Student: Bouke Bosch 1352326 1st mentor: Annebregje Snijders 2nd mentor: Maarten Meijs 3rd mentor: Marcel Bilow

Concept

Graduation plan
Solution
Hydraulic lift
Stairs
Two functions

Design

Situation
Shape
Facade
Floorplan
Atmosphere
Construction
Water forces
Materialization
Collumn calculation
Solar shades

Technical drawings
Section
Vertical details
Floorplan
Horizontal details
Facade fragment

Student: Bouke Bosch 1352326
1st mentor: Annebregje Snijders
2nd mentor: Maarten Meijs
3rd mentor: Marcel Bilow

Graduation plan

Concept

Graduation plan
Solution
Hydraulic lift
Stairs
Two functions

Design

Situation
Shape
Facade
Floorplan
Atmosphere
Construction
Water forces
Materialization
Collumn calculation
Solar shades

Technical drawings

Section
Vertical details
Floorplan
Horizontal details
Facade fragment

Stagnating grow coastal area

In the interdepartmental study of Kust op Koers is pointed out:

The grow of the coastal areas is stagnating, as a perspective to come out of this down going spiral we have to increase the quality of the existing building boundary, by stimulating the own character of these coastal area's and to stimulate innovation of the touristic sector

Student: Bouke Bosch 1352326
1st mentor: Annebregje Snijders
2nd mentor: Maarten Meijs
3rd mentor: Marcel Bilow

Graduation plan

Stimulate year round pavilions on the beach..

Concept

Graduation plan
Solution
Hydraulic lift
Stairs
Two functions

Design

Situation
Shape
Facade
Floorplan
Atmosphere
Construction
Water forces
Materialization
Collumn calculation
Solar shades

Technical drawings
Section
Vertical details
Floorplan
Horizontal details
Facade fragment

Strandpaviljoen Take five - Zandvoort

Student: Bouke Bosch 1352326
1st mentor: Annebregje Snijders
2nd mentor: Maarten Meijs
3rd mentor: Marcel Bilow

Concept

Graduation plan
Solution
Hydraulic lift
Stairs
Two functions

Design

Situation
Shape
Facade
Floorplan
Atmosphere
Construction
Water forces
Materialization
Collumn calculation
Solar shades

Technical drawings
Section
Vertical details
Floorplan
Horizontal details
Facade fragment

Graduation plan

Problem 1: Sand sedimentation blocking

- stagnating grow of coastal area's
- government stimulates year round beach pavilions on the beach
- pavilions in front of the dunes blocks the sand
- dunes cant grow / repair itself
- dunes will get weaker

Student: Bouke Bosch 1352326
1st mentor: Annebregje Snijders
2nd mentor: Maarten Meijs
3rd mentor: Marcel Bilow

Graduation plan

Graduation plan
Solution
Hydraulic lift
Stairs
Two functions

Design

Situation
Shape
Facade
Floorplan
Atmosphere
Construction
Water forces
Materialization
Collumn calculation
Solar shades

Technical drawings
Section
Vertical details
Floorplan
Horizontal details
Facade fragment

Problem 2: storm erosion

- Water reaches the dune in times of storm
- waves collapsing on the dune causes dune to deform
- dune loses height and mass

Storm erosie Egmond aan zie 6 december 2013

Gemiddeld aantal stormen Kust

Student: Bouke Bosch 1352326
1st mentor: Annebregje Snijders
2nd mentor: Maarten Meijs
3rd mentor: Marcel Bilow

Concept

Graduation plan
Solution
Hydraulic lift
Stairs
Two functions

Design

Situation
Shape
Facade
Floorplan
Atmosphere
Construction
Water forces
Materialization
Collumn calculation
Solar shades

Technical drawings

Section
Vertical details
Floorplan
Horizontal details
Facade fragment

Solution

Pavilion that can move up and down

Sand can get to dune underneath the building

By dividing the building into two elements, different parts of the dune are blocked periodically while still having a connection to the ground

Can uset he mass of the downgoing part as counterweight for the upgoing part

In times of storm both parts are brought down to block incomming waves

Reduces the impact force of the water on the dunes

Student: 1st mentor: *2nd mentor: 3rd mentor:*

Bouke Bosch 1352326 Annebregje Snijders Maarten Meijs Marcel Bilow

Mechanical inspiration

Concept

Graduation plan

Solution

Hydraulic lift

Stairs

Two functions

Design

Situation

Shape

Facade

Floorplan

Atmosphere

Construction

Water forces

Materialization

Collumn calculation

Solar shades

Technical drawings

Section

Vertical details

Floorplan

Horizontal details

Facade fragment

Jack up rigs

Basic principle of how the pavilion should move up and down

works on hydraulics

Student: Bouke Bosch 1352326
1st mentor: Annebregje Snijders
2nd mentor: Maarten Meijs
3rd mentor: Marcel Bilow

Hydraulic principle

Concept

Graduation plan Solution

Hydraulic lift

Stairs

Two functions

Design

Situation

Shape

Facade

Floorplan

Atmosphere

Construction

Water forces

Materialization

Collumn calculation

Solar shades

Technical drawings

Section

Vertical details

Floorplan

Horizontal details

Facade fragment

Use weight of one part to move the other part

Pump to produce the the pressure that is still needed and for control

Valves to block the system

Hydraulic fluid supply

Hydraulic pressure

Student: Bouke Bosch 1352326 Annebregje Snijders 1st mentor: 2nd mentor: Maarten Meijs 3rd mentor: Marcel Bilow

Stairs

Concept

Graduation plan Solution Hydraulic lift Stairs Two functions

Design

Situation Shape Facade Floorplan Atmosphere Construction Water forces Materialization Collumn calculation Solar shades

Technical drawings Section Vertical details Floorplan Horizontal details

Facade fragment

hinge at the top - this causes the steps to remain horizontal when moving up or down

> - one part of the construction can move back and forth in order to absorb the horizontal movement

stairs connecting the two parts of the pavilion

- steps connected to a bar at the bottom and to a

Student: Bouke Bosch 1352326
1st mentor: Annebregje Snijders
2nd mentor: Maarten Meijs
3rd mentor: Marcel Bilow

Two functions

Concept

Graduation plan

Solution

Hydraulic lift

Stairs

Two functions

Design

Situation

Shape

Facade

Floorplan

Atmosphere

Construction

Water forces

Materialization

Collumn calculation

Solar shades

Technical drawings

Section

Vertical details

Floorplan

Horizontal details

Facade fragment

Dune protection

Breaking waves

VS

DC

Beach pavilion

lounge and party environment

Open exterior

Light atmosphere

Student: Bouke Bosch 1352326
1st mentor: Annebregje Snijders
2nd mentor: Maarten Meijs
3rd mentor: Marcel Bilow

Open vs Closed

Concept

Graduation plan
Solution
Hydraulic lift
Stairs
Two functions

Design

Situation
Shape
Facade
Floorplan
Atmosphere
Construction
Water forces
Materialization
Collumn calculation
Solar shades

Technical drawings Section Vertical details Floorplan Horizontal details Facade fragment

Closed during storms

On average about 4 storms a year with wind speed of 9 or higher

protection facade has compression seals along the edges

the facade is pushed against the roof and floor element by hydraulics making it watertight

Open in the rest of the year

Protection facade opens up by hydraulics

Open character

Transparant / translucent facade underneath

Protection facade can be used as terrace

Bouke Bosch 1352326 Student: Annebregje Snijders 1st mentor: Maarten Meijs *2nd mentor:* Marcel Bilow *3rd mentor:*

Situation: Egmond aan zee

Concept

Graduation plan Solution Hydraulic lift Stairs Two functions

Design

Situation Shape Facade Floorplan Atmosphere Construction Water forces Materialization Collumn calculation Solar shades

Technical drawings Section Vertical details Floorplan Horizontal details Facade fragment

Main wind direction W - Z/W

S

@ windfinder.com

NNE

ΝE

ENE

Е

ESE

SE

SSE

Ν

Student: 1st mentor: *2nd mentor:* Marcel Bilow *3rd mentor:*

Bouke Bosch 1352326 Annebregje Snijders Maarten Meijs

Shape

Concept

Graduation plan Solution Hydraulic lift Stairs Two functions

Design

Situation Shape Facade Floorplan Atmosphere Construction Water forces Materialization Collumn calculation Solar shades

Technical drawings

Section Vertical details Floorplan Horizontal details Facade fragment

Rough shape of the building is that of a dike

Fits the function of wave breaking

Talud reduces the force of the water on the facade

shape still reminds of dune protection when opened up

Less corners makes water tightness easier

has big flat surfaces so the protection facade can easily be put against the building

Construction on the outside of facade

The protection facade has to rest against it in times of storm

Student:
1st mentor:
2nd mentor:
3rd mentor:

Bouke Bosch 1352326 Annebregje Snijders Maarten Meijs Marcel Bilow

Facade

Concept

Graduation plan

Solution

Hydraulic lift

Stairs

Two functions

Design

Situation

Shape

Facade

Floorplan

Atmosphere

Construction

Water forces

Materialization

Collumn calculation

Solar shades

Technical drawings

Section

Vertical details

Floorplan

Horizontal details

Facade fragment

Material facade: ETFE

Canvas suits the beach

Open character

A lot of light in the building

Facade can light up to create a good atmosphere

Changeable collour to indicate what weather it is going to be or if it is save to swim

Sunshading can be regulated with air pressure and a third layer in between the other two layers

Student: Bouke Bosch 1352326
1st mentor: Annebregje Snijders
2nd mentor: Maarten Meijs
3rd mentor: Marcel Bilow

Facade

Concept

Graduation plan
Solution
Hydraulic lift
Stairs
Two functions

Design

Situation
Shape
Facade
Floorplan
Atmosphere
Construction
Water forces
Materialization
Collumn calculation
Solar shades

Technical drawings
Section
Vertical details
Floorplan
Horizontal details

Facade fragment

Building is in a struggle of what it wants to be, a sollid dike or an open beach pavilion

ETFE takes the shape of the dike, but is trying to open up for the transparant curtain wall underneath

As a result pressure lines in the ETFE construction are noticeable

The facade reflects the dunes and the sea by these waves

Columns amplify the angled shape of the building

Student: Bouke Bosch 1352326

1st mentor: Annebregje Snijders

2nd mentor: Maarten Meijs

3rd mentor: Marcel Bilow

Concept

Graduation plan
Solution
Hydraulic lift
Stairs
Two functions

Design

Situation
Shape
Facade
Floorplan
Atmosphere
Construction
Water forces
Materialization
Collumn calculation

Technical drawings
Section
Vertical details
Floorplan
Horizontal details
Facade fragment

Solar shades

Facade

3 facades with 'danger' from the sea

3 facades have a talud with ETFE

Building opens up to the dunes

Facade facing the dune is 'cut off' and has a verticall curtain wall

Bouke Bosch 1352326 Student: Annebregje Snijders 1st mentor: Maarten Meijs *2nd mentor:* Marcel Bilow *3rd mentor:*

Concept

Graduation plan Solution

Hydraulic lift

Stairs

Two functions

Design

Situation

Shape

Facade

Floorplan Atmosphere

Construction

Water forces

Materialization Collumn calculation

Solar shades

Technical drawings

Section

Vertical details

Floorplan

Horizontal details

Facade fragment

Floorplan

Round shapes in the interior to amplify the rectangular shape of the facade

Left part of the building has a restaurant function

Right part has a bar/lounge function

Student: Bouke Bosch 1352326
1st mentor: Annebregje Snijders
2nd mentor: Maarten Meijs
3rd mentor: Marcel Bilow

Impression

Concept

Graduation plan
Solution
Hydraulic lift
Stairs
Two functions

Design

Situation
Shape
Facade
Floorplan
Atmosphere
Construction
Water forces
Materialization
Collumn calculation
Solar shades

Technical drawings
Section
Vertical details
Floorplan
Horizontal details
Facade fragment

Student: Bouke Bosch 1352326
1st mentor: Annebregje Snijders
2nd mentor: Maarten Meijs
3rd mentor: Marcel Bilow

Construction

Concept

Graduation plan
Solution
Hydraulic lift
Stairs
Two functions

Design

Situation
Shape
Facade
Floorplan
Atmosphere
Construction
Water forces
Materialization
Collumn calculation
Solar shades

Technical drawings
Section
Vertical details
Floorplan
Horizontal details
Facade fragment

bottom part : hydraulic part can move up and down

top part: construction around the building

Facade and insulation placed at the inside of construction

stiff floor and roof elements

Columns are clamped at the bottom

Columns

Bouke Bosch 1352326 Student: Annebregje Snijders 1st mentor: Maarten Meijs *2nd mentor:* Marcel Bilow *3rd mentor:*

Concept

Graduation plan Solution Hydraulic lift Stairs Two functions

Design

Situation Shape Facade Floorplan Atmosphere Construction Water forces

Materialization Collumn calculation Solar shades

Technical drawings

Section Vertical details Floorplan Horizontal details Facade fragment

Hydraulic column elements overlapping eachother for

about 2m to create clamp

Student: Bouke Bosch 1352326
1st mentor: Annebregje Snijders
2nd mentor: Maarten Meijs
3rd mentor: Marcel Bilow

Castellated beams

Concept

Graduation plan

Solution

Hydraulic lift

Stairs

Two functions

Design

Situation

Shape

Facade

Floorplan

Atmosphere

Construction

Water forces

Materialization

Collumn calculation

Solar shades

Technical drawings

Section

Vertical details

Floorplan

Horizontal details

Facade fragment

Student: Bouke Bosch 1352326
1st mentor: Annebregje Snijders
2nd mentor: Maarten Meijs
3rd mentor: Marcel Bilow

Floor beams

Concept

Graduation plan
Solution
Hydraulic lift
Stairs
Two functions

Design

Situation
Shape
Facade
Floorplan
Atmosphere
Construction
Water forces
Materialization
Collumn calculation
Solar shades

Technical drawings
Section
Vertical details
Floorplan
Horizontal details
Facade fragment

Student: Bouke Bosch 1352326
1st mentor: Annebregje Snijders
2nd mentor: Maarten Meijs
3rd mentor: Marcel Bilow

Facade collumns

Concept

Graduation plan
Solution
Hydraulic lift
Stairs

Two functions

Design

Situation
Shape
Facade
Floorplan
Atmosphere
Construction
Water forces
Materialization

Technical drawings

Solar shades

Section
Vertical details
Floorplan
Horizontal details
Facade fragment

Collumn calculation

Student: Bouke Bosch 1352326
1st mentor: Annebregje Snijders
2nd mentor: Maarten Meijs
3rd mentor: Marcel Bilow

Protection facade / terrace

same lifting principle as a truck door

Concept

Graduation plan
Solution
Hydraulic lift
Stairs
Two functions

Design

sign
Situation
Shape
Facade
Floorplan
Atmosphere
Construction
Water forces
Materialization
Collumn calculation

Technical drawings
Section
Vertical details

Solar shades

Floorplan Horizontal details Facade fragment hydraulic system connected to castellated beams

Upper part of the building will get torsion

This will uneven the line in which the hinges of the hydraulic system are placed

protection facade divided into smaller segments to absorb the torsion

Student: Bouke Bosch 1352326
1st mentor: Annebregje Snijders
2nd mentor: Maarten Meijs
3rd mentor: Marcel Bilow

Concept

Graduation plan
Solution
Hydraulic lift
Stairs
Two functions

Design

Situation
Shape
Facade
Floorplan
Atmosphere
Construction
Water forces
Materialization
Collumn calculation
Solar shades

Technical drawings

Section
Vertical details
Floorplan
Horizontal details
Facade fragment

Dune profiles

Mean low water

Kraai 3825

Mean high water

Highest measured

1/10000 year safety factor

Student: Bouke Bosch 1352326 Annebregje Snijders 1st mentor: Maarten Meijs *2nd mentor:* Marcel Bilow *3rd mentor:*

Water height at building

Concept

Graduation plan Solution Hydraulic lift Stairs Two functions

Design

Situation Shape Facade Floorplan Atmosphere Construction Water forces Materialization Collumn calculation Solar shades

Technical drawings Section

> Vertical details Floorplan Horizontal details Facade fragment

Hb = 0.78. Db (Wave generally brakes when the height of the wave is 78% of the depth of the water underneath it)

Hw building = $(0.2 + 0.58 \cdot (Dw building/Db)) \cdot Hb$

Hw building = $(0.2 + 0.58 \cdot (5,2 / 6,4)) \cdot 5)) = 3,4$ meter

1/10000 year safety factor

Student: Bouke Bosch 1352326
1st mentor: Annebregje Snijders
2nd mentor: Maarten Meijs
3rd mentor: Marcel Bilow

Forces on the building

Concept

Graduation plan
Solution
Hydraulic lift
Stairs
Two functions

Design

Situation
Shape
Facade
Floorplan
Atmosphere
Construction
Water forces
Materialization
Collumn calculation
Solar shades

Technical drawings
Section
Vertical details
Floorplan
Horizontal details
Facade fragment

Duin hoogte: +18,18m

-100

NAP

Golfoploop

-50

Max 7m

Peil +6m NAP

150

Golfhoogte: 5m

50

100

Student: Bouke Bosch 1352326
1st mentor: Annebregje Snijders
2nd mentor: Maarten Meijs
3rd mentor: Marcel Bilow

Concept

Graduation plan
Solution
Hydraulic lift
Stairs
Two functions

Design

Situation
Shape
Facade
Floorplan
Atmosphere
Construction
Water forces
Materialization
Collumn calculation
Solar shades

Technical drawings
Section
Vertical details
Floorplan
Horizontal details
Facade fragment

Fig. 4 Example of usage of SCS sandwich system. (a) Offshore structures in arctic region; (b) blast barrier wall; (c) free standing automobile barrier

- Marine technology
- Relative lightweight
- Can resist upto 900KN
- only 100mm thick
- Designed to resist punchloads

Student: 2nd mentor: Maarten Meijs 3rd mentor: Marcel Bilow

Bouke Bosch 1352326 1st mentor: Annebregje Snijders

Facade collumns

Concept

Graduation plan

Solution

Hydraulic lift

Stairs

Two functions

Design

Situation

Shape

Facade

Floorplan

Atmosphere

Construction

Water forces

Materialization

Collumn calculation L

Solar shades

Technical drawings

Section

Vertical details

Floorplan

Horizontal details

Facade fragment

$$q=470 \text{ kn/m}$$

$$F = 3.2.468$$

$$W = 5ql^4 / 384EI$$

Esteel
$$= 210000 \text{ Mpa}$$

I Ipe500 =
$$48200.10^4 \text{ mm}^4$$

$$W = 103mm$$

Ubij
$$= 0.003 . L$$

Ubij =
$$0.003.7$$
 = 21 mm

= 2340 KN

W is 5 keer te groot

Kolom nodig met een 5 keer zo hoge Iwaarde

 $48200.10^4 . 5 = 194000.10^4 \text{ mm}^4$

HE550M voldoet

Student: Bouke Bosch 1352326

1st mentor: Annebregje Snijders

2nd mentor: Maarten Meijs

3rd mentor: Marcel Bilow

Concept

Graduation plan
Solution
Hydraulic lift
Stairs
Two functions

Design

Situation
Shape
Facade
Floorplan
Atmosphere
Construction
Water forces
Materialization
Collumn calculation
Solar shades

Technical drawings
Section
Vertical details
Floorplan
Horizontal details
Facade fragment

Solar shades

Solar shading construction in between facade collumns; connected at the top of these collumns

moveable by hydraulics

at the end connected to a telescope pole which is connected to the end of the terrace keeping the solar shading in place and supports the terrace

telescoopstang is fixed after construction is in place

transparant windscreen foil around the terrace in between the telescope poles

Student: Bouke Bosch 1352326
1st mentor: Annebregje Snijders
2nd mentor: Maarten Meijs
3rd mentor: Marcel Bilow

Section A

Concept

Graduation plan
Solution
Hydraulic lift
Stairs
Two functions

Design

Situation
Shape
Facade
Floorplan
Atmosphere
Construction
Water forces
Materialization
Collumn calculation
Solar shades

Technical drawings

Section
Vertical details
Floorplan
Horizontal details
Facade fragment

Student: Bouke Bosch 1352326
1st mentor: Annebregje Snijders
2nd mentor: Maarten Meijs
3rd mentor: Marcel Bilow

Vertical detail 1

Concept

Graduation plan
Solution
Hydraulic lift
Stairs
Two functions

Design

Situation
Shape
Facade
Floorplan
Atmosphere
Construction
Water forces
Materialization
Collumn calculation
Solar shades

Technical drawings
Section
Vertical details
Floorplan
Horizontal details
Facade fragment

Student: Bouke Bosch 1352326
1st mentor: Annebregje Snijders
2nd mentor: Maarten Meijs
3rd mentor: Marcel Bilow

Vertical detail 2

Concept

Graduation plan Solution Hydraulic lift Stairs Two functions

Design

Situation
Shape
Facade
Floorplan
Atmosphere
Construction
Water forces
Materialization
Collumn calculation
Solar shades

Technical drawings
Section
Vertical details
Floorplan
Horizontal details
Facade fragment

Student: Bouke Bosch 1352326
1st mentor: Annebregje Snijders
2nd mentor: Maarten Meijs
3rd mentor: Marcel Bilow

Vertical detail 3

Concept

Graduation plan
Solution
Hydraulic lift
Stairs
Two functions

Design

Situation
Shape
Facade
Floorplan
Atmosphere
Construction
Water forces
Materialization
Collumn calculation
Solar shades

Technical drawings

Section
Vertical details
Floorplan
Horizontal details
Facade fragment

Student: Bouke Bosch 1352326
1st mentor: Annebregje Snijders
2nd mentor: Maarten Meijs
3rd mentor: Marcel Bilow

Vertical detail 4

Concept

Graduation plan

Solution

Hydraulic lift

Stairs

Two functions

Design

Situation

Shape

Facade

Floorplan

Atmosphere

Construction

Water forces

Materialization

Collumn calculation

Solar shades

Technical drawings

Section

Vertical details

Floorplan

Horizontal details

Facade fragment

Bouke Bosch 1352326 Student: Annebregje Snijders 1st mentor: Maarten Meijs *2nd mentor:* Marcel Bilow *3rd mentor:*

Floorplan

Concept Graduation plan Solution Hydraulic lift

Stairs

Two functions

Design

Situation

Shape

Facade Floorplan

Atmosphere

Construction

Water forces

Materialization

Collumn calculation

Solar shades

Technical drawings

Section

Vertical details

Floorplan

Horizontal details

Facade fragment

Student: Bouke Bosch 1352326
1st mentor: Annebregje Snijders
2nd mentor: Maarten Meijs
3rd mentor: Marcel Bilow

Horizontal details 1 & 2

Concept

Graduation plan
Solution
Hydraulic lift
Stairs

Two functions

Design

Situation
Shape
Facade
Floorplan
Atmosphere
Construction
Water forces
Materialization
Collumn calculation
Solar shades

Technical drawings Section Vertical details Floorplan Horizontal details Facade fragment

Horizontal details 1:5

Detail 1 Glass - glass corner

Horizontal details 1:5

Detail 2 Glass - ETFE

Student: Bouke Bosch 1352326
1st mentor: Annebregje Snijders
2nd mentor: Maarten Meijs
3rd mentor: Marcel Bilow

Horizontal details 3 & 4

Concept

Graduation plan
Solution
Hydraulic lift
Stairs
Two functions

Design

Situation
Shape
Facade
Floorplan
Atmosphere
Construction
Water forces
Materialization
Collumn calculation

Technical drawings Section Vertical details Floorplan Horizontal details Facade fragment

Solar shades

Horizontal details 1:5

Detail 3 ETFE - ETFE

Horizontal details 1:5

Detail 4 ETFE - ETFE corner

Student: 1st mentor: 2nd mentor: Maarten Meijs Marcel Bilow *3rd mentor:*

Bouke Bosch 1352326 Annebregje Snijders

Horizontal detail 6

Concept

Graduation plan Solution Hydraulic lift Stairs Two functions

Design

Situation Shape Facade Floorplan Atmosphere Construction Water forces Materialization Collumn calculation Solar shades

Technical drawings Section Vertical details Floorplan Horizontal details Facade fragment

Horizontal details 1:5

Detail 6 EFTE - Curtain wall corner

Student: Bouke Bosch 1352326
1st mentor: Annebregje Snijders
2nd mentor: Maarten Meijs
3rd mentor: Marcel Bilow

Horizontal detail 5

Concept

Graduation plan
Solution
Hydraulic lift
Stairs
Two functions

Design

Situation
Shape
Facade
Floorplan
Atmosphere
Construction
Water forces
Materialization
Collumn calculation
Solar shades

Technical drawings Section Vertical details Floorplan Horizontal details

Facade fragment

Horizontal details 1:5

Student: Bouke Bosch 1352326
1st mentor: Annebregje Snijders
2nd mentor: Maarten Meijs
3rd mentor: Marcel Bilow

Facade fragment

Concept

Graduation plan
Solution
Hydraulic lift
Stairs
Two functions

Design

Situation
Shape
Facade
Floorplan
Atmosphere
Construction
Water forces
Materialization
Collumn calculation
Solar shades

Technical drawings

Section
Vertical details
Floorplan
Horizontal details
Facade fragment

