/bushing interface 89

Figure 6.13: Wear profile at up-
per right contact after 371 m slid-
ing distance

Figure 6.14: Wear profile at
lower left contact after 371 m
sliding distance

The full profile of the lever at 371 m sliding distance is shown in Fig. 6.15:

Figure 6.15: Side view of lever’s final wear profile at 371 m sliding distance

The simulated wear profiles can now be evaluated qualitatively with respect to several prop-
erties that can be inferred about the behavior of the wear damage in the real component.
The most important conclusions are discussed in the following.

1. Shape of simulated wear profile vs. real wear profile

The first notable observation is that the wear profile shown in Fig. 6.15 indeed exhibits a
similar shape as the typical wear profile found in Meyer’s experimental study. The mirrored
image of Fig. 1.4 is shown in Fig. 6.16, and one observes that the slope at the end is similar
to the simulated wear profile.

90 Wear Simulation Results in the Lever/Bushing Interface

Figure 6.16: Wear damage on the surface of a wastegate lever [3]

The similarity in the wear profile confirms that the simulation procedure is indeed capable of
reproducing the expected geometry . Given the correct inputs, it might one day be able to
predict the wear volume and geometry quantitatively.
Compared to the real wear profile that was generated in the endurance run (from which the
relevant sliding distance and loading were derived), one observes that the shape is somewhat
different. At the upper right contact, the simulated profile shows a maximum wear depth of
approximately 0.45 mm which levels off smoothly towards the other end of the cylinder. In
the real part, there is a crater with a nearly uniform depth of 0.70 mm in the same location.
The two-dimensional contour of the relevant wastegate lever is shown in Fig. 6.17.

Figure 6.17: Measured wear profile of wastegate lever after engine endurance run of 330 hours
(zoom in x and y not proportional)

If basic sliding wear is considered only for the lever, one would in fact expect a smooth and
uniform slope in the wear profile as produced by the simulation or shown in Fig. 6.16. If
material loss occurs gradually, a continuous contact area between lever and bushing should be
maintained throughout the wastegate’s time in service. However, the distinct “wear crater"
in Fig. 6.17 with its clearly defined boundaries implies that more complicated interactions or
wear modes could have been effective. Given the relative position of lever and bushing, the
discontinuous profile might be a product of:

6.2 Simulation of sliding wear in the lever/bushing interface 91

1. A fracture in the lever’s surface, leading to the sudden detachment of a chunk of material
as shown in Fig. 6.18:

Figure 6.18: Sudden material loss due to fracture

While the surface in the wear crater does not look like a typical fracture surface, it is
possible that bits of material broke off at some point during the operation and that the
subsequent sliding wear then altered the wear surface. Another possibility would be:

2. Wedging of shaft and bushing due to bushing wear and plastic deformations. In the
simulation, wear was only considered for the shaft but not for the bushing, though in
reality the bushing is also affected to some degree. In addition, plastic deformations
might distort the contact area such that a local indentation is created where the contact
stresses are quite similar. The concept is shown schematically in Fig. 6.19:

Figure 6.19: Wedging of shaft and bushing

At any rate, the discontinuous wear profile found in the real component likely involves other
damage and deformation modes in addition to simple sliding wear, and thus would require ap-
propriate considerations in the simulation. Identifying the exact causes in order to reproduce
the effects would necessitate a close experimental investigation of the wear damage evolution
in the real part, which is beyond the scope of the current thesis project. It would certainly
be an appropriate subject for future studies with more time and resources.
Apart from the shape of the wear profile, it is also interesting to investigate how the material
loss progresses. In Fig. 6.20 the volume of lost material due to wear is plotted against the
sliding distance represented in each simulation cycle:

92 Wear Simulation Results in the Lever/Bushing Interface

100 150 200 250 300 350 400
0

5

10

15

20

25

30

35

40

45
volume loss

sliding distance [m]

vo
lu

m
e

lo
ss

 [m
m

3]

Figure 6.20: Volume loss vs. sliding distance

Fig. 6.20 shows that the amount of lost material increases almost linearly with the sliding
distance. Since the speed of the E-actuator does not vary significantly, one concludes that
the loss of material also increases linearly with time. This result agrees with the observation
that the position of the E-actuator is shifted by a constant increment over the duration of
the endurance run, since the actuator’s control mechanism attempts to adjust for the correct
opening angle of the wastegate flap. The linear shift in the E-actuator’s position is shown in
Fig. 6.21.

Figure 6.21: E-actuator position adjustment due to wear in the lever

Development of the extrapolation factor

One observes from Figs. 6.10 and 6.9 to Figs. 6.14 and 6.13 that the wear profile becomes
increasingly smooth with increasing sliding distance, especially at the upper right contact.

6.3 Parametric Study on wear in the lever/bushing interface 93

This result is in agreement with reality even though the mesh is not extremely fine, which
shows that the selected critical extrapolation limit is reasonable. As the contact area becomes
larger, the wear depths at adjacent nodes become increasingly similar, which means that a
higher extrapolation factor is calculated towards the end of the simulation. The extrapolation
factors are plotted in Fig. 6.22 for each simulation cycle.

0 20 40 60 80 100 120 140 160 180
0

2000

4000

6000

8000

10000

12000
extrapolation factors

simulation cycles

ex
tr

ap
ol

at
io

n
fa

ct
or

Figure 6.22: Extrapolation factor vs. simulation cycle

One observes in Fig. 6.22 that the calculated maximum extrapolation factor varies quite
significantly from one simulation cycle to the next. However, there is also a clear upward
tendency in later cycles. The simulation is therefore accelerated once a larger contact area
is created. This means that with the current extrapolation technique, the bottleneck in the
wear simulation lies in establishing a uniform contact area where adjacent nodes experience
similar contact conditions. If the initially calculated wear depths have similar magnitudes
across each element, the contact conditions are not going to be changed significantly even if a
very large extrapolation factor is used. It is therefore reasonable to “pretend" that the same
wear depths will be calculated for all nodes if the same simulation is run for thousands of
cycles. The prescribed total sliding distance can thus be approached much faster.
Having confirmed that the results are reasonable in a qualitative sense, a parametric study is
performed with respect to different wear coefficients and the material’s elastic modulus.

6.3 Parametric Study on wear in the lever/bushing interface

Due to a shortage in empirical data, this study is cannot be expected to produce reliable
results in terms of absolute numbers. As discussed earlier, certain system specific input
parameters - most notably the magnitude and evolution of the wear coefficient - first have
to be determined by experiment before the wear simulation can even be validated. Accurate
quantitative predictions about e.g. the progression of material loss or the dimensions of the
wear profile are only meaningful on that basis.

94 Wear Simulation Results in the Lever/Bushing Interface

However, it would certainly be interesting to evaluate the wear simulation in a relative sense:
It might be worthwhile to observe how the simulation result will change if certain inputs are
varied within reasonable boundaries. Therefore, a parametric study was performed in which
the wear coefficient and the elastic modulus of the material are changed (separately) in order
to observe their impact on 1. the magnitude and progression of material loss, 2. the wear
profile and 3. the simulation speed as implied by the calculated extrapolation factor. Those
two quantities were selected since they do in fact tend to vary as the system is subjected
to different operation conditions. For example, the elastic modulus of the relevant material
varies by more than 30% between 115.9 GPa at 500◦C to 73.9 GPa at 1000◦C. As for the
wear coefficient, it is known that this parameter is also very sensitive to small variations in
the temperature or the material pairing. In fact, it might even be dependent on the geometry
itself, meaning that it may not stay constant as the wear profile continues to evolve under
otherwise constant environmental conditions.
The simulation routine in this case is performed until 186 m, or roughly 50% of the previous
sliding distance is reached in order to limit computation time to a manageable level. After
all, it is not necessary to simulate the entire duration of the endurance run if only a relative
comparison between simulation results is required. Apart from the total sliding distance,
the wear coefficient and the E-modulus, all other inputs to the lever/bushing system remain
unchanged. The next section will first consider the effect of different wear coefficients.

6.3.1 Parametric Study I: Increasing wear coefficients

The simulation routine illustrated in Fig. 6.8 is applied to the lever/bushing system with the
same inputs as shown in Tab. 6.1 (e.g. E = 90.7 GPa) and the following wear coefficients:

1. K = 2.2E-4 [mm3/Nm]

2. K = 3.1E-4 [mm3/Nm]

3. K = 5.0E-4 [mm3/Nm]

4. K = 7.2E-4 [mm3/Nm]

The values listed above were found in Meyer’s experimental study for various contact par-
ings that involve material 1.4848 [3], which is the material used in the relevant BMW B48
turbocharger model. They also represent a reasonable range of magnitudes that induce a
noticeable difference in the results.
The progression of material loss during the simulation is considered first. Fig. 6.23 shows the
lever’s volume loss due to wear as more sliding distance is covered:

6.3 Parametric Study on wear in the lever/bushing interface 95

50 100 150 200
0

10

20

30

40

50

60

70

sliding distance [m]

V
ol

um
e

lo
ss

 [m
m

3]

K = 2.2E−4 [mm3/Nm]

K = 3.1E−4 [mm3/Nm]

K = 5.0E−4 [mm3/Nm]

K = 7.2E−4 [mm3/Nm]

Figure 6.23: Volume loss vs. sliding distance for different wear coefficients

One observes in Fig. 6.23 that for all wear coefficients, volume loss is in general proportional
to the sliding distance covered by the lever’s rotation, despite the fact that the contact area
is known to become larger as more material is removed. This also implies that the average
wear depth over the wear profile must decrease continuously as more cycles are simulated.
The linear relation between the volume loss and sliding distance retrospectively confirm that
Archard’s simple equation for sliding wear is in fact consistent with the results it produces,
even though it is applied to an interaction where the contact area is not constant. The ap-
proximately linear relation is also shown in the total wear volume produced with the different
wear coefficients. Fig. 6.24 shows the total volume loss at 186 m sliding distance for the
values of K that have been considered:

96 Wear Simulation Results in the Lever/Bushing Interface

2 3 4 5 6 7 8

x 10
−4

10

20

30

40

50

60

70

Wear coefficient K [mm3/Nm]

T
ot

al
 V

ol
um

e
lo

ss
 [m

m
3]

Figure 6.24: Total volume loss vs. wear coefficient at 186 m sliding distance

For higher values of the wear coefficient, at K = 5.0E-4 [mm3/Nm] and K = 7.2E-4 [mm3/Nm],
one also observes a noticeable “kink" in the two longer graphs in Fig. 6.23, where the rate
of volume loss apparently transitions from a higher value to one that is slightly lower. This
anomaly might be the effect of an excessively large extrapolation factor: Since the externally
applied forces at the ends of the lever are maintained at a constant magnitude of 100 N,
the normal force in the contact area should in theory also remain unchanged. According to
Archard’s equation, the wear volume per unit sliding distance should in this case also be
constant. However, if at some point the extrapolation factor changed the contact geometry
significantly, the normal force experienced by individual nodes might be different from that
they were in the first simulation cycles. Therefore, a kink the the graphs for volume loss
likely indicates that the critical wear depth difference for calculating the extrapolation factor
should be decreased.
Another interesting characteristic that can be observed in Fig. 6.23 is that the graphs start
at different sliding distance values: For example, at K = 2.2E-4 [mm3/Nm] the first registered
number of volume loss corresponds to a sliding distance of 118.11 m, while at K = 7.2E-4
[mm3/Nm] the first value for sliding distance is only 53.1 m. This discrepancy is related to
the applied extrapolation method: After the first simulation cycle, a non-zero wear depth is
typically only registered at a single node. The calculated wear depth at this node is also very
small, such that a large extrapolation factor is required to magnify this value to the critical
threshold of 0.1 mm. This means that the first simulation cycle is able to represent a very
long sliding distance if the initially calculated wear depth is extremely small. Therefore, it
is obvious that a higher wear coefficient would in this case decrease the extrapolation factor,
thus increasing the time required to accomplish the prescribed sliding distance. The number
of performed simulation cycles and the approximate total simulation time are shown for the
respective wear coefficients in Tab. 6.2:

6.3 Parametric Study on wear in the lever/bushing interface 97

Wear coefficient K [mm3/Nm] Number of simulation cycles Total simulation time [hrs]
2.2E-4 59 14.8
3.1E-4 76 19.0
5.0E-4 169 42.3
7.2E-4 258 64.5

Table 6.2: Number of simulations and time required for different wear coefficients

Tab. 6.2 shows that the number of simulation cycles and therefore the total required simu-
lation time increases for higher wear coefficients. This outcome makes sense because a large
wear coefficient leads to higher values for the immediately calculated wear depths at individ-
ual nodes. Since the mesh size is the same in all simulations, a proportionally larger wear
depth also leads to more significant differences across a single element. Consequently, the
extrapolation factors calculated in each simulation cycle are going to be smaller, meaning
that the total sliding distance is approached at a slower rate. The extrapolation factors de-
termined in each simulation cycle are shown in Figs. 6.25 - 6.28. The first entries are again
omitted because they are significantly larger than the rest of the numbers and would make
the graphs unreadable. Also, the last extrapolation factors are in all cases very small because
the total represented sliding distance is programmed to not exceed 186 m.
The graphs are plotted in separate pictures to improve visibility.

0 10 20 30 40 50 60
1000

2000

3000

4000

5000

6000

7000

8000

Simulation Cycle

ex
tr

ap
ol

at
io

n
fa

ct
or

 [−
]

Figure 6.25: Extrapolation factors for
K = 2.2E-4 [mm3/Nm] calculated in
each simulation cycle

0 10 20 30 40 50 60 70 80
1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Simulation Cycle

ex
tr

ap
ol

at
io

n
fa

ct
or

 [−
]

Figure 6.26: Extrapolation factors for
K = 3.1E-4 [mm3/Nm] calculated in
each simulation cycle

98 Wear Simulation Results in the Lever/Bushing Interface

0 20 40 60 80 100 120 140 160 180
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Simulation Cycle

ex
tr

ap
ol

at
io

n
fa

ct
or

 [−
]

Figure 6.27: Extrapolation factors for
K = 5.0E-4 [mm3/Nm] calculated in
each simulation cycle

0 50 100 150 200 250 300
500

1000

1500

2000

2500

3000

3500

4000

4500

Simulation Cycle

ex
tr

ap
ol

at
io

n
fa

ct
or

 [−
]

Figure 6.28: Extrapolation factors for
K = 7.2E-4 [mm3/Nm] calculated in
each simulation cycle

One observes in Figs. 6.25 - 6.28 that the extrapolation factors are indeed in general smaller
for higher wear coefficients, even though the values vary over a significant range. The numbers
again tend to increase in later cycles, which indicates an increasingly uniform wear profile.

6.3.2 Parametric Study II: Decreasing elastic modulus

It would also be interesting to see how wear behaves if only the elastic modulus is changed
while the wear coefficient stays constant. It is known that the wastegate system usually
operates at temperatures ranging from approximately 400 - 1000◦C, depending on the com-
ponent’s relative position to the exhaust outlets and the current engine operating condition.
For example, Meyer’s investigations have shown that at high engine loads, the bushing mate-
rial right next to the turbine inlet experiences a maximum temperature of 965◦C. The lever’s
temperature at approximately the same position was measured to be 825◦C [3] (the temper-
ature is understandably lower since the lever is for the most part covered by the bushing).
On the other hand, at the same engine loads temperatures on the other end were found to be
675◦C and 640◦C for lever and bushing, respectively. The temperature difference therefore
varies quite substantially over a single component, which means that the wear damage found
at the opposite ends of lever and bushing might also turn out to be dissimilar.
As mentioned in the previous section, Meyer was able to determine the wear coefficients for
different material pairings at various temperatures, but none of the investigated material pair-
ings was found to be the same as the ones used for the relevant BMW wastegate system. The
impact of the wear coefficient has also been assessed in the last subchapter, so the parametric
study is now going to focus on another material property that is known to be influenced by
temperature.
The elastic modulus of most metal alloys show a significant decrease from lower to higher
temperatures. Tab. 6.3 shows the E-modulus of the 1.4848 material (an austenitic stainless
cast steel with high contents of silicon and carbon).

6.3 Parametric Study on wear in the lever/bushing interface 99

Temperature [◦C] E-modulus [GPa]
500 115.9
800 90.7
900 82.3
1000 73.9

Table 6.3: E-modulus of material 1.4848 at different temperatures

As one observes in Tab. 6.3, the material’s E-modulus at 500◦C will decrease up to 36.2% at
twice the temperature. A lower E-modulus means that elastic deformations in the part are
larger for the same loading. One can imagine that this might affect the contact conditions,
in that the contact areas might increase for higher elastic strains. The following parametric
study will therefore investigate the wear behavior for the E-modulus numbers listed in Tab.
6.3 at a constant wear coefficient of 2.2E-4 [mm3/Nm]. All loadings and boundary conditions
are again given in Tab. 6.1, and the simulation is again extrapolated to a total sliding distance
of 186 m.
The graph in Figs. 6.29 and 6.30 show the progression of the wear volume with sliding
distance.

110 120 130 140 150 160 170 180 190
0

5

10

15

sliding distance [m]

V
ol

um
e

lo
ss

 [m
m

3]

500 deg C
800 deg C
900 deg C

Figure 6.29: Volume loss vs. sliding dis-
tance for various E-modulus

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

sliding distance [m]

V
ol

um
e

lo
ss

 [m
m

3]

1000 deg C

Figure 6.30: Volume loss vs. sliding dis-
tance for E = 73.9 GPa (at 1000◦)

As one observes in Figs. 6.29 and 6.30, the wear volume history for an E-modulus of 82.3 GPa,
90.7 GPa and 115.9 GPa are very similar, but at E = 73.9 GPa the numbers are suddenly
much larger. The graph for E = 73.9 GPa had to be plotted separately or else the other
three graphs cannot be distinguished from one another. This outcome is rather bizarre if one
considers that 73.9 GPa is not much lower than the next highest value (82.3 GPa). In fact,
the difference between the 73.9 GPa and 82.3 GPa is lower than the difference between 90.7
GPa and 115.9 GPa. It is therefore quite peculiar that the results should suddenly be so
different when E is lowered by another 10 GPa.
This phenomenon is most likely a consequence of the extrapolation scheme. The graphs in
Fig. 6.29 all start at approximately the same sliding distance of 118 m, meaning that the

100 Wear Simulation Results in the Lever/Bushing Interface

first extrapolation factor was able to advance the simulation by more than 50% of the total
distance (this is again because a non-zero wear depth was registered at a single node in the
first cycle, and that value was so small that it could be extrapolated to a huge extent before
the contact geometry is changed significantly). However, this is not the case at E = 73.9 GPa
since the the first extrapolation represents a sliding distance of only 17 m. Tab. 6.4 shows
the magnitude of the extrapolation factor in the first cycle in each case:

E-modulus [GPa] 115.9 90.7 82.3 73.9
First extrapolation factor [-] 483069 483050 483053 69420

Table 6.4: Extrapolation factor in first simulation cycle for different E-moduli

As one observes in Tab. 6.4, the initial extrapolation factors at E = 115.9 GPa - E = 82.3
GPa are all very similar, but the value at E = 73.9 GPa is lower by a factor of 10. This
indicates that there is a certain threshold in the E-modulus at which the contact condition in
the first simulation cycle becomes significantly different. For example, it is likely that at E =
73.9 GPa the elastic deformations are large enough such that contact is established at more
than one node in the first cycle. In that case, the relative slip at any of the contact nodes
might be much greater than what is possible if only one node had been in contact. This idea
is illustrated in Figs. 6.31 and 6.32 in an exaggerated fashion:

Figure 6.31: Small elastic deformation:
contact only registered at 1 node

Figure 6.32: Large elastic deformation:
contact at multiple nodes

If only one node is in contact, as shown in Fig. 6.31, this single contact cannot be maintained

6.3 Parametric Study on wear in the lever/bushing interface 101

for very long if the rotation does not exceed one element length. This means that the relative
slip at the contact node (which is only registered while the node is in contact) is very small, and
so the calculated wear depth is also very small. On the other hand, if the elastic deformation
is sufficiently large such that a finite area of contact containing multiple nodes is established,
relative slip can be maintained for much longer before contact is lost. In that case, the
calculated wear depths at one node (such as the center node in Fig. 6.32) might be much
larger than at adjacent nodes where contact is lost much sooner, leading to a big difference
in the calculated wear depth and a small extrapolation factor.
This outcome shows that one should perhaps re-evaluate the mesh refinement in relation to
the prescribed rotation range. In theory, even if there is only a point contact, this point
contact should be transferred to different nodes as the lever rotates in the bushing. On the
other hand, a finer mesh might not necessarily have an impact on the large difference in the
extrapolation factors, since the wear depth differences are still expected to be very small with
this adjustment (because all nodes that successively come into contact during the rotation
should experience a similar relative slip distance). It is therefore possible that the outcome
might indeed correspond to reality in some way. There might really be a lower limit in the
E-modulus where the total incurred volume loss at the end of the complete simulation is
suddenly much greater, due to the slightly larger contact area in the beginning. It is possible
that at higher values of the E-modulus, a very large number of rotation cycles is in fact
required to increase the tiny contact area. Once a larger contact area is established, the
material loss occurs much faster (meaning that much more material is lost per cycle than at
the beginning of the process).
The extrapolation factors calculated after the first simulation cycle are shown in Figs. 6.33 -
6.36 for the different E-moduli:

0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

7000

Simulation Cycle

ex
tr

ap
ol

at
io

n
fa

ct
or

Figure 6.33: Extrapolation factors for
E = 115.9 GPa calculated in each sim-
ulation cycle

0 10 20 30 40 50 60
1000

2000

3000

4000

5000

6000

7000

8000

Simulation Cycle

ex
tr

ap
ol

at
io

n
fa

ct
or

Figure 6.34: Extrapolation factors for
E = 90.7 GPa calculated in each sim-
ulation cycle

102 Wear Simulation Results in the Lever/Bushing Interface

0 10 20 30 40 50 60 70
1000

2000

3000

4000

5000

6000

7000

Simulation Cycle

ex
tr

ap
ol

at
io

n
fa

ct
or

Figure 6.35: Extrapolation factors for
E = 82.3 GPa calculated in each sim-
ulation cycle

0 20 40 60 80 100 120
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Simulation Cycle

ex
tr

ap
ol

at
io

n
fa

ct
or

Figure 6.36: Extrapolation factors for
E = 73.9 GPa calculated in each sim-
ulation cycle

As one observes in Figs. 6.33 - 6.36, the extrapolation factors calculated after the first cycle
are not significantly different in each case (at least not as different as the initial values shown
in Tab. 6.4). Tab. 6.5 shows the average extrapolation factors in each case from the 2nd
cycle:

E-modulus [GPa] 115.9 90.7 82.3 73.9
Average extrapolation factor [-] 4198 4608 4160 6059

Table 6.5: Average extrapolation factor from 2nd to last cycle

As one observes in Tab. 6.5, the average extrapolation factor at E = 73.9 GPa is in fact larger
than at higher E-moduli, but it is not in an entirely different order of magnitude. This results
shows again that the total volume loss at the end of the simulation depends very much on the
first significant cycle, i.e. the first cycle in which a significant difference in the wear depth is
registered. If this cycle occurs early, for example in case E = 73.9 GPa, then the process is
able to produce appreciable volume loss over a very long time period. If the first significant
cycle occurs much later, wear damage will have a much shorter time to develop (which is also
shown in Figs. 6.29 and 6.30).
In conclusion, this parametric study has shown that the extent of wear in the lever bushing
interface is highly dependent on the size of the initial contact area, and therefore on the
magnitude of the initial elastic deformations.

6.4 Summary

In this chapter, the derived wear simulation routine was applied to a simplified shaft/bush-
ing assembly that was supposed to represent the lever/bushing interaction in the wastegate
system. First, it was shown that it is indeed possible to generate a similar wear profile as the
one found in Meyer’s empirical study. The input file simulation routine can thus be used in

6.4 Summary 103

future studies to predict wear quantitatively if material specific wear coefficients are available.
Compared to the wear profile of the lever that was subjected to a similar load case at BMW,
the simulated profile was found to be more idealized, i.e. more smooth and continuous. This
discrepancy was attributed to the presence of more unconventional damage modes, such as
wedging or fracture, that were not taken into consideration in the wear simulation. It was
also found that the linear progress of material loss corresponded with the linear repositioning
of the electric actuator that was necessary to adjust for an optimum wastegate opening angle
as wear damage continues to change the lever’s geometry.
The second part of this chapter involved a parametric study with respect to the wear co-
efficient and the material’s elastic modulus at various operating temperatures. In the first
instance it was found that a higher wear coefficient indeed leads to increased total volume
loss at the end of the simulation. In addition, it was observed that the simulation time is
also proportional to the wear coefficient. This is mainly due to the applied extrapolation
scheme, as the extrapolation factors are smaller if a greater wear depth is calculated in each
simulation cycle.
The second parametric study assessed the impact of the material’s E-modulus. It was found
that for E-moduli at temperatures of 500◦C - 900◦C the magnitude and progression of ma-
terial loss are only very slightly different, while at 1000◦C (with E = 73.9 GPa) a sudden
and significant increase was observed. This phenomenon was caused by an earlier onset of
appreciable volume loss: Since the initial contact area between lever and bushing is larger for
greater elastic deformations, it takes fewer cycles to change the initial geometry significantly.
Wear thus had a longer time to develop, which led to more material loss at the end of the
process. This observation showed that the extent of wear damage might be closely related to
the initial contact area.
This chapter thus concludes the most important work done in this thesis project. In the
following, Ch. 7 will present the conclusions and discuss the most essential topics that need
to be addressed in future studies.

104 Wear Simulation Results in the Lever/Bushing Interface

Chapter 7

Conclusions and Recommendations

This chapter presents the main conclusions of this thesis project and identifies the most
critical problems in need of further study and improvement. The outcome of this assignment,
its main scientific contribution and its significance to the client company are first going to be
clarified in the following section.

7.1 Conclusions and Relevance of Simulation Methodology

The main conclusions of the current study are described in the following:

1. Over the course of this thesis project a comprehensive methodology was developed for
the simulation of wear in a general dynamic system. The selected approach combines
Abaqus’ integrated adaptive meshing technique with an automated routine that uses
Abaqus/CAE to repeatedly import new model definitions, modify their features, and
submit them for analysis. Changes in the geometry created within a certain load cycle
are determined in post-processing and transferred to the subsequent wear simulation
analysis. This method makes it possible to investigate the effect of an arbitrary number
of load cycles, and can also be adjusted to execute until certain criteria are met. The use
of a post-processing step also facilitates the implementation of an extrapolation scheme
to expedite the simulation of a damage process that, in reality, develops over a duration
that otherwise would be very impractical for FE calculations. The wear simulation
further includes measures to account for the proper definition of wear directions at
geometric discontinuities such as edges and corners. Those procedures make it possible
to achieve a valid representation of the wear-induced geometric changes in generic three-
dimensional parts with arbitrary surface orientations.

2. The simulation so far only considers sliding wear as defined by Archard’s model, since
sliding wear between the wastegate’s lever/bushing interface was found to produce the
most severe wear damage in the system. Other types of wear can be included in the

106 Conclusions and Recommendations

routine without changing the overall structure of the script as it is only necessary to
modify the wear-depth calculation procedures in the post-processing step.

3. The derived wear simulation routine is accessible and easy to use, but was found to
contain an error that arises due to the loss of the stress state from one analysis to the
next. This error could be corrected for simple systems by reversing the imported elastic
deformations in order to limit the changes in the contact area, but it was acknowledged
that the correction might be less straight-forward for more complicated interactions or
load cases. It is therefore concluded that one must at least ensure that changes in the
contact conditions due to import are eliminated.

4. By applying the simulation routine to a simplified system that is representative of
the lever/bushing assembly of the wastegate, it was demonstrated that a qualitatively
reasonable wear profile can be produced. Therefore, one can reasonably assume that
accurate quantitative predictions could be achieved if appropriate wear coefficients are
found. A parametric study using the same model definition and load case showed that
the simulation time depends on the magnitude of the wear coefficient, and that the total
volume loss is related to the material’s elastic modulus.

5. The current simulation routine provides a quick an easy way to assess the impact of
different input parameters on the development of sliding wear for simple systems. For
example, users at the client company may wish to compare the results produced with
different wear coefficients and determine the inputs that generate the outcome that is
most similar to reality. (This is of course only reasonable if reliable wear coefficients
are found in advance.) Also, the routine can be easily expanded to include other wear
models, additional contact interactions, or more advanced extrapolation schemes. The
significance of the work in the current study is therefore that it produced a generic,
flexible wear simulation procedure that can be augmented in several ways. The most
critical augmentations that should be considered in future studies are proposed in the
next paragraphs.

7.2 Recommendations for future studies

The current study evidently was not able to address all relevant issues related to the simulation
of wear in turbocharger wastegates. In addition, this report has shown that there are in
fact several problems that could not be fully solved and therefore require more extensive
investigation. The first part of this chapter will therefore discuss improvements that directly
relate to the work done in this study, and the second part will suggest more advanced topics
for consideration such that one can eventually achieve a comprehensive wear simulation that
is more specific to the wastegate system.

7.2.1 Improvements on work done in the current study

There are three notable issues that have been addressed but not fully explored over the course
of this assignment:

7.2 Recommendations for future studies 107

1. As Ch. 5.2 has shown, the input file method will introduce errors to the contact solution
if no adjustments are made to remove the imported elastic deformations. If the load
case is not periodic but follows a more complicated pattern, it is likely that there is
no easy solution to correct for that error without affecting the continued motion of the
system. To improve the validity of the input file method, methods to transfer the stress
state should be investigated in more detail. For example, it might be possible to import
the latest stress state from a previous analysis. It is not immediately clear whether this
is possible with a mesh that has been modified by adaptive meshing, but it is certainly
a technique that is worth exploring.

2. Secondly, Ch. 4 discussed the many difficulties that eventually prevented the imple-
mentation of a successful restart routine. A simulation method based on restart would
in fact not introduce any errors as it is the most “natural" way to continue the same
analysis after some kind of post-processing has been performed. The stress state would
be carried over from one step to the next by default. Though it is certainly difficult to
automate the restart routine, the simulation could be accomplished with more in-depth
research.

3. And finally, one could try to find different ways to apply the wear simulation to the
entire wastegate system. The small time scale of the existing dynamic simulation that
nevertheless requires an extremely long computation time certainly poses a great chal-
lenge. It must be acknowledged, however, that the most accurate contact behavior in a
certain interface can only be obtained if the motion of the entire system is taken into ac-
count. One could possibly explore different methods such as submodelling or remeshing
in certain intervals. It might also be interesting to see how the changed lever geometry
might retroactively affect the dynamic motion of the complete wastegate system. For
that purpose, individual parts that have been modified with the wear simulation routine
must be inserted back into the assembly.

7.2.2 General topics to be considered in more advanced studies

To continue the research on wastegate wear simulations productively, it is recommended that
prospective investigators consider the following suggestions:

1. The wear simulation must be connected more directly to specific experimental data
and observations. In order to achieve a more targeted simulation, material and system-
specific information must be obtained. For example, it is likely that the wear coefficient
will vary at different stages of the wear process, or that certain unusual damage mech-
anisms are activated somewhere along the way. Only by closely observing the behavior
of a specific interaction is it possible to determine what kind of wear phenomena the
simulation is supposed to reproduce. For instance, it was shown in Ch. 6 that the
wear profile of the lever subjected to sliding wear in the engine endurance testing is
noticeably different from the ideal wear profile that should in theory result from simple
sliding wear. Therefore, it is important to find out what exactly led to the irregular
wear profile. If e.g. wedging or plastic deformations are found to significantly affect the
wear behavior, the simulation routine should include those effects. A validation of the
numerical results is only possible if all relevant processes have been accounted for.

108 Conclusions and Recommendations

2. If one intends to include the more precise, high-frequency gas pulsation loads as well as
a more accurate description of the actuator movement, it is necessary to accelerate the
wear simulation with more advanced extrapolation schemes. So far, the extrapolation
is performed in one dimension, meaning that it is only possible to enhance the wear
depth at nodes where it already has a non-zero value. This limits the speed of the
extrapolation as the technique is not intended to change the contact area itself. If a
method can be found that is able to extrapolate the wear depth incurred at individual
nodes to adjacent nodes, the wear simulation could become considerably faster. It will
certainly be challenging to find a reasonable way to determine the magnitude of the
“virtual" wear depths and to validate the procedure with a real wear profile.

3. Finally, the the simulation routine should be expanded to include additional wear mod-
els and equations. For example, it is known that impact wear is very important in
the flap/lever interface as it leads to material loss as well as plastic deformations. An
appropriate impact wear equation should exhibit the same simplicity and dependency
on FE solution variables as Archard’s equation.

References

[1] J.K. Miller. Turbo - Real World High-Performance Turbocharger Systems, volume 1.
CarTech Inc., 2008.

[2] M. Wibmer, T. Schmidt, O. Grabherr, and B. Durst. Simulation of turbocharger waste-
gate dynamics. Motortechnische Zeitschrift (MTZ), 76(2):28–31, February 2015.

[3] K. Meyer. Hochtemperatur-VerschleiÃ§verhalten der Wastegate-Lagerung von Abgas-
turboladern fÃĳr Otto-Motoren. Ph. d. dissertation, Otto-von-Guericke-UniversitÃďt
Magdeburg, October 2011.

[4] G.W. Stachoviak and A.W. Batchelor. Engineering Tribology. Butterworth-Heinemann,
4 edition, 2013.

[5] P. Podra and S. Andersson. Simulating sliding wear with finite element method. Tribology
International, 32:71–81, 1999.

[6] A. SÃűderberg and S. Andersson. Simulation of wear and contact pressure distribution
at the pad-to-rotor interface in a disk brake using general purpose finite element analysis
software. Wear, 267:2243–2251, 2009.

[7] V. Hegadekatte, N. Huber, and O. Kraft. Finite element based simulation of dry sliding
wear. Modelling and Simulation in Materials Science and Engineering, 13:57–75, 2005.

[8] E.M. Bortoleto, A.C. Rovani, V. Seriacopi, F.J. Profito, D.C. Zachariadis, I.F. Machado,
A. Sinatora, and R.M. Souza. Experimental and numerical analysis of dry contact in the
pin on disk test. Wear, 301:19–26, 2013.

[9] F.J. Martinez, M. Canales, S. Izquierdo, M.A. Jimenez, and M.A. Martinez. Finite ele-
ment implementation and validation of wear modelling in sliding polymer-metal contacts.
Wear, 284:52–64, 2012.

[10] H Czichos and K. Habig. Tribologie-Handbuch: Tribometrie, Tribomaterialien, Tribotech-
nik, volume 3. Vieweg + Teubner Verlag, 2010.

110 References

[11] G. Banish. Engine Management, volume 1. CarTech Inc., 2007.

[12] J.A. Williams. Engineering Tribology, volume 1. Oxford University Press, 1994.

[13] R. Holm. Electric Contacts, volume 4. Springer, 1967.

[14] J.F. Archard and W. Hirst. The wear of metals under unlubricated conditions. Proceed-
ings of the Royal Society of London, 236(1206):397–410, 1956.

[15] M. Oquist. Numerical simulations of mild wear using updated geometry with different
step size approaches. Wear, 249:6–11, 2001.

[16] A. Rezaei, W. Van Paepegem, P. De Baets, W. Ost, and J. Degriek. Adaptive finite
element simulation of wear evolution in radial sliding bearings. Wear, 296:660–671, 2012.

[17] N.H. Kim, D. Won, D. Burris, B. Holtkamp, G.R. Gessel, P. Swanson, and W.G. Sawyer.
Finite element analysis and experimens of metal/metal wear in oscillatory contacts. Wear,
258:1787–1793, 2005.

[18] C. Mattheck. Design in Nature. Springer, 1998.

[19] Dassault Systemes. Abaqus User’s Manual, 6-14 edition, 2014.

[20] P.D. Lax and B. Wendroff. Difference schemes for hyperbolic equations with high order
of accuracy. Communications on Pure and Applied Mathematics, 17:381–398, 1964.

[21] Dassault Systemes. Abaqus User Subroutines Reference Guide, 6-14 edition, 2014.

[22] Dassault Systemes. Abaqus Example Problems Manual, 6-14 edition, 2014.

[23] T. Schmidt. Mischreibung und VerschleiÃ§ in Hydraulikdichtsystemen - Modellbildung,
Simulation und experimentelle Analyse. Ph. d. dissertation, Gottfried Wilhelm Leibniz
UniversitÃďt Hannover, November 2011.

[24] Dassault Systemes. Abaqus Verification Guide, 6-14 edition, 2014.

[25] Dassault Systemes. Abaqus/CAE User’s Guide, 6-14 edition, 2014.

[26] Dassault Systemes. Abaqus Scripting Reference Guide, 6-14 edition, 2014.

[27] S. Mukras, N.H. Kim, W.G. Sawyer, D.B. Jackson, and W.B. Lawrence. Numerical
integration schemes and parallel computation for wear prediction using finite element
method. Wear, 266:822–831, 2009.

Appendix A

General Wear Simulation Script

A.1 Python Code for Input File Wear Simulation Method

1 """
2 Gen.py
3
4 general wear simulation script
5
6 - parameterized for input files with unique node and element labels
7 - must be run in Abaqus/CAE
8 - runs umeshmotion_simplified2
9

10 """
11 import time
12 from abaqus import∗
13 from abaqusConstants import∗
14 backwardCompatibility . setValues (includeDeprecated=True , reportDeprecated=

False)
15
16
17 startTime = time . time ()
18 print ’Start Time: ’ , startTime
19
20 inputFileInput = getInput (prompt=’Input File (no file extension): ’)
21 inputFile = inputFileInput
22
23 firstRun = 1
24 numCycle = 0
25 relativeSliding = 0.0
26 numCycles = [1]
27 VOLC = 0.0
28 totalSliding = 100 #some big number
29
30 while relativeSliding < totalSliding :

112 General Wear Simulation Script

31
32 #SECTION I: initial analysis (dynamic analysis)
33 #create model from input file
34
35 numCycle = numCycle + 1
36
37 if firstRun == 1 :
38
39 myModel = mdb . ModelFromInputFile (name=inputFile+str (’

DynamicWearModel’) , inputFileName= inputFile+str (’.inp’))
40
41 #get surfaces
42
43 surfaces = myModel . rootAssembly . surfaces . keys ()
44 surfaceNumbers = [0] ∗ len (surfaces)
45 surfCount1 = 0
46 for i in range (len (surfaces)) :
47 surfCount1 = surfCount1 + 1
48 surfaceNumbers [i] = surfCount1 , surfaces [i]
49
50 surfCount2 = 0
51 for surf in surfaces :
52 surfCount2 = surfCount2 + 1
53 print str (surfCount2)+’. ’+ surf + ’\n’
54
55 #get element sets
56
57 instanceKey = myModel . rootAssembly . instances . keys ()
58
59 elementSets = myModel . rootAssembly . instances [instanceKey [0]] .

sets . keys () + myModel . rootAssembly . sets . keys ()
60 allExistingNodes = myModel . rootAssembly . instances [instanceKey

[0]] . nodes
61 numberAllInitialNodes = len (allExistingNodes)
62
63
64 elsetNumbers = [0] ∗ len (elementSets)
65 elsetCount1 = 0
66 for i in range (len (elementSets)) :
67 elsetCount1 = elsetCount1 + 1
68 elsetNumbers [i] = elsetCount1 , elementSets [i]
69
70 elsetCount2 = 0
71 for elset in elementSets :
72 elsetCount2 = elsetCount2 + 1
73 print str (elsetCount2)+’. ’+ elset + ’\n’
74
75
76 surfaceString = ’Ablation Surface(s): ’ + ’\n’ + ’(Select

number from message area)’
77 aleDomainString = ’ALE adpative domain(s): ’ + ’\n’ + ’(

Select number from message area)’
78

A.1 Python Code for Input File Wear Simulation Method 113

79 fieldStrings = [[’Total real sliding distance’ ,’’] , [’wearStep
’ ,’’] , [surfaceString , ’’] , [’Wear Coefficient K: ’ ,’’] ,

80 [’Critical Wear Depth Difference: ’ ,’’] , [
aleDomainString , ’’] , [’Simulation Cycles’ ,’
’] , [’extrapolation Factor’ ,’’] ,

81 [’Relative Sliding Distance in 1 Cycle’ , ’’] ,
[’Tie Node Label’ ,’’]]

82
83 inputData = getInputs (fields=fieldStrings , dialogTitle =’

Input Data’)
84
85 ErrorMessage = ’Error: Enter <"Real sliding distance" and "

Critical Wear Depth Difference"> OR <"Simulation cycles"
and "Extrapolation Factor">’

86
87 if inputData [0] != ’’ and inputData [6] != ’’ :
88 warning = getWarningReply (message=ErrorMessage , buttons=(YES ,

NO , CANCEL))
89 break
90 elif inputData [0] != ’’ and inputData [7] != ’’ :
91 warning = getWarningReply (message=ErrorMessage , buttons=(YES ,

NO , CANCEL))
92 break
93 elif inputData [4] != ’’ and inputData [6] != ’’ :
94 warning = getWarningReply (message=ErrorMessage , buttons=(YES ,

NO , CANCEL))
95 break
96 elif inputData [4] != ’’ and inputData [7] != ’’ :
97 warning = getWarningReply (message=ErrorMessage , buttons=(YES ,

NO , CANCEL))
98 break
99

100 if inputData [8] != ’’ :
101 relativeSliding1Cycle = float (inputData [8])
102
103 if inputData [0] != ’’ and inputData [7]==’’ :
104 totalSliding = float (inputData [0])
105 elif inputData [7] != ’’ and inputData [0]==’’ :
106 totalSliding = relativeSliding1Cycle∗int (inputData [6]) ∗int (

inputData [7])
107
108 surfaceKeys = inputData [2] . split (’,’)
109 for i in range (len (surfaceKeys)) :
110 surfaceKeys [i] = int (surfaceKeys [i])
111
112 ablationSurfaces = []
113 for number in surfaceKeys :
114 ablationSurfaces . append (surfaceNumbers [number −1] [1])
115
116 # ALE adaptive Domains for later
117
118 elsetKeys = inputData [5] . split (’,’)
119 for i in range (len (elsetKeys)) :

114 General Wear Simulation Script

120 elsetKeys [i] = int (elsetKeys [i])
121
122 aleElementDomains = []
123 for number in elsetKeys :
124 aleElementDomains . append (elsetNumbers [number −1] [1])
125
126 # assume that only relevant steps are included in input file
127
128 #get history output for specified surfaces
129
130 surfaceNodes = [0] ∗ len (surfaceKeys)
131 surfaceNodesSet = [0] ∗ len (surfaceKeys)
132 for i in range (len (ablationSurfaces)) :
133 surfaceNodes [i] = myModel . rootAssembly . surfaces [ablationSurfaces [i

]] . nodes
134 surfaceNodesSet [i] = myModel . rootAssembly . Set (name=ablationSurfaces

[i]+’Set’ , nodes=surfaceNodes [i])
135
136 historyItemCount = 0
137 for i in range (len (surfaceNodesSet)) :
138 historyItemCount = historyItemCount + 1
139 myModel . HistoryOutputRequest (createStepName=inputData [1] ,
140 frequency=1, name=’ContactHistory’+str (historyItemCount) , rebar=

EXCLUDE , region=
141 surfaceNodesSet [i−1] , sectionPoints=DEFAULT , variables=(’CSTRESS’ ,

’CDISP’ , ’CAREA’))
142
143 dynamicJob = mdb . Job (name=inputFile+str (’_dynamic1’) , model=myModel

, numDomains = 8 , numCpus=8)
144 dynamicJob . writeInput ()
145 myModel . setValues (noPartsInputFile=ON)
146 dynamicJob . submit ()
147 dynamicJob . waitForCompletion ()
148
149
150 # subsequent cycles
151 elif firstRun != 1 :
152
153 myModel = mdb . ModelFromInputFile (name=inputFile+str (’

DynamicWearModel’) , inputFileName= inputFile+str (’_mod.inp
’))

154
155 #get history output for specified surfaces
156
157 surfaceNodes = [0] ∗ len (surfaceKeys)
158 surfaceNodesSet = [0] ∗ len (surfaceKeys)
159 for i in range (len (ablationSurfaces)) :
160 surfaceNodes [i] = myModel . rootAssembly . surfaces [ablationSurfaces [i

]] . nodes
161 surfaceNodesSet [i] = myModel . rootAssembly . Set (name=ablationSurfaces

[i]+’Set’ , nodes=surfaceNodes [i])
162
163 historyItemCount = 0

A.1 Python Code for Input File Wear Simulation Method 115

164 for i in range (len (surfaceNodesSet)) :
165 historyItemCount = historyItemCount + 1
166 myModel . HistoryOutputRequest (createStepName=inputData [1] ,
167 frequency=1, name=’ContactHistory’+str (historyItemCount) ,

rebar=EXCLUDE , region=
168 surfaceNodesSet [i] , sectionPoints=DEFAULT , variables=(’

CSTRESS’ , ’CDISP’ , ’CAREA’))
169
170 dynamicJob = mdb . Job (name=inputFile+str (’_dynamic’) , model=

myModel , numDomains = 8 , numCpus=8)
171 myModel . setValues (noPartsInputFile=ON)
172 dynamicJob . writeInput ()
173 dynamicJob . submit ()
174 dynamicJob . waitForCompletion ()
175
176
177 #

####**

178
179
180 ##SECTION II: Post-processing
181
182 #Calculate Ablation Depths
183
184 from odbAccess import ∗
185 from odbMaterial import∗
186 from odbSection import∗
187 from itertools import chain
188 import numpy as np
189
190 if firstRun == 1 :
191 odbPath = inputFile+str (’_dynamic1.odb’)
192 else :
193 odbPath = inputFile+str (’_dynamic.odb’)
194
195 odb = openOdb (path=odbPath)
196
197 allNodesDynamic = odb . rootAssembly . instances [’PART -1-1’] . nodes
198
199 # !! if there is a coupling node:
200
201 if inputData [9] != str (’’) :
202 missingNodeDefinition = []
203 for node in allNodesDynamic :
204 if node . label == int (inputData [9]) :
205 missingNodeDefinition . append (’ ’ + ’ ’ + ’ ’ + str (

node . label) +’,’ + ’ ’ + str (node . coordinates
[0]) +

206 ’,’ + ’ ’ + str (node . coordinates [1]) +’,’ + ’ ’ + str (
node . coordinates [2]))

207 # !!!!
208

116 General Wear Simulation Script

209
210 ablationNodeSets = [0] ∗ len (ablationSurfaces)
211 for i in range (len (ablationSurfaces)) :
212 ablationNodeSets [i]= ablationSurfaces [i]+’SET’
213
214 contactNodes = [0] ∗ len (ablationNodeSets)
215 for i in range (len (ablationNodeSets)) :
216 contactNodes [i] = odb . rootAssembly . instances [’PART -1-1’] . nodeSets [

ablationNodeSets [i]] . nodes
217
218 allContactNodes = contactNodes [0]
219 for i in range (len (contactNodes)−1) :
220 allContactNodes = allContactNodes + contactNodes [i+1]
221
222 allContactNodeLabels = [node . label for node in allContactNodes]
223
224
225 # assign variables to all frames in odb:
226
227 histPointContact = []
228 for i in range (0 , len (allContactNodes)) :
229 histPointContact . append (HistoryPoint (node=allContactNodes [i]))
230
231
232 ContactRegionAll = []
233 for i in range (0 , len (histPointContact)) :
234 ContactRegionAll . append (odb . steps [inputData [1]] . getHistoryRegion (

point=histPointContact [i]))
235
236
237 #

#---

238
239
240 cpressData= []
241 contactNodeData = []
242 cslip1Data = []
243 cslip2Data = []
244
245 outputKeys = ContactRegionAll [0] . historyOutputs . keys ()
246
247 for i in range (0 , len (ContactRegionAll)) :
248 cpressData . append (ContactRegionAll [i] . historyOutputs [outputKeys [1]] .

data)
249 cslip1Data . append (ContactRegionAll [i] . historyOutputs [outputKeys [4]] .

data)
250 cslip2Data . append (ContactRegionAll [i] . historyOutputs [outputKeys [5]] .

data)
251
252 def f (t) :
253 if type (t) == list or type (t) == tuple :
254 return [f (i) for i in t]

A.1 Python Code for Input File Wear Simulation Method 117

255 return t
256
257
258
259 cpressData_list = f ([list (i) for i in cpressData])
260 cslip1Data_list = f ([list (i) for i in cslip1Data])
261 cslip2Data_list = f ([list (i) for i in cslip2Data])
262
263
264 #Compute incremental cslip and avg. cpress
265
266 cslip1_delta = [[[cslip1Data_list [k] [i+1] [j] − cslip1Data_list [k] [i] [j]

for j in range (len (cslip1Data_list [k] [i]))]
267 for i in range (len (cslip1Data_list [k])−1)] for k in range (len (

cslip1Data_list))]
268
269 cslip2_delta = [[[cslip2Data_list [k] [i+1] [j] − cslip2Data_list [k] [i] [j]

for j in range (len (cslip2Data_list [k] [i]))]
270 for i in range (len (cslip2Data_list [k])−1)] for k in range (len (

cslip2Data_list))]
271
272 cslip_delta_mgnt = [[[cslip1_delta [k] [i] [0] , np . sqrt ((cslip1_delta [k] [i

] [1]) ∗∗2 + (cslip2_delta [k] [i] [1]) ∗∗2)]
273 for i in range (len (cslip1_delta [k]))] for k in range (len (cslip1_delta

))]
274
275 cpress_avg = [[[cpressData_list [k] [i+1] [0] − cpressData_list [k] [i] [0] ,

0 . 5∗ (cpressData_list [k] [i+1] [1] + cpressData_list [k] [i] [1])]
276 for i in range (len (cpressData_list [k])−1)] for k in range (len (

cpressData_list))]
277
278 #Compute ablation depths
279 K = float (inputData [3])
280
281 ablation_delta = [[[cslip1_delta [k] [i] [0] , K∗cpress_avg [k] [i] [1] ∗

cslip_delta_mgnt [k] [i] [1]]
282 for i in range (len (cslip1_delta [k]))] for k in range (len (cslip1_delta

))]
283
284 ablation_delta_noTime = [[[ablation_delta [k] [i] [1]] for i in range (len (

ablation_delta [0]))] for k in range (len (ablation_delta))]
285
286
287 ablation_total = []
288 for k in range (len (ablation_delta_noTime)) :
289 ablation_total . append (sum (ablation_delta_noTime [k]))
290
291
292 #

#--

293
294 # find extrapolation factor

118 General Wear Simulation Script

295
296 if inputData [4] != ’’ :
297 nodesAndAblation_numbers = [0] ∗ 2
298 nodesAndAblation_numbers [0] = [allContactNodeLabels [i] for i in

range (len (allContactNodeLabels))]
299 nodesAndAblation_numbers [1] = [ablation_total [j] for j in range (

len (ablation_total))]
300
301 # get element connectivity
302
303 contactElements = [0] ∗ len (ablationSurfaces)
304
305 for i in range (len (ablationSurfaces)) :
306 contactElements [i] = odb . rootAssembly . surfaces [ablationSurfaces [i

]] . elements [0]
307
308 allContactElements = contactElements [0]
309 for i in range (len (contactElements)−1) :
310 allContactElements = allContactElements + contactElements [i+1]
311
312
313 connectedContactNodes = [[0] ∗ 8] ∗ len (allContactElements)
314 connectedContactNodes_corrected = [0] ∗ len (allContactElements)
315 for i in range (len (connectedContactNodes)) :
316 connectedContactNodes [i] = allContactElements [i] . connectivity
317 connectedContactNodes_corrected [i] = [connectedContactNodes [i] [k]

for k in range (len (connectedContactNodes [i])) if
connectedContactNodes [i] [k] in allContactNodeLabels]

318
319 ablationIndex = [0] ∗ len (connectedContactNodes_corrected)
320 for i in range (len (connectedContactNodes_corrected)) :
321 ablationIndex [i] = [nodesAndAblation_numbers [0] . index (

connectedContactNodes_corrected [i] [j]) for j in range (len (
connectedContactNodes_corrected [0]))]

322
323
324 ablationElements = [0] ∗ len (ablationIndex)
325 for i in range (len (ablationIndex)) :
326 ablationElements [i] = [nodesAndAblation_numbers [1] [j] for j in

ablationIndex [i]]
327
328
329 ## obtain ablation depth difference
330
331 ablationElementDelta = [0] ∗ len (ablationElements)
332 for i in range (len (ablationElements)) :
333 ablationElementDelta [i] = [abs (ablationElements [i] [0] −

ablationElements [i] [−1]) , abs (ablationElements [i] [1] −
ablationElements [i] [0]) ,

334 abs (ablationElements [i] [2] − ablationElements [i] [1]) , abs (
ablationElements [i] [3] − ablationElements [i] [2]) ,

335 abs (ablationElements [i] [2] − ablationElements [i] [0]) , abs (
ablationElements [i] [3] − ablationElements [i] [1])]

A.1 Python Code for Input File Wear Simulation Method 119

336
337
338 ## check if ablation difference exceeds critical value
339
340 ablationDeltaCritical = float (inputData [4])
341
342 maxAblationDifferenceElements = []
343 for i in range (len (ablationElementDelta)) :
344 maxAblationDifferenceElements . append (max (ablationElementDelta [i]))
345
346 maxAblationDifference = max (maxAblationDifferenceElements)
347
348 # Difference between max. ablation difference and critical value:
349
350 diffToCritical = ablationDeltaCritical − maxAblationDifference
351
352 if maxAblationDifference != 0 :
353 maxScalingFactor = floor (ablationDeltaCritical/

maxAblationDifference)
354 print ’maxScalingFactor ’+str (numCycle)+ ’:’ , maxScalingFactor
355 else :
356 maxScalingFactor = 1
357 print ’maxScalingFactor ’+str (numCycle)+ ’:’ , maxScalingFactor
358
359 if relativeSliding > totalSliding :
360 maxScalingFactor = ceil ((totalSliding−slidingTemp) /

relativeSliding1Cycle)
361 print ’maxScalingFactor_corrected: ’ , maxScalingFactor
362
363 # calculate scaled wear depths
364
365 elif inputData [4] == ’’ :
366 maxScalingFactor = int (inputData [7])
367
368
369
370 relativeSliding = relativeSliding + (maxScalingFactor∗

relativeSliding1Cycle)
371
372 print ’relativeSliding ’+str (numCycle)+ ’:’ , relativeSliding
373
374
375 # general contact
376
377 if maxScalingFactor > 1 . 0 :
378 for i in range (len (ablation_total)) :
379 ablation_total [i] = (ablation_total [i] ∗ maxScalingFactor)
380
381 # combine node labels with ablation data
382
383 nodesAndAblation = []
384 for l in range (len (allContactNodeLabels)) :

120 General Wear Simulation Script

385 nodesAndAblation . append (str (allContactNodeLabels [l]) + ’ ’ + ’ ’ + ’
’ + str (ablation_total [l]))

386
387 writeFile = open (’ablation.txt’ ,’w’)
388 writeFile2 = open (’ablation’+str (numCycle)+’.txt’ ,’w’)
389
390 for nodeAblation in nodesAndAblation :
391 writeFile . write (nodeAblation + ’\n’)
392 writeFile2 . write (nodeAblation + ’\n’)
393
394 writeFile . close ()
395 writeFile2 . close ()
396
397
398 #

399
400 # Generate element connectivity file and adaptive constraint nodes file

in 1st cycle
401 if firstRun == 1 :
402 elementConnFile = open (’elementConnectivity.txt’ ,’w’)
403 aleConstraintNodesFile = open (’aleConstraintNodes.txt’ ,’w’)
404
405 ablationElements = [0] ∗ len (ablationSurfaces)
406 ablationNodes = [0] ∗ len (ablationSurfaces)
407 for i in range (len (ablationSurfaces)) :
408 ablationElements [i] = odb . rootAssembly . surfaces [

ablationSurfaces [i]] . elements [0]
409 ablationNodes [i] = odb . rootAssembly . surfaces [ablationSurfaces [i

]] . nodes [0]
410
411 allAblationElements= ablationElements [0]
412 for i in range (len (ablationElements)−1) :
413 allAblationElements = allAblationElements + ablationElements [i+1]
414
415 allAblationNodes= ablationNodes [0]
416 for i in range (len (ablationNodes)−1) :
417 allAblationNodes = allAblationNodes + ablationNodes [i+1]
418
419 ablationElementLabels = []
420 ablationNodeLabels = []
421 ablationElementConnectivity = []
422
423 for element in allAblationElements :
424 ablationElementLabels . append (str (element . label))
425 ablationElementConnectivity . append (str (element . connectivity))
426
427 for node in allAblationNodes :
428 ablationNodeLabels . append (str (node . label))
429
430 ablationElementConnectivityStr = [0] ∗ len (

ablationElementConnectivity)

A.1 Python Code for Input File Wear Simulation Method 121

431 for i in range (len (ablationElementConnectivity)) :
432 ablationElementConnectivityStr [i] = ablationElementConnectivity [i] .

replace (’(’ , ’, ’) . replace (’)’ , ’’)
433
434 ablationElementDefinitions = [0] ∗ len (ablationElementLabels)
435 for i in range (len (ablationElementLabels)) :
436 ablationElementDefinitions [i] = ablationElementLabels [i] +

ablationElementConnectivityStr [i]
437
438 # write to text file
439
440 for line in ablationElementDefinitions :
441 elementConnFile . write (line + ’\n’)
442
443 for line in ablationNodeLabels :
444 aleConstraintNodesFile . write (line + ’\n’)
445
446 elementConnFile . close ()
447 aleConstraintNodesFile . close ()
448
449 odb . close ()
450
451 #

######***

452
453 #SECTION III
454
455
456 from abaqus import∗
457 from abaqusConstants import∗
458 backwardCompatibility . setValues (includeDeprecated=True ,

reportDeprecated=False)
459
460 if firstRun == 1 :
461 myModel2 = mdb . ModelFromOdbFile (name=inputFile+str (’_static’) ,

odbFileName=inputFile+str (’_dynamic1.odb’))
462 else :
463 myModel2 = mdb . ModelFromOdbFile (name=inputFile+str (’_static’) ,

odbFileName=inputFile+str (’_dynamic.odb’))
464
465 #static step(s)
466
467 import step
468 import regionToolset
469
470 myModel2 . StaticStep (name=’ablationStep’ , previous=’Initial’ ,
471 timePeriod=1.1 , initialInc=0.1 , minInc=1.0E−5, maxInc=0.1 ,
472 maxNumInc=10000 , nlgeom=ON , description=’apply ablation from dynamic

analysis’) # set timePeriod to 1.0+timeIncrement
473
474
475 #adaptive mesh controls

122 General Wear Simulation Script

476
477 myAdaptiveMeshControl = myModel2 . AdaptiveMeshControl (name=’

adaptiveMeshControls’ , originalConfigurationProjectionWeight = 0 .5 ,
478 standardVolumetricSmoothingWeight = 0 . 5)
479
480 # adaptive mesh domains
481
482 ##get regions for adaptive mesh domain
483
484 aleMeshDomains = [0] ∗ len (aleElementDomains)
485
486 for i in range (len (aleElementDomains)) :
487 aleMeshDomains [i] = myModel2 . rootAssembly . instances [’PART -1-1’] .

sets [aleElementDomains [i]] . elements
488
489 completeAleMeshDomains = aleMeshDomains [0]
490 for i in range (len (aleMeshDomains)−1) :
491 completeAleMeshDomains = completeAleMeshDomains + aleMeshDomains [i

+1]
492
493
494 completeAleDomainRegion = regionToolset . Region (elements=

completeAleMeshDomains)
495 #Define adaptive mesh domains for steps
496
497
498 aleMeshDomain = myModel2 . steps [’ablationStep’] . AdaptiveMeshDomain (

region= completeAleDomainRegion , frequency=1, initialMeshSweeps=3,
499 meshSweeps=3, controls=’adaptiveMeshControls’)
500
501
502 #make some sets for history output
503
504 aleDomainSet = [0] ∗ len (aleMeshDomains)
505
506 for i in range (len (aleMeshDomains)) :
507 aleDomainSet [i] = myModel2 . rootAssembly . Set (name=str (

aleElementDomains [i])+’_ALEDOMAIN’ , elements =
completeAleMeshDomains)

508
509 completeAleMeshDomainSet = myModel2 . rootAssembly . Set (name=str (’

completeAleMeshDomainSet’) , elements = completeAleMeshDomains)
510
511 #get history output for volume loss
512
513 volHistOutput = [0] ∗ len (aleDomainSet)
514
515 for i in range (len (aleDomainSet)) :
516 volHistOutput [i] = myModel2 . HistoryOutputRequest (createStepName=’

ablationStep’ ,
517 frequency=1, name=str (aleElementDomains [i]+’

_VOL/VOLC’) , rebar=EXCLUDE ,

A.1 Python Code for Input File Wear Simulation Method 123

518 region=aleDomainSet [i] , sectionPoints=DEFAULT ,
variables=(’VOL’ , ’VOLC’))

519
520
521 #

##---

522
523 #adpative mesh constraint
524
525 #get regions for adaptive mesh constraint domain
526
527 aleConstraintNodes = [0] ∗ len (ablationSurfaces)
528
529 for i in range (len (ablationSurfaces)) :
530 aleConstraintNodes [i] = myModel2 . rootAssembly . surfaces [str (

ablationSurfaces [i])] . nodes
531
532 completeAleConstraintNodes = aleConstraintNodes [0]
533 for i in range (len (aleConstraintNodes)−1) :
534 completeAleConstraintNodes = completeAleConstraintNodes +

aleConstraintNodes [i+1]
535
536 completeAleConstraintSet = myModel2 . rootAssembly . Set (name=’

completeAleConstraintSet’ , nodes = completeAleConstraintNodes)
537
538 #define ale constraint regions
539
540 aleConstraintRegions = [0] ∗ len (aleConstraintNodes)
541 for i in range (len (aleConstraintNodes)) :
542 aleConstraintRegions [i] = regionToolset . Region (nodes=

aleConstraintNodes [i])
543
544 #define adaptive mesh constraints
545
546 aleConstraints = [0] ∗ len (aleConstraintRegions)
547 for i in range (len (aleConstraintRegions)) :
548 aleConstraints [i] = myModel2 .

DisplacementAdaptiveMeshConstraint (name=ablationSurfaces
[i] , createStepName = ’ablationStep’ ,

549 region=aleConstraintRegions [i] , motionType = USER_DEFINED)
550
551
552 instanceKeys = myModel2 . rootAssembly . instances . keys ()
553
554 allElements = [0] ∗ len (instanceKeys)
555 for i in range (len (instanceKeys)) :
556 allElements [i] = myModel2 . rootAssembly . instances [instanceKeys [i]] .

elements
557
558
559 partKeys = myModel2 . parts . keys ()
560 c1 = 0

124 General Wear Simulation Script

561 wrongElement = [0] ∗ len (instanceKeys)
562 for i in range (len (instanceKeys)) :
563 for element in allElements [i] :
564 c1 = c1 + 1
565 if len (element . connectivity) == 1 :
566 wrongElement [i] = myModel2 . parts [partKeys [i]] .

elements [c1−1]
567 myModel2 . parts [partKeys [i]] . deleteElement (elements=

wrongElement [i])
568
569
570 #

--

571
572
573 ##suppress constraints
574 #constraints might be a problem in adaptive meshing
575
576 constraintNames = myModel2 . constraints . keys ()
577
578 for constr in constraintNames :
579 myModel2 . constraints [constr] . suppress ()
580
581 #static analysis
582
583 import job
584
585 staticJob = mdb . Job (name=inputFile+str (’_static’) , model=myModel2 ,

userSubroutine=’umeshmotion_simplified2.f’)
586 myModel2 . setValues (noPartsInputFile=ON)
587 staticJob . writeInput ()
588 time . sleep (5)
589
590 #

--

591
592 #"""
593 #rewrite node coordinates in input file
594
595 #"""
596
597 from abaqus import∗
598 from abaqusConstants import∗
599 backwardCompatibility . setValues (includeDeprecated=True ,

reportDeprecated=False)
600 from odbAccess import ∗
601 from odbMaterial import∗
602 from odbSection import∗
603
604
605 myModel3 = mdb . Model (name=inputFile+’Temp’)

A.1 Python Code for Input File Wear Simulation Method 125

606
607 odbPath = inputFile+str (’_dynamic’)+’.odb’
608
609 #Open output database
610
611 odbDynamic = openOdb (path=odbPath)
612 tempPart = myModel3 . PartFromOdb (name=inputFile+’TempPart’ , odb=

odbDynamic , shape=DEFORMED , step=−1)
613
614
615 #get node coordinates of all nodes in odb
616
617 allNodes = tempPart . nodes
618 numberAllNodes = len (allNodes)
619 diffNodes = numberAllInitialNodes − numberAllNodes
620
621 # Get all nodes after ablation
622
623
624 lengthOdbNodes = len (allNodes)
625
626 nodeLabels = []
627 nodeCoordinates = []
628 for node in allNodes :
629 nodeLabels . append (node . label)
630 nodeCoordinates . append (node . coordinates)
631
632
633 # create list of strings
634
635
636 nodeDefinitionString = []
637 for i in range (len (nodeLabels)) :
638 nodeDefinitionString . append (’ ’ + ’ ’ + ’ ’ + str (nodeLabels [i]) +’,’

+ ’ ’ + str (nodeCoordinates [i] [0]) +
639 ’,’ + ’ ’ + str (nodeCoordinates [i] [1]) +’,’ + ’ ’ + str (

nodeCoordinates [i] [2]))
640
641
642
643 modifiedInputFile = inputFile+str (’_staticInput.inp’)
644 initialInputFile = inputFile+str (’_static.inp’)
645 readFile = open (initialInputFile , ’r’)
646 writeFile = open (modifiedInputFile , ’w’)
647
648
649 lineCount = 0
650 nodeDefinitionStarted = 0
651 nodeDefinitionEnded = 0
652 for i , line in enumerate (readFile) :
653 lineCount = lineCount + 1
654 if str (’*Node’) in line and nodeDefinitionStarted != 1 :
655 nodeDefinitionStarted = 1

126 General Wear Simulation Script

656 startLine = lineCount
657 elif str (’*’) in line and nodeDefinitionStarted == 1 and

nodeDefinitionEnded !=1:
658 endLine = lineCount
659 nodeDefinitionEnded = 1
660
661
662 readFile . seek (0 , 0)
663 lineCount2 = 0
664
665 for i , line in enumerate (readFile) :
666 lineCount2 = lineCount2 + 1
667 if lineCount2 > (startLine) and lineCount2 < endLine :
668 writeFile . write (str (nodeDefinitionString [lineCount2−(startLine+1)])

+ ’\n’)
669 else :
670 writeFile . write (str (line))
671
672
673 writeFile . close ()
674 readFile . close ()
675 odbDynamic . close ()
676
677 modifiedInputJob = mdb . JobFromInputFile (name=inputFile+str (’

_staticInput’) , inputFileName=inputFile+str (’_staticInput.inp’) ,
userSubroutine=’umeshmotion_simplified2.f’)

678 modifiedInputJob . submit ()
679 modifiedInputJob . waitForCompletion ()
680
681 #

#---

682
683
684 #"""
685 #rewrite node coordinates in input file
686
687 #"""
688
689 from abaqus import∗
690 from abaqusConstants import∗
691 backwardCompatibility . setValues (includeDeprecated=True ,

reportDeprecated=False)
692 from odbAccess import ∗
693 from odbMaterial import∗
694 from odbSection import∗
695
696 myModel3 = mdb . Model (name=inputFile+’Temp’)
697
698 odbPath = inputFile+str (’_staticInput’)+’.odb’
699
700 #Open output database
701

A.1 Python Code for Input File Wear Simulation Method 127

702 odbStatic = openOdb (path=odbPath)
703 tempPart = myModel3 . PartFromOdb (name=inputFile+’TempPart’ , odb=

odbStatic , shape=DEFORMED , step=−1)
704
705 allNodesStatic = odbStatic . rootAssembly . instances [’PART -1-1’] . nodes
706
707 diffNodes = len (allNodesDynamic) − len (allNodesStatic)
708 if diffNodes != 0 and inputData [9] == ’’ :
709 warning = getWarningReply (message=’Node missing. Check if there

are coupling nodes and enter coupling node label’ , buttons=(
YES , NO , CANCEL))

710 break
711
712 #get node coordinates of all nodes in odb
713
714 allNodes = tempPart . nodes
715 numberAllNodes = len (allNodes)
716
717 # Get all nodes after ablation
718
719
720 lengthOdbNodes = len (allNodes)
721
722 nodeLabels = []
723 nodeCoordinates = []
724 for node in allNodes :
725 nodeLabels . append (node . label)
726 nodeCoordinates . append (node . coordinates)
727
728
729 # create list of strings
730
731
732 nodeDefinitionString = []
733 for i in range (len (nodeLabels)) :
734 nodeDefinitionString . append (’ ’ + ’ ’ + ’ ’ + str (nodeLabels [i]) +’,’

+ ’ ’ + str (nodeCoordinates [i] [0]) +
735 ’,’ + ’ ’ + str (nodeCoordinates [i] [1]) +’,’ + ’ ’ + str (

nodeCoordinates [i] [2]))
736
737 if inputData [9] != ’’ :
738 nodeDefinitionString . append (missingNodeDefinition [0])
739
740 modifiedInputFile = inputFile+str (’_mod.inp’)
741 initialInputFile = inputFile+str (’.inp’)
742 readFile = open (initialInputFile , ’r’)
743 writeFile = open (modifiedInputFile , ’w’)
744
745
746 # find node definition lines
747
748 countParts = 0
749 for line in readFile :

128 General Wear Simulation Script

750 if str (’** PART INSTANCE’) in line :
751 countParts = countParts + 1
752
753
754 readFile . seek (0 , 0)
755
756 lineCount = 0
757 startLine = [0] ∗ countParts
758 endLine = [0] ∗ countParts
759 nodeDefinitionStarted = [0] ∗ countParts
760 nodeDefinitionEnded = [0] ∗ countParts
761
762 j = 0
763 for i , line in enumerate (readFile) :
764 lineCount = lineCount + 1
765 if nodeDefinitionEnded [−1] != 1 :
766 if str (’*Node’) in line and nodeDefinitionStarted [j] != 1 :
767 nodeDefinitionStarted [j] = 1
768 startLine [j] = lineCount
769 j = j + 1
770 elif str (’*’) in line and nodeDefinitionStarted [j−1] == 1 and

nodeDefinitionEnded [j−1] != 1 :
771 nodeDefinitionEnded [j−1] = 1
772 endLine [j−1] = lineCount
773
774
775 readFile . seek (0 , 0)
776
777 j = 0
778 lineCount2 = 0
779 itemCount = 0
780 allPartsDone = 0
781 for i , line in enumerate (readFile) :
782 lineCount2 = lineCount2 + 1
783 if j != countParts and (lineCount2) > (startLine [j]) and (

lineCount2) < (endLine [j]) and (itemCount + 1) :
784 itemCount = itemCount + 1
785 writeFile . write (str (nodeDefinitionString [itemCount−1]) + ’\n’)
786 if lineCount2 == endLine [j] − 1 :
787 j = j + 1
788 else :
789 writeFile . write (str (line))
790
791
792 # volume loss, sliding distance , extrapolation factor
793 odbStatic = openOdb (path = inputFile+str (’_staticInput.odb’))
794 historyRegionsKeys = odbStatic . steps [’ablationStep’] . historyRegions .

keys ()
795
796 VOLCCurrent = odbStatic . steps [’ablationStep’] . historyRegions [

historyRegionsKeys [1]] . historyOutputs [’VOLC’] . data [−1] [−1]
797 VOLC = VOLC − VOLCCurrent
798

A.1 Python Code for Input File Wear Simulation Method 129

799
800 VOLCFile = open (’VOLC.txt’ ,’a’)
801 slidingDistanceFile = open (’slidingDistance.txt’ ,’a’)
802 extrapolationFactorsFile = open (’extrapolationFactors.txt’ ,’a’)
803
804
805 VOLCFile . write (str (VOLC) + ’\n’)
806 slidingDistanceFile . write (str (relativeSliding) + ’\n’)
807 extrapolationFactorsFile . write (str (maxScalingFactor) + ’\n’)
808
809 VOLCFile . close ()
810 slidingDistanceFile . close ()
811 extrapolationFactorsFile . close ()
812
813
814
815 writeFile . close ()
816 readFile . close ()
817 odbStatic . close ()
818
819 firstRun = 2
820
821 #

--

822
823
824 # post-processing/visualization
825 if relativeSliding >= totalSliding :
826
827 """
828 add wear depth
829
830 """
831 numberOfAblationFiles = numCycle
832 wearFile = [0] ∗ numberOfAblationFiles
833 for i in range (0 , numberOfAblationFiles) :
834 wearFile [i] = open (’ablation’+str (i+1)+’.txt’ ,’r’)
835
836
837
838 data = [0] ∗ numberOfAblationFiles
839 for i in range (0 , numberOfAblationFiles) :
840 data [i] = []
841 for line in wearFile [i] :
842 data [i] . append (line . replace (’,’ ,’’) . replace (’\n’ ,’’) . split (’ ’))
843
844
845 for i in range (0 , numberOfAblationFiles) :
846 wearFile [i] . close ()
847
848
849 nodeLabels = []

130 General Wear Simulation Script

850 for item in data [0] :
851 nodeLabels . append (int (item [0]))
852
853
854 wearDepth = [0] ∗ numberOfAblationFiles
855 for i in range (0 , numberOfAblationFiles) :
856 wearDepth [i] = []
857
858 for i in range (0 , numberOfAblationFiles) :
859 for item in data [i] :
860 wearDepth [i] . append (float (item [3]))
861
862
863 wearDepthTotal = [0] ∗ len (wearDepth [0])
864 for j in range (len (wearDepth [0])) :
865 for i in range (0 , numberOfAblationFiles) :
866 wearDepthTotal [j] = wearDepthTotal [j] + wearDepth [i] [j]
867
868 wearTotalFile = open (’wearDepthTotal.txt’ , ’w’)
869
870
871 for i in range (len (wearDepthTotal)) :
872 wearTotalFile . write (str (nodeLabels [i]) + ’\t’ + str (

wearDepthTotal [i]) + ’\n’)
873
874
875 wearTotalFile . close ()
876
877 #

878
879 #static step(s)
880
881 myModel4 = mdb . ModelFromOdbFile (name=inputFile+str (’_visualizationModel

’) , odbFileName=inputFile+str (’_dynamic1.odb’))
882
883 import step
884 import regionToolset
885
886 myModel4 . StaticStep (name=’ablationStep’ , previous=’Initial’ ,
887 timePeriod=1.1 , initialInc=0.1 , minInc=1.0E−5, maxInc=0.1 ,
888 maxNumInc=10000 , nlgeom=ON , description=’apply ablation from dynamic

analysis’) # set timePeriod to 1.0+timeIncrement
889
890
891 #adaptive mesh controls
892
893 myAdaptiveMeshControl = myModel4 . AdaptiveMeshControl (name=’

adaptiveMeshControls’ , originalConfigurationProjectionWeight = 0 .5 ,
894 standardVolumetricSmoothingWeight = 0 . 5)
895
896 # adaptive mesh domains

A.1 Python Code for Input File Wear Simulation Method 131

897
898 ##get regions for adaptive mesh domain
899
900 aleMeshDomains = [0] ∗ len (aleElementDomains)
901
902 for i in range (len (aleElementDomains)) :
903 aleMeshDomains [i] = myModel4 . rootAssembly . instances [’PART -1-1’] .

sets [aleElementDomains [i]] . elements
904
905 completeAleMeshDomains = aleMeshDomains [0]
906 for i in range (len (aleMeshDomains)−1) :
907 completeAleMeshDomains = completeAleMeshDomains + aleMeshDomains [i

+1]
908
909
910 completeAleDomainRegion = regionToolset . Region (elements=

completeAleMeshDomains)
911 #Define adaptive mesh domains for steps
912
913
914 aleMeshDomain = myModel4 . steps [’ablationStep’] . AdaptiveMeshDomain (

region= completeAleDomainRegion , frequency=1, initialMeshSweeps=3,
915 meshSweeps=3, controls=’adaptiveMeshControls’)
916
917
918 #make some sets for history output
919
920 aleDomainSet = [0] ∗ len (aleMeshDomains)
921
922 for i in range (len (aleMeshDomains)) :
923 aleDomainSet [i] = myModel4 . rootAssembly . Set (name=str (

aleElementDomains [i])+’_ALEDOMAIN’ , elements =
completeAleMeshDomains)

924
925 completeAleMeshDomainSet = myModel4 . rootAssembly . Set (name=str (’

completeAleMeshDomainSet’) , elements = completeAleMeshDomains)
926
927 #get history output for volume loss
928
929 volHistOutput = [0] ∗ len (aleDomainSet)
930
931 for i in range (len (aleDomainSet)) :
932 volHistOutput [i] = myModel4 . HistoryOutputRequest (createStepName=’

ablationStep’ ,
933 frequency=1, name=str (aleElementDomains [i]+’

_VOL/VOLC’) , rebar=EXCLUDE ,
934 region=aleDomainSet [i] , sectionPoints=DEFAULT ,

variables=(’VOL’ , ’VOLC’))
935
936
937 #

##---

132 General Wear Simulation Script

938
939 #adpative mesh constraint
940
941 #get regions for adaptive mesh constraint domain
942
943 aleConstraintNodes = [0] ∗ len (ablationSurfaces)
944
945 for i in range (len (ablationSurfaces)) :
946 aleConstraintNodes [i] = myModel4 . rootAssembly . surfaces [str (

ablationSurfaces [i])] . nodes
947
948 completeAleConstraintNodes = aleConstraintNodes [0]
949 for i in range (len (aleConstraintNodes)−1) :
950 completeAleConstraintNodes = completeAleConstraintNodes +

aleConstraintNodes [i+1]
951
952 completeAleConstraintSet = myModel4 . rootAssembly . Set (name=’

completeAleConstraintSet’ , nodes = completeAleConstraintNodes)
953
954 #define ale constraint regions
955
956 aleConstraintRegions = [0] ∗ len (aleConstraintNodes)
957 for i in range (len (aleConstraintNodes)) :
958 aleConstraintRegions [i] = regionToolset . Region (nodes=

aleConstraintNodes [i])
959
960 #define adaptive mesh constraints
961
962 aleConstraints = [0] ∗ len (aleConstraintRegions)
963 for i in range (len (aleConstraintRegions)) :
964 aleConstraints [i] = myModel4 .

DisplacementAdaptiveMeshConstraint (name=ablationSurfaces
[i] , createStepName = ’ablationStep’ ,

965 region=aleConstraintRegions [i] , motionType = USER_DEFINED)
966
967
968 instanceKeys = myModel4 . rootAssembly . instances . keys ()
969
970 allElements = [0] ∗ len (instanceKeys)
971 for i in range (len (instanceKeys)) :
972 allElements [i] = myModel4 . rootAssembly . instances [instanceKeys [i]] .

elements
973
974
975 partKeys = myModel4 . parts . keys ()
976 c1 = 0
977 wrongElement = [0] ∗ len (instanceKeys)
978 for i in range (len (instanceKeys)) :
979 for element in allElements [i] :
980 c1 = c1 + 1
981 if len (element . connectivity) == 1 :
982 wrongElement [i] = myModel4 . parts [partKeys [i]] .

elements [c1−1]

A.1 Python Code for Input File Wear Simulation Method 133

983 myModel4 . parts [partKeys [i]] . deleteElement (elements=
wrongElement [i])

984
985
986 #

--

987
988
989 ##suppress constraints
990 #constraints might be a problem in adaptive meshing
991
992 constraintNames = myModel4 . constraints . keys ()
993
994 for constr in constraintNames :
995 myModel4 . constraints [constr] . suppress ()
996
997 #static analysis
998
999 import job

1000
1001 visualizationJob = mdb . Job (name=inputFile+str (’_visualization’) , model=

myModel4 , userSubroutine=’umeshmotion_simplified2_visualization.f’)
1002 myModel4 . setValues (noPartsInputFile=ON)
1003 visualizationJob . writeInput ()
1004 visualizationJob . submit ()
1005 visualizationJob . waitForCompletion ()
1006
1007 #

--

1008
1009 # create ablation field output
1010
1011 from odbAccess import∗
1012
1013 staticOdbName = inputFile+’_visualization.odb’
1014 staticOdb = openOdb (path=staticOdbName)
1015 staticOdbInstance = staticOdb . rootAssembly . instances [’PART -1-1’]
1016
1017 ablationFrames = [0] ∗ len (staticOdb . steps [’ablationStep’] . frames)
1018
1019 for i in range (len (ablationFrames)) :
1020 ablationFrames [i] = staticOdb . steps [’ablationStep’] . frames [i]
1021
1022
1023 ablationFile = open (’wearDepthTotal.txt’ , ’r’)
1024
1025 ablation = []
1026 for i , line in enumerate (ablationFile) :
1027 ablation . append (line . split ())
1028
1029

134 General Wear Simulation Script

1030 ablationFile . close ()
1031
1032 nodeLabels = [int (ablation [i] [0]) for i in range (len (ablation))]
1033 m = [0] ∗ len (ablationFrames)
1034 for i in range (len (m)) :
1035 m [i] = i ∗ (1 . 0/ len (ablationFrames))
1036
1037 ablationData = [0] ∗ len (ablationFrames)
1038 for j in range (len (ablationFrames)) :
1039 ablationData [j] = [[m [j]∗ float (ablation [i] [1])] for i in range (

len (ablation))]
1040
1041 # create field output object
1042
1043 ablationFieldOutput = [0] ∗ len (ablationFrames)
1044 for i in range (len (ablationFieldOutput)) :
1045 ablationFieldOutput [i] = ablationFrames [i] . FieldOutput (name=’Wear

Depth total @’ + str (totalSliding) , description=’Wear depths
read from text file’ , type=SCALAR)

1046
1047
1048 # add relevant data to field output object
1049
1050 for i in range (len (ablationFieldOutput)) :
1051 ablationFieldOutput [i] . addData (position=NODAL , instance=

staticOdbInstance , labels=nodeLabels , data=ablationData [i])
1052
1053
1054 staticOdb . save ()
1055 staticOdb . close ()

Appendix B

UMESHMOTION Subroutine 1

B.1 UMESHMOTION Subroutine 1: Node shift direction normal
to contact surface

1 INCLUDE ’umeshmotion_module.f’
2 INCLUDE ’umeshmotion_functions.f’
3 C
4 SUBROUTINE UMESHMOTION (UREF , ULOCAL , NODE , NNDOF , LNODETYPE , ALOCAL ,
5 1 NDIM , TIME , DTIME , PNEWDT , KSTEP , KINC , KMESHSWEEP , JMATYP , JGVBLOCK ,
6 2 LSMOOTH)
7 C
8 USE MODULE_UMESHMOTION ! LOAD MODULE
9 IMPLICIT NONE

10 C
11 C DECLARATION OF VARIABLES
12 C
13 INTEGER , PARAMETER : : NPRECD=2 ! PARAMETER FOR DOUBLE PRECISSION
14 C
15 INTEGER NODE , NNDOF , LNODETYPE , NDIM , KSTEP , KINC , KMESHSWEEP , LSMOOTH ,
16 1 FINDINDEX , FIRSTRUN , KINC_MEM , ZERO , K1 , K2
17 C
18 REAL∗8 UREF , DTIME , PNEWDT
19 C
20 REAL∗8 ULOCAL (NDIM) , ALOCAL (NDIM , ∗) , TIME (2) , JMATYP (∗) , JGVBLOCK (∗) ,
21 1 ARRAY (15)
22 C
23 C INITIAL VALUES FOR FIRST SUBROUTINE RUN
24 DATA FIRSTRUN /−1/
25 DATA KINC_MEM /0/
26 C
27 C ∗∗
28 C ∗ MAIN SECTION ∗
29 C ∗∗

136 UMESHMOTION Subroutine 1

30 C
31 C ONLY FOR FIRST SUBROUTINE RUN
32 IF (FIRSTRUN . EQ .−1) THEN
33 WRITE (6 ,∗) ’FIRSTRUN’
34 WRITE (6 ,∗) ’KINC:’ , KINC
35 ZERO = 0.0
36 FIRSTRUN=1
37 C PARAMETER FOR FIRST STEP
38 FIRSTSTEP=KSTEP
39 C GET WORKING DIRECTORY
40 CALL GETOUTDIR (OUTDIR , LENOUTDIR)
41 C GET JOBNAME
42 CALL GETJOBNAME (JOBNAME , LENJOBNAME)
43 C OUTOUT TO FILE
44 WRITE (6 ,∗) ’’
45 WRITE (6 ,∗) ’**’
46 WRITE (6 ,∗) ’STARTED UMESHMOTION’
47 WRITE (6 ,∗) ’FOR JOB: ’ , JOBNAME
48 WRITE (6 ,∗) ’IN WORKING DIRECTORY: ’ , OUTDIR
49 WRITE (6 ,∗) ’**’
50 WRITE (6 ,∗) ’’
51 FIRSTNODE=NODE
52 NODE_I=0
53 C DETERMINE TOTAL NUMBER OF LINES
54 NP=ZERO
55 STAT_R=ZERO
56 OPEN (400 , FILE=OUTDIR (1 : LENOUTDIR) //’/’//’aleConstraintNodes.

txt’ ,
57 1 STATUS=’OLD’ , ACTION=’READ’ , IOSTAT=STAT_O)
58 DO K1=1,MAXRECS
59 READ (400 ,∗ , IOSTAT=STAT_R) CONSTRAINTNODESCOUNTER
60 IF (STAT_R . NE . 0) EXIT
61 IF (K1 . EQ . MAXRECS) THEN
62 write (7 ,∗) ’Error: Maximum number of records exceeded

...’
63 write (7 ,∗) ’Exiting now...’
64 CALL XIT
65 ENDIF
66 NP = NP + 1
67 END DO
68 REWIND (400)
69 ALLOCATE (ALLCONSTRAINTNODES (NP))
70 READ (400 ,∗ , IOSTAT=STAT_R) ALLCONSTRAINTNODES
71 WRITE (6 ,∗) ’ALLCONSTRAINTNODES: ’ , ALLCONSTRAINTNODES
72 CLOSE (400)
73 NR=ZERO
74 STAT_R=ZERO
75 OPEN (300 , FILE=OUTDIR (1 : LENOUTDIR) //’/’//’elementConnectivity.

txt’ ,
76 1 STATUS=’OLD’ , ACTION=’READ’ , IOSTAT=STAT_O)
77 DO K1=1,MAXRECS
78 READ (300 ,∗ , IOSTAT=STAT_R) FIRST
79 IF (STAT_R . NE . 0) EXIT

B.1 UMESHMOTION Subroutine 1: Node shift direction normal to contact
surface 137

80 IF (K1 . EQ . MAXRECS) THEN
81 write (7 ,∗) ’Error: Maximum number of records exceeded

...’
82 write (7 ,∗) ’Exiting now...’
83 CALL XIT
84 ENDIF
85 NR = NR + 1
86 END DO
87 REWIND (300)
88 ALLOCATE (ALLELEM (9 , NR))
89 ALLOCATE (ALLELEM_TRANS (NR , 9))
90 READ (300 ,∗ , IOSTAT=STAT_R) ALLELEM
91 REWIND (300)
92 ALLELEM_TRANS=TRANSPOSE (ALLELEM)
93 WRITE (6 ,∗) ’ALLELEM_TRANS: ’ , ALLELEM_TRANS
94 CLOSE (300)
95 C READ ABLATION DATA
96 STAT_R=ZERO
97 OPEN (500 , FILE=OUTDIR (1 : LENOUTDIR) //’/’//’ablation.txt’ ,
98 STATUS=’OLD’ , ACTION=’READ’ , IOSTAT=STAT_O)
99 DO K1=1,MAXRECS

100 READ (500 ,∗ , IOSTAT=STAT_R) ABL
101 IF (STAT_R . NE . 0) EXIT
102 IF (K1 . EQ . MAXRECS) THEN
103 write (7 ,∗) ’Error: Maximum number of records exceeded

...’
104 write (7 ,∗) ’Exiting now...’
105 CALL XIT
106 ENDIF
107 NQ = NQ + 1
108 END DO
109 REWIND (500)
110 ALLOCATE (TOTAL_ABLATION (2 , NQ))
111 ALLOCATE (TOTAL_ABLATION_TRANS (NQ , 2))
112 READ (500 ,∗ , IOSTAT=STAT_R) TOTAL_ABLATION
113 WRITE (7 ,∗) ’READ TOTAL_ABLATION’
114 TOTAL_ABLATION_TRANS = TRANSPOSE (TOTAL_ABLATION)
115 DO K3=1,NQ
116 WRITE (7 ,∗) ’TOTAL_ABLATION: ’ , TOTAL_ABLATION_TRANS (K3

, :)
117 END DO
118 REWIND (500)
119 CLOSE (500)
120 ENDIF
121 C
122 C
123 IF (KMESHSWEEP . EQ . 0) THEN
124 C GET WEAR DEPTH
125 DO K1 = 1 , NQ
126 IF (NODE . EQ . TOTAL_ABLATION_TRANS (K1 , 1)) THEN
127 ABL_APPLIED = DTIME∗TOTAL_ABLATION_TRANS (K1 , 2)
128 END IF
129 END DO

138 UMESHMOTION Subroutine 1

130 IF (NDIM . EQ . 2) THEN
131 ULOCAL (2)=ULOCAL (2)−ABL_APPLIED
132 ELSEIF (NDIM . EQ . 3) THEN
133 C GET ELEMENTS CONNECTED TO NODE
134 NELEMS_CORRECT = 0
135 DO K1=1,NR
136 DO K2= 2 , 9
137 IF (NODE . EQ . ALLELEM_TRANS (K1 , K2)) THEN
138 NELEMS_CORRECT = NELEMS_CORRECT + 1
139 ENDIF
140 END DO
141 END DO
142 C ALLOCATE SIZE FOR NODES ARRAY
143 ALLOCATE (NODESELEM (NELEMS_CORRECT , 8))
144 IF (NELEMS_CORRECT . EQ . 2) THEN
145 NELEMS_CORRECT2 = 0
146 DO K1=1,NR
147 DO K2= 2 ,9
148 IF (NODE . EQ . ALLELEM_TRANS (K1 , K2)) THEN
149 NELEMS_CORRECT2 = NELEMS_CORRECT2 + 1
150 DO K3 = 1 , 8
151 NODESELEM (NELEMS_CORRECT2 , K3) = ALLELEM_TRANS

(K1 , K3+1)
152 END DO
153 ENDIF
154 END DO
155 END DO
156 C FIND NODES COMMON TO BOTH ELEMENTS
157 C2=ZERO
158 DO K2=1,8
159 DO K4=1,8
160 IF (NODESELEM (1 , K2) . EQ . NODESELEM (2 , K4)) THEN
161 C2=C2+1
162 COMMON_NODES (C2)=NODESELEM (1 , K2)
163 END IF
164 END DO
165 END DO
166 C FIND PERPENDICULAR NODE
167 C3=ZERO
168 DO K3=1,C2
169 DO K4=1,NP
170 IF (COMMON_NODES (K3) . EQ . ALLCONSTRAINTNODES (K4) .
171 AND . COMMON_NODES (K3) . NE . NODE) THEN
172 C3=C3+1
173 PERP_NODE=COMMON_NODES (K3)
174 END IF
175 END DO
176 END DO
177 C FIND SUBSURFACE NODES
178 C8= ZERO
179 DO K1=1,C2
180 C7=ZERO
181 DO K2=1,NP

B.1 UMESHMOTION Subroutine 1: Node shift direction normal to contact
surface 139

182 IF (COMMON_NODES (K1) . NE . ALLCONSTRAINTNODES (K2)) THEN
183 C7=C7+1
184 IF (C7 . EQ . NP) THEN
185 C8=C8+1
186 SUB_NODES (C8)=COMMON_NODES (K1)
187 END IF
188 END IF
189 END DO
190 END DO
191 C FIND NODES THAT ARE NOT SHARED BY JELEMLIST
192 C5=ZERO
193 DO K1=1,NELEMS_CORRECT
194 DO K2=1,8
195 C4=ZERO
196 DO K3=1,C2
197 IF (NODESELEM (K1 , K2) . NE . COMMON_NODES (K3)) THEN
198 C4=C4+1
199 IF (C4 . EQ . 4) THEN
200 C5=C5+1
201 NOTCOMMON_NODES (C5)=NODESELEM (K1 , K2)
202 END IF
203 END IF
204 END DO
205 END DO
206 END DO
207 C FIND NOTCOMMON_NODES THAT BELONG TO ADAPTIVE MESH CONSTRAINT

DOMAIN
208 C6=ZERO
209 DO K1=1,8
210 DO K2=1,NP
211 IF (NOTCOMMON_NODES (K1) . EQ . ALLCONSTRAINTNODES (K2))

THEN
212 C6=C6+1
213 SURF_NODES (C6)=NOTCOMMON_NODES (K1)
214 END IF
215 END DO
216 END DO
217 C FIND VECTORS FROM NODE TO SURF_NODES
218 C 1 . FIND COORDINATES OF SURFACE NODES
219 LTRN=0
220 DO K1=1,4
221 CALL GETVRN (SURF_NODES (K1) , ’COORD’ , ARRAY , JRCD ,

JGVBLOCK , LTRN)
222 DO K2=1,3
223 SURFNODE_COORDS (K1 , K2) = ARRAY (K2)
224 END DO
225 END DO
226 C 2 . FIND COORDINATES OF CURRENT NODE
227 CALL GETVRN (NODE , ’COORD’ , ARRAY , JRCD , JGVBLOCK , LTRN)
228 DO K3=1,3
229 NODE_COORDS (K3)=ARRAY (K3)
230 END DO
231 C 3 . FIND ALL SURFACE VECTORS

140 UMESHMOTION Subroutine 1

232 DO K4=1,4
233 DO K5=1,3
234 V_SURFNODES (K4 , K5)= SURFNODE_COORDS (K4 , K5)−

NODE_COORDS (K5)
235 END DO
236 MGNT_VSURFNODES (K4)=SQRT (V_SURFNODES (K4 , 1) ∗∗2+
237 V_SURFNODES (K4 , 2) ∗∗2+V_SURFNODES (K4 , 3) ∗∗2)
238 END DO
239 C 3 .1 FIND SHORTER VECTORS
240 DO K1=1,3
241 DO K2=K1+1,4
242 IF (MGNT_VSURFNODES (K1) . GT . MGNT_VSURFNODES (K2))

THEN
243 DO K3=1,3
244 TEMP_V (K3)=V_SURFNODES (K1 , K3)
245 V_SURFNODES (K1 , K3)=V_SURFNODES (K2 , K3)
246 V_SURFNODES (K2 , K3)=TEMP_V (K3)
247 END DO
248 TEMP_M=MGNT_VSURFNODES (K1)
249 MGNT_VSURFNODES (K1)=MGNT_VSURFNODES (K2)
250 MGNT_VSURFNODES (K2)=TEMP_M
251 END IF
252 END DO
253 END DO
254 C 4 . FIND UNIT VECTORS
255 DO K1=1,4
256 DO K2=1,3
257 V_SURFNODES_UNIT (K1 , K2)=V_SURFNODES (K1 , K2) /

MGNT_VSURFNODES (K1)
258 END DO
259 END DO
260 C
261 C FIND VECTOR FROM NODE TO PERP_NODE
262 CALL GETVRN (PERP_NODE , ’COORD’ , ARRAY , JRCD , JGVBLOCK , LTRN)
263 DO K3=1,3
264 V_PERPNODE (K3)= ARRAY (K3)−NODE_COORDS (K3)
265 END DO
266 MGNT_VPERPNODE=SQRT (V_PERPNODE (1) ∗∗2+V_PERPNODE (2)

∗∗2+V_PERPNODE (3) ∗∗2)
267 DO K4=1,3
268 V_PERPNODE_UNIT (K4)=V_PERPNODE (K4) /MGNT_VPERPNODE
269 END DO
270 C FIND VECTORS FROM NODE TO SUB_NODE (TAKE ARBITRARY SUB_NODE)
271 CALL GETVRN (SUB_NODES (1) , ’COORD’ , ARRAY , JRCD , JGVBLOCK , LTRN

)
272 DO K3=1,3
273 V_SUBNODE (K3)= ARRAY (K3)−NODE_COORDS (K3)
274 END DO
275 MGNT_VSUBNODE=SQRT (V_SUBNODE (1) ∗∗2+V_SUBNODE (2) ∗∗2+

V_SUBNODE (3) ∗∗2)
276 DO K4=1,3
277 V_SUBNODE_UNIT (K4)=V_SUBNODE (K4) /MGNT_VSUBNODE
278 END DO

B.1 UMESHMOTION Subroutine 1: Node shift direction normal to contact
surface 141

279 C FIND NORMAL VECTORS WITH CROSS PRODUCT
280 CROSS1_X=V_PERPNODE_UNIT (2) ∗V_SURFNODES_UNIT (1 , 3)−
281 V_PERPNODE_UNIT (3) ∗V_SURFNODES_UNIT (1 , 2)
282 CROSS1_Y=V_PERPNODE_UNIT (3) ∗V_SURFNODES_UNIT (1 , 1)−
283 V_PERPNODE_UNIT (1) ∗V_SURFNODES_UNIT (1 , 3)
284 CROSS1_Z=V_PERPNODE_UNIT (1) ∗V_SURFNODES_UNIT (1 , 2)−
285 V_PERPNODE_UNIT (2) ∗V_SURFNODES_UNIT (1 , 1)
286 NORM_EDGE_V (1 , 1)=CROSS1_X
287 NORM_EDGE_V (1 , 2)=CROSS1_Y
288 NORM_EDGE_V (1 , 3)=CROSS1_Z
289 MGNT_NORMEDGEV (1)=SQRT (NORM_EDGE_V (1 , 1) ∗∗2+NORM_EDGE_V

(1 , 2) ∗∗2+NORM_EDGE_V (1 , 3) ∗∗2)
290 C
291 CROSS2_X=V_PERPNODE_UNIT (2) ∗V_SURFNODES_UNIT (2 , 3)−
292 V_PERPNODE_UNIT (3) ∗V_SURFNODES_UNIT (2 , 2)
293 CROSS2_Y=V_PERPNODE_UNIT (3) ∗V_SURFNODES_UNIT (2 , 1)−
294 V_PERPNODE_UNIT (1) ∗V_SURFNODES_UNIT (2 , 3)
295 CROSS2_Z=V_PERPNODE_UNIT (1) ∗V_SURFNODES_UNIT (2 , 2)−
296 V_PERPNODE_UNIT (2) ∗V_SURFNODES_UNIT (2 , 1)
297 NORM_EDGE_V (2 , 1)=CROSS2_X
298 NORM_EDGE_V (2 , 2)=CROSS2_Y
299 NORM_EDGE_V (2 , 3)=CROSS2_Z
300 MGNT_NORMEDGEV (2)=SQRT (NORM_EDGE_V (2 , 1) ∗∗2+
301 NORM_EDGE_V (2 , 2) ∗∗2+NORM_EDGE_V (2 , 3)

∗∗2)
302 C FIND ANGLE BETWEEN NORM_EDGE AND V_SUBNODE_UNIT
303 DO K1=1,2
304 THETA (K1)=ACOS ((NORM_EDGE_V (K1 , 1) ∗V_SUBNODE_UNIT (1)+
305 NORM_EDGE_V (K1 , 2) ∗V_SUBNODE_UNIT (2)+
306 1 NORM_EDGE_V (K1 , 3) ∗V_SUBNODE_UNIT (3)) /(

MGNT_NORMEDGEV (K1)))
307 IF (THETA (K1) . GT . PI /2) THEN
308 NORM_EDGE_V (K1 , :)=−NORM_EDGE_V (K1 , :)
309 END IF
310 END DO
311 C VERIFY ANGLE
312 DO K1=1,2
313 THETA_VERIF (K1)=ACOS ((NORM_EDGE_V (K1 , 1) ∗

V_SUBNODE_UNIT (1)+
314 NORM_EDGE_V (K1 , 2) ∗V_SUBNODE_UNIT (2)+
315 1 NORM_EDGE_V (K1 , 3) ∗V_SUBNODE_UNIT (3))

/(MGNT_NORMEDGEV (K1)))
316 END DO
317 C FIND AVERAGE NORMAL
318 DO K1=1,3
319 SUM_NORMEDGE (K1)= NORM_EDGE_V (1 , K1)+NORM_EDGE_V (2 , K1)
320 END DO
321 MGNT_SUMNORMEDGE=SQRT (SUM_NORMEDGE (1) ∗∗2+SUM_NORMEDGE

(2) ∗∗2+SUM_NORMEDGE (3) ∗∗2)
322 DO K2=1,3
323 NORM_EDGE_AVG (K2)=(SUM_NORMEDGE (K2)) /(

MGNT_SUMNORMEDGE)
324 END DO

142 UMESHMOTION Subroutine 1

325 MGNT_NORMEDGEV_AVG=SQRT (NORM_EDGE_AVG (1) ∗∗2+
326 NORM_EDGE_AVG (2) ∗∗2+NORM_EDGE_AVG

(3) ∗∗2)
327 C CALULATE WEAR IN DIRECTION OF NORM_EDGE_AVG
328 DO K1=1,3
329 WEAR_GLOBAL (K1) = ABL_APPLIED ∗(NORM_EDGE_AVG (K1) /

MGNT_NORMEDGEV_AVG)
330 END DO
331 DO K1=1,3
332 WEAR_LOCAL (K1)=ZERO
333 DO K2=1,3
334 WEAR_LOCAL (K1)= WEAR_LOCAL (K1)+ALOCAL (K2 , K1) ∗

WEAR_GLOBAL (K2)
335 END DO
336 END DO
337 DO K1=1,NDIM
338 ULOCAL (K1)=ULOCAL (K1)+WEAR_LOCAL (K1)
339 END DO
340 ! ULOCAL(3) = ULOCAL(3) - ABL_APPLIED
341 C VERIFY ULOCAL
342 DO K2=1,NDIM
343 UGLOBAL (K2)=ZERO
344 DO K3=1,NDIM
345 UGLOBAL (K2)=UGLOBAL (K2)+ALOCAL (K2 , K3) ∗ULOCAL (K3)
346 END DO
347 END DO
348 ELSEIF (NELEMS_CORRECT . EQ . 1) THEN
349 NELEMS_CORRECT2 = 0
350 DO K1=1,NR
351 DO K2= 2 ,9
352 IF (NODE . EQ . ALLELEM_TRANS (K1 , K2)) THEN
353 NELEMS_CORRECT2 = NELEMS_CORRECT2 + 1
354 DO K3 = 1 , 8
355 NODESELEM (NELEMS_CORRECT2 , K3) = ALLELEM_TRANS

(K1 , K3+1)
356 END DO
357 ENDIF
358 END DO
359 END DO
360 C 1 . FIND NODES IN ADAPTIVE MESH CONSTRAINT DOMAIN
361 DO K1=1,NELEMS_CORRECT
362 C1=ZERO
363 DO K3=1,8
364 DO K2=1,NP
365 IF (NODESELEM (K1 , K3) . EQ . ALLCONSTRAINTNODES (K2) . AND .

NODESELEM (K1 , K3) . NE . NODE) THEN
366 C1=C1+1
367 SURF_NODES_CORNER (C1)=NODESELEM (K1 , K3)
368 END IF
369 END DO
370 END DO
371 END DO
372 C 2 .1 FIND COORDINATES OF SURF_NODES_CORNER

B.1 UMESHMOTION Subroutine 1: Node shift direction normal to contact
surface 143

373 DO K1=1,3
374 CALL GETVRN (SURF_NODES_CORNER (K1) , ’COORD’ , ARRAY , JRCD ,

JGVBLOCK , LTRN)
375 DO K2=1,3
376 COORDS_SURF_CORNER (K1 , K2)=ARRAY (K2)
377 END DO
378 END DO
379 C 2 .2 FIND COORDINATES OF CURRENT NODE
380 CALL GETVRN (NODE , ’COORD’ , ARRAY , JRCD , JGVBLOCK , LTRN)
381 DO K3=1,3
382 NODE_COORDS (K3)=ARRAY (K3)
383 END DO
384 C 3 . FIND VECTORS TO ALL SURF_NODES_CORNER
385 DO K1=1,3
386 DO K2=1,3
387 V_SURFNODES_C (K1 , K2)=COORDS_SURF_CORNER (K1 , K2)−

NODE_COORDS (K2)
388 END DO
389 MGNT_VSURFNODES_C (K1)=SQRT (V_SURFNODES_C (K1 , 1) ∗∗2+

V_SURFNODES_C (K1 , 2) ∗∗2+
390 V_SURFNODES_C (K1 , 3) ∗∗2)
391 END DO
392 C 4 . FIND SHORTER VECTORS
393 DO K1=1,2
394 DO K2=K1+1,3
395 IF (MGNT_VSURFNODES_C (K1) . GT . MGNT_VSURFNODES_C (K2)

) THEN
396 DO K3=1,3
397 TEMP_V_C (K3)=V_SURFNODES_C (K1 , K3)
398 V_SURFNODES_C (K1 , K3)=V_SURFNODES_C (K2 , K3)
399 V_SURFNODES_C (K2 , K3)=TEMP_V_C (K3)
400 END DO
401 TEMP_M_C=MGNT_VSURFNODES_C (K1)
402 MGNT_VSURFNODES_C (K1)=MGNT_VSURFNODES_C (K2)
403 MGNT_VSURFNODES_C (K2)=TEMP_M_C
404 END IF
405 END DO
406 END DO
407 C 4 .1 FIND UNIT VECTORS
408 DO K1=1,3
409 DO K2=1,3
410 V_SURFNODES_UNIT_C (K1 , K2)=V_SURFNODES_C (K1 , K2) /

MGNT_VSURFNODES_C (K1)
411 END DO
412 END DO
413 C 5 . FIND SUBSURFACE NODES
414 C8= ZERO
415 DO K1=1,NELEMS_CORRECT
416 DO K2=1,8
417 C7=ZERO
418 DO K3=1,NP
419 IF (NODESELEM (K1 , K2) . NE . ALLCONSTRAINTNODES (K3)) THEN
420 C7=C7+1

144 UMESHMOTION Subroutine 1

421 IF (C7 . EQ . NP) THEN
422 C8=C8+1
423 SUB_NODES_C (C8)=NODESELEM (K1 , K2)
424 END IF
425 END IF
426 END DO
427 END DO
428 END DO
429 C 6 . FIND VECTOR TO ARBITRARY SUBSURFACE NODE
430 CALL GETVRN (SUB_NODES_C (1) , ’COORD’ , ARRAY , JRCD , JGVBLOCK ,

LTRN)
431 DO K3=1,3
432 V_SUBNODE_C (K3)= ARRAY (K3)−NODE_COORDS (K3)
433 END DO
434 MGNT_VSUBNODE_C=SQRT (V_SUBNODE_C (1) ∗∗2+V_SUBNODE_C

(2) ∗∗2+V_SUBNODE_C (3) ∗∗2)
435 DO K4=1,3
436 V_SUBNODE_UNIT_C (K4)=V_SUBNODE_C (K4) /MGNT_VSUBNODE_C
437 END DO
438 C 7 . FIND CROSS PRODUCT
439 CROSS1_X_C=V_SURFNODES_UNIT_C (1 , 2) ∗V_SURFNODES_UNIT_C

(2 , 3)−V_SURFNODES_UNIT_C (1 , 3) ∗V_SURFNODES_UNIT_C (2 , 2)
440 CROSS1_Y_C=V_SURFNODES_UNIT_C (1 , 3) ∗V_SURFNODES_UNIT_C

(2 , 1)−V_SURFNODES_UNIT_C (1 , 1) ∗V_SURFNODES_UNIT_C (2 , 3)
441 CROSS1_Z_C=V_SURFNODES_UNIT_C (1 , 1) ∗V_SURFNODES_UNIT_C

(2 , 2)−V_SURFNODES_UNIT_C (1 , 2) ∗V_SURFNODES_UNIT_C (2 , 1)
442 NORM_CORNER_V (1)=CROSS1_X_C
443 NORM_CORNER_V (2)=CROSS1_Y_C
444 NORM_CORNER_V (3)=CROSS1_Z_C
445 MGNT_NORMCORNERV=SQRT (NORM_CORNER_V (1) ∗∗2+NORM_CORNER_V

(2) ∗∗2+NORM_CORNER_V (3) ∗∗2)
446 C 8 . FIND ANGLE BETWEEN NORM_CORNER_V AND V_SUBNODE_UNIT_C
447 THETA_C=ACOS ((NORM_CORNER_V (1) ∗V_SUBNODE_UNIT_C (1)+
448 NORM_CORNER_V (2) ∗V_SUBNODE_UNIT_C (2)+
449 1 NORM_CORNER_V (3) ∗V_SUBNODE_UNIT_C (3)) /(

MGNT_NORMCORNERV))
450 IF (THETA_C . GT . PI /2) THEN
451 NORM_CORNER_V (:)=−NORM_CORNER_V (:)
452 END IF
453 C VERIFY ANGLE
454 THETA_VERIF_C=ACOS ((NORM_CORNER_V (1) ∗

V_SUBNODE_UNIT_C (1)+NORM_CORNER_V (2) ∗
V_SUBNODE_UNIT_C (2)+

455 1 NORM_CORNER_V (3) ∗V_SUBNODE_UNIT_C (3)) /(
MGNT_NORMCORNERV))

456 C 9 . CALULATE WEAR IN DIRECTION OF NORM_CORNER_AVG
457 DO K1=1,3
458 WEAR_GLOBAL_C (K1) = ABL_APPLIED ∗(NORM_CORNER_V (K1) /

MGNT_NORMCORNERV)
459 END DO
460 DO K1=1,NDIM
461 WEAR_LOCAL_C (K1)=ZERO
462 DO K2=1,NDIM

B.1 UMESHMOTION Subroutine 1: Node shift direction normal to contact
surface 145

463 WEAR_LOCAL_C (K1)= WEAR_LOCAL_C (K1)+ALOCAL (K2 , K1) ∗
WEAR_GLOBAL_C (K2)

464 END DO
465 END DO
466 DO K1=1,NDIM
467 ULOCAL (K1)=ULOCAL (K1)+WEAR_LOCAL_C (K1)
468 END DO
469 C VERIFY ULOCAL
470 DO K2=1,NDIM
471 UGLOBAL (K2)=ZERO
472 DO K3=1,NDIM
473 UGLOBAL (K2)=UGLOBAL (K2)+ALOCAL (K2 , K3) ∗ULOCAL (K3)
474 END DO
475 END DO
476 ELSEIF (NELEMS_CORRECT . NE . 1 . AND . NELEMS_CORRECT . NE . 2) THEN
477 ULOCAL (3)=ULOCAL (3)−ABL_APPLIED
478 C VERIFY ULOCAL
479 DO K2=1,NDIM
480 UGLOBAL (K2)=ZERO
481 DO K3=1,NDIM
482 UGLOBAL (K2)=UGLOBAL (K2)+ALOCAL (K2 , K3) ∗ULOCAL (K3)
483 END DO
484 END DO
485 ENDIF
486 C OUTPUT
487 WRITE (6 ,∗) ’---’
488 WRITE (6 ,∗) ’ULOCAL CHANGED’
489 WRITE (6 ,∗) ’KINC: ’ , KINC
490 WRITE (6 ,∗) ’KMESHSWEEP: ’ , KMESHSWEEP
491 WRITE (6 ,∗) ’NODE: ’ , NODE
492 WRITE (6 ,∗) ’DTIME: ’ , DTIME
493 WRITE (6 ,∗) ’ABL_APPLIED: ’ , ABL_APPLIED
494 WRITE (6 ,∗) ’ULOCAL(3): ’ , ULOCAL (3)
495 ENDIF
496 DEALLOCATE (NODESELEM)
497 ENDIF
498 C
499 RETURN
500 END SUBROUTINE UMESHMOTION

146 UMESHMOTION Subroutine 1

Appendix C

UMESHMOTION Subroutine 2

C.1 UMESHMOTION Subroutine 3: Node shift direction follows
outer surface

1 INCLUDE ’umeshmotion_module.f’
2 INCLUDE ’umeshmotion_functions.f’
3 C
4 SUBROUTINE UMESHMOTION (UREF , ULOCAL , NODE , NNDOF , LNODETYPE , ALOCAL ,
5 1 NDIM , TIME , DTIME , PNEWDT , KSTEP , KINC , KMESHSWEEP , JMATYP , JGVBLOCK ,
6 2 LSMOOTH)
7 C
8 USE MODULE_UMESHMOTION ! LOAD MODULE
9 IMPLICIT NONE

10 C
11 C DECLARATION OF VARIABLES
12 C
13 INTEGER , PARAMETER : : NPRECD=2 ! PARAMETER FOR DOUBLE PRECISSION
14 C
15 INTEGER NODE , NNDOF , LNODETYPE , NDIM , KSTEP , KINC , KMESHSWEEP , LSMOOTH ,
16 1 FINDINDEX , FIRSTRUN , KINC_MEM , ZERO , K1 , K2
17 C
18 REAL∗8 UREF , DTIME , PNEWDT
19 C
20 REAL∗8 ULOCAL (NDIM) , ALOCAL (NDIM , ∗) , TIME (2) , JMATYP (∗) , JGVBLOCK (∗) ,
21 1 ARRAY (15)
22 C
23 C INITIAL VALUES FOR FIRST SUBROUTINE RUN
24 DATA FIRSTRUN /−1/
25 DATA KINC_MEM /0/
26 C
27 C ∗∗
28 C ∗ MAIN SECTION ∗
29 C ∗∗

148 UMESHMOTION Subroutine 2

30 C
31 C ONLY FOR FIRST SUBROUTINE RUN
32 IF (FIRSTRUN . EQ .−1) THEN
33 WRITE (6 ,∗) ’FIRSTRUN’
34 WRITE (6 ,∗) ’KINC:’ , KINC
35 ZERO = 0.0
36 FIRSTRUN=1
37 C PARAMETER FOR FIRST STEP
38 FIRSTSTEP=KSTEP
39 C GET WORKING DIRECTORY
40 CALL GETOUTDIR (OUTDIR , LENOUTDIR)
41 C GET JOBNAME
42 CALL GETJOBNAME (JOBNAME , LENJOBNAME)
43 C OUTOUT TO FILE
44 WRITE (6 ,∗) ’’
45 WRITE (6 ,∗) ’**’
46 WRITE (6 ,∗) ’STARTED UMESHMOTION’
47 WRITE (6 ,∗) ’FOR JOB: ’ , JOBNAME
48 WRITE (6 ,∗) ’IN WORKING DIRECTORY: ’ , OUTDIR
49 WRITE (6 ,∗) ’**’
50 WRITE (6 ,∗) ’’
51 FIRSTNODE=NODE
52 NODE_I=0
53 C DETERMINE TOTAL NUMBER OF LINES
54 NP=ZERO
55 STAT_R=ZERO
56 OPEN (400 , FILE=OUTDIR (1 : LENOUTDIR) //’/’//’aleConstraintNodes.

txt’ ,
57 1 STATUS=’OLD’ , ACTION=’READ’ , IOSTAT=STAT_O)
58 DO K1=1,MAXRECS
59 READ (400 ,∗ , IOSTAT=STAT_R) CONSTRAINTNODESCOUNTER
60 IF (STAT_R . NE . 0) EXIT
61 IF (K1 . EQ . MAXRECS) THEN
62 write (7 ,∗) ’Error: Maximum number of records exceeded

...’
63 write (7 ,∗) ’Exiting now...’
64 CALL XIT
65 ENDIF
66 NP = NP + 1
67 END DO
68 REWIND (400)
69 ALLOCATE (ALLCONSTRAINTNODES (NP))
70 READ (400 ,∗ , IOSTAT=STAT_R) ALLCONSTRAINTNODES
71 WRITE (6 ,∗) ’ALLCONSTRAINTNODES: ’ , ALLCONSTRAINTNODES
72 CLOSE (400)
73 NR=ZERO
74 STAT_R=ZERO
75 OPEN (300 , FILE=OUTDIR (1 : LENOUTDIR) //’/’//’elementConnectivity.

txt’ ,
76 1 STATUS=’OLD’ , ACTION=’READ’ , IOSTAT=STAT_O)
77 DO K1=1,MAXRECS
78 READ (300 ,∗ , IOSTAT=STAT_R) FIRST
79 IF (STAT_R . NE . 0) EXIT

C.1 UMESHMOTION Subroutine 3: Node shift direction follows outer surface149

80 IF (K1 . EQ . MAXRECS) THEN
81 write (7 ,∗) ’Error: Maximum number of records exceeded

...’
82 write (7 ,∗) ’Exiting now...’
83 CALL XIT
84 ENDIF
85 NR = NR + 1
86 END DO
87 REWIND (300)
88 ALLOCATE (ALLELEM (9 , NR))
89 ALLOCATE (ALLELEM_TRANS (NR , 9))
90 READ (300 ,∗ , IOSTAT=STAT_R) ALLELEM
91 REWIND (300)
92 ALLELEM_TRANS=TRANSPOSE (ALLELEM)
93 WRITE (6 ,∗) ’ALLELEM_TRANS: ’ , ALLELEM_TRANS
94 CLOSE (300)
95 C READ ABLATION DATA
96 STAT_R=ZERO
97 OPEN (500 , FILE=OUTDIR (1 : LENOUTDIR) //’/’//’ablation.txt’ ,
98 STATUS=’OLD’ , ACTION=’READ’ , IOSTAT=STAT_O)
99 DO K1=1,MAXRECS

100 READ (500 ,∗ , IOSTAT=STAT_R) ABL
101 IF (STAT_R . NE . 0) EXIT
102 IF (K1 . EQ . MAXRECS) THEN
103 write (7 ,∗) ’Error: Maximum number of records exceeded

...’
104 write (7 ,∗) ’Exiting now...’
105 CALL XIT
106 ENDIF
107 NQ = NQ + 1
108 END DO
109 REWIND (500)
110 ALLOCATE (TOTAL_ABLATION (2 , NQ))
111 ALLOCATE (TOTAL_ABLATION_TRANS (NQ , 2))
112 READ (500 ,∗ , IOSTAT=STAT_R) TOTAL_ABLATION
113 WRITE (7 ,∗) ’READ TOTAL_ABLATION’
114 TOTAL_ABLATION_TRANS = TRANSPOSE (TOTAL_ABLATION)
115 DO K3=1,NQ
116 WRITE (7 ,∗) ’TOTAL_ABLATION: ’ , TOTAL_ABLATION_TRANS (K3

, :)
117 END DO
118 REWIND (500)
119 CLOSE (500)
120 ENDIF
121
122
123 IF (KMESHSWEEP . EQ . 0) THEN
124 C GET WEAR DEPTH
125 DO K1 = 1 , NQ
126 IF (NODE . EQ . TOTAL_ABLATION_TRANS (K1 , 1)) THEN
127 ABL_APPLIED = DTIME∗TOTAL_ABLATION_TRANS (K1 , 2)
128 END IF
129 END DO

150 UMESHMOTION Subroutine 2

130 IF (NDIM . EQ . 2) THEN
131 ULOCAL (2)=ULOCAL (2)−ABL_APPLIED
132 ELSEIF (NDIM . EQ . 3) THEN
133 C GET ELEMENTS CONNECTED TO NODE
134 NELEMS_CORRECT = 0
135 DO K1=1,NR
136 DO K2= 2 , 9
137 IF (NODE . EQ . ALLELEM_TRANS (K1 , K2)) THEN
138 NELEMS_CORRECT = NELEMS_CORRECT + 1
139 ENDIF
140 END DO
141 END DO
142 WRITE (6 ,∗) ’NODE: ’ , NODE
143 WRITE (6 ,∗) ’NELEMS_CORRECT: ’ , NELEMS_CORRECT
144 C ALLOCATE SIZE FOR NODES ARRAY
145 ALLOCATE (NODESELEM (NELEMS_CORRECT , 8))
146 NELEMS_CORRECT2 = 0
147 DO K1=1,NR
148 DO K2= 2 ,9
149 IF (NODE . EQ . ALLELEM_TRANS (K1 , K2)) THEN
150 NELEMS_CORRECT2 = NELEMS_CORRECT2 + 1
151 DO K3 = 1 , 8
152 NODESELEM (NELEMS_CORRECT2 , K3) = ALLELEM_TRANS

(K1 , K3+1)
153 END DO
154 ENDIF
155 END DO
156 END DO
157 WRITE (6 ,∗) ’NODESDELEM ASSIGNED’
158 IF (NELEMS_CORRECT . EQ . 2) THEN
159 C EDGE NODE
160 C FIND NODES COMMON TO BOTH ELEMENTS
161 C2=ZERO
162 DO K2=1,8
163 DO K4=1,8
164 IF (NODESELEM (1 , K2) . EQ . NODESELEM (2 , K4)) THEN
165 C2=C2+1
166 COMMON_NODES (C2)=NODESELEM (1 , K2)
167 END IF
168 END DO
169 END DO
170 WRITE (6 ,∗) ’COMMON_NODES’ , COMMON_NODES (:)
171 C FIND NODES THAT DO NOT BELONG TO ADPATIVE CONSTRAINT REGION
172 C8= ZERO
173 DO K1=1,C2
174 C7=ZERO
175 DO K2=1,NP
176 IF (COMMON_NODES (K1) . NE . ALLCONSTRAINTNODES (K2)) THEN
177 C7=C7+1
178 IF (C7 . EQ . NP) THEN
179 C8=C8+1
180 SUB_NODES (C8)=COMMON_NODES (K1)
181 END IF

C.1 UMESHMOTION Subroutine 3: Node shift direction follows outer surface151

182 END IF
183 END DO
184 END DO
185 C WRITE (6 ,∗) ’SUB_NODES’ , SUB_NODES (:)
186 C WRITE (6 ,∗) ’C8: ’ , C8
187 C FORM VECTORS TO ALL SUBSURFACE NODES
188 C 1 . FIND COORDINATES OF SUBSURFACE NODES
189 LTRN=0
190 DO K1=1,2
191 CALL GETVRN (SUB_NODES (K1) , ’COORD’ , ARRAY , JRCD , JGVBLOCK

, LTRN)
192 DO K2=1,3
193 SUBNODE_COORDS (K1 , K2) = ARRAY (K2)
194 END DO
195 END DO
196 DO K1 = 1 ,2
197 C WRITE (6 ,∗) ’SUBNODE_COORDS’ , SUBNODE_COORDS (K1 , :)
198 ENDDO
199 C 2 . FIND COORDINATES OF CURRENT NODE
200 CALL GETVRN (NODE , ’COORD’ , ARRAY , JRCD , JGVBLOCK , LTRN)
201 DO K3=1,3
202 NODE_COORDS (K3)=ARRAY (K3)
203 END DO
204 C WRITE (6 ,∗) ’NODE_COORDS’ , NODE_COORDS (:)
205 C 3 . FIND ALL SUBURFACE VECTORS
206 DO K4=1,2
207 DO K5=1,3
208 V_SUBNODES (K4 , K5)= SUBNODE_COORDS (K4 , K5)−

NODE_COORDS (K5)
209 END DO
210 MGNT_VSUBNODES (K4)=SQRT (V_SUBNODES (K4 , 1) ∗∗2+
211 V_SUBNODES (K4 , 2) ∗∗2+V_SUBNODES (K4 , 3) ∗∗2)
212 END DO
213 C 3 .1 FIND SHORTER VECTOR
214 IF (MGNT_VSUBNODES (1) . GT . MGNT_VSUBNODES (2)) THEN
215 DO K1 = 1 ,3
216 SHORT_VECTOR_EDGE (K1) = V_SUBNODES (2 , K1)
217 END DO
218 ELSE
219 DO K1 = 1 ,3
220 SHORT_VECTOR_EDGE (K1) = V_SUBNODES (1 , K1)
221 END DO
222 ENDIF
223 C WRITE (6 ,∗) ’SHORT_VECTOR_EDGE: ’ , SHORT_VECTOR_EDGE

(:)
224 C FIND UNIT VECTOR
225 MGNT_VSHORTVECTOREDGE=SQRT (SHORT_VECTOR_EDGE (1) ∗∗2+
226 SHORT_VECTOR_EDGE (2) ∗∗2+SHORT_VECTOR_EDGE

(3) ∗∗2)
227 DO K4=1,3
228 SHORT_VECTOR_EDGE_UNIT (K4)=SHORT_VECTOR_EDGE (K4) /

MGNT_VSHORTVECTOREDGE
229 END DO

152 UMESHMOTION Subroutine 2

230 C WRITE (6 ,∗) ’SHORT_VECTOR_EDGE_UNIT: ’ ,
SHORT_VECTOR_EDGE_UNIT (:)

231 C CALULATE WEAR IN DIRECTION OF MGNT_VSHORTVECTOREDGE
232 DO K1=1,3
233 WEAR_GLOBAL (K1) = ABL_APPLIED∗SHORT_VECTOR_EDGE_UNIT

(K1)
234 END DO
235 C WRITE (6 ,∗) ’WEAR_GLOBAL: ’ , WEAR_GLOBAL (:)
236 DO K1=1,3
237 WEAR_LOCAL (K1)=ZERO
238 DO K2=1,3
239 WEAR_LOCAL (K1)= WEAR_LOCAL (K1)+ALOCAL (K2 , K1) ∗

WEAR_GLOBAL (K2)
240 END DO
241 END DO
242 C WRITE (6 ,∗) ’WEAR_LOCAL: ’ , WEAR_LOCAL (:)
243 DO K1=1,NDIM
244 ULOCAL (K1)=ULOCAL (K1)+WEAR_LOCAL (K1)
245 END DO
246 C WRITE (6 ,∗) ’ULOCAL: ’ , ULOCAL (:)
247 ELSEIF (NELEMS_CORRECT . EQ . 1) THEN
248 C CORNER NODE
249 C FIND NODES THAT DO NOT BELONG TO ADPATIVE CONSTRAINT REGION
250 C2 = ZERO
251 DO K1 = 1 ,8
252 C1 = ZERO
253 DO K2 = 1 ,NP
254 IF (NODESELEM (1 , K1) . NE . ALLCONSTRAINTNODES (K2)) THEN
255 C1 = C1 + 1
256 ENDIF
257 END DO
258 IF (C1 . EQ . NP) THEN
259 C2 = C2 + 1
260 SUB_NODES_C (C2) = NODESELEM (1 , K1)
261 ENDIF
262 END DO
263 WRITE (6 ,∗) ’C2: ’ , C2
264 WRITE (6 ,∗) ’SUB_NODES_C: ’ , SUB_NODES_C (:)
265 C FIND ALL VECTORS TO SUB_NODES_C
266 C 1 . FIND COORDINATES OF SUBSURFACE NODES
267 LTRN=0
268 DO K1=1,4
269 CALL GETVRN (SUB_NODES_C (K1) , ’COORD’ , ARRAY , JRCD ,

JGVBLOCK , LTRN)
270 DO K2=1,3
271 SUBNODE_COORDS_C (K1 , K2) = ARRAY (K2)
272 END DO
273 END DO
274 DO K1 = 1 ,4
275 WRITE (6 ,∗) ’SUBNODE_COORDS_C: ’ , SUBNODE_COORDS_C (

K1 , :)
276 END DO
277 C 2 . FIND COORDINATES OF CURRENT NODE

C.1 UMESHMOTION Subroutine 3: Node shift direction follows outer surface153

278 CALL GETVRN (NODE , ’COORD’ , ARRAY , JRCD , JGVBLOCK , LTRN)
279 DO K3=1,3
280 NODE_COORDS (K3)=ARRAY (K3)
281 END DO
282 WRITE (6 ,∗) ’NODE_COORDS: ’ , NODE_COORDS (:)
283 C 3 . FIND ALL SUBURFACE VECTORS
284 DO K4=1,4
285 DO K5=1,3
286 V_SUBNODES_C (K4 , K5)= SUBNODE_COORDS_C (K4 , K5)−

NODE_COORDS (K5)
287 END DO
288 MGNT_VSUBNODES_C (K4)=SQRT (V_SUBNODES_C (K4 , 1) ∗∗2+
289 V_SUBNODES_C (K4 , 2) ∗∗2+V_SUBNODES_C (K4 , 3) ∗∗2)
290 END DO
291 DO K1=1,4
292 WRITE (6 ,∗) ’V_SUBNODES_C: ’ , V_SUBNODES_C (K1 , :)
293 END DO
294 WRITE (6 ,∗) ’MGNT_VSUBNODES_C: ’ , MGNT_VSUBNODES_C (:)
295 C 4 . FIND SHORTEST SUBSURFACE VECTOR
296 MINSUBVECTORC = MIN (MGNT_VSUBNODES_C (1) ,

MGNT_VSUBNODES_C (2) , MGNT_VSUBNODES_C (3) ,
MGNT_VSUBNODES_C (4))

297 WRITE (6 ,∗) ’MINSUBVECTORC: ’ , MINSUBVECTORC
298 DO K4=1,4
299 IF (MGNT_VSUBNODES_C (K4) . EQ . MINSUBVECTORC) THEN
300 DO K5 = 1 ,3
301 SHORT_VECTOR_CORNER (K5) = V_SUBNODES_C (K4 , K5)
302 END DO
303 END IF
304 END DO
305 WRITE (6 ,∗) ’SHORT_VECTOR_CORNER: ’ ,

SHORT_VECTOR_CORNER (:)
306 C FIND UNIT VECTOR
307 MGNT_VSHORTVECTORCORNER=SQRT (SHORT_VECTOR_CORNER (1) ∗∗2+
308 SHORT_VECTOR_CORNER (2) ∗∗2+SHORT_VECTOR_CORNER (3) ∗∗2)
309 DO K4=1,3
310 SHORT_VECTOR_CORNER_UNIT (K4)=SHORT_VECTOR_CORNER (K4)

/MGNT_VSHORTVECTORCORNER
311 END DO
312 WRITE (6 ,∗) ’SHORT_VECTOR_CORNER_UNIT: ’ ,

SHORT_VECTOR_CORNER_UNIT (:)
313 C CALULATE WEAR IN DIRECTION OF MGNT_VSHORTVECTOREDGE
314 DO K1=1,3
315 WEAR_GLOBAL (K1) = ABL_APPLIED∗

SHORT_VECTOR_CORNER_UNIT (K1)
316 END DO
317 WRITE (6 ,∗) ’WEAR_GLOBAL: ’ , WEAR_GLOBAL (:)
318 DO K1=1,3
319 WEAR_LOCAL (K1)=ZERO
320 DO K2=1,3
321 WEAR_LOCAL (K1)= WEAR_LOCAL (K1)+ALOCAL (K2 , K1) ∗

WEAR_GLOBAL (K2)
322 END DO

154 UMESHMOTION Subroutine 2

323 END DO
324 WRITE (6 ,∗) ’WEAR_LOCAL: ’ , WEAR_GLOBAL (:)
325 DO K1=1,NDIM
326 ULOCAL (K1)=ULOCAL (K1)+WEAR_LOCAL (K1)
327 END DO
328 WRITE (6 ,∗) ’ULOCAL: ’ , ULOCAL (:)
329 ELSEIF (NELEMS_CORRECT . NE . 1 . AND . NELEMS_CORRECT . NE . 2) THEN
330 ULOCAL (3)=ULOCAL (3)−ABL_APPLIED
331 C VERIFY ULOCAL
332 DO K2=1,NDIM
333 UGLOBAL (K2)=ZERO
334 DO K3=1,NDIM
335 UGLOBAL (K2)=UGLOBAL (K2)+ALOCAL (K2 , K3) ∗ULOCAL (K3)
336 END DO
337 END DO
338 C ENDIF CORNER/EDGE/SURFACE
339 C OUTPUT
340 WRITE (6 ,∗) ’---’
341 WRITE (6 ,∗) ’ULOCAL CHANGED’
342 WRITE (6 ,∗) ’KINC: ’ , KINC
343 WRITE (6 ,∗) ’KMESHSWEEP: ’ , KMESHSWEEP
344 WRITE (6 ,∗) ’NODE: ’ , NODE
345 WRITE (6 ,∗) ’DTIME: ’ , DTIME
346 WRITE (6 ,∗) ’ABL_APPLIED: ’ , ABL_APPLIED
347 ENDIF
348 C ENDIF NDIM=3
349 ENDIF
350 DEALLOCATE (NODESELEM)
351 C ENDIF KMESHSWEEP = 0
352 ENDIF
353 C
354 RETURN
355 END SUBROUTINE UMESHMOTION

	Front Matter
	Title Page
	Graduation Committee
	 Preface
	Table of Contents
	List of Figures
	List of Tables

	Main Matter
	1 Introduction
	2 Fundamental Principles of Wear and Wear Simulation Techniques
	2.1 Essential Physical Properties of Wear
	2.2 Wear Mechanisms
	2.2.1 Abrasive Wear
	2.2.2 Adhesive Wear
	2.2.3 Corrosive Wear/ Oxidative Wear
	2.2.4 Fatigue Wear

	2.3 Relevant aspects for macroscopic FE wear simulations
	2.4 Wear Simulations in Literature
	2.4.1 Geometry Update by Moving Surface Nodes Only

	2.5 Geometry Update with Part Remeshing
	2.5.1 Wear Simulation with UMESHMOTION and ALE Adaptive Meshing
	2.5.2 Martinez et al: 3D Wear Simulation of Polymer Cylinder Sliding on Steel

	2.6 Summary

	3 Wastegate Motion and Wear Characteristics
	3.1 Wastegate components assembly and wear-inducing load cases
	3.2 Summary

	4 Wear Simulation Methodology
	4.1 Archard's wear model applied to Finite Element simulations
	4.2 Wear Simulation Techniques
	4.3 Geometric Part Modification with UMESHMOTION
	4.3.1 Definition of node shift directions
	4.3.2 Definition of Adaptive Mesh Constraint Regions
	4.3.3 Wear simulation on both surfaces of a contact
	4.3.4 Adaptive mesh controls and node type definitions

	4.4 Combining Implicit Dynamic Simulations with ALE Adaptive Meshing
	4.4.1 Alternating dynamic and static steps in the same analysis
	4.4.2 Importing and Editing of Input Files
	4.4.3 Restarting the Analysis

	4.5 Extrapolation of Calculated Wear Depth
	4.6 Summary

	5 Verification and Performance Evaluation of Wear Simulation Methods
	5.1 Verification of UMESHMOTION and Output Processing
	5.2 Performance Assessment of Input File Method
	5.2.1 Input file method performance and error investigation

	5.3 Summary

	6 Wear Simulation Results in the Lever/Bushing Interface
	6.1 Wastegate dynamics simulation vs. wear simulation
	6.2 Simulation of sliding wear in the lever/bushing interface
	6.2.1 Simulation set-up and inputs
	6.2.2 Results and evaluation of simulated wear profiles

	6.3 Parametric Study on wear in the lever/bushing interface
	6.3.1 Parametric Study I: Increasing wear coefficients
	6.3.2 Parametric Study II: Decreasing elastic modulus

	6.4 Summary

	7 Conclusions and Recommendations
	7.1 Conclusions and Relevance of Simulation Methodology
	7.2 Recommendations for future studies
	7.2.1 Improvements on work done in the current study
	7.2.2 General topics to be considered in more advanced studies

	References

	Appendices
	A General Wear Simulation Script
	A.1 Python Code for Input File Wear Simulation Method

	B UMESHMOTION Subroutine 1
	B.1 UMESHMOTION Subroutine 1: Node shift direction normal to contact surface

	C UMESHMOTION Subroutine 2
	C.1 UMESHMOTION Subroutine 3: Node shift direction follows outer surface

