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ABSTRACT

Humanitarian, environmental, and political concerns have contributed to the evolution
of agricultural technology, also known as AgTech. Researchers from various scientific
backgrounds are diving into AgTech to ensure the world’s food security, create a sustainable
future for agriculture, and pave the way for autonomous cultivation methods. This thesis
project attempts to contribute to the aforementioned subjects from the control engineering
perspective. The thesis objective is the design and testing of a novel predictive climate con-
troller, for tomato greenhouses agriculture, able to conclude on the optimal yield-energy
consumption ratio with limited intervention by the human factor. The main novelty intro-
duced by this algorithm is the use of crop variables in the decision-making process accord-
ing to the Speaking Plant Approach (SPA). However, no straightforward recipe indicates
which crop signals could be used. In the context of this study, it is explored how crop vari-
ables, measurable by thermal imaging, can be used for the formulation of a SPA-based
objective function. Specifically, the research focuses on stomatal conductance, the canopy,
and the mean canopy temperature, for the SPA-based objective function formulation. The
cost function generation entails the definition of the necessary state constraints. Except for
the objective function definitions and the determination of constraints, a predictive con-
troller requires a system representation that acts as a predictor. Nevertheless, the complex
and non-linear nature of the climate-crop system complicates the system identification
process. Concurrently, data science is blooming and new data-driven system representa-
tion techniques are breaching. Data-Enabled Predictive Control is a novel control policy
based on systems behavioral theory which uses a non-parametric system representation
enabling the omission of the system identification process. This approach has not been
tested for the description of highly complex climate-crop systems. Therefore, another tar-
get of this project is to examine the capabilities of this data-driven predictor for the repre-
sentation of the climate-crop model and evaluate if and how can be used as a predictor in
a climate control regime.
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INTRODUCTION

1.1. MOTIVATION

This thesis project dives into the design and implementation of a novel climate con-
troller exploiting crop-generated signals. From a high-level perspective, the project is
under the umbrella of agricultural technology, also known as AgTech. This encompasses
a wide range of technologies, including precision agriculture, smart irrigation systems,
autonomous tractors and drones, sensors and monitoring systems, and more. The mo-
tives behind the occupation with AgTech are multidimensional.

People living in industrialized countries have faced a significant increase in their qual-
ity of life during the 21°! century. However, the standardization of people’s better liv-
ing standards in combination with the constantly increasing world population threatens
the preservation of food security [1]. Furthermore, the number of experienced grow-
ers around the globe is declining rising the question of who is going to carry the re-
quired food production [2]. From a humanitarian and social point of view, engaging
with AgTech increases food availability and ensures food security.

Environmental concerns are considered a motive of great importance as people and gov-
ernments try to decelerate climate change. The Dutch horticultural industry can be con-
sidered a case in point. Dutch farmers achieve high yield production making the Nether-
lands one of the biggest exporters of vegetables in the world. But high yield comes with
the cost of high fossil fuel consumption. To assure the continuous decrease of its en-
vironmental footprint, the Dutch horticultural industry signed an agreement with the
Dutch government to reduce fossil fuel consumption and introduce innovations to im-
prove the energy efficiency of cultivation [3].

Political concerns can also demonstrate the importance of AgTech. The Dutch horticul-
ture sector consumed 9% of the total natural gas used in the Netherlands, correspond-
ing to 3.15 billion cubic meters of gas for 2021. This amount of energy consumption
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may have not been considered extravagant a few years ago. Nevertheless, the COVID-19
pandemic followed by major political events in eastern Europe has triggered a series of
economic events that have led to the current energy crisis, causing extreme volatility in
the prices of the European natural gas market.

From a scientific perspective, agriculture technology is interesting on its own. It is a mul-
tidisciplinary field where engineers and scientists cooperate for the exploration of new
strategies exploiting today’s technological equipment. Concerning control engineering,
AgTech offers challenges and open problems in the fields of climate control, and climate-
crop system representation. Novel climate control recipes are means able to increase
yield production and reduce energy consumption even more. Moreover, the develop-
ment of climate-control methods falling under the ample range of Artificial Intelligence
(AI) can steer crop production in an autonomous direction. On the other hand, rep-
resentative climate-crop models have great importance as they can be used to gain in-
sight into the system, act as ground truth for the simulation of experiments, or become
parts of predictive climate controllers. However, climate-crop modeling is not trivial as
the complex and non-linear nature of the system complicates the system identification
process. For these reasons, researchers have been charged to explore model-based and
data-based methods for the development of mechanisms able to represent the climate-
crop system behavior.

To conclude, occupation with AgTech and specifically with control engineering applica-
tions has several motives. First of all, food production has to increase for humanitarian
reasons. Secondly, environmental and political motives indicate the imperative need
to reduce the energy requirements of the agricultural sector. Finally, scientific curios-
ity combined with a temper for technological research can be the driving force for the
exploration of new ideas and applications in the agricultural sector.

1.2. THESIS CONTRIBUTION

The Modern Agricultural industry faces three main issues. The first one is the increased
demand for high crop yields able to ensure the world’s food security. The second one
is the necessity to decrease energy consumption to guarantee the sustainability of this
industrial sector. Last but not least, the agricultural sector becomes understaffed over
time, thus the transition from conventional agriculture to autonomous agriculture is un-
avoidable in order to insure its viability. This thesis project aims to contribute to the so-
lution of the aforementioned problems from the control engineering perspective. The
thesis objective is the design and testing of a novel predictive climate controller able to
conclude on the optimal yield-energy consumption ratio with limited intervention by
the human factor. Particularly, the design of such a controller translates to the definition
of an optimization criterion, the denotation of constraints regarding the control inputs,
the system’s states, and outputs, and the implementation of the climate-crop system rep-
resentation.

One important problem in autonomous agriculture is the definition of optimal environ-
mental conditions able to achieve the best yield-cost ratio. A common approach is to
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apply a set of reference values or trajectories for the day and night time accordingly. This
approach is a non-optimal empirical method founding its efficiency on the grower’s ex-
perience. Because of its empirical nature, this method includes a great issue in terms
of autonomy, it considers the grower as an inextricable part of the climate control loop.
Another option incorporates the use of an optimization-based approach. In this case,
the generation of the environmental condition setpoints requires a yield representa-
tion where through the formulation, the calibration, and the solution of an optimization
problem, the computer concludes on a set of optimal environmental conditions. A chal-
lenge of this approach is that, in some cases, yield data cannot get measured from day 0,
complicating yield modeling even more. For example, in tomato crops, fruit production
starts after the growing and blooming phase of the plant. Additionally, yield is hard and
time-consuming to be measured on a live plant as it requires labor. Therefore, the yield
model should be accurate enough as the climate controller would not be able to receive
feedback on prediction errors.

Speaking Plant Approach (SPA) is a concept that could contribute to the solution of the
aforementioned issues. SPA proposes that the optimal environmental conditions should
not be indicated by yield increase but by the plant itself via a single or a set of signals
correlated with the crop yield [4]. A great advantage of SPA is that the crop becomes a
part of the control loop limiting the grower’s role. Additionally, SPA includes feedback
capabilities as the control system can measure the crop index and examine if the plant
behaved as expected. In this way, the error measurements can be used to adjust the ap-
plied control policy. However, SPA has some major issues concerning applicability. The
mechanisms ruling the yield production are not completely modeled yet and there is
no straightforward recipe indicating which crop signals could be used. Another issue is
data sensing, as the data should be measured in a reliable, fast, and cheap way. In terms
of reliability, the measured index should be able to be measured with good accuracy
to reduce the prediction errors occurring from measurement errors. The measurement
procedure should be as fast and automated as possible, so it can get repeated multiple
times per day or growing season. Finally, both the operational and the installation costs
of the sensors have to be as low as possible, to avoid the introduction of extra costs in the
growing process. A means able to satisfy the SPA applicability, reliability, and financial
requirements are infrared thermal cameras. Thermal imaging is a non-invasive, non-
contact, and non-destructive method to determine the temperature distribution of any
surface of interest in a short time period. Moreover, it has great potential for agricul-
tural applications as it has already been used for the prediction of water stress in crops,
irrigation scheduling, disease and pathogen detection, bruise detection, and stomatal
conductance estimation [5].

The contribution of this thesis project, regarding autonomous agriculture, is the defini-
tion of a SPA-based cost function, exploiting thermal imaging, able to be used in a pre-
dictive climate controller and limit the grower’s role in the growing area. Stomatal con-
ductance is a good candidate for this application as it can be measured through canopy
temperature [6] and in most cases, it has a positive correlation with photosynthesis [7].
Furthermore, stomatal conductance is a signal suitable for an online control policy as it
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can be measured right after the crop’s germination. Finally, the thesis explores the intro-
duction of crop biological processes such as respiration and assimilates partitioning as
parts of the optimization criterion.

Historically, the field of Systems and Control has contributed to AgTech through the
introduction of various predictive climate control policies able to treat Multiple Input
Multiple Output (MIMO) systems like the climate-crop system. Predictive control poli-
cies could be categorized as model-based and data-based policies. Model-based policies
such as Model Predictive Control (MPC) have proven their value in agricultural applica-
tions [8]. However, the complexity of crop systems complicates the system identifica-
tion process and does not let optimal control become a standard in climate control. At
the same time, data science is blooming and as a result, researchers’ interest has been
steered toward data-driven system representation techniques. Data-enabled predictive
control (DeePC) is a novel control policy based on systems behavioral theory able to be
used instead of MPC to solve an optimal control receding horizon problem. The advan-
tage introduced by DeePC and its variants (See [9], [10]) is the use of a non-parametric
system representation enabling the omission of the system identification process [11].
This non-parametric system representation has proven its value in the representation of
Linear Time-Invariant (LTI) systems. Moreover, in some cases, this data-driven predic-
tor copes with the representation of non-linear and time-variant systems, despite its lin-
ear nature [9]. However, it has not been tested for the representation of highly complex
climate-crop systems. This thesis project contributes to the exploration of the method’s
potential in the context of AgTech. Specifically, it is tested if such a data-driven predic-
tor is capable to be used for the representation of the non-linear climate-crop system
presented in [12]. From a high-level perspective, the universal use of optimal predictive
climate control could permit better yield-cost ratios assisting the insurance of food se-
curity and limiting energy consumption.

At this point, it should be noted that the testing of the algorithm takes place in a sim-
ulated greenhouse environment. Greenhouses are exceptional means to create con-
trolled environmental conditions for crops growing far from their geographical origin
or for off-season grows. Specifically, greenhouses permit control of the air temperature,
air humidity, concentration of carbon dioxide, and lighting conditions. In the context
of this thesis project, testing the control algorithm in a greenhouse environment has a
dual meaning. Greenhouses are highly related to modern agriculture in the Netherlands
and northern Europe in general. Therefore, the simulation of a greenhouse environ-
ment was chosen to ensure that the tested control algorithm can be easily transferred to
a real-world industrial scenario, despite the algorithm’s academic nature. Furthermore,
the applicability of methods designed for small-scale agriculture is not always guaran-
teed in large-scale agricultural environments such as greenhouses. Thus, validating the
control algorithm in a large-scale environment ensures its industrial potential.

To conclude, modern agriculture needs to ensure food security, minimize fossil fuel con-
sumption and surpass the obstacles created by the diminishing number of growers. From
the control engineering point of view, these objectives can be guaranteed by establishing
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optimal climate control methods and contributing to the transition from conventional
to autonomous agriculture. Regarding autonomous agriculture, the thesis participates
in the transition process through the development and testing of a SPA-based objective
function for climate control. This thesis project contributes to optimal predictive climate
control by examining if the data-driven system representation, originally presented in
[11], is capable to describe the behavior of a complex climate-crop system.

1.3. RESEARCH QUESTIONS
This thesis explores the design of a SPA-based predictive control algorithm. Moreover,
the project aims to examine the capabilities of a linear data-driven predictor regarding

the representation of a greenhouse system. Hence, the following research questions are
defined:

Is the linear data-driven predictor, presented in [11], able to describe the behavior of the
complex climate-crop system presented in [12] without persistently exciting training data?

How does the designed SPA-based climate control algorithm perform compared to a con-
ventional rule-based climate controller and a yield maximization NMPC algorithm?

To answer this main research question, a set of sub-questions must be answered. The
sub-questions are formulated as follows:

* What greenhouse, climate, and crop system models should be selected for the pur-
poses of ground truth, disturbance description, model-based, and/or data-based
predictive controller design?

* Which of the available actuators are going to be controlled and why?
* Which crop processes should be incorporated in the SPA-based objective function?

* What modifications does the SPA-based objective function need in order to fit in the
NMPC greenhouse control scheme?

* Which are the optimal performance metrics to become benchmarks for the intended
comparisons?

During the design process of the proposed SPA-based control approach, applicability
was considered. Thus, it would be interesting to answer the following question:

* Under which assumptions could the proposed approach be considered an applica-
ble real-world application?

1.4. THESIS OUTLINE

This thesis project is structured as follows: Chapter 2 introduces the reader to the con-
cept of predictive control by highlighting its main components and demonstrating an
overview of some predictive control variants. Chapter 3 presents the principles of a
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greenhouse system and the climate-crop model that has been chosen as the ground
truth for this project. The main focus of Chapter 4 is to present the research carried out
in developing and testing a SPA-based objective function for predictive climate control
techniques. Chapter 5 explores if and how a data-driven linear representation method
is able to sufficiently represent the behavior of the mechanistic climate-crop model pre-
sented in Chapter 3. The necessary mathematical concepts and conditions governing
the design of such a data-driven predictor are demonstrated. Additionally, Chapter 5
presents the results from the attempted data-driven representation of the mechanistic
greenhouse model. In Chapter 6 a case study of three different climate control regimes
takes place. Each controller is demonstrated and then all climate controllers are tested
on a simulated greenhouse. Finally, the simulated results are compared. Last, answers
to the research questions and recommendations for future work are given in Chapter 7.



PRELIMINARIES ON PREDICTIVE
CONTROL

The main objective of this thesis project is the development and testing of a novel pre-
dictive climate control approach. The following chapters present the procedure behind
the design of such a controller, thus the high-level presentation of the fundamental com-
ponents of predictive control has great importance to ensure the proper understanding
of the upcoming chapters. Therefore, Chapter 2 aims to introduce the reader to the es-
sentials of predictive control and its variants.

2.1. INTRODUCTION TO PREDICTIVE CONTROL

Predictive control is a very general term expressing the control problem in a meaning-
ful manner. As a term, it does not designate a specific control strategy but a substantial
range of control methods. However, all these methods consist of some common charac-
teristics and components. Precisely, predictive control uses a representation of the pro-
cess to predict the process output at future time instants and obtain the control signal
by minimizing an objective function [13]. It should be noted that different types of con-
straints can be incorporated into the control approach. Moreover, the number of future
time instants is named the prediction horizon and it is usually noted as N. It should be
underlined, that the finite horizon formulation complicates the system theoretic guar-
antees related to stability and robustness.

To sum up, the main components of predictive control are a cost function acting as
an optimization criterion, a set of constraints regarding the control inputs, the system’s
states, and outputs, and a system representation.

2.1.1. OBJECTIVE FUNCTION

From the mathematical perspective, the objective or cost function is the function whose
value is to be minimized or maximized, in the context of an optimization problem, over
a set of feasible alternatives. Practically, the objective function is responsible to return

7
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a scalar as a function of the system’s states and inputs. Its formulation has great impor-
tance as it defines the goal of the predictive controller. The exact formulation of the ob-
jective function is dependent on the control engineer, however, Equation (2.1) displays
a mathematical formation regularly presented in the literature.

N-1
In(xw) =) Lx(k), u(k)) + Vg (x(N)) 2.1)
k=0

Where [/ : X x U — R the stage cost function specifying the considered performance crite-
rion, and V¢ : Xy — R the terminal cost function, usually used to guarantee closed-loop
stability. It is important to note that the terminal cost is often omitted.

2.1.2. CONSTRAINTS

Both model-based and data-based predictive control approaches can embed different
types of constraints bounding the space where the optimal future control trajectories
live. The constraints can be either soft meaning that their slight violation is acceptable,
or hard where constraint violation leads to an infeasible solution. In practice, all sensors
and actuators underlie some constraints. Usually, these constraints are generated be-
cause of safety, environmental, economic, or just physical reasons. For example, when
tomato crops experience canopy temperatures below 12 °C destructive results occur,
such as fruit’s excessive softening, electrolyte leakage, and failure to ripen [14]. Typi-
cally, constraints regard the control action amplitude, the slew rate of the control signal,
and limits on the system’s states and output. The mathematical formulation of the com-
monly used constraints is given below:

ursu(t)<uy, YVt
Auy<u(t)—u(t—1) <Auy, Vt

X;<x(t)<xy, YVt

=y sy Vt

(2.2)

Where subscripts [ and u declare the lower and upper limit respectively.

2.1.3. SYSTEM REPRESENTATION

Predictive control needs a dynamical representation of the open-loop process to ex-
plicate the relationships between the system’s inputs, measured outputs, and internal
states. Ideally, the used representation should fully capture the process dynamics, allow
the calculation of the output at future instants, and permit the system’s theoretic analy-
sis [13]. A great advantage of predictive control in general is that it can handle both Sin-
gle Input Single Output (SISO) and Multiple Input Multiple Output (MIMO) processes.
Moreover, processes with either simple or complex dynamics, including unstable sys-
tems, systems with long delays, or non-minimum phase can also be handled from a
predictive control algorithm. The system’s representation can be either parametric or
non-parametric. Any form of process representation, either model-based or data-based
such as state space, transfer function, impulse response, step response, neural networks,
or fuzzy logic can be used for the construction of a predictive controller.
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2.2. PREDICTIVE CONTROL VARIANTS

Model-Predictive Control (MPC) has its origins in the late seventies and is one of the
most popular predictive control approaches in academia and industry. For these rea-
sons, it was chosen to be used as the guiding example for the overview of the predictive
control variants.

2.2.1. NOMINAL MPC

To introduce the general MPC formulation, the following state-space system represen-
tation will be considered.

{x(t+ 1) = Ax(?) + Bu(z)

y(8) = Cx(t)+ Du(r) 2.3)

Where x(#) € R"™ the system states, u(t) € R™ the control inputs and y(¢) € R" the sys-
tem’s outputs at time ¢ € Z5g. A€ R™*™ B e R™* % CeR™*" and D € R™*"™ the
system matrices. At this point, it should be reminded that any form of modeling a pro-
cess is capable of concluding on an MPC formulation. Although, it was chosen to use the
state-space representation as it permits the use of multivariable processes in a straight-
forward manner [13].

The open-loop MPC optimization problem is given below:

min Jy(x, u)
u(t)

s.t. x(k+1)=Ax(k)+Bu(k), ke{0,..., N-1},,
y(k) = Cx(k) + Du(k), k€ [0,..., N—1], 2.4)
x(0) = x(1),
x(k)eX, uk) €U, ke{o,...,N—-1},

Where J is the objective function to be minimized over the prediction horizon N. X, U
are the state and input constraint sets, respectively. ¢ is the time at which the optimiza-
tion is solved and k is the sampling instant. As mentioned, the controller is on an open-
loop configuration. In general, nominal MPC is based on the assumption that the mis-
match between the prediction model and the plant process is neglected as it is consid-
ered sufficiently small [15].

Algorithm 1 Model Predictive Control Algorithm

Input: Dynamic Model, Constraints and Costs

Output: Optimal Sequence of Future Control Moves

(1) Measure or estimate the current state of the system

(2) Solve the optimization problem 2.4 for the optimal input sequence
u* = Uy, ..., uy_;)

(3) Apply the first N, control inputs

(4) Set tto t+ N,

(5) Returnto 1




10 2. PRELIMINARIES ON PREDICTIVE CONTROL

As shown in Algorithm 1, the output of the optimization problem is the optimal input
sequence u* = (ug,..., Uy _,) as in fact the optimal control problem is formulated over a
time horizon N that starts at the current time ¢ and ends at time ¢+ N — 1. However, only
the first N, samples of the optimal input sequence are applied to the system, the rest are
discarded. As N, the control horizon is defined where 1 < N, < N. Then, at time ¢+ N,
a new optimization problem is solved over a shifted prediction horizon N. As a result of
the aforementioned characteristic, literature usually refers to MPC control as Receding-
Horizon Control [16].

PREDICTION HORIZON

The selection of the prediction horizon has a major role in MPC. When the control and
the maximum prediction horizons approach infinity and no constraints are applied, the
MPC problem becomes equivalent to the Linear Quadratic Regulator (LQR) problem
[13]. In the case of a perfectly modeled system, where the exact initial conditions are
known and the control and prediction horizons are infinite, the MPC approach can be
implemented in an open-loop. However, this is not possible in general, because of dis-
turbances and model-plant mismatches, the behavior of the real system differentiates
from the predicted behavior [17]. In the case of the greenhouse control problem, wrong
weather predictions act as disturbances. Further, model-plant mismatches occur due to
the "stirred tank" assumption ruling the process-based greenhouse climate models and
the lack of understanding of the complex biochemical crop processes. Thus, incorpo-
rating a feedback mechanism combined with the receding horizon approach frequently
appears in greenhouse optimal control applications.

2.2.2. REFERENCE TRACKING MPC

Reference tracking MPC is a method suitable in cases where the future output y should
follow a determined reference signal r with the minimum control effort. In our case,
reference tracking MPC can be used to make greenhouse environmental conditions fol-
low the desired trajectory. As an optimal control method, a properly set Tracking Model
Predictive Controller can outperform conventional PID-type climate controllers under
realistic external conditions [18]. Commonly, trajectory tracking MPC is based on an ob-
jective function of a quadratic form. The objective function consists of three main terms
as shown in the equation below:

N-1
JIN =Y (llfl(k) —rlg+Ilullg, + ||Au(k)||R2) (2.5)
k=0
Where N the prediction horizon, Q, R;, and R, the quadratic positive semi-definite
tracking, control input and slew rate cost matrices accordingly.

On the right-hand side of Equation (2.5), the first term represents the minimization of
the error between the predicted output j and the desired reference trajectory r. The
second term denotes the minimization of the control inputs cost and the third represents
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the minimization of the control input’s slew rate. All terms can be penalized to tune the
controller to behave according to the designer’s requirements.

2.2.3. ECONOMIC MODEL PREDICTIVE CONTROL

Economic MPC (EMPC) is the integration of the economic optimization criterion in a
receding horizon policy [19]. In the case of EMPC, the optimizer attempts to find the
minimum actuator’s cost that will lead to the maximization of economic revenue. A gen-
eral formulation of the EMPC objective function is given below:

Jeco = 1lg@)|l = Iyl (2.6)

Where g(u) is an expression of the control input cost and y is an expression of the eco-
nomic revenue related to the process outputs. The exact determination of the aforemen-
tioned terms is application-oriented and left to be a designer’s option.

2.2.4. NON-LINEAR MODEL PREDICTIVE CONTROL

The climate-crop system is a complex, non-linear, time-varying process hence the cli-
mate controller should be able to treat these system characteristics. Based on that, it is
considered necessary to introduce the concept of Non-Linear Model Predictive Control
(NMPC). The non-linear, time-varying system is represented as:

{x(t+ 1) = f(x(8), u(t),d(®),1)

Y(0) = hix(0), u(e), d(0), 1 (2.7)

Where [ : R x R x R" x R — R the nonlinear function mapping the current state
and input to the next state under exogenous inputs, h : R"* x R" x R"d x R — R the
nonlinear function mapping the current state, control and exogenous input to the cur-
rent output, x(¢) € R"* the state vector, u(f) € R™* the control input vector, y(¢) € R’ the
output vector, d(t) € R the vector of exogenous inputs, at time t € Z.

The open-loop optimization problem for the non-linear predictive controller is con-
structed as follows:

min ]N(x» u, d)
u(r)

st x(k+1)= f(x(k), u(k),d(k), k), ke{0,...,N-1},
x(0) = x(0), (2.8)
x(k)eX, u(t)el, kefo,..., N—1},
X(N) e Xy
It becomes understandable that the extension of MPC to NMPC is straightforward. How-
ever, dealing with non-linearities is not a trivial case. Before anything else, the lack of
identification techniques for non-linear processes complicates the generation of the sys-

tem representation through data. Furthermore, modeling the non-linear system through
first principles is not always feasible. In terms of optimization, the problem becomes
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non-convex, as a result, it is not sure that a global minimum exists. Moreover, the solu-
tion of the non-linear optimization problem is computationally expensive in compari-
son with QP problems and finally, studying the stability and robustness of a non-linear
system is an open research field [13].



THE GROUND TRUTH
GREENHOUSE-CROP SYSTEM

3.1. INTRODUCTION

In the context of this thesis project, a climate-crop model is required in order to be used
in various ways. First, some of its submodels will be used for the design and valida-
tion of the proposed objective function (See Chapter 4). Second, it will be exploited for
the generation of the training and validation data needed in the implementation of the
proposed data-driven representation. Afterward, it will be used as a baseline for the per-
formance evaluation of the data-driven predictor (See Chapter 5). Moreover, it will be
used as a testing platform for the comparison of the results that occurred by the pro-
posed SPA-based climate controller (See Chapter 6). Therefore, this climate-crop model
can be regarded as ground truth.

Numerous greenhouse-crop models have been developed to describe the behavior of the
micro and macro climate in a greenhouse and their interaction with the crop. However,
the present thesis project requires a greenhouse-crop model with specific characteris-
tics. First, the pursued model should be able to describe the climate’s thermodynam-
ics, vapor pressure, carbon dioxide concentration, and artificial lighting. Further, crops
grow by increasing their canopy surfaces and occupying more volume in the greenhouse.
Canopy’s heat capacity increases as the crop’s volume increase, affecting heat exchanges
in the greenhouse. Besides, increased crop volume results in increased transpiration and
respiration, affecting carbon dioxide and vapor mass balances. As a result, climate dy-
namics change as crop evolves. Hence, the required greenhouse climate models have to
take into account the crop’s state. Air temperature has a major role in climate control and
the climate controller should be able to allow both high and low extreme temperatures to
efficiently manage energy resources [20]. Thus, the model should describe the effects of
extremely high and low temperatures efficiently. Another requirement is the mechanis-
tic nature of the model. In the content of this study, a process-based model will be used

13
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as ground truth for the simulation of optimization-based experiments. The necessity for
a mechanistic model arises from the need for a proper physical interpretation of the re-
sults. This set of requirements is satisfied by the Greenlight model presented in [12]. The
Greenlight model is an exploratory, validated, process-based greenhouse model intro-
duced as a modified version of the well-known KASPRO [21] and Vanthoor-Stangellini
[22] models.

Concluding, this chapter encloses the presentation of the greenhouse system principles.
An overview of the Greenlight climate-crop model which is used in this project and fi-
nally, a presentation of the assumptions that are introduced by the selected models.

3.2. GREENHOUSE SYSTEM PRINCIPLES

Despite the different types of greenhouses and crops, there are some fundamental prin-
ciples regarding the mass and energy fluxes of every greenhouse. These principles are
illustrated in Figure 3.1 as presented in [23].
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Figure 3.1: Greenhouse fundamental mass and energy fluxes as defined in [23]

In Figure 3.1, the grey rectangles denote both the stored energies and masses in the
greenhouse (Sg) as well as the crop (S¢) with states xg and x., respectively. Solid arrows
indicate the fluxes, and the dashed arrows denote the variables that influence each flux
as defined in Table 3.1. As information flows, the control inputs, the greenhouse states,
the crop states, and the disturbances acting on the greenhouse are defined [23].

Observing Figure 3.1, it is understood that there is a high degree of interaction between
the greenhouse, the crop, the external environment, and the control signals. As a result,
the complexity in combination with the non-linear nature of the climate system compli-
cates the modeling of the dynamical system. The next sections contain an overview of
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Table 3.1: Notation Used in Figure 3.1

Stomatal Development

Je g Fluxes between the control equipment and
the greenhouse

Jg o Fluxes between the greenhouse and the out-
door environment

Jgc Fluxes between the greenhouse and the
crop

Jeo Fluxes between the crop and the outdoor
environment

1) Greenhouse control inputs (i.e heat-
ing/cooling, irrigation, CO,)

2), (5), (6) Greenhouse States (i.e. air temperature,
CO; concentration, humidity level etc)

3) Control inputs permitting the interaction

between the greenhouse and the environ-
ment (i.e. windows, fans)

4) Exogenous signals (i.e. external tempera-
ture, weather conditions, solar radiation)

(), (9) States of the crop (i.e. growth stage, canopy,
amount of fruits)

(8) Influence of solar radiation on the jg ,
fluxes

(10) Decision actions determined by the

grower (i.e. pruning, fruit harvesting)

the elements constituting the greenhouse system.

3.3. OVERVIEW OF GREENHOUSE CLIMATE PROCESSES

Numerous physical entities and processes in the greenhouse climate system can be cate-
gorized as greenhouse climate states, crop states, climate inputs, and exogenous inputs.
The greenhouse climate states, denoted by xg, consist of the variables of temperatures,
vapor pressure, and carbon dioxide concentration state variables inside the greenhouse.
The crop states x, incorporate the variables defining the crop’s stage and conditions in
terms of temperature and plant matter. The exogenous inputs d consist of the variables
that affect the climate state but cannot be controlled. In the greenhouse case, the exoge-
nous inputs are defined by weather conditions. Finally, the climate control inputs u are
the variables compensating or even exploiting the effect of exogenous inputs on climate
states. In the context of greenhouse control, the control inputs consist of the actuators
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that affect the climate variables.

The state variables of the greenhouse climate-crop system can all be described by differ-
ential equations. Regarding the greenhouse climate, the differential equations express
three attributes: energy balance, carbon balance, and vapor balance. With respect to
the crop, the differential equations express the energy balance and the carbohydrates
balance of the tomato plant. The first principles are reviewed in the following sections
using the notation introduced in [21]. The state variables of the model are denoted by
names with capital letters followed by one subscript. The fluxes are notated with a capi-
tal letter followed by two subscripts. The first and second subscripts represent the source
and the destination of the flux, respectively. Capital R, H, and L denote radiation, con-
ductive or convective heat, and latent heat exchanges individually.

3.3.1. GREENHOUSE STATES

CLIMATE STATES

Greenhouse modeling is grounded on two assumptions. First, the greenhouse air is con-
sidered to be a "perfectly stirred tank", assuming no spatial differences in temperature,
CO3, and vapor concentration. This assumption allows all fluxes to be expressed in units
of energy or mass per m? of the greenhouse floor. Second, the greenhouse is divided into
two main compartments. The compartments above the blackout and thermal screens
(top compartment) and the compartment below the screens (main compartment)[22].
The state vector for the greenhouse climate model is presented in Equation (3.1).

TCov,e
TCov,in
TTop
Tair
Tiscr
Tspser
Tcan
Trir
xg=| Tso(j @.1
TPipe
TGroPipe
TLump
TIntLamp
COzy;,
COz4,,
VPair
| VProp |

Following the notation given in Table 3.2 it becomes clear that the state vector includes
the temperature variables of all greenhouse elements in °C. Particularly, it incorporates
the temperature of the outer and inner cover surfaces (Tcoy,e and Tcop,in), the air tem-
perature in both compartments (Tr,p and Ty;;), the various screens (Tg;scr and Trpser),
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the canopy (Tcan), floor (Tg;;), soil (Tse(j)), heating elements (Tp;pe and Tgropipe) as
well as the temperatures of the artificial lighting (Tramps and Tintramp). Further, the
carbon dioxide concentration (CO- ,, and C OzTop), inmg- m~3, and the vapour pressure
(VP4ir and V Pryp), in Pa, are enclosed for all greenhouse compartments. At this point,
it should be noted that the canopy temperature is not exactly a climate state. Although,
it has to be included in the climate state vector as it plays a major role in heat exchange
processes and acts as a connective link between the crop and climate subsystems.

Table 3.2: Subscripts used in Energy, Carbon, and Vapour Balance Equations

Subscripts Used in Differential Equations

Air Greenhouse air com- | Ind Industrial source
partment below ther-
mal screen
Blow Direct air heater Mech Mechanical cooling
Boil Boiler Out Outside air
Can Canopy Pad Pad and fan system
e External side Pas Passive heat storage
facility
Ext External CO; source Pipe Pipe heating system
Flr Floor Sky Sky
Fog Fogging system So(j) The ’j’th the soil layer
Geo Geothermal heat Sun Sun
Glob Global Radiation Top Compartment above
the thermal screen
in Indoor side ThScr Thermal Screen
BlScr Blackout Screen Lamp Top-lights
InLamp Inter-lights

CROP STATES
The crop growth systems’ state variable vector is presented in Equation (3.2), where
Time presents the date and time.

[ Time
TCan24
CBuf
Xe = CLeaf (3.2)
CStem
Crruit
L TC“nSum

Tcany, is the average canopy temperature in the last 24 hours in Celsius. T¢cqp,, rate is
described by the ordinary differential equation (3.3). The mean canopy temperature is
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introduced as a state, as it has been shown that it affects the length of the fruit growth
period and the size of the fruits [24], [25].

. 1
TCan24 = ;(k Tcan— TCan24) (3.3)

In Equation (3.3), T represents the time constant of the process and k is the gain of the
process.

Cpyy refers to the mass of the accumulating assimilates and Cieqf, Cstem, Crruir the
amounts of carbohydrates in leaves, stems and fruit respectively. The mass of carbo-
hydrates is expressed in units of CH,O mass per unit area per time unit, in this case;
mgcm,0-m 2+ s7L. Finally, Tcan,,, is the integral of the historical canopy temperature
experienced by the plant, and it is used to represent the crop’s development stage.

The crop growth process is divided into two stages, the vegetative stage and the gener-
ative stage. The use of Tcang,,, (EQ. (3.4)) as a stage index may seem counter-intuitive,
however, several studies have shown that sub-optimal canopy temperature during the
vegetative stage, delay the switching to the generative stage [20]. Hence, the switching
point between the two stages could be marked by the integration of the experienced
canopy temperatures,

TCanSum = Tcan (3.4)

tDay
where fp,y is the time interval for a whole day in appropriate units and Tcgy, is the sim-
ulated canopy temperature. Initially, Tc,nsum is set to a negative value representing that
the crop is in the vegetative stage. When T¢g,sum reaches 0°C, the crop is passing from
the vegetative to the generative stage and the first fruits start appearing.

3.3.2. GREENHOUSE EXOGENOUS INPUTS

In general, exogenous variables are variables whose measures are imposed on the model
as defined outside of the model. In the case of greenhouse climate modeling, external
climate inputs are regarded as exogenous greenhouse input variables. The external cli-
mate inputs incorporated in the GreenLight are:

'COZOW ]
IGiop
Tour

d=| Tsk, (3.5)

Tsoout

VPou:

| Ywind |

where CO,,, the outdoor CO, concentration in mg-m™3, Ig;,p the outside global radi-
ation in W-m™2, Tou: the outdoor temperature in °C, Tsky the sky temperature in °C,
Tsoour the soil temperature of outer soil layer in °C, V Po,,; the outdoor vapour pressure

in Pa and 1,4 the outdoor wind speed in m - s,
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3.3.3. GREENHOUSE CLIMATE CONTROL INPUTS

Modern greenhouses aim to influence all three types of greenhouse climatic variables
T, CO;, and VP [21]. To complete this, numerous actuators are required, such as natu-
ral ventilation through the window opening, thermal and blackout screens, heating sys-
tems, carbon dioxide enrichment systems, and humidifiers/dehumidifiers. In the con-
text of the Greenlight model, the climate control input vector has the following form:

Boil
BoilGro
ExtCoy
Roof
“=1 ThScr (3.6
BlScr
Lamp

| IntLamp

Where Boil and BoilGro are the boiler values used to heat the heating pipes and the
grow pipe system, respectively. ExtCO, the actuator of the CO; enrichment system and
Roof the roof opening acting as natural ventilation. All the aforementioned control in-
puts are continuous variables taking values in the range [0, 1] where 0 declares zero ac-
tuator action and 1 proclaims full capacity. ThScr and BlScr the deployment of the
thermal and blackout screen accordingly. Screen deployment variables are continuous
and their values are in the range [0, 1], expressing the percentage of the deployment.
Lastly, Lamp and IntLamp are discrete, boolean variables declaring the state of the top
and inter-lights.

3.3.4. CLIMATE’S MASS AND ENERGY FLUXES

The mass and energy fluxes of the greenhouse climate are divided into three main as-
pects, the energy balance, the carbon balance, and the vapor balance. The following
three subsections present the differential equations describing the three greenhouse cli-
mate attributes. Moreover, the presented equations are based on the assumption that
the greenhouse is a perfectly stirred tank.

ENERGY BALANCE

The energy balance is achieved through the exchange of radiation, convection, conduc-
tion, and latent heat between the different entities existing in the greenhouse system.
In the context of this section, the radiative heat exchange is divided into two subcat-
egories. The first is the radiative heat exchange because of the short-wave radiation (
PAR and Near Infrared Radiation (NIR)). The second subcategory integrates the radia-
tive heat exchange that takes place in the form of Far Infrared Radiation (FIR). It should
be underlined that convection and conduction are quite different processes, however, in
greenhouse climate modeling, they are lumped together. A schematic representation of
the greenhouse climate energy balance is depicted in Figure 3.2.
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Figure 3.2: Scheme of the GreenLight model energy balance. Dashed and bold items are additions to the
Vanthoor model. All the items in grey exchange FIR between each other [12]

An analytical representation of the thermal exchange differential equations governing
the climate system is given below. The heat exchange terms are expressed in W - m~2.
Generally, these differential equations consist of the left-hand side containing the ca-
pacity of the corresponding state variable and the time derivative of the state variable.
On the right-hand side, the energy fluxes affecting the state variable are declared. At this
point, should be mentioned that time derivatives of the state variables are indicated by
a dot above the state symbol. Moreover, it is underlined that Table 3.2 presents all sub-

scripts used by the following equations.

Covering Surfaces Covering surfaces play a major role in greenhouse heat conductiv-
ity as they consist of a greenhouse design parameter able to significantly induce the tem-
perature gradient across the cover. The internal cover temperature T¢,,,;, and external
cover temperature T¢o, . are described by:

Capcov,e TCov,e = RGloh_SunCm/ + HCov,inCov,e - HCov,eOut - RCov,eSky 3.7

capcov,inTcov,in = HropCov,in + LTopCov,in + RcancCov,in + RF1rCov,in + RPipeCov,in (3.8)

+Rrnscrcov,in — Hcov,inCove + RBiscrcov,in + RLampCov,in
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Where capcoy,in and capcou,e are the heat capacities of the internal and external cover
layers respectively. Concerning the internal cover, the condensation of the greenhouse
cover causes a latent heat flux affecting its temperature. Additionally, the inner cover ex-
changes energy, through FIR radiation, with the heating pipes, the screening, the canopy,
and the floor. Conductive energy exchange takes place between the inner cover and the
top compartment, as also between the inner and outer cover surfaces. The outer cov-
ering surface receives energy from the sun and the hotter inner cover. However, it is
expected to lose energy due to the low external temperature and sky.

Air Temperature The air temperature above the blackout and thermal screens (top
compartment) is defined separately from the greenhouse air below the screens. The rea-
son is that these two temperatures behave differently. The following differential equa-
tions present the relationship between the top compartment’s air temperature (T7op)
with the screenings, the internal covering surface, the external air, and the greenhouse
air. The heat capacity of the top compartment’s air temperature cannot be neglected.

caprop Trop = Hrhscrrop + Hairrop — HropCov,in — Hropout + HpiscrTop (3.9)

The greenhouse air temperature T,4;, is described by:

capair Tair = Hcanair + Hpipeair + RGiob_sunair — Hairrir — HairThScr
—Hairour — HAirTop — HpirBiscr + HLampAir + RLampAir (3.10)

+HintLampAir + HGroPipeAir
Where cap 4;, is the heat capacity of the greenhouse air. Greenhouse air is constantly
exchanging sensible heat with the surrounding elements and surfaces. Air receives ther-
mal energy from the canopy, the heating pipes, and the lamps in a conductive way. It
also receives radiative energy from the sun in the form of global radiation. Although,
all the surrounding surfaces and the air of the top compartment are receiving thermal
energy from the greenhouse air. Finally, since greenhouse air has a higher temperature
than the air outside of it, a conductive heat exchange takes place between the air inside

and outside the greenhouse.

Screens The equations for the temperatures of the blackout (T;5.,) and thermal (Trpscr)
screens are
Capapiscr TBlScr = HairBiscr + Lairsiscr + RcanBiscr + RE1rBiscr + RpipeBiScr
_HBlSchop - RBlSchov,in (3.11)
_RBlSchky — RBiScrThScr + RLampBlScr

caprnscr Tthser = Hairtnser + Lairthscr + Rcanthscr + REirThSer + RPipeThScr
_HThSchop - RThSchov,in (3.12)

_RThSchky + RBiScrThSer + RLumpThScr

where capp;scr and capryscr are the heat capacities of the blackout and thermal screen
respectively. Both screens are affected by surrounding elements in a similar way. Screens
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receive conductive energy and latent heat from the air. In addition, they receive radiant
energy from the canopy, the floor, the lamps, and the heating pipes. Both screens pro-
vide energy to the top compartment, the inner covering surface, and the sky. The main
behavioral difference can be found in the heat exchange between the screens, where the
blackout screen provides energy and the thermal screen receives it.

Canopy Temperature Canopy temperature T¢;, is described by:

capcanTcan = RPAR_SunCan + RNIR_SunCan + RpipeCan — Hcanair — Lcanair

_RCanCov,in —Reanrir — RCanSky —Rcanthser + RPAR_LampCan (3.13)

+RNIR_LampCan + REIR_LampCan + RPAR_IntLampCan
+RNIRJntLumpCun + RFIRJntLampCan + RGroPipeCan

where capcqy is the heat capacity of the canopy. Canopy temperature is highly depen-
dent on incident radiation. The radiant energy comes in multiple bands (PAR, NIR, FIR)
emitted by the Sun, the Lamps, and the inter-lights that may be installed in the green-
house. Moreover, the radiation from heating pipes Rp;pecan is also affecting Tcqay,. How-
ever, it should be noted that the canopy emits radiation which is absorbed by the sur-
rounding surfaces. Finally, the canopy exchanges thermal energy with the air in the form
of conductive and latent heat.

Floor and Soil The temperature of the floor surface is dependent on the air, the in-
cident short-wave radiation, and the long-wave radiation emitted by the surrounding
elements. The floor temperature T;, is described by:

caprir Trir = Hairrir + RpAR_SunFir + RNIR_SunFir + Rcanrir + RpipeFir
—HEirso1 — RFerov,in - RFlrSky — Rrirrhser — REirBiscr (3.14)
+RpAR_LampFir + RNIR_LampFir + REIR_LampFir

where capp;, is the heat capacity of the floor. The floor temperature receives convective
energy from the air and provides it to the first layer of soil. In terms of radiative heat
exchanges, the floor receives energy from the sun, the canopy, the lamps, and the pipes,
and provides energy to the inner cover, the sky, the thermal screen, and the blackout
screen.

For modeling purposes, it is assumed that the soil is divided into five layers. Each layer is
denoted by the subscript j where j € {1,...,5}. As can be seen in the next equation, each
layer exchanges thermal energy by convection with its neighboring layers, by receiving
energy from the previous layer and providing it to the next one.

capso(j) TSO(j) = Hso(j-1)so(j) — Hso(jysoy+1), J=1,...,5 (3.15)

Heating Pipes As presented in Equation (3.16), the heating pipes receive energy from
the boiler and the lamps in a convective and radiative way, accordingly. Then the heating
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pipes emit energy to the sky, inner cover, canopy, floor, thermal and blackout screen in
the form of radiation. Furthermore, the pipes heat the air by convection.

cappipeTripe = Hpoilpipe — Rpipesky — RripeCov,in — RpipeCan — RpipeFir (3.16)
—Rpipernscr — Hpipeair — RpipeBiscr + RLampPipe

The differential equation describing the grow pipes temperatures Tg;opipe is given be-
low:

CapGroPipe TGroPipe = HpoilGropipe — RGroripecan — HGropripeair (3.17)
The main difference between the heating and grow pipes is the assumption that for a
mature crop, the majority of the radiative heat from the grow pipes is absorbed by the
canopy. Hence, the FIR exchange terms between the grow pipes and other greenhouse
elements are neglected.

Lamps The lamp temperatures T7qmp and Tinsramp are described by:

capramp Tramp = QLampin — RLampsky — RLampCov,in — RLAmpThScr
_RLampBlScr - HLumpAir - RPAR_LampCtm - RNIR_LampCan

(3.18)
—RFEIR_LampCan — RLampPipe — RPAR_LampFir — RNIR_LampFLr
_RFIRfLampFLr - RLampAir - HLampCool

CaAPrampInt TLumplnt = QIm,‘LampIn - HIntLampAir - RPAR_IntLampCan (3.19)

_RNIRJn tLampCan — RFIRJmLampCan

Where capramp and camprampin: are the heat capacities of the top lights and the inter-
lights. Lamp temperatures are affected by the electrical input Qramp1n, the FIR exchange
between the lamps and the sky, cover, thermal screen, blackout screen, canopy, heat-
ing pipes, and the floor. There are also radiative exchanges between the lamps and the
canopy and the floor, which take place in the PAR and NIR bands. Short wave radiation
not absorbed by the floor or canopy is assumed to be transferred to the greenhouse air
(RLampair). Besides, between lamps and greenhouse air, the convective heat transfer
Hpampair is taking place. Finally, the term Hj gmpco01 becomes nonzero for the case of
lamps with active cooling systems.

CARBON BALANCE

The carbon balance is used for the definitions of two state variables, the CO, concen-
tration in the greenhouse air and the concentration in the top compartment. The CO,
concentration of the greenhouse air is denoted by CO;,,, and is described as follows:

capco,,;, C-OZAZ', = MCEgxtair — MCaircan — MCairrop — MCairour Img- m.s7"
(3.20)

Where capco,,, is the capacity of the air to store CO,. The carbon dioxide exchange
takes place between the greenhouse air and the surrounding elements. An external CO,
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source MCgyx¢air, the top compartment MCairrop, and the outdoor air MCajrour are
considered as surrounding elements. The term MCa;rcq, defines the CO, flux between
the greenhouse air and the canopy. Respiration and photosynthesis are responsible for
this flux.

The CO, concentration of the top compartment is expressed as CO,,, and is described
by the following equation:

capco,,,, CO2;,, = MCairtop =~ MCropour Img-m™2-s7'] (3.21)

Where €apco,,, is the capacity of the top compartment air to store CO2. MCropout
recites the O, exchange between the top compartment air and the air outside the green-
house.

VAPOUR BALANCE

Similarly to carbon balance, vapor balance defines the vapor pressure of the greenhouse
air (V P;,) and the vapor pressure of the air in the top compartment (V Prop). VP4 is
presented in Equation (3.22) where capvp,;, is the capacity of the air to store water va-
por. Vapor is exchanged between the air and surrounding elements. Several surround-
ing elements can be applied to a greenhouse system such as fogging systems, direct air
heaters, and pads. However, in our case, the elements determining the vapor balance
are the canopy (M Vcanair), the thermal screens (M Va;rhscr), and the blackout screens
(MVyirBiscr)- Terms that should not be neglected are the exchanges with the top com-
partment (M Va;r7op) and the outside air (M Va;rour)-

capvp,, VP air = MVcanair — MVairthser — MVairrop — MVairour 3.22)
—MVyirBiSer [kg'm_z's_ll )

V Prop is described as below:

Capypr,, VPTop = MVairrop — MVropcov,in— MVropour lkg- m2. 3_1] (3.23)

Where capy Prop is the capacity of the top compartment to store water vapor, and M Vropco,in

is the vapor exchange between the top compartment and the internal cover layer. Finally,
MVrepour portrays the vapor exchange between the top compartment and the outside
air.

3.3.5. CROP’S MASS AND ENERGY FLUXES

Regarding the crop, the mass and energy fluxes are realized in the form of carbohydrate
flow. The following paragraphs present the ordinary differential equations describing
the mass and energy fluxes taking place in the tomato crop.
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Assimilates in the Buffer The availability of carbohydrates in the buffer is ruled by
photosynthesis and growth respiration. Photosynthesis produces carbohydrates, growth
rate consumes a portion of the stored carbohydrates, and part of the remaining resources
are distributed to crop organs. The rate of change of the stored accumulating assimilates
is noted as Cg,, r and is described as follows

C.’Buf = MCAirBuf - MCBufFruit - MCBqueaf _MCBufStem - MCBquir (3.24)

where MC;,p,r the mass of produced assimilates by photosynthesis, MCgyf4;; the
mass of consumed carbohydrates by growth respiration and MCgyrruit» MCpyfreaf,
MCpgyfstem the carbohydrate flows from buffer to fruits, leaves and stems respectively.

The carbohydrate buffer has limited capacity, and when the biomass approaches its
lower limit, the carbohydrate flow to the organs stops. On the other hand, when the up-
per limit is reached, photosynthesis stops the production of biomass, as newly produced
carbohydrates can not be stored.

Carbohydrates in Organs As presented in the previous paragraphs, each organ up-
dates the number of carbohydrates through the assimilation partitioning process, and
it consumes a part of the received carbohydrates through the maintenance respiration.
However, leaves and fruits are also affected by the pruning and harvesting processes. In
order to describe the amount of the stored carbohydrates in the different organs and also
express their rate of change, the ordinary differential equations (3.25), (3.26) and (3.27)
are introduced.

C‘Fru.it = MCBufFruit = MCrruitair — MCrruittar (3.25)

where MCgy frryir the carbohydrates’ flow from the buffer to the fruits, MCpyyirair the
maintenance respiration of fruits, and MCg; 4y the fruit harvesting.

CLeaf = MCBqueaf - MCLeafAIr - MCLeafHar (3.26)

where MCpgyfreqr the carbohydrates’ flow to the leaves, MCieqr i the maintenance
respiration of leaves, and MCypeqfHqr the leaf pruning.

CStem = MCBufStem — MCstemair (3.27)

where MCgyfreqr the carbohydrates’ flow to the stem and MCieqr 4 the maintenance
respiration of stems.

The presentation of the differential equations describing the climate-crop system does
not contain all the analytical expressions required for the estimation of the individual
terms. The extensive review of all needed analytical equations is not included for the
sake of brevity. Readers interested in a more detailed description of the numerous terms
appearing in the differential equations are referred to Appendix A of [12].
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3.4. OVERVIEW OF THE MODELS USED

The previous section presented the coupled climate-crop model named Greenlight which
is basically an extension of the well-known KASPRO [21] and Vanthoor-Stangellini [22]

models. In the context of this thesis project, the Greenlight climate-crop model is exten-

sively used to satisfy various requirements. However, some of the presented experiments

do not require the use of the coupled model but only the crop model or a crop model

variant. For this reason, it was considered appropriate to provide a high-level overview

of the models used in the next chapters to prevent any confusion.

3.4.1. THE GREENLIGHT MODEL
The Greenlight greenhouse model occurs by coupling the greenhouse climate model and
the greenhouse crop model. This model is used for data generation in Chapter 5, and

as the ground truth and predictive model for the climate controller in Chapter 6. The
coupled model can be expressed as:

x:

Xg
Xc

= fen(x, u,d, 1) (3.28)

Where x the greenhouse-crop state vector (3.2), u the control inputs (3.6), d the exoge-
nous inputs (3.5), ¢ the time and fgh contains the state transition equations (3.3)-(3.27).

For simulation purposes, a weather dataset describing the weather conditions in Ams-
terdam will be used. It should be mentioned that the dataset containing the exogenous
inputs is sampled every 5 minutes (300 seconds). Hence, the greenhouse model has to
take the following non-linear discrete-time form:

xg(k+1)

e+ = ks 1)

= fen(x(k), u(k), d(k), k) (3.29)

A high-level, graphical demonstration of the Greenlight model is provided in Figure 3.3.
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Figure 3.3: A visual representation of the Greenlight climate-crop model in a block diagram form. The climate-
crop variables living in the state vector x can be found in Equation (3.2)

The non-linear discrete form occurs through Euler’s discretization method where:
x(k+1) = x(k) + h- fon(x(k), u(k), d(k), k) (3.30)

Subsequently, the model is implemented in MATLAB where the solver ode15s is used for
the calculation of discrete-time differential equations. The introduced model is para-
metric and as a result, calibration is required. The parameters used in this thesis project
were taken from [12] as authors have already validated the GreenLight model using data
from a greenhouse experiment realized from 16 October 2009 to 1 July 2010 in Bleiswijk,
the Netherlands. The presentation of the parameters is out of the scope of the thesis
projects. For this reason, the readers interested in the parameter’s evaluation, are re-
ferred to [12] and the provided source code in the given link:

https://github.com/davkatl/GreenlLight

For the sake of completeness, it is noted that the models presented in the following para-
graphs are similarly discretized based on the same sampling time. The needed crop pa-
rameters were also taken from [12].

3.4.2. THE VANTHOOR TOMATO CROP MODEL
The Vanthoor tomato crop model is the original crop model incorporated in the Green-
light model. The crop model is described by the state vector presented in Equation (3.2)



https://github.com/davkat1/GreenLight

28 3. THE GROUND TRUTH GREENHOUSE-CROP SYSTEM

and the differential equations (3.3), (3.4), (3.24), (3.25), (3.26), and (3.27). When used in-
dependently, the Vanthoor model requires an input vector containing the canopy tem-
perature, the incident radiation above the canopy, the carbon dioxide concentration, and
the vapor pressure in the air.

The tomato crop model can be visualized in the form of a block diagram as shown in
Figure 3.5.
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Figure 3.4: A visual representation of the Vanthoor tomato crop model in a block diagram form.

An application requiring the presented crop model can be found in Section 4.6 for the
comparison between two controllers. The experiment is used as a proof of concept to
show that a novel objective function suitable for climate control can produce compa-
rable results with the well-tested fruit maximization NMPC approach. Particularly, the
Vanthoor tomato crop model is used as the ground truth for both controllers and also as
the predictive model of the reference controller.

3.4.3. CLIMATE-DEPENDENT TOMATO CROP MODEL

In Chapter 5, and specifically in Section 5.5, a crop model receiving only climate vari-
ables as inputs is required. The model has to receive as inputs the air temperature, the
vapor pressure in the air, the carbon dioxide concentration, and the incident radiation
above the canopy. The main difference with the Vanthoor model is that now the canopy
temperature has become a state. Essentially, the following differential equation has been
added in the Vanthoor tomato crop model:

TCan = (RPARJSunCun — Hcanair — Lcanair) (3.31)
capcan
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The climate-dependent tomato crop model can be visualized as:
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Figure 3.5: A visual representation of the climate-dependent, modified Vanthoor, tomato crop model in a block
diagram form.






SPA OBJECTIVE FUNCTION
DEFINITION

4.1. INTRODUCTION

Conventionally, the grower acts as the connective link between the climate computer
and the crop. The grower’s job is to periodically examine the crop in a greenhouse envi-
ronment and receive information about the crop status based on his senses. Then, the
sensed information in combination with the environmental data and the grower’s expe-
rience help the grower decide the future climate setpoints that would be beneficial for
the crop. These climate setpoints are fed into a reference tracking controller and they
are eventually realized. Afterward, the grower repeats his periodical crop check, decides
about future conditions, and informs the climate controller. Practically, the grower con-
stitutes an important subsystem in the climate control loop. The problem, in this case,
has to do with the fact that the efficiency of the method depends on the human factor.
Consequently, the elimination of human interference from the decision-making process
is a matter of great importance and it has to be achieved to steer the evolution to au-
tonomous greenhouses.

A method capable to contribute in these changes is the SPA proposing that the opti-
mal environmental conditions should be indicated by the plant itself via a single or a
set of signals correlated with the crop yield [4]. As mentioned in Chapter 1, thermal
cameras satisfy the SPA applicability, reliability, and financial requirements. Thus, it
can be assumed that thermography can become a standard in greenhouse measurement
equipment. The introduction of thermography permits the admission of the following
assumption:

* The climate controller is aware of the temperatures of the various greenhouse sur-
faces at all times.

As aresult, the temperature states presented in section 3.3.1 can now be considered mea-
surable states of the greenhouse system. Canopy temperature is a state of great signif-

31
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icance for the proposed SPA approach and its role will be analytically presented in the
following sections.

The scope of this chapter is to present the research carried out regarding the formula-
tion of a SPA-based objective function able to be used in predictive climate control tech-
niques. The designation of the canopy’s temperature importance is also in the context
of the chapter’s scope. Particularly, this chapter contains the presentation of the funda-
mentals behind the design of the objective function and the analytical overview of its
components.

4.2, OBJECTIVE

The ingredients of the tomato crop have to be understood before diving into the targets
of the proposed objective function. The Vanthoor tomato mechanistic model, presented
in [20], describes the biochemical processes of the crop. The structural processes of the
tomato crop can be summarized in the high-level block diagram description presented
in Figure 4.1 introduced in [3]. For a better understanding of Figure 4.1, it should be
noted that the direction of the arrows represents whether the signal is an input or an
output signal to a specific process.
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Figure 4.1: Common biological processes of tomato crop growth. The numbers and symbols represent the
following processes: 1: photosynthesis, 2: growth respiration, 3: maintenance respiration, 4: accumulating as-
similates, 5: assimilate partitioning, 6: accumulating biomass, 7: tomato harvest, 8: leaf harvest, p: assimilates
generated through photosynthesis, g;: the assimilates used for growth, g: the amount of assimilates converted
to biomass, m: part of the biomass used for maintenance respiration, h1: harvest of fruits, h2: harvest of leaves

[3]

From a high-level perspective, photosynthesis (Block 1 in Figure 4.1) is the process by
which the plant converts light energy and CO, into carbohydrates [26]. The produced
carbohydrates are stored in a carbohydrate buffer( Block 4 in Figure 4.1) and they have
several fates. The largest fraction of the produced carbohydrates is used by the respi-
ration process. Respiration can be considered reverse photosynthesis where the stored
carbohydrates are oxidized. The oxidization process releases energy which is used for
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the production of plant matter (Growth Respiration, Block 2 in Figure 4.1) and the main-
tenance of the already existing plant matter (Maintenance Respiration, Block 3 in Figure
4.1) [27]. Block 4 in Figure 4.1 acts as a buffer collecting the carbohydrates that will, even-
tually, be converted to biomass. The stored carbohydrates are distributed to the plant’s
organs (stems, leaves, fruits, etc) through Block 5 (Fig. 4.1), concluding on the accumu-
lated biomass Block 6 (Fig. 4.1). Finally, the last labor processes, such as harvest and leaf
picking, have to be defined. These processes are described by Blocks 7 and 8.

The objective function is going to be used in a predictive climate controller that has to
define the future, optimal, actuator inputs leading to the optimal yield-cost ratio accord-
ing to the crop’s needs. In other words, the objective function should permit monitor-
ing the carbohydrates production, ensuring a high degree of carbohydrates distribution
from the buffer to the organs, and eliminating the carbohydrates losses by the crop while
it takes into consideration the economic impact. The actuator’s inputs are responsible
to steer the canopy temperature, the mean canopy temperature, and VPD according to
the decided trajectories. Concerning CO, a constant reference carbon dioxide level has
to be tracked. The design of such an objective function requires a good understanding
of the background processes running in Blocks 1, 2, 3, 4, and 5 of Figure 4.1.

4.3. MONITORING CARBOHYDRATES PRODUCTION

From the biological perspective, carbohydrate production in a tomato plant is achieved
through photosynthesis. Photosynthesis is a complex biochemical process directly de-
pendent on the canopy temperature, the absorbed photosynthetically active radiation
(PAR), and the CO; concentration in the greenhouse. Vapor pressure deficit (VPD) indi-
rectly affects photosynthesis through stomatal conductance. Moreover, photosynthesis
has a positive correlation with crop yield [28]. Hence, the monitoring of a crop’s carbo-
hydrate production requires the introduction of a term related to photosynthesis.

Several photosynthesis models have been proposed in the literature with FvCB [29] and
its variants ([30], [31] and [32]) being the most widely used. FvCB-based models describe
the kinetic properties of the enzymes governing photosynthesis (Rubisco and RuBP), the
electron transport process, the chemical reactions consuming CO;, and the photorespi-
ration. However, these photosynthesis models are complex as they summarize the bio-
chemistry behind the process and they are highly dependent on crop-specific param-
eters. These characteristics make FvCB-based models a deficient and computationally
expensive candidate for a general-purpose objective function. In consequence, carbo-
hydrate production has to be monitored through a computationally cheaper index, able
to be measured using thermography. This index should be capable to be measured right
after the crop’s germination and finally, it should maintain a positive correlation with
photosynthesis.

Stomatal conductance is an index able to achieve indirect yield coordination while satis-
fying the aforementioned criteria. Leaf temperature is a variable with great importance
for the photosynthesis process and it is strongly dependent on transpiration. Transpi-
ration is dominated by stomatal conductance, and studies have shown that this dom-
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inance is intensified under deficient fertirrigation [33]. Another important variable of
photosynthesis is the intercellular CO, concentration, which depends on the ambient
CO; concentration, the stomatal aperture, and the photosynthetic rate. Particularly, the
stomatal aperture controls the gas exchange flows between the plant and the air, as a
result, stomata can significantly affect the intercellular CO, concentration. Figure 4.2
displays the relationship between net photosynthesis and stomatal conductance as a
function of light, where each black line presents the value of net photosynthesis for con-
stant light intensity, air temperature, relative humidity, and variable stomatal conduc-
tance. Figure 4.2 validates the positive correlation between stomatal conductance and
photosynthesis as for constant environmental conditions, increasing stomatal conduc-
tance triggers the increase of photosynthesis. Concluding, the objective function has to
include a stomatal conductance maximization term or a stomatal resistance minimiza-
tion term to ensure high levels of carbohydrate production.
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Figure 4.2: Relationship between net CO> assimilation A and stomatal conductance gs, as a function of light
intensity (indicated on each line, pmol- m~2-s71) under constant temperature and air relative humidity. Each
line represents the value of A if light intensity was kept constant and only g; varied. Net CO» assimilation was
calculated using the equations provided in [34]. The red line illustrates the trajectory of A after a step change
in irradiance (from 100 to 1000umol - m~2 - s~1), showing the instantaneous increase in A followed by a slow
increase of it limited by the g; response. The blue dashed line represents the g value required to achieve 95%
of maximum A(depending on light intensity), and represents the trajectory if A and gs were fully synchronized.
Values to the left of the trajectory(blue line) represent g limitation of A(red shading), whilst those to the right
(blue shading) represent unnecessary water loss relative to CO; gain. Red dots represent the initial g5 and the
arrow the final steady-state gs. [7]
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4.3.1. STOMATAL RESISTANCE MODEL ANALYSIS

The control of gas exchange between plants and the atmosphere is considered as one
of the holy grails in plant physiology [35]. For this reason, more than 40 stomatal con-
ductance models capable to account for multiple environmental factors such as air tem-
perature, relative humidity, VPD, carbon assimilation, and lighting conditions have been
developed. In the context of this project, the Stanghellini stomatal conductance model
([36]) is used as ground truth.

As shown in Equation (4.1), the Stanghellini model considers stomatal conductance a
product of four factors.

1
rs(TC ,VPA' ,RC ,COQ m)= =
A TR e g5 (Teany VP airs Reany C02,,,,,)

T'Smin ¥ frcan (Rcan) - T fco, (Rcans COZ,,pm) : rfvp (Tcan, VPair, Rcan)  (4.1)

Where rg the stomatal resistance, gs the stomatal conductance, rs,,;,, the minimum
canopy resistance for transpiration (constant), ry,.,, the influence of solar radiation,
" feo, the influence of carbon dioxide and "fv, the influence of vapor pressure on stom-
atal resistance. In Stanghellini model, stomatal resistance is a function of the canopy
temperature T¢gp, in °C, the vapor pressure in air VPy;, in Pa, the PAR and NIR radia-
tion above the canopy Rcg, in W - m~2 and the carbon dioxide concentration COprm in
Ppm.

An analytical overview of all factors living in the Stanghellini model is out of the scope of
this project. However, in order to understand the impact of each dependent variable on
stomatal resistance, the conduction of the sensitivity analysis is a matter of high impor-
tance. As depicted in the upper left plot in Figure 4.3 the absence of incident radiation
increases the stomatal resistance, restricting the gas exchange flows and transpiration.
During the daytime, the increasing PAR and NIR radiation above the canopy does not
have a significant effect on stomatal resistance. It should be noted, though, that the
function of stomatal resistance to incident radiation is monotonically non-increasing.
According to the lower left plot, increasing CO, monotonically increases stomatal resis-
tance till it reaches a threshold value.
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Figure 4.3: One variable sensitivity analysis on the Stanghellini stomatal conductance model

From the plots of the right column in Figure 4.3 becomes clear that the depicted func-
tions are convex. As a result, it is understandable that for given CO; and Rc,;, values, a
combination of V P,;, and T¢,, values resulting in minimum stomatal resistance can be
found. This observation is depicted in Figure 4.4 where the 3D plot of stomatal resistance
to VPy;r and T¢gyy, for constant CO;, and R, values is presented.
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Figure 4.4: Two factor sensitivity analysis on the Stanghellini stomatal conductance model

Based on Figure 4.3 stomatal resistance becomes minimum for maximum R¢,;,, min-
imum CO, and a combination of VP,;, and T¢,j, falling on the bottom of the convex
surface shown in Figure 4.4. However, low CO2 values result in limited intercellular CO2,
restricting photosynthesis. For this reason, the stomatal resistance minimization has to
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take place for a given level of CO2 concentration. Consequently, 7., does not need to
be a part of the carbohydrates monitoring term. Furthermore, it has to be mentioned
that the climate controller developed in this thesis project does not include the control
of artificial lighting. Therefore, ry, ., does not have to be a part of the objective function.
Based on these constraints, the minimization of stomatal resistance can be achieved
through the minimization of " fu, -

4.3.2. TEMPERATURE INDUCED RESISTANCE CONDUCTANCE MINIMIZATION

The vapor pressure influence on stomatal resistance is described by Equation (4.2).

p3-Tcan

I frp (Tcan, VPair, Rean) = min(5.8, 1+ PCrap, * Rcan - (p1-eTcan*p2 — VPAir)Z) (4.2)

Where pcy,,,, the parameter for vapor pressure influence on stomatal resistance in Pa~?
as described in Equation (4.3) and p; for i = {1, 2,3} parameters used for the calculation
of the saturated vapor pressure at temperature Tcgy,.

PEvapNight Rcan <0

4.3
PEvapDay» Rcan=0 4-3)

PCryap, Rcan) = {

Where pgyapnign: the coefficient of the vapor pressure effect on stomatal resistance at
night in Pa~?, PEvapDay the coefficient of the vapor pressure effect on stomatal resis-
tance during the day time in Pa 2.

Concluding, the minimization of stomatal resistance for the case of no lighting control
in combination with a constant CO, reference level can be achieved through the mini-
mization of the following term:

X 2 . p3-Tcan 2
min||rs|l; =min||p;-e’can*r2 — VP girll5 (4.9)
u u

4.4, MONITORING CARBOHYDRATES DISTRIBUTION

According to most mechanistic tomato crop models, the produced carbohydrates are
temporarily stored in a buffer (Block 4, Figure 4.1). A portion of these carbohydrates will
be consumed by the growth respiration process (Block 2) and another portion will be
distributed to the organs (Block 5). However, the photosynthetic capacity is dependent
on the capacity of the carbohydrate buffer. The more carbohydrates in the buffer, the
lower the maximum photosynthesis. In the extreme scenario where the buffer is full,
photosynthesis stops. Consequently, it has great importance to maintain the high flow
of carbohydrates from the buffer to the organs to ensure high photosynthetic potential
that will eventually lead to increased yields.
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4.4.1. CARBOHYDRATES FLOW FROM BUFFER TO ORGANS
The carbohydrate flow from the buffer to the fruits is determined by the following equa-
tion
MCgy fOr
MCB”fFruit = hBuf £ hTCan : hTCan24 : hTCanSum : gTCanz4 *T8Fruit (4.5)
where h are the inhibition factors. Inhibition factors are taking values in the range [0, 1]
and they define the impact of insufficient carbohydrate concentration in the buffer
MC u T . .
(hg, ]f 7978) "and of non-optimal instantaneous and mean canopy temperatures (h7,,,,
htcan,). At first, the crop is in the vegetative stage and all carbohydrates are used for
stem and leaf growth, and when a given canopy temperature sum is reached, the crop
switches to the generative stage. Specifically, when T¢ansum exceeds 0°C, the carbo-
hydrates’ distribution to the fruits increases linearly from zero till its full potential is
reached at the temperature sum Tg ng um- When Tg a",’fs um is reached, the carbohydrates’
distribution to the fruits remains at its potential value. This behavior is described through
the inhibition factor of the development stage hr.,,,,,- The effect of temperature on
the carbohydrate flow to fruits is described by 8Tcany, and rgrr i is the potential fruit
growth rate coefficient for a canopy temperature at 20°C. An experimental value for
rgrruir has been proposed in [37].

The carbohydrates flow from the buffer to the organs is determined as follows

MCgypo
MCBufOrg(i) = hBuf urore : hTCan24 : gTCan24 : rg(i) (46)

where i represents the plant organ code for Leaf and Stem, and rg(;) is the potential
organ growth rate coefficient at 20°C. It should be underlined that the flow to the organs
is not affected by the instantaneous canopy temperature. Values for the potential growth
rate coefficients r g(;) have been proposed in [38].

CARBOHYDRATES FLOW AND CANOPY TEMPERATURE

According to De Koning [37], the tomato’s flowering rate per unit of time is linearly re-
lated to temperature. Equation (4.7) represents the temperature effect on structural car-
bon flow to organs, in other words, it expresses the growth dependency on temperature.

8Tcany, = 0-047- Tcan,, +0.06 4.7)

The analytical formulation of the growth inhibition functions hr,, and hr,,, is given
in Equations (4.8) and (4.9) respectively.

) 1
N e70.869'(TCan7pTCanMin ) 1

Moy, = (4.8)

+ eO.5793'(TCan 7pTCﬂnMax )

1 1
4 o V1587 (Tcamy =P Teany, 00 )) 1+ o 3904 (TCansy = PTcanyyy o ))

Ty, = (4.9)
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Where pr,,, . and pr,, the inhibition of carbohydrate flows because of low and
high instantaneous temperatures in °C accordingly, pr,,,, . and pr,,,, the inhibi-
tion of carbohydrate flow because of low and high temperatures in °C.

h —1-(—1 T, b |, [?+1-1074)
Tcansum = 2 TEﬂd CanSum TEVld CanSum

CanSum CanSum

1 1
- (—(TCanSum - ng,tlisum)'F

2 TEnd

CanSum

1 2
\/ITET<TCansum—T5253um>l +1-1074)  @4.10)

CanSum

Where Tsy,mEna the temperature sum where crop is fully generative in °C.

4.4.2. TEMPERATURE INDUCED MAXIMIZATION IN CARBOHYDRATES FLOW
One of the main objectives of the climate controller is to maintain the flow of carbo-
hydrates from the buffer to the organs on a high level. The introduction of Equations
(4.7)-(4.10) clarifies the impact of canopy temperature on carbohydrate distribution.

According to Figure 4.5 the maximum flow rate of carbohydrates can be achieved under a
certain canopy and mean canopy temperature. Particularly, the canopy temperature has
to be maintained in its optimal range between 14 and 27°C degrees. In terms of mean
canopy temperature, the maximum distribution rate is achieved for Tcqp,, = 19.88°C.
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Figure 4.5: Growth inhibition function due to instantaneous canopy temperature (k) and mean canopy
temperature (hTCan24 )

The canopy temperature requirements can be incorporated into the dynamic optimiza-
tion as inequality constraints. The optimal point of the mean canopy temperature can
be ensured through the reference tracking term below:
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Min (7, = Tcany, I3 = min|119.88 = Toany, |13 (4.11)

The inhibition due to the generative phase (hr,,,,,,) Starts at zero and increases linearly
to full potential with increasing temperature sum as presented in Equation (4.12). There-
fore, it is a matter of time to become maximum and it was chosen to not be included in
the objective function for the sake of simplicity.

0 if Tcansum =0
Tcansum s End
hTCunSum = nggSum if0= TCanSum = TCunSum(4-12)
: End
1 if Tcansum = TC:zlnSum

4.5. MONITORING CARBOHYDRATES LOSSES

According to the common structure depicted in Figure 4.1, some of the produced car-
bohydrates are distributed to the organs and the rest are consumed through growth and
maintenance respiration. Respiration is an extremely important process as it consumes
carbohydrates to guarantee the survival of the crop. However, under non-optimal envi-
ronmental conditions, respiration consumes more carbohydrates than needed for crop
maintenance. In this way, respiration becomes a loss as it utilizes carbohydrates that
could have been distributed to the organs and contributed to the final yield. This case
can be prevented through proper climate control which demands a good understanding
of both growth and maintenance respiration processes.

4.5.1. GROWTH RESPIRATION
The growth respiration MCpy a;r is the integration of the growth respiration of the indi-
vidual plant organs:

MCBquir = MCFruitAirg + MCLeafAirg + MCStemAirg (4.13)

In order to fit growth respiration in the common structure formulation (Figure 4.1), it has
to be expressed in mgcp,o - m?-s~!. The growth respiration of the individual organs is
linearly related to the carbohydrate flow from the buffer to the corresponding organ as
follows

MFruitairg = CFruithCBufFruit (4.14)
MLeafAirg = CLeaf, MCguyfreaf (4.15)
MStemAirg = CStemgMCBufStem (4.16)

where crruity, CLeaf, and csrem, are unitless growth respiration coefficients for the fruits,
leaves, and stems respectively. The coefficient values can be calculated based on the
assimilate requirements for the formation of fruits, leaves, and stems presented in [38].
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4.5.2. MAINTENANCE RESPIRATION
A detailed presentation of the individual maintenance respiration MCgryitair, MCreaf air
and MCs;temair is introduced in [38]. Maintenance respiration can be defined as

0.1(Teany, =

25) _ .
MCorg(i)air = Corgi)m * Qlom ‘Corgiy-(1—e CRGR RGR) (4.17)

where Org(i) = {Fruit, Leaf, Stem} for i = 1,2,3 representing the different plant or-
gans, Corg(i),, 1 the maintenance respiration coefficient of the corresponding plant or-
gan in mgcm,o - ng}JZ 0 571, Qo,, is the Qyq value for temperature effect on mainte-
nance respiration, Co,g(;) the carbohydrate weight of plant organ, RGR the net relative
growth rate in s~ and crgr the regression coefficient for maintenance respiration in s.

4.5.3. TEMPERATURE INDUCED MINIMIZATION OF CARBOHYDRATES LOSSES u
As presented in Equations (4.14) - (4.16) the growth respiration is linearly related to the

carbohydrates flow from the buffer to the organs. The minimization of growth respira-

tion entails the minimization of the distribution flow which is unacceptable because of

the correlation between assimilates partitioning and yield. Consequently, the climate

controller should not affect growth respiration.
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Figure 4.6: The role of the mean canopy temperature on maintenance respiration.

On the other hand, maintenance respiration can be affected through the exponential

factor including the mean canopy temperature. As shown in Figure 4.6, the exponential

0.1-(Tcanyy =25) . . . . .
factor f(Tcan,) = Q2 is monotonically increasing, therefore maintenance

respiration is minimized for minimum mean canopy temperature. The minimization
of maintenance respiration can be introduced in the objective function as below:

muinlch,anH% (4.18)
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4.6. PROOF OF CONCEPT - CARBOHYDRATES MONITORING

According to the previous sections, canopy temperature plays a major role in the pro-
duction, distribution, and consumption of carbohydrates by the crop. This section is
introduced to prove the concept that these three processes can be manipulated through
a SPA-based predictive controller. The proof of concept incorporates two simulated ex-
periments where the inputs of a tomato crop model are defined by two predictive con-
trollers. The first controller bases its objective function on SPA embedding the terms
presented in the previous sections. On the other hand, the second controller acts as a
reference for comparison. In this case, the controller defines the future crop inputs that
would maximize the number of carbohydrates in the fruits.

The Vanthoor [20] tomato crop model is chosen to be used as ground truth. The tomato
crop model receives the following input vector:

Tcan
RPar_SunCan
COzp,,,
VP pir

(4.19)

Where Tc,, the canopy temperature, Rp,; suncan the PAR radiation from the sun reach-
ing the canopy, CO;,,,,, the CO, concentration and VP, the vapor pressure in air. The
state vector of the crop model is presented by Equation (3.2). The differential equations
defining the model’s states have been introduced in Sections 3.3.1 and 3.3.5.

For the sake of simplicity and in order to demonstrate the impact of canopy temperature
on crop yield, the simulated controllers make decisions only on the future T¢,, values.
The rest inputs are considered exogenous and their values are given through a recorded
dataset.

4.6.1. SPA PREDICTIVE CONTROLLER

In this case, a predictive controller defines the future canopy temperature trajectory
based on the minimization of a switching objective function. During the daytime, the
controller has to minimize the stomatal resistance and the mean canopy temperature
while tracking the optimal mean canopy temperature. Revoking the role of stomatal
resistance becomes clear that its minimization targets to increase carbohydrate produc-
tion. However, during the night time, no photosynthesis is taking place and as a result,
stomatal resistance can be removed from the night part of the objective function. Dur-
ing the nighttime, the controller has to maintain a slow rate of carbohydrate distribu-
tion ensuring that the buffer will never be full. In this way, the controller prevents the
accumulation of non-distributed carbohydrates in the buffer that could result in paus-
ing photosynthesis during sunrise. Moreover, the monitoring of maintenance respira-
tion becomes more important during the night because of the lack of photosynthesis.
Hence, the nighttime control requires different weights from the daytime control as its
objectives differ. The mathematical formulation of the SPA predictive controller is given
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below:

p3-Tcan
. 2 2 2
rTnln (Co-llp1-eTcantPz =V Pyirll5 + Cy - ||Tc*an24 = Tcany 15+ Co |l Tcany,|15) - D+

Can

(C3 T g,y = Tcanualls + Ca -1 Tcany, |13) - (1 = D)

S.t.
14 < Tean(k) <27, Vke(l,...,N}
1
Tcany, (k+1) = ;(k Tcan(k) = Tcany, (K)), Yk e{l,...,N}
D= 1, if 3ie{1,..., N} for which Rcgp, >0
o, if Vie{l,...,N} Rcan, =0

0.3<ATcan<0.3

(4.20)
Where C; for i € {0,...,4} the weights of the individual terms and specifically Cy = 10717,
Cy =103 C, =108, C3 =4-107% and C4 = 10*. N the prediction horizon, Tcapn,, =
19.88°C the reference mean canopy temperature, D a boolean variable declaring the
Day and Night time, T = 86400sec the time constant of the process and k = 1 the gain of
the process.

4.6.2. MAXIMIZATION OF CARBOHYDRATES IN FRUITS

A reference experiment is required for the evaluation of the SPA controller. To ensure a
fair comparison between the two controllers, the reference should express the potential
of the final crop yield. For this reason, the optimization problem calculates the future
canopy temperature trajectory concluding in the maximum value of carbohydrates in
the fruits at the end of the prediction horizon.

min  — Crryi(N)
Tcan

S.t.
14 < Tean(k) =27, Vke(l,...,N}

Tcans, (k+1)
Tcangy, (k+1)
Crruir(k+1) |
CLeaf(k +1)
Cstem(k+1)

JfeTcan(k) Rpar_suncan(k) COZP,,m (k) VP4ir(K)], x(k), k)
0.3=<ATcan=<0.3

x(k+1) =

Where N is the prediction horizon and f; denotes the tomato crop model incorporated
in the Greenlight model. In other words, f is the Vanthoor tomato crop model also used
as ground truth in this experiment.
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4.6.3. SIMULATION

Both experiments were simulated in MATLAB using TOMLAB for the solution of the opti-
mization problems. In particular, the snopt solver was used in both cases because of
their nonlinear nature. The optimization problems were solved for a prediction hori-
zon (N) of 1 hour and a control horizon (N;) of 0.5 hours. The sampling time used was
5min, thus N = 12 and N, = 6 time intervals. Moreover, the experiments start with the
same initial conditions of a mature crop and run for 60 days.

The SPA-based controller concluded with a final yield of 26.6772 kilos of tomatoes per
square meter. On the other hand, the yield maximization controller achieved a harvest
of 26.9558 kg - m~2 which can be considered as the maximum achievable yield. In com-
parison, the SPA approach concluded on 1.0335% less yield than the reference problem.
This percentage can be justified by the fact that the reference problem incorporates the
ground truth crop model, including the photosynthesis model. As a result, the refer-
ence controller can choose the canopy temperature trajectory maximizing the photo-
synthetic rate in contrast with the SPA-based controller which approximates photosyn-
thesis through stomatal resistance.

In terms of performance, the mean execution time per iteration of the SPA controller is
0.1746sec with a minimum execution time of 0.0408sec and a maximum time of 0.8305sec.
The reference controller has a mean execution time per iteration equal to 1.7572sec with
0.4665sec for the fastest and 14.2035sec for the slowest case respectively. The increased
execution time of the reference controller has to do with the fact that the crop model
runs several times in each iteration for the prediction of the future canopy temperature
trajectories. The overview of the simulation results in terms of carbohydrates produc-
tion, distribution, losses, and execution time can be found in Table 4.1.

Table 4.1: Simulation results of the proof-of-concept experiment for the comparison of the SPA controller and
the fruit maximization algorithm

Fruit Max. Con-  SPA controller Units

troller
Produced CH,O 4.10947 4.0526 kgcmo-m™?
Distributed CH,O | 2.1228 2.0906 kgcmo-m™2
to Fruits
Losses CH,O 2.2299 2.0735 kgcm,o-m™2
Yield (Wet) 26.9558 26.6772 kgromato- m ™2
Mean Exec.Time 1.7572 0.1746 sec

4.7. OBJECTIVE FUNCTION - FINAL FORM

The previous section showed that the proposed SPA control approach is capable to mon-
itor carbohydrates production, distribution, and losses achieving high fruit harvest. How-
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ever, in a real-world scenario, the coupled climate-crop system has to be taken into
consideration. According to this fact, the climate controller should be able to track the
carbon dioxide concentration in the air. Moreover, high yield does not make sense if
it comes with extremely high cost, hence growers require the monitoring of energy re-
sources by the climate controller, especially in the context of the current energy crisis.
Therefore, modern climate controllers should be capable to steer the system’s produc-
tion on the optimal yield-cost ratio. The fulfillment of the aforementioned requirements
orders the introduction of more terms in the objective function.

As explained in Section 4.3, the proposed SPA controller is not able to generate meaning-
ful CO, setpoint values. For this reason, it was decided to introduce a reference tracking
term for CO, control where the CO, setpoints are defined by the grower. This reference
tracking term is described in Equation (4.22) where CO; represents the optimal carbon
dioxide concentration in the greenhouse air.

min||CO; ~ COl; 4.22)

Conventionally, greenhouse heating, cooling, shading, and thermal insulation systems
are considered as the greenhouse actuators. The greatest energy load of a Dutch Venlo-
type greenhouse is demanded by the heating system, thus the minimization of energy
consumption entails the minimization of the heating system use. The greater the input
of the heating system, the greater the energy consumption over time as the system’s in-
put can be deduced to the burning rate of fossil fuel. On the other hand, greenhouse
actuators like windows and thermal screens do not require an energy load according to
their opening/deployment. In other words, windows and thermal screen deployment is
static as energy is required only when the level of opening/deployment has to change.
Regarding these observations, the greenhouse energy consumption can be monitored
through the application of proper weights on the terms demonstrated in Equation (4.23).

N-1
min  lugllp + 1t = the1 |1, (4.23)
k=0
Where u the control input vector, R = 0 the quadratic cost of the control inputs and R; >
0 the quadratic cost of the differential control inputs. A more analytical presentation of
the energy consumption terms and their quadratic cost is carried out in Chapter 6.
Summarising, the proposed objective function able to monitor the carbohydrates flow in
the crop while achieving the reference tracking of the CO, concentration and attaining a
reasonable trade-off between the energy consumption and final yield is displayed below:

N-1 P3-Tcan 2
min ) WetklIry, + ek = tg—1llR, + Co || p1 - € Can*P2 =V Pyjrll
k=0

+C1 N T any, = Tcanylls + Co - 11 Tcany, |l + C3-11CO5 = COyl5) - D+ P+
N-1 ) )
(Z ||uk||R+||uk_ uk—1||R1 +C4'||Téun24 - TC(,m24||2+C5'||TCan24||2)'(l_D)

k=0
(4.24)
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Where Ry, = 0 and R ’= 0 the quadratic cost of the control inputs for the day and the
night time respectively, and P a penalty function incorporating all the necessary inequal-
ity constraints regarding the climate conditions.



DATA-DRIVEN SYSTEM
REPRESENTATION

5.1. INTRODUCTION

Greenhouses are complex, non-linear systems and their study in the physical world re-
quires time and resources. For this reason, various greenhouse representation schemes
have been introduced in the literature through the years. Greenhouse system represen-
tations are valuable tools for the analysis of greenhouse systems, the design of new cli-
mate control regimes, and the simulation of scientific concepts. They are means of per-
mitting the preliminary validation of an idea before proceeding with an expensive real-
world experiment. However, the complexity of such a system and the interconnectivity
between its subsystems, make parametric greenhouse modeling a hard task. Therefore,
it would be interesting to examine if and how the coupled climate-crop system could be
represented using data.

This chapter explores if the mechanistic greenhouse model presented in Chapter 3 can
be described adequately by a data-driven linear representation method originally intro-
duced in [11]. As distinct from the classical systems theory, the method subjected in
question does not rely on a particular parametric system representation but it aims to
describe the system in terms of its behavior. The system’s behavior can be learned by
applying a sufficiently rich and long input signal, capable of exciting the system and
producing a representative output sequence. Section 5.2 is introduced to clarify the
needed mathematical concepts and the conditions that have to be met by the input-
output dataset to efficiently describe the corresponding dynamical system. Section 5.3
presents the methodology behind the implementation of the system’s non-parametric
representation. Section 5.4 displays the results of the in question data-driven represen-
tation of the ground truth coupled climate-crop model. Finally, Section 5.5 tests if and
how the data-driven predictor could be used for the representation of the canopy and
the mean canopy temperature behavior.

47



48 5. DATA-DRIVEN SYSTEM REPRESENTATION

5.2. PRELIMINARIES

5.2.1. HANKEL MATRIX

Hankel matrices are of great importance to the concept of non-parametric system rep-
resentation as they contain the input-output dataset defining the system’s behavior. The
mathematical definition of a Hankel matrix is given below.

Definition 1: Assume a given signal z: Z — R, the vectorized form of the signal z to the
interval [k, k+ TInZ where ke Z, T eN s

z(k)
Z[k, k+T) = :
z(k+T)

The Hankel matrix associated with z is denoted as

z(1) z(i+1) ... z(i+N-1)
z(i+1) z(i+2) ... z(i+ N)
Zi,t,N=
z(i+t=1) z@@+1t) ... z(i+t+N-2)

Where i € Z and ¢, N € N. Specifically, i denotes the time at which the first sample is
taken, ¢ is the number of samples per column and N is the number of samples per row.

5.2.2. PERSISTENCY OF EXCITATION

As will be shown in the following subsections, persistency of excitation (PE) is a strong
condition, necessary for the unique identification of the underlying dynamical system
from data.

Definition 2: The signal zjp,7—1; € R? is persistently exciting of order L if the matrix

z(0) z(l) ... z(T—-1L1)
z(1) z2) ... z(T-L+1)
20,1, T-L+1 = : : . :
z(L-1) z(L) ... z(T-1)

has full row rank o - L. Another condition is that the signal must be sufficiently long and
specifically T= (o +1)-L—1.

5.2.3. BEHAVIORAL THEORY

NON-PARAMETRIC SYSTEM REPRESENTATION

Behavioral Theory is a general and comprehensive way to define a dynamical system.
In Willem’s behavioral theory, the definition of a dynamical system has three main com-
ponents determining the subspace of the signal space in which the system’s trajectories
live. Hence, behavioral system theory is able to describe the properties of a dynamical
system independent of any particular parametric system representation. Following [39]
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the dynamical system and its behavioral properties are defined as:

Definition 3: A dynamical system is a 3-tuple (Z5, W, %) where Z5 is the discrete-time
axis, W is a signal space and 28 < W/>0 is the behavior.

Definition 4: Let (Z5, W, %) be a dynamical system.

i) (Zs0, W, 2B) is linear if W is a vector space and 48 is a linear subspace of WZ=0,

ii) (Zs, W, &) is time invariant if 28 < 09 where o : W420 — W4=0 is the forward time
shift defined by (cw)(¢) = w(t+1) and 08 = {ow|w € %}

(i) (Zx0, W, £8) is complete if 28 is closed in the topology of pointwise convergence.

The class of systems (Zq, R™«*"v, 38) satisfying the conditions (i)-(iii) is denoted by &£ "«*"y
with ny, ny € Z5.

Definition 5: A system 9 € £"«*" is controllable if for every T € Z~g, w' € Br, w? € B
there exists w € 88 and T’ € Z- such that w; = w) for1 <t < T and w; = w for
t>T+T'.

Definition 6: Let L,T € Z,( such that T = L. The signal u = col(uy,...,ur) € RT 1 jg
persistently exciting of order L if the Hankel matrix

2
t—=T-T'

ur ... UT-L+1
JC(u) :=
urp ... ur

is of full row rank.

PARAMETRIC SYSTEM REPRESENTATION

A behavioral system could also be expressed in a parametric representation in multiple,
equivalent ways. The classical state space representation (5.2) of a behavioural system
B e L™ is denoted by B(A, B, C, D) = {col(u, y) € (R )7>0|3 x € (R")Z20

s.t. X = Ax+ Bu, y = Cx+ Du}. The state space representation of the smallest order is
called a minimal representation of the system and the minimum order is denoted by
n(%). An additional property that should be noticed is the lag. The lagle Z. of a
system 98 € £ "«*"y s the smallest non-negative integer for which the observability ma-
trix O} := col(C,CA, ..., CAl‘l) has rank n(98). Henceforward, the lag is denoted as 1(48).
Eventually, the lower triangular Toeplitz matrix consisting of A, B, C, D is denoted by

D 0 ... 0
CB D .. 0
In(A,B,C,D):=
CAN=2B ... CB D

At this point, a uniqueness Lemma can be presented.
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Lemma 1: Let 8 € ¥"«*" and %(A, B,C, D) a minimal input/output/state represen-
tation. Let T;p;, N € Z5¢ with T;,; = 1(9) and col(u;ni, U, Yini, ) € Br,,;+N- Then there
exists a unique x;,; € B2 such that:

Particularly, for a sufficiently long window of input-output data col(u;,;, yini), the state
to which the system is driven by the u;,; sequence of inputs, is unique.

5.2.4. WILLEM’S FUNDAMENTAL LEMMA
Consider a system with the following representation.

x(k+1)=A-x(k)+ B-u(k)

(5.2)
y(k)=C-x(k)+D-u(k)

Where x e R™, ue R™, ye R and Ae R"*"x Be R™>*™u (Ce R and D € R
and assume that the represented Linear Time-Invariant (LTI) system is controllable and
observable.

Given an input-output dataset (¢#4[0, T —1], y4[0, T —1]) let the corresponding Hankel
matrices be

ug(0) ug(1) ... ug(T -1
ug(1) ug2) ... ug(T—t+1)
[Uo,r, - r+1] _ a1 ug(®) ... ug(T-1) (5.3
lYO,t,TfHIJ va(0) ya) ... ya(T—1) ’
ya(l) va@) ... ya(T—-1t+1)
yat—=1) yq(t) ... ya(T-1)

The matrix Xo,7—+1 = [x4(0) x4(1) ... x4(T — )] contains the state samples x;(i) pro-
duced by the system (5.2) for the input sequence u,4[0, T — 1]. The rank condition pre-
sented in equation (5.4) plays a great role in the representation of the system through
data. However, in general, it is difficult to examine the validity of the rank condition as
the system’s states may not be measurable and only the input-output data are accessible.
To surpass this barrier, the next two Lemmas are introduced.

Ut 7-
rank{—2bT=tr11 ny+t-ny (5.4)
Xo,7-t+1

Lemma 2: ([40], Corollary 2)
If uyl0, T — 1] is persistently exciting of order n, + ¢ then the rank condition (Eq. (5.4))
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holds.
Lemma 3: ([40], Theorem 1)

i) if u410, T — 1] is persistently exciting of order n, + ¢, then any ¢-long input-output tra-
jectory of system (5.2) can be expressed as

(5.5)

Ujo,¢-1] ] [Uo t,T- t+l]
Yio,e-1) Yo,1,7-1+1
where g e RT-+1

ii) Given a T-long input-output trajectory of the system (5.2), any linear combination of
the columns of the matrix in (5.3) that is

Uo,t,7-1+1 g
YO,I,T— t+1
is a t-long input-output trajectory of (5.2).

The original proof of Lemma 3 can be found in [40]. Lemma 3 is referred as the funda-
mental lemma using a finite input-output dataset to describe a linear system.

5.3. NON-PARAMETRIC SYSTEM REPRESENTATION - METHOD-

OLOGY

The composition of the non-parametric system representation is based on two main
processes, the data collection and the construction of the data-driven predictor. The
system’s representation relies on the past input-output data of the original system. Par-
ticularly, the recorded input-output dataset captures the system’s behavior. Then, the
system’s behavior is imprinted in the form of Hankel matrices. These Hankel matrices
are then used in combination with the input data recorded right before time zero for the
estimation of the initial conditions and the prediction of the future output trajectories.
The following subsections guide the reader through the steps of data collection and the
construction of the data-driven predictor concluding on the final non-parametric sys-
tem representation.

DATA COLLECTION

Assume an unknown controllable LTI system 98 € £"™«*"y with minimal representation
(A, B,C,D). Generate an offline input sequence ud = col(uf, e u‘%) e RT"u of length
T € Zs, apply it to the system and measure the outputs y? = col(yfl,--- , y?) eRT™. 1t
is of great importance to ensure that the recorded dataset is capable of describing the
behavior of the system. For this reason, the input sequence u“ has to be persistently ex-
citing of order T + n(Z8) to satisfy Willem’s fundamental lemma. Furthermore, the con-
dition of persistency of excitation requires a long enough data sequence which, in this
case, should satisfy the inequality:

T=n,+D(T+n(%B) -1 (5.6)
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The input-output data have to be partitioned into past (subscript p) and future data
(subscript f). The past data, of length T;,; € Z-(, are needed for the estimation of the
initial conditions, and the future data, of length N € Z., for the estimation of the future
control input as shown in Equation (5.7). Hence, inequality (5.6) can be reformulated as
T = (n,+ 1)(Tjp; + N +n(2)) — 1. Finally, ensure that T;,; = 1(98) in order to satisfy the
Lemma 2 and be sure that a unique x;,; € R"® exists.

U, Y,
(U”) = A0 () = 701, N (%), (Y”) i= 20 (yh) = 1,8 () (5.7)
f f

DATA-DRIVEN PREDICTOR

A recent input-output sequence col(u;y,;, ¥ini) of length T;,;, which will be used to es-
timate the initial conditions, has to be recorded online. From Willem’s fundamental
lemma, any trajectory of length T;,; + N, of the %7, v system can be constructed us-
ing the recorded data sequences. Specifically, a trajectory col(u;,;, U, ¥ini, y) belongs to
B, .+ if and only if there exists g € R ~Tini=N+1 gych that:

ini

(5.8)

If Ti,i = 1(98) a unique x;p; € R exists based on Lemma 1. Then, given an input tra-
jectory u of length N, g € RT~Tini=N*1 can be calculated from the first three equations of
(5.8). Finally, the future output trajectory y can be predicted based on the prerecorded
data in Y and the estimated g as y = Y- g. Vice versa, given a reference output trajec-
tory y a feedforward control input u can be calculated.

5.4. EXPERIMENT: CLIMATE-CROP SYSTEM REPRESENTATION

Testing the hypothesis that the ground truth coupled climate-crop model can be approx-
imated by the displayed non-parametric system representation requires the possession
of input-output data. The Greenlight model, in its default code configuration, is deliv-
ered including a sigmoid P climate controller for the control of the simulated environ-
mental conditions. By default, it is set up to maintain the relative humidity below 87%,
the CO, at 1000 ppm during the daytime, and the air temperature at 18.5°C and 19.5°C
during the night and day time accordingly. The analytical overview of the climate con-
troller can be found in Section 2.3.2 of [41]. Based on this configuration and the intro-
duction of a weather dataset representing the weather in Amsterdam (exogenous inputs)
a 60days experiment was simulated. It should be noted that the simulation started with
a mature crop. The data that occurred by this simulation were recorded in order to test
the non-parametric system representation.
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The first T +2- T;,; + N were isolated from the dataset as depicted in Figure 5.1. The
selection of T, T;,; and N values was completed in an experimental way where the val-
ues producing the best prediction accuracy were kept. For the rest of this section, it can
be considered that T = 4320, T;,; =5 and N = 12 entries where the sampling time be-
tween entries is 5 min. Each data segment contains all input u, exogenous input d and
output/state x = [xg x;]" data as described in Equations (3.6), (3.5), (3.1) and (3.2) ac-
cordingly.

T N Tini
Iy
r Y_Aﬂ_ﬁ
("
o=t iy
uw
t=T+2-Tyi+ N

Figure 5.1: Initial data division in four segments with lengths T, T;,;, N and Tj,; respectively

Before proceeding with the construction of Hankel Matrices, it should be ensured that
the length of the data segment T is sufficiently long. Thus, the condition T = (n, +
1 (Tini + N +n(98)) — 1 is checked for n, = 8 and n(%8) = 23 concluding on a positive
result.

5.4.1. STATIC HANKEL MATRICES

The data living in the first data segment of length T were used for the construction of the
Hankel matrices U € R" Tinit*N>(T=D) 'y ¢ gra-Tini+N)*(T=1) anq y g R Tinit N)>(T=L)
corresponding to the inputs, exogenous inputs, and outputs/states. The next step is to
examine the persistency of excitation (PE) of the recorded data by testing Definition 6
on the Hankel matrix containing all inputs (control and exogenous). It should be men-
tioned that for any tested T value, the full input dataset is not PE. As a result, there is no
theoretical validation that the ground truth climate-crop system can be linearly approx-
imated.

The length of time segments T;,; and N were utilized for the proper partitioning of the
Hankel matrices into past (subscript p) and future data (subscript f) as shown in Equa-
tion (5.7).

The next step was the definition of the initial data u;,;, vin;, and y;,; for the calculation
of the initial conditions. The data with the ini subscript live in the first T;;; time seg-
ment. Then the future data uy, vy and yy were defined using the recorded data of the
time segment N. The vector [, . v]  yl . u} U} yfr] T was then used for the calculation
of the initial guess gy through the linear system of equations in (5.9). Initial guess g
is going to be used in the next steps of the data-driven predictor. The MATLAB function

linsolve was used for the solution of the linear system of equations.
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Up Uini
Vp Vini
p|.o. = |YVini
Uy g0 uy (5.9)
Vy vr
Yy yr

At this point, the initialization of the data-driven predictor is over. Then, the past and
future data were loaded (See Figure 5.2) updating the matrices u;ni, Vini, Yini,» Uf, Vf
and yy.

Figure 5.2: Introduction of the future N data needed for the prediction of the future output trajectories

The construction of an optimization problem becomes necessary for the prediction of
future output trajectories. In the context of the current experiment, it was decided to use
the TOMLAB 1sei solver, a solver suitable for dense linear least squares problems. There-
fore, the under review system representation can be expressed in the following form:

min  |luy - Us-gll

4
s.t.
Up Uini (5.10)
V Vini
P|.o_ |Vini
Yp & Yini
Vy vr

The optimization problem returns a vector g which is used for the prediction of the fu-
ture output trajectories through the equation below:

Viprea =Y 8 (5.11)

The first predicted output values are compared with the corresponding measured output
values (yr) and the rest are discarded as would happen in a receding horizon predictive
approach with a control horizon equal to 1. Finally, the process starts over at time T +
2-Tini + N +1 as shown in Figure 5.3. The described process is also expressed in an
algorithmic formulation presented in Algorithm 2.
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Figure 5.3: Implementation of Receding Horizon in the data-driven predictor testing process

Algorithm 2 Algorithm describing the initialization and testing of the data-driven system
representation

1: Define T, T;,; and N

2: Collect T +2-Tj,; + N data

3: if T is sufficiently long then

4: Construct Hankel Matrices U, V and Y

5: Define u;ni, Vini, Yini» Uf, vy and y¢

6: Solve the System (5.9)

7: else

8: Go to Step 1

9: end if
10: while True do
11: Define the new u;yi, Vini, YVini, U, UV and yr
12: Compute g* (Solve the Optimization Problem (5.10))
13:  Compute the optimal output sequence y* = Yy - g*
14: Compare the first predicted and measured outputs
15: Shift on time
16: end while

SIMULATION RESULTS

Figure 5.4 depicts the results of Algorithm 2 run for a period of 9 days. The left column
shows the predicted versus the measured values with green and black colors respectively.
The right column of the figure exhibits the evolution of the prediction errors over time.
For the sake of brevity, only 5 out of 23 states/outputs have been included in Figure 5.4.
The mean execution time of Algorithm 2 per iteration is 1.7895 seconds with the maxi-
mum time of 1.8552 and the minimum time of 1.7424 seconds.

It has great importance to note that despite the violation of the persistency of excita-
tion condition, the predictions conclude on acceptable error values for the first 3000
timestamps. However, over time the absolute prediction errors increase. This increase
is justified by the time-variant nature of the greenhouse system. The climate-crop dy-
namics change as the crop grows, the canopy surface increases, the air volume of the
greenhouse decreases, and surfaces such as the floor and the soil start reacting differ-
ently. Nevertheless, the Hankel matrices U, V, and Y are static representing an older
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version of the climate-crop behavior. A solution to this problem would be the online
update of the Hankel matrices as demonstrated in Section 5.4.2.

5.4.2. DYNAMIC HANKEL MATRICES

As presented in the previous section, the time-variant nature of the climate-crop system
does not permit the use of static Hankel matrices. The increase of the absolute prediction
error over time can be surpassed by updating the Hankel matrices U, V, and Y in an
online manner. In this way, it is guaranteed that the current system representation is up
to date in every timestamp. This approach is summarized in the Algorithmic formulation
3.

Algorithm 3 Algorithm describing the initialization and testing of the online data-driven
system representation

: Define T, T;;; and N

—

2: Collect T +2- T;,; + N data

3: if T is sufficiently long then

4: Construct Hankel Matrices U, V and Y

5: Define u;ni, Vini, Yini» U, vy and yy¢

6: Solve the System (5.9)

7: else

8: Go to Step 1

9: end if
10: while True do
11: Define the new u;n;, Vini, Yini» Uy, Vg and yr
12: Compute g* (Solve the Optimization Problem (5.10))
13: Compute the optimal output sequence y* = Y- g*
14: Compare the first predicted and measured outputs
15: Shift on time
16: if 24 Hours Passed then
17: Update U, V and Y from the Recently Recorded Data
18: end if
19: end while

SIMULATION RESULTS

As depicted in Figure 5.5 the frequent update of the Hankel matrices had the desired
results. The left column of the figure clearly displays that the prediction errors do not
increase over time as the data-driven system representation reflects the behavior of the
ground truth system at every timestamp. For the sake of completeness, it should be
mentioned that both experiments used the same dataset and 7, Tj,; and N values. Fur-
thermore, as in the first experiment, the persistency of excitation condition was violated.
Regarding the execution time of Algorithm 3 per iteration the mean execution time was
1.8201 with a maximum and a minimum value at 1.9748 and 1.7391 respectively.
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Figure 5.5: Implementation of Receding Horizon in the data-driven predictor testing process with online updating of Hankel matrices every 24 hours and T = 4320,
Tini =5 and N = 12. The left column indicates the predicted values (green) versus the measured values (black). The right column displays the evolution of the
prediction error over time.

58



5.4. EXPERIMENT: CLIMATE-CROP SYSTEM REPRESENTATION 59

5.4.3. DISCUSSION

This section is devoted to the presentation of some noteworthy remarks that occurred
during the experimental process.

The selection of the exact T, T;,;, and N has great importance as it balances the trade-
off between prediction accuracy and execution time. T was selected to be equal to 4320
corresponding to 15 days of data. For smaller T values, the data-driven representation
concluded on greater prediction errors. On the other hand, when T is greater than 4320
the execution time of the optimization problem increases without providing any signifi-
cant decrease in prediction errors. The exact same pattern holds for the selection of Tj,;,
and N. This behavior can be justified by the fact that the dimensions of the Hankel ma-
trices are 1y, - (Tip;+ N)x (T —L), ng-(Tipi+ N)x (T—L), and ny - (T;,; + N) x (T — L) for the
matrices U, V, and Y respectively. Precisely, the values of T;,; and N affect the number
of linear equations in the linear system of equations (5.12). T impacts the number of
columns of the Hankel matrices and the dimension of the control variable g € R” . Un-
fortunately, there is no way to predict the execution time of the optimization problem as
itis dependent on several factors such as the optimization criterion, the constraints, the
solver, the initial guess and the used hardware. Moreover, because of the PE condition
violation, prediction accuracy cannot be estimated. As a result, it is suggested to always
use the lower acceptable T, T;,;, and N values.

The persistency of excitation condition was tested for the Hankel matrix /7 ([u d]) con-
taining both the control and the exogenous inputs. Nonetheless, when testing PE for
J¢1(u), Definition 6 is satisfied. Fulfilling Definition 6 indicates that the control inputs
used are exciting enough frequencies on the ground truth system, permitting the unique
identification of the underlying dynamical system from data. On the other hand, the PE
condition does not hold when tested only for the Hankel matrix #7 (d). Hence, exoge-
nous inputs do not sufficiently excite the system.

A reason justifying this fact may have to do with the patterns existing in the exogenous
inputs. For example, global radiation follows every day the same pattern with differ-
ent intensities. Specifically, the global radiation becomes zero during the night time,
increases till its peak point, and then decreases returning to zero. Similar behavior can
be seen in the outdoor temperature where it oscillates between variable minimum night
temperatures and the maximum daily temperatures. Figure 5.6 displays the global radi-
ation and the outdoor temperatures used in the construction of matrix V.

The violation of the PE condition entails the absence of validation for Lemma 3. As the
input data are not PE, it cannot be ensured that any linear combination of the columns of
(UT vT yT]T is a t-long input-output trajectory of the ground truth system. Therefore,
there are cases where the optimization problem returns a feasible solution that numeri-
cally validates the linear system of equations (5.12) but not semantically.
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Figure 5.6: Global radiation and outdoor temperature trajectories utilized for the construction of the Hankel
matrix V used in the experiments of Sections 5.4.1 and 5.4.2
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Such an example can be seen in Figure 5.7 where the data-driven predictor was trained
using the dataset exploited in Sections 5.4.1 and 5.4.2 but it was not tested on the sequel
of the training dataset. The testing dataset still included a mature crop but the weather
conditions corresponded to a different time period. This experiment concluded on sim-
ilar execution times where the mean, the maximum, and the minimum execution times
were measured at 1.8103, 1.9109, and 1.7475 correspondingly.

Concluding, when the PE condition does not hold, the non-parametric system represen-
tation is capable to be used as a predictor if the input signals comply with the behavior
of the input signals living in the Hankel matrices. In any other case, there is the risk
to predict trajectories that do not comply with the ground truth behavior resulting in
extreme prediction errors. This phenomenon could be compared with the overfitting
phenomenon in machine learning.

5.5. EXPERIMENT: THE CROP’S SYSTEM PARTIAL REPRESEN-

TATION

According to the previous experiment, the data-driven predictor can describe the behav-
ior of the climate-crop system when the training and the validation dataset contain sim-
ilar behavior in terms of inputs. Section 5.4.3 shows that when the PE condition is vio-
lated and the training and validation datasets contain different behavior, the data-driven
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Figure 5.7: Presentation of a case where the training and the testing dataset do not follow the same patterns
concluding in highly increased prediction errors. The used data-driven predictor was implemented for T =
4320, T;,; =5and N = 12.

predictor fails. At this point, it would be interesting to examine how the data-driven
representation would behave as the system representation of a Data-Enabled Predictive
Controller (DeePC), despite the PE violation. This experiment intends to provide some
insight into the behavior of the data-driven predictor when the future exogenous inputs
are similar to the training exogenous inputs but the control inputs differ. However, for T
value close to 4320 the computational load of the DeePC becomes extremely high as the
solver has to calculate 4304 entries of the control variable g. Thus, it was decided to im-
plement the experiment on a sub-model of the crop model. Specifically, it is examined
if DeePC can efficiently predict and control the canopy temperature T¢,, based on the
inputs Tyir, VP4ir, CO, and the exogenous input Rcgp,-

The climate-dependent tomato crop system described in Section 3.4.3 is used for the
production of the ground truth data. The states of the sub-model, that DeePC is tested
on, are expressed by the following differential equations:

TCan = —C(RPA}LSunCan — Hcanair — Lcanair) (5.13)
an

. 1
Tcanzs = ; (k- Tcan— Tcanza) (5.14)
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Non-linearities are introduced through the latent heat flux term Lcg,4;-- An analytical
formulation of the term is given below:

2P Air-Cpy;, - lai

(5.15)
L-y-(rg+rs)

Lcanair = L- (satVp(Tcan) — VPair) -

Where L is the coefficient of the latent heat of evaporation, p 4;, the air density, cp,; the
air’s specific capacity, y the psychrometric constant, r5 the boundary layer resistance of
the canopy for transpiration and lai the measured leaf area index. The non-linearities

. Tcan
are introduced from the saturation function satVp(Tcan) = p1 - e’ Tcan*r2 and the stom-
atal resistance model rs. A more analytical overview of the stomatal resistance model

can be found in Chapter 4.

For the sake of complicity, it should be noted that the experimental process was repeated
as presented in the previous sections. However, in this experiment T = 288, T;,; = 12 and
N =12 (entries). The selected T, T;,;, and N are able to provide a sufficiently long input
signal but the PE condition is still violated. Figure 5.8 depicts the results of Algorithm 2
run for a period of one day. The Algorithm’s 2 measured mean execution time per itera-
tion is 0.0079 seconds.
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Figure 5.8: Implementation of Receding Horizon in the T¢,;, data-driven predictor testing process. The left
column indicates the predicted values (green) versus the measured values (black). The experiment run for a
period of one day for T =288, T;,; =12 and N = 12.

The DeePC formulation is given below:
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min | Tcan — 22115 D+ | Tcan — 1415 - (1 — D) +||Aullg

S.t.

Up Uini
Vy g= Vini
Yy Yini (5.16)
Vy vr

u=Ur-g=uy

D= 1, if i e{1,..., N} for which R¢c4,, >0
10 if Vie{l,...,N} Rcan =0

The objective of the data-driven controller is to predict the future Ty; and V Py;, tra-
jectories for given future CO;, and Rc,j, trajectories that will steer T¢g;, to track the ref-
erence level of 22°C and 14°C during the day and night time respectively. The future,
given trajectories have been extracted as the sequel of the training dataset. The con-
troller predicts over a prediction horizon N = 12 and applies the first 3 entries (control
horizon N, = 3), the rest 9 predicted values are discarded. The control variables are Ty;,
and VP,;, properly formulated with the help of g vector and the input constraints indi-
cate that 10 < Ty;, <25 and 1000 < VPy;, < 2500. Finally, the experiment was simulated
in MATLAB using TOMLAB and the solver conSolve was used for the solution of the op-
timization problem. The mean execution time was calculated at 3.1982 seconds. The
results of the simulation are presented in Figure 5.9. The first row of plots depicts the
inputs and the exogenous input of the system and the second row displays the tracking
of the reference trajectory and the prediction errors.

The DeePC can, efficiently, track the reference trajectory. However, it should be noted
that the data-driven predictor overestimates the system’s response time as increased
prediction errors occur when the reference level changes. The lower plots in Figure 5.9
exhibit increased prediction errors during the transitions from the initial condition to
the 14°C reference level (k € [0, 12]), from 14°C to 22°C reference (k € [36, 41]), and
from 22°C to 14°C (k € [260, 265]). A noteworthy remark has to do with the applicability
of the reference trajectory. It was known a priori that the system is capable to achieve
Tcan = 22°C and T¢gp = 14°C during the day and the night time accordingly. In conse-
quence, the data-driven predictor only had to indicate how the system can be steered in
those directions. Now, it would be interesting to examine the predictor’s accuracy in a
problem where the controller has to calculate the optimal canopy temperature and im-
plement it. In other words, the DeePC does not only need to find how to steer the system
but also where to steer it. The SPA objective function, introduced in Chapter 4 can be
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Figure 5.9: Simulation results of the T, reference tracking DeePC. The inputs and exogenous inputs are
displayed in the first row of the plots. The lower left plot demonstrates the reference tracking capabilities of
the controller where the dashed red line displays the reference trajectory, the solid blue line represents the
measured output, and the magenta line shows the DeePC predictions. The lower right plot demonstrates the
prediction errors that occurred during the simulation. The experiment was conducted for one day.

exploited to test this concept. The formulation of the SPA-DeePC is given below:

p3-Tcan
. 2 2 2
H}g}n (Co- ||P1 -eTcan*r2 — VI Air||2 +Cy- ||Tgan24 - TCan24||2 +Cy- ||TCﬂfl24||2) -D+

(C3 T gy, = Tcanulls + Ca - 1 Tcany, |13) - (1 = D) + || Aullg

s.t.

Up Uini
Vy _ | Vini
Yp YVini
Vy vr

w=sUr-g<uy

VisYr-g<suy

D 1, if 3i € {1,..., N} for which RPARSiunCan >0

0 if Vie{l,...,N} Rppi =0

SunCan

(5.17)
Where Cy = 1071%, C; = 103, C, = 1078, C3 = 4-1072, C; = 10%, R = diag([10° 10)),
and T, anp = 19.88°C. Parameters p;, p2, and ps reflect the parameters of the vapor
pressure saturation function. Regarding the constraints, it holds that 10 < Ty;, < 25,
1000 < VPy;, <2500, 14 < Tean < 27 and 14 < Tegp,, < 27.

The SPA-DeePC algorithm uses the same predictor as also the same horizon values as the
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reference tracking DeePC and no changes are applied regarding the simulation software.
The results of the SPA-DeePC experiment can be found in Figure 5.10 where the first
row of plots contains the inputs. The lower left plot demonstrates the system’s output
where the solid blue line represents the measures output, and the magenta line shows
the DeePC predictions. Finally, the lower right plot shows the prediction errors that oc-
curred during the simulation process. The simulated time corresponds to one day and
the mean execution time per iteration is measured at 67.9881 seconds.

According to the SPA objective function, the DeePC is expected to steer the canopy tem-
perature at a low level during the night to reduce sugar losses through maintenance res-
piration. On the other hand, high canopy temperatures are expected during day time
as the increased T¢,, values will increase photosynthesis and assimilates partitioning.
Despite the known pattern, the exact canopy temperature values should be indicated by
the system’s permissible behavior. From the lower left plot of Figure 5.10 becomes clear
that the controller achieves this pattern but not as predicted. The predictor still overes-
timates the system’s response time concluding in high prediction errors. The magnitude
of the prediction errors is a result of the PE condition violation entailing the Lemma’s
3 dissatisfaction. This observation, also, justifies the fact that the solver returns feasi-
ble exitFlags in all iterations despite concluding on physically, non-achievable trajec-
tories. For example, during the dark hours (k € [0, 45] U [240, 288]), the Rpar suncan
term of Equation (5.13) becomes zero. Then the canopy exchanges energy only with
the air. From an empirical perspective, the permissible system’s behavior would be 0 <
Tair — Tcan < 1.5 but the data-driven predictor insists that T¢,, can go to 14°C while
Tair = 17.6°C.
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Figure 5.10: Simulation results of the SPA-DeePC. The inputs and exogenous inputs are displayed in the first
row of the plots. The lower left plot demonstrates the system’s output where the solid blue line represents the
measures output, and the magenta line shows the DeePC predictions. The lower right plot demonstrates the
prediction errors that occurred during the simulation. The experiment runs for one day.
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The missing behavioral characteristics could be added as constraints in the optimization
problem. For instance, the term Cs - [| T4y — Tc(mllg can be introduced in the objective
function of the Problem (5.17). In this way, the temperature difference between the air
and the canopy is penalized and a decrease in night-time prediction errors is expected.
Figure 5.11 presents the simulation results after the addition of the penalty term with
Cs = 10° for D = 0 and Cs = 103 for D = 1. The figure maintains the same structure
and color code regarding the plots. As expected, the night-time prediction errors are de-
creased as the solver knows that T4;, — Tcan should be limited. High prediction errors
are observed during the daytime, the reason is that compared to T4;,, Rcan has a greater
influence on T¢,,. Nevertheless, such an approach has two major disadvantages. At
first, there is no way to ensure that the introduced constraints are exhaustive and as a re-
sult, no guarantees can be given about the predictor’s accuracy. Hence, the data-driven
representation cannot be considered validated. Moreover, these constraints express the
system’s behavior that should be indicated by the system representation. Semantically
they should not be used as constraints in the optimization problem.
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Figure 5.11: Simulation results of the SPA-DeePC with penalized T4;,, Tcan difference. The inputs and ex-
ogenous inputs are displayed in the first row of the plots. The lower left plot demonstrates the system’s output
where the solid blue line represents the measures output, and the magenta line shows the DeePC predictions.
The lower right plot demonstrates the prediction errors that occurred during the simulation. The experiment
runs for one day.

5.5.1. DISCUSSION

The data-driven representation is a linearized version of the ground truth system for
the state space included in the training dataset. Thus, despite the violation of the PE
condition, the data-driven predictor can be used to approximate the system’s behavior
in a predictive controller when the controller tries to steer the system’s output on a, a
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priori known, reachable trajectory. However, as shown by the SPA-DeePC attempt, the
violation of the PE condition let the solver consider, physically unreachable trajectories
as feasible solutions. Therefore, the data-driven predictor is not capable to be used in
a nominal predictive controller. Error compensation techniques have to be applied as
the data do not efficiently express the system’s behavior. However, this data-based rep-
resentation approach can be considered promising for the partial representation of the
system’s behavior, especially when the testing dataset contains inputs with similar pat-
terns to the training dataset.







NONLINEAR MODEL PREDICTIVE
CLIMATE CONTROL

6.1. INTRODUCTION - CASE STUDY

This chapter performs a case study of three different control regimes. All cases were
tested on the GreenLight climate-crop model for the same exogenous inputs. The first
controller is based on the SPA predictive control approach presented in Chapter 4. In this
case, a Non-Linear Model Predictive Controller (NMPC) founding its decision-making
process on SPA, developed and tested on the ground truth model. The second control
regime is rule-based and it is implemented using a combination of sigmoid P controllers.
Rule-based controllers may be considered out of date but they are still in use as they do
not require any system representation and they can achieve decent results under proper
tuning. The aforementioned controller acts as a benchmark representing conventional
climate control. In the context of a fair comparison, a controller able to represent the
optimal ratio between the final yield and the energy consumption is required. For this
reason, it was decided to design and test an NMPC algorithm including a yield maxi-
mization economic objective function. The yield maximization NMPC controller is the
third climate control approach being a part of the comparison process and it is consid-
ered a benchmark. The objective of the numerical simulations is the comparison of the
novel SPA-based control algorithm with the benchmark control regimes. The compar-
ison takes place in terms of energy consumption, yield production, carbohydrate bal-
ance, and execution time.

The following paragraphs outline the weather profile used in the simulations and the
inputs controlled by the climate controllers. Section 6.2 demonstrates the SPA ENMPC
algorithm and the design decisions regarding the objective’s function weights and cost
matrices. Section 6.3 provides the overview of the benchmark control algorithms. The
comparison between the various simulated results is presented in Section 6.5.

69
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WEATHER CONDITIONS

The weather conditions are considered as the exogenous inputs of the system and they
follow the formulation introduced in (3.5) respecting the mentioned units of measure-
ment. The data used describe the weather in Amsterdam, the Netherlands, for the period
between March and May of the year 1995.

CONTROL INPUTS

The control inputs are a subset of the inputs presented in (3.6). The tested climate con-
trollers do not apply control on artificial lighting, thus all corresponding input signals
can be excluded from the climate control algorithms. Then, the control inputs vector
becomes:

Boil
BoilGro
u=| ThScr (6.1)
Roof
ExtCo,

Where Boil and BoilGro are the boiler values used to heat the heating pipes and the
grow pipe system, accordingly. ThScr the deployment of the thermal screen, Roof the
roof’s window aperture, and ExtCo, the actuator corresponding to the CO; enrichment
system. As shown in Equation (6.2) all control inputs take values in the range [u;, uy]
where u; =0and u, =1.

u<u;j<u, Viefl,...,5} (6.2)

6.2. SPEAKING PLANT APPROACH NMPC

The proposed SPA-NMPC climate control algorithm can be considered as the extension
of the climate controller introduced in Section 4.6.1 for the whole climate-crop system.
The optimal future input trajectories are selected for a prediction horizon N. In other
words, SPA-NMPC is responsible to calculate the future greenhouse actuator inputs able
to minimize the greenhouse energy consumption while ensuring the maximum pro-
duction and distribution of carbohydrates in the crop and the minimum carbohydrates
losses. At this point should be reminded that carbohydrate production is monitored by
stomatal resistance and carbohydrate distribution by the reference tracking of the mean
canopy temperature in combination with the preservation of canopy temperature in its
optimal range. Finally, carbohydrates losses are a result of maintenance respiration. The
optimization problem formulating the SPA-NMPC approach is given below:
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N-1 p3-Tcan
: 2
min () llugllg,, +luk — uk—1llr, + Co-lIp1-eTcan*rz — VP |l5
u k=0 k
2 2 2
+Ci- IITé,mM = Tcanyll5 + Co2 -l Tcany,ll5 + C3 - ||CO;< -COl|l5)-D+ P+
N-1 ) )
(Z Nugllr + Nug — ug-1llg, + Cs- ||Tam24 — Tcanplls + Cs - | Tcany,15) - (1 — D)
k=0
s.t.

X1 = [ (X, U, di, k), Yk e {0,...,N—-1}

x(0) = x(k)

uysu<uy vkef{0,...,N-1}

(6.3)

Where Rj, = 0 and R = 0 are the quadratic positive semi-definite control input cost ma-
trices. R; = 0 is the quadratic positive semi-definite cost matrix for the rate of change
of the control actions. u; and u,, the lower and upper actuator bounds respectively and
Xi+1 = f (Xk, Ug, di, k) the ground truth climate-crop model needed for the prediction of
the future trajectories, where x0 the initial state conditions. P denotes the penalty func-
tion incorporating the canopy temperature and relative humidity inequality constraints,
as displayed in Equation (6.4).

N-1 N-1
P=0g-max(0, Y (14— Tcan,)* +01-max(©, Y (Tcan, —27)%+
k=0 k=0 (6.4)
N-1 ’
02-max(0, Y. (RHn, —87))*
k=0

Finally, D defines the state of the day where D =1 if a non-negative value of the global
radiation I,y exists in the prediction horizon and D = 0 when Igjp;, =0, Vi€ {1,..., N}
as displayed in Equation (6.5).

Dz{l’ if 3i € {1,..., N} for which Igop, >0 6.5)

0 if Vie{l,...,N} Igiop;, =0

6.2.1. WEIGHTS AND COST MATRICES

The weights C; for i € {0,...,5} and o; for i € {0, 1, 2} are necessary to properly scale
the effect of each term in the objective function. The demonstrated controller uses
Co=1-10"1,C;=5-10%,C, =1-1073,C3=2-10"3,C4 =1, C5 =3-10"? and 0; =3-10*
Vi e {0, 1, 2}. The extremely small Cy value has to do with the fact that the stomatal re-
sistance term included both T¢,, and V P,;,. Vapor pressure control becomes very hard
when no humidifying and dehumidifying elements are used as greenhouse actuators.
The ground truth greenhouse model does not include any of these devices. Therefore,
V P 4;, control requires quick changes in actuator values and the use of counter-intuitive
recipes including heating and cooling at the same time. However, energy consumption
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has a peculiar role in climate control, thus it was decided to scale the carbohydrates’ pro-
duction term to the level where it can be efficiently affected by the canopy temperature.

Another remark that should be added is the selection of C;, C», Cy, and Cs. Carbohydrate
production is achieved only during the daytime through photosynthesis. Consequently,
the monitoring of carbohydrates distribution has a high priority during the day to pre-
vent buffer overflow. For this reason, C, is two orders of magnitude greater than C4. On
the other hand, during the nighttime limiting carbohydrates losses is prioritized, hence
Cs is one order of magnitude greater than Cs. Last, the penalty function P is enabled only
in the extreme cases where canopy temperature hits the limits of the optimal range or
relative humidity becomes extremely high. Such scenarios can induce destructive con-
sequences on the tomato plant and have to be avoided. Accordingly, the high o; values
authorize the controller to act aggressively and return the system to a safe operational
point.

With respect to the cost matrices, it should be noted that they are n, x n,, diagonal square
matrices. Their diagonal entries are presented in (6.6). As can be seen, the Ry, cost ma-
trix is variable, and its values are dependent on global radiation. In particular, the control
input costs increase as incident radiation increases. In this way, the higher the incident
radiation, the less aggressive the actuator signals and the higher the exploitation of the
sun’s energy.

Ra, = diag(110.22.2510.6)) - Igiop,
R=diag([10.20.00111]) (6.6)
Ry =diag([11220.5])

The cause behind the selection of input costs relates to energy consumption. On days
with intense global radiation, the thermal screen should not be deployed to avoid unnec-
essary shading, lower photosynthetic rate due to limited PAR above the canopy, and re-
duced thermal energy storage capacity in greenhouse air. Therefore, the thermal screen’s
cost entries have increased penalties in comparison with the rest actuators in both Ra,
and R;. The climate controller intents to use the greenhouse air as a battery of thermal
energy charging from the incident radiation. Therefore, the air exchange between the in-
door and outdoor environment has to be regulated. The fourth entry of R; penalizes the
window’s flickering, preventing quick changes in the indoor-outdoor airflow. Thermal
screen deployment and window aperture impact relative humidity similarly. Thus, when
RH;, approaches its upper limit (during the daytime) the climate controller should act
either by deploying the thermal screen or by opening the window. However, thermal
screen deployment will shade the crop and negatively affect the final yield. It is prefer-
able to lose some heat energy rather than reduce carbohydrate production. Because of
that, it was decided to use alower penalty value on window aperture in Ry, compared to
the penalty of screen deployment. By this approach, the climate controller prefers open-
ing the window when the screen deployment is not obligatory.

Regarding nighttime, the costs Ry applied on the slew rate of control inputs remain the
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same as the fluctuations in actuators’ signals should be regulated as in daytime. On the
other hand, the control input matrix acting during nighttime is different. The main dif-
ference is applied to the cost of the thermal screen. Thermal screening has a great impact
on energy saving, especially during cold nights, as it reduces energy losses and increases
the efficiency of the heating system. Therefore, the corresponding cost value is 0.001.

Finally, it has to be mentioned that the introduced weights and cost matrices were se-
lected for a 4ha Venlo-type greenhouse located in the Netherlands. Patterns existing in
the climate conditions of a geographical region have a crucial role in the expectation
that we can have from the climate controller. Therefore, the tuning process should be
repeated for greenhouses located in regions with different climate characteristics.

6.3. BENCHMARK ALGORITHMS

6.3.1. RULE-BASED CLIMATE CONTROL

A rule-based climate controller is introduced in order to achieve a valid comparison be- m
tween the novel SPA-based NMPC control algorithm and the conventional way of cli-

mate control. This controller consists of several sigmoid P controllers, where each pro-

portional controller follows the below mathematical formulation:

1
Action = 0-1 6.7
1+ e;%Z%O~(x—setP0int—0,5~pBund) [ ] 6.7)

Where x is the controlled variable, setPoint is the desired value for the controlled vari-
able, pBand is the band defining the width of the proportional control, and Action is
the control action. Action takes values in range [0, 1] where Action = 1 represents the
full actuator capacity and Action = 0 corresponds to zero actuator’s effort. As depicted
in Figure 6.1, the controller is close to full action when x = setPoint + pBand and close
to no action at x = setPoint. The sigmoid curve of Figure 6.1 is flipped horizontally for
negative pBand values.
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Figure 6.1: Response of the smoothed proportional controller to a process variable x according to a sigmoid
function. For negative pBand values, the curve is flipped horizontally [41]

The presented rule-based controller was originally demonstrated in [41] and it was in-
spired by the work done in [42].

For climate control, the ground truth climate-crop system requires the proportional con-
trollers presented in Table 6.1 to ensure the control of air temperature, CO, concentra-
tion and prevent the violation of an upper relative humidity level. Each controller in
Table 6.1 is characterized by its setPoint and pBand values. Generally, the air temper-
ature has to be maintained on a greater level during the day and on a lower level during
the night, CO, concentration should be as high as possible to enhance photosynthesis in
the daytime but no CO, is consumed through dark hours. According to these facts, the
rule-based controller should be able to switch modes, thus different setpoints are used
for the day and nighttime. The various setpoints used are displayed in Table 6.1.

In reality, climate control requires the excitation of several actuators at the same time.
A typical example corresponds to relative humidity control where, in some cases, venti-
lation and thermal screen deployment needs to be triggered concurrently. Another case
is when temperature control requires the cooperation of the boilers with the thermal
screens to protect the crop from destructive cold conditions. Consequently, in the rule-
based approach, multiple proportional controllers act simultaneously. Figure 6.2 pro-
vides an intuitive description of the rules acting in this control method by showing when
and how the actuators have to be mobilized. It should be noted that Figure 6.2 is the
modified version of Figure 3 presented in [41].
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Table 6.1: Necessary P Sigmoid Controllers for the climate control of the ground truth greenhouse model where
Ppieq: the heating controller, Pcg, the CO2 concentration controller, P?ZH eat the controller for the thermal

Cold

ThSer the controller for thermal screen closure due to cold outdoor tem-

screen opening due to excess heat, P

ExRH ; ; : i qi ExHeat
Pyscr the controller for thermal screen opening due to excessive relative humidity, Py;5 "°“" the

controller for ventilation due to excess heat, ngld

nt
perature, PﬁgftH the controller for ventilation opening due to excess humidity and D the variable declaring the

day and nighttime (See Equation (6.5)).

peratures,

the controller for ventilation closure due to low indoor tem-

Necessary P Sigmoid Controllers

Controller setPoint pBand
e R e
Peo, €02 = Looopm, Dot CO2 pana =~100ppm
pExteat ThScriyHe = Tg, +0.5°C ThScrlgiledt =1
P, rhserp={0 0 DT Thserggld, = -1eC
prxRI ThScri; ™ = 85% ThScrznl, =10%
plxHeat VentfHeat = Tg, +0.5°C Vent[gleq! =0.75°C
pGold Ventip!d = T, -1°C Ventggigld =-1°C
pLrRH VentL R = 87% Vent[Zi, =50%
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Figure 6.2: Modified version of the Figure 3 originally presented in [41] displaying the behavior of the rule-
based climate controller. The figure shows the control of heating, ventilation, and thermal screen in the ref-
erence setting where Ventscp"ld the setpoint of the ventilation controller adjusting window opening due to
cold temperatures, Tsp the setpoint of the heating controller, ThScrsErj‘ Heat the setpoint of the thermal screen

controller due to excess heat, VentsE,fHe“’

the setpoint of the controller adjusting window aperture due to
excess heat, Ventf;RH the setpoint of the controller for the ventilation due to excessive relative humidity,
ThScrfIfR H the setpoint of the controller for the thermal screen opening due to excessive relative humidity
and ThScrsCr;’ld the setpoint of the controller for the thermal screen deployment due to low outdoor tempera-
tures. In respect to carbon dioxide control, CO; is supplied whenever the CO; concentration is below CO3 .

6.3.2. YIELD MAXIMIZATION NMPC

The idea behind the design and implementation of the yield maximization NMPC is the
generation of a benchmark algorithm able to conclude the optimal trade-off between
yield and energy consumption. The results of this algorithm are going to be compared
with the results of the SPA-based NMPC approach. To achieve a fair comparison, both
algorithms should use similar state spaces, thus they have to incorporate similar con-
straints regarding the system’s states. For this reason, both controllers embed the penalty
function P in their objective functions. The potential of the final crop yield can be ap-
proximated by the number of carbohydrates in the fruits per square meter. The energy
consumption can be regulated by introducing the quadratic costs of the actuator’s ef-
fort and the actuator’s fluctuations as explained in Section 4.7. Photosynthesis is posi-
tively correlated with CO, concentration, thus in the context of balanced comparison,
the yield maximization climate controller should operate under a similar CO, concen-
tration with the other two climate controllers. To satisfy this requirement, a reference
tracking term steering the CO, concentration to CO; = 1000 ppm is required. The an-
alytical formulation of the yield maximization NMPC method is displayed in Equation
(6.8).
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N-1
min (Y |lugllry, +lux— tk-1llr, = cFruit(N) + Co-1|CO; ~ CO2|13) - D+ P+
k=0
N-1
(2 Nugllr +1lug = ug-1llr, = cFruit(N))-(1-D)
k=0 (6.8)

s.t.
Xk+1 = [ (Xg, U, di, Xo), VE€{0,...,N—1}
uysu<uy, vkef{0,...,N-1}

where cFruit(N) is the system’s state representing the number of carbohydrates in the
fruits at the last time interval of the prediction horizon. The switching function D is
defined in Equation (6.5) and the penalty function P in Equation (6.4). Cp =2- 1072 the
weight of the CO, reference tracking term. The quadratic positive semi-definite cost
matrices R, Ry, and R are defined as shown in Equation (6.6).

6.4. TECHNICAL REMARKS ON THE SIMULATED EXPERIMENTS

RULE-BASED CLIMATE CONTROLLER

The publicly available MATLAB code of the Greenlight model was used for the simulation
of the rule-based climate controller. Minor changes applied to the original MATLAB code
in order to introduce Amsterdam’s weather dataset, the initial state of the crop, and the
control parameters (setpoints and pBands) presented in Table 6.1. As mentioned, the
simulation starts with an already mature crop. The reason is that the provided photosyn-
thesis model shows abnormal behavior in the simulation of young crops. Specifically, for
immature crops, the photosynthesis model concludes on optimal canopy temperatures
below the chilling point (12°C) which is unrealistic.

NMPC CLIMATE CONTROLLERS
Both NMPC algorithms execute the same steps for the simulation of the experiments. A
high-level presentation of the founding steps is demonstrated in Algorithm 4.

Algorithm 4 High-level representation of the steps ruling the NMPC Algorithms

1: Define N and N,
2: while True do
3. Define the initial conditions x; = [xg0 xi 17

4: Define the future N exogenous inputs d

5: Consider the previous N control inputs as the initial guess vy = u; ast

6: Solve the optimization problem (6.8)/(6.3) and conclude to the optimal future
control inputs u* ={ug, -+, uy-1}

7: Feed xo, dyr, and u* ={up, -, un,-1} in the Greenlight model and receive the

system’s state trajectories x
8: end while
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The NMPC algorithms require a system representation for the prediction of the system’s
future behavior. From the programming perspective, the predictor is called several times
during the solution of the optimization problem. As a result, the predictor’s execution
time plays a major role in the Algorithm’s 4 total execution time. However, the original
Greenlight model requires approximately 4 seconds in order to simulate 12 time intervals
with a sampling time of 300 seconds. The main reason behind the increased execution
time is the use of the DyMoMa framework. DyMoMa is an object-oriented framework for
defining and running linear and non-linear dynamic models in MATLAB [43]. Its object-
oriented nature makes it a user-friendly tool for the development and analysis of a dy-
namic model. Each input, state, and auxiliary state is an object containing the label, the
symbolic function, and the numerical values of each variable. Despite the provided con-
venience, the original Greenlight model is considered slow to be used in the context of a
predictive controller. For this reason, it was decided to implement an accelerated, non-
object-oriented version and incorporate it as a predictor in the NMPC algorithms. The
accelerated climate-crop model does not use the DyMoMa framework, and provides as
outputs only the system’s states (See Equation (3.2)). As in the original Greenlight code,
the solver ode15s is exploited to solve the needed differential equations.

Table 6.2: Comparison of the measured execution times between the original Greenlight model and its non-
object-oriented, accelerated version

Measured Execution Times

Original Greenlight Model Accelerated Version (No
(DyMoMa Framework) DyMoMa Framework)

Execution Time | 3.89 sec 0.36 sec

for 12 times-

tamps

Execution Time | 15.07 sec 12.57 sec

for 1000 times-

tamps

The comparison between the two climate-crop model implementations, in terms of ex-
ecution time, is displayed in Table 6.2. It can be seen that the accelerated climate-crop
model is significantly faster for the relatively small simulation horizon, as it does not
have to initialize and define an object for each variable. On the other hand, the execu-
tion times are comparable for longer simulation horizons. In this case, the majority of
the execution time is consumed by the ode15s solver. Figure 6.3 displays the canopy
temperature and vapor pressure in air outputs of the accelerated and the original Green-
light codes. The mismatches are considered negligible and the normalized mean square
error between the results are 9.99-10™% and 0.0032 for T¢g,, and VP, respectively.
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Figure 6.3: Results from the comparison between the original and the accelerated Greenlight codes. The di-
agram contain the outputs of both codes and the measured mismatches. The results of the original and the
accelerated Greenlight code are displayed with blue and red lines, respectively.

6.5. COMPARISON OF SIMULATED RESULTS

The simulation of the experiments was implemented in MATLAB using the publicly avail-
able Greenlight model as ground truth (plant). The solver ode15s was used for the solu-
tion of the differential equations describing the model’s state trajectories. Regarding the
NMPC algorithms, an accelerated, non-object-oriented version of the Greenlight code
used as the predictive model. It should be reminded that the original and the acceler-
ated Greenlight models are ruled by the same differential equations, their differences
are located in their implementation. The prediction horizon was set to N = 6 and the
control horizon to N, = 3 timestamps. The sampling time of the model was set to 300
seconds, hence NMPCs predict the future 30 minutes and apply the control inputs for
the future 15 minutes. The main reason behind the selection of the horizons was the
execution time of the NMPC-based algorithms. The TOMLAB snopt solver was used for
the calculation of the optimization problems. Finally, the experiments simulate 35 days
based on the same weather dataset for a mature crop.

The comparison of the simulated results is conducted on three main pillars, the input
energy, the yield, and the algorithm’s execution time. The input energy consists of energy
originating from the sun and the heating energy from the boilers.

6.5.1. PAR LIGHT FROM THE SUN REACHING ABOVE THE CANOPY

The incident radiation above the canopy is calculated by Equation (6.9) originally intro-
duced in [22],

RparGhsun = (1= PetaGiobair) * TCovPAR * PetaGlobPAR * IGlob (6.9)
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where peraciopair the ratio of global radiation absorbed by the greenhouse construc-
tion, Tcoypar the PAR transmission coefficient of the cover, p.rqaGiobpar the ratio of PAR
in global radiation, and I, the incident global radiation in W - m=2.

The total PAR light from the sun reaching above the canopy is calculated in mol- m~=2 and
in MJ-m~2 as

- ! _
PARg,, =107 f (D5 RoARGRSUn)AL Mol m™] (6.10)
PARgy, =107° ‘fRPARGhSun dt [MJ-m™2 (6.11)

1 i . . , .
where p{J:gmsim expressing the conversion factor of sun’s PAR from J to umol,norons in

-1
.um()lphotons -J

The measured PARgs;,;,, are demonstrated in Table 6.3. From the table can be extracted
that the SPA-NMPC achieved 0.65% less PAR above the canopy than the rule-based bench-
mark and 4.68% more PAR than the fruit maximization NMPC.

Table 6.3: Demonstration of the measured total PAR light from the sun reaching above the canopy in mol-m™2

Measured PARgy,
SPA-NMPC Rule-Based Yield Max. NMPC
Measured PARsy,, | 565.2644 568.9227 538.7984
(mol-m™2
Measured PARsy,, | 122.8836 123.6789 117.1301
[M] - m™2]

All three experiments run on the same weather dataset entailing that all algorithms faced
identical global radiation. Figure 6.4 demonstrates the incident PAR radiation above the
canopy for a sunny and cloudy day. As can be seen in Figure 6.4, every crop experienced
different PAR above the canopy. The differences in the PAR values above the canopy
emerge because of the thermal’s screen behavior.

In Figure 6.5, the thermal’s screen action is depicted for the two days presented in the
previous figure. The advantage introduced by the NMPC algorithms is that the ther-
mal screen opens earlier during the first morning hours (See Figures 6.5 and 6.4 for
k € [4035,4065] U [4324,4355]). This behavior is achieved through the thermal’s screen
penalty in Ra,. On the other hand, the NMPC approaches conclude on lower PAR levels
above the canopy during the sun’s peak hours on sunny days. This pattern appears on
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Figure 6.4: The incident PAR radiation above the canopy for two consecutive days. The first day corresponds
to a sunny and the second on a cloudy one. The grey (x, y) plane background represents the nighttime and the
white corresponds to the daytime.

every sunny day with different intensities, concluding on the lower PARg,,, presented in
Table 6.3 for the NMPCs. This pattern occurs due to the penalty function P living in the
objective function of the NMPCs. When the canopy temperature or the relative humidity
approaches their upper limits, P is activated, permitting the aggressive behavior of the
actuators. As a result, thermal’s screen fluctuations occur shading the crop (See Figure
6.5 for k € [4050, 4200] U [4330, 4450]).

6.5.2. HEATING ENERGY INPUT

The simulated heating system consists of two boilers, the first boiler is responsible for
the control of the heating rails, and the second for the control of the grow heating pipes
running on the canopy level. The heat from the boiler to the rails is expressed in Equa-
tions (6.12) and (6.13) in W-m™2.

PpBoil

Hpoiipipe = UBoil (6.12)
PaFir
PpBoilGro
HpoiiGroPipe = UBoilGro" ————— (6.13)
PaFir

where ug,;; and up,;iGro the corresponding control inputs, pypeir and pppoiicro the ca-

pacity of the heating systems in W, and p,;, the floor area of the greenhouse in m 2.

The total energy consumption of the heating system is calculated in MJ- m~? as:

Boily, = 10_6 . f(HBoilPipe + HBoilGroPipe)dt (6.14)

Table 6.4 contains the total energy consumption of the boiler for each control algorithm.
The rule-based climate controller results in the greatest energy consumption. This fact
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Figure 6.5: The thermal’s screen action for the two consecutive days displayed in Figure 6.4. The grey (x, y)
plane background represents the nighttime and the white corresponds to the daytime.

isjustified by two main reasons. First, the rule-based algorithm consists of several P-type
controllers which do not take into consideration either the actuator’s effort or the actu-
ator’s slew rate. Second, the nighttime air temperature setpoint is set to 18.5°C which is
higher than the nighttime air temperatures indicated by the NMPCs. The SPA-NMPC al-
gorithm steers the air temperature to a low level during the night intending to minimize
the maintenance respiration and maintain non-zero carbohydrates flow from the buffer
to the organs. The fruit maximization NMPC follows a similar pattern to increase energy
efficiency. Considering the SPA-NMPC energy consumption as the comparison’s refer-
ence point, it can be noticed that the SPA-NMPC consumed 6.31% more energy than the
fruit maximization NMPC and 4.48% less energy than the rule-based controller.

Table 6.4: Demonstration of the measured total energy consumption from the boilers in MJ - m =2

Measured Heating Energy Consumption

SPA-NMPC Rule-Based Yield Max. NMPC

Measured Boil;, | 178.5488 186.5508 167.2745
[M] - m~2]

Figure 6.6 displays the air temperature trajectories for the same two, simulated, days.
The figure is introduced to experimentally validate the aforementioned findings regard-
ing the boilers’ energy consumption. A noteworthy remark displayed in Figure 6.6 has
to do with the reference tracking capability of the rule-based controller. As can be seen,
the rule-based climate controller cannot achieve zero tracking error as it consists of pro-
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portional controllers without integral terms. Another remark regards the SPA-NMPC ap-
proach and specifically the increased air temperature values appearing in the morning
and late evening hours. This repetitive pattern makes the SPA-NMPC the second energy-
consuming approach. The global radiation values are low during the morning and late
evening resulting in the reduced cost of the actuator’s effort (Ra,) which let the boiler
run at full capacity.
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Figure 6.6: The implemented air temperature trajectories (T 4;,) for the two consecutive days displayed in Fig-
ure 6.4. The grey (x, y) plane background represents the nighttime and the white corresponds to the daytime.

6.5.3. HARVESTED YIELD

Concerning harvesting, it is assumed that fruits are harvested when the stored carbohy-
drates in fruits (Cgryi;) have reached a certain amount (C%’;’l? /). Hence, the harvesting
rate of dry fruits is described as:

MCgryitHar = max{0, CFruit_C%i);t} (6.15)
Where MCrryitHar in mgcH,0° m~2.s71. The total harvested yield is calculated by Equa-
tion (6.16) through the integration of the harvesting rate and the introduction of the dry
matter content (dmc). The dmc constant is used to convert the dry to wet harvested

matter and its value was defined to 6% according to [44].

. _ 1
Yieldrotar =10 B'd_nw'fMCFruitHardt (6.16)

Table 6.5 presents the calculated wet yield in kg-m~2 as also the energy efficiency in
MJ - kg™'. From Table 6.5 is calculated that the SPA-NMPC produced 7.02% and 4.67%
more wet yield than the fruit maximization NMPC and the rule-based climate controller
accordingly. Moreover, the SPA-NMPC outperformed the fruit maximization NMPC al-
gorithm in terms of energy efficiency by 0.76% and 9.60% respectively. For reasons of
completeness, it is noticed that the SPA-NMPC efficiency was regarded as the reference
point of the aforementioned comparison of percentages.
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Table 6.5: Demonstration of the harvested wet yield in kg m~2 and the heating energy input needed per tomato
yield in MJ - kg1

Wet Yield and Heating Energy Efficiency
SPA-NMPC Rule-Based Yield Max. NMPC

Measured 3.3928 3.2341 3.1546
Yieldrysar [kg-m™2]

Energy input | 52.6258 57.6817 53.0257
needed per tomato
yield [MJ - kg™ 1]

CARBOHYDRATE BALANCE

The idea behind the proposal of the SPA-NMPC is to monitor the crop’s carbohydrates
production, distribution, and consumption. Therefore, it would be interesting to clarify
the reason behind the increased yield production. In other words, to examine if the in-
creased yield is just a result of the increased photosynthetic activity or if the SPA-NMPC
managed to control the biochemical processes governing carbohydrates balance more
beneficially. Better carbohydrate balance could mean reduced maintenance respiration,
reduced growth respiration, or carbohydrate distribution focused on fruit development
instead of the rest organs. Consequently, the following paragraphs are devoted to the
presentation of the carbohydrate balance analysis.

According to the crop’s physiology, carbohydrates are produced through photosynthesis,
some of them are consumed by growth respiration and another portion is consumed by
maintenance respiration. Parts of the produced carbohydrates stay in the organs (fruits,
leaves, stems) and another part is harvested in the form of fruits or pruned in the form
of leaves and stems. The amount of carbohydrates consumed by respiration processes
is calculated by the integration of the Equations (4.13) and (4.17). Carbohydrates stored
in the organs are expressed as the crop’s states (See Equations (3.25), (3.26), and (3.27)).
The dry harvested matter is calculated by integrating Equation (6.15). The pruning rate
is defined similarly to the harvesting rate where leaves are pruned when the simulated
LAI exceeds a maximum threshold value (Equation (6.17)). The total, dry, pruned car-
bohydrates can be found by integrating Equation (6.17). Finally, the integral of Equation
10 displayed in [20] was used for the computation of the produced carbohydrates. The
presentation of the photosynthesis model is out of the scope of this study and the reader
is referred to the Electronic Appendix of [12].

MCLeafHar = maxi{0, CLeaf - C%Z}(} (6.17)

Table 6.6 presents the amount of produced carbohydrates per control algorithm in [kg¢ , o*
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m~2]. As can be seen, SPA-NMPC produced the most carbohydrates and the rule-based
approach showed the second-best results.

Table 6.6: Demonstration of the total amount of carbohydrates produced by photosynthesis (kgcy, 0 m™2]

Produced Carbohydrates
SPA-NMPC Rule-Based Yield Max. NMPC

Measured 0.9424 0.9244 0.9051
MCyirpys
(kgcr,0-Mm~

%]

The increased photosynthetic activity of the SPA-NMPC algorithm is also depicted in
Figure 6.7 which displays the photosynthesis rates of all climate controllers for the refer-
ence days. The increased photosynthetic rate of the SPA-NMPC is justified by two main
factors. First, as mentioned in Section 6.5.1, the crop experiences increased PAR levels
during the early morning hours entailing increased photosynthetic activity (Figure 6.7
for k € [4035,4065] U [4324,4355]). Second, an increased photosynthetic rate is observed
during the sun’s peak hours. The reason behind this pattern is the increased canopy tem-
perature achieved by the SPA-NMPC. In general, photosynthesis has a positive correla-
tion with canopy temperature when T¢.y, € [12°C, 30°C] and RparGhsun = 100 [W-m™2].
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Figure 6.7: The simulated photosynthetic activity for the two consecutive days displayed in Figure 6.4. The
grey (x, y) plane background represents the nighttime and the white corresponds to the daytime.

Regarding carbohydrates balance, Figure 6.8 demonstrates the distribution of the pro-
duced carbohydrates using pie charts. It can be noticed that the distribution of carbohy-
drates is similar in all three cases. The y? test was applied to the measured results in or-
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der to conclude if the differences between the control regimes are significant. The y? cal-
culation was conducted using the crosstab MATLAB function which returned y? = 366
and p = 0.3114 indicating that the distribution differences are not significant. Conclud-
ing, the increased yield of the SPA-NMPC occurred due to increased photosynthetic ac-
tivity as the algorithm did not achieve any improved carbohydrate management.

Carbohydrates Balance

SPA-NMPC Rule-Based
3.38% 3.00%

21.01% 21.93%

24.42% 24.89%

<1% <1%

21.65% 21.65%

21.60%
7.71% 7.29%

20.99%

Fruit Max. NMPC
3.77%

19.93%

25.43%

Il Maintenance Resp.
[ Growth Resp.

[ Pruning

[ Harvest

I:lc’Leaf
I:lcFruit
I:Icstem

9
21.65% <1%

20.91%

8.06%

Figure 6.8: Pie charts representing each control’s algorithm distribution of the produced carbohydrates. The
total amount of produced carbohydrates is distributed to fulfill the respiration needs, to be stored in the leaves,
fruits and stems (Creq ) Crruit» and Csgem) and a part of it has been removed through pruning and harvest-
ing.

6.5.4. EXECUTION TIME

The measured mean, minimum, and maximum execution times of the climate control
algorithms are presented in Table 6.7. The rule-based climate controller showed the
fastest performance as it does not require the solution of an optimization problem in
order to conclude on the future control inputs. Moreover, the rule-based controller has
to decide only for the next timestamp, as no control horizon is applied. The increased
execution times of the NMPC algorithms are a byproduct of the computationally expen-
sive predictive model.

A noteworthy observation is that the SPA-NMPC controller is 40.76% faster than the fruit
maximization NMPC algorithm in terms of mean execution time. However, the maxi-
mum execution times measured for both NMPC algorithms declare that sometimes the
algorithms do not manage to provide the control inputs on time. The control horizon
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Table 6.7: Measured execution times for the SPA-NMPC, the rule-based climate controller, and the fruit maxi-
mization NMPC in seconds.

Measured Execution Times of the Control Regimes

SPA-NMPC Rule-Based Yield Max. NMPC

Mean  Execution | 461.7942 0.0079 779.6588
Time [sec]
Minimum Execu- | 3.2045 0.0062 432.7669

tion Time [sec]

Maximum Execu- | 3335.0 0.0106 12475
tion Time [sec]

of the climate controllers are set to N, = 3 (timestamps) = 900 (sec) and the maximum
execution times for the SPA and the fruit maximization NMPC, accordingly, are 3335 and
1247.5 seconds. During the simulation process, computational delays have not been
taken into consideration.

6.5.5. CONCLUSION & REMARKS

The SPA-NMPC concluded on the greatest tomato yield with the lowest heating energy
consumption per produced unit tomato mass. Despite the fact that SPA-NMPC came
second in terms of PAR above the canopy, it managed to achieve the greatest total photo-
synthetic activity. This control approach also managed to implement meaningful control
patterns. Such patterns are the low night temperatures for the regulation of maintenance
respiration, and the increased morning and evening temperatures aiming to increase
Tcan,, when the actuator’s cost is low. It should also be noticed that SPA-NMPC man-
aged to satisfy the soft state constraints. Based on all these facts, the canopy temperature
control idea governing SPA-NMPC can be considered promising. However, there is still
room for improvement in several aspects. At first, the solution to the online optimiza-
tion problem can become a great issue as there are cases where the execution time was
greater than the control horizon. The execution’s time acceleration could be achieved
by replacing the used predictive model with a simpler one and then compensating for
the prediction errors. Another option would be the execution of the control algorithm in
application-oriented embedded hardware. Moreover, the acceleration of the execution
time would permit the use of a longer prediction horizon. A longer prediction horizon
is expected to decrease the actuator’s aggressive behavior when P is activated. Potential
for growth also exists in the thermal’s screen tuning. Smoother thermal screen effort,
during the sun’s peak hours, could result in increased PAR values above the canopy en-
hancing the crop’s photosynthetic activity. In summary, the SPA-NMPC outperformed
the benchmark algorithms in terms of yield and heating energy efficiency but there is
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still development potential regarding execution time and PAR above the canopy.



CONCLUSION

7.1. SUMMARY

This thesis project is engaged with the development and testing of a SPA-based cost
function able to be used as the optimization criterion of a greenhouse climate predic-
tive controller. Moreover, it was tested if the data-driven predictor introduced in [11]
was capable to be used as a system representation for predictive climate control. The
examination of these subjects hopes to assist the transition from conventional to au-
tonomous greenhouses, the insurance of food security, and the minimization of fossil
fuel consumption.

Before proceeding with the analysis of the aforementioned topics, an introduction to the
fundamental components and the variants of predictive control was carried out. This
introduction took place to help the reader understand the meaning of the subjects in
question as the current study does not necessarily refer to control engineers. Afterward,
the presentation of a coupled climate-crop system satisfying the thesis’ project require-
ments was conducted. This model and its components were considered ground truth.
The climate and the crop model were used for the generation of training and testing data
for the data-driven predictor. Additionally, the climate-crop model acted as the plant
and the predictive model for the testing of the climate controllers.

Subsequently, it was examined how the crop’s carbohydrates production, distribution,
and loss can be affected through the control of crop and climate variables concluding
with the formulation of the SPA-based objective function. Through this process, the nec-
essary state constraints were also defined. Then, the SPA objective function proved its
potential in an experiment introduced as a proof of concept. A SPA predictive canopy
temperature controller was compared with a fruit maximization MPC concluding with
similar results. Finally, the novel objective function was transformed in order to properly
fit in a greenhouse climate controller.

89
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Chapter 5 showed that despite the violation of the PE condition, the data-driven predic-
tor can describe the greenhouse system when the testing input signals are similar to the
training input trajectories. Experimentally was shown that the constantly changin dy-
namics of the ground truth model entail the evolution of the prediction error over time.
Moreover, the use of dynamic Hankel matrices was tested concluding that their frequent
update diminishes the over-time evolution of prediction errors. Multiple DeePC algo-
rithms were implemented to examine how the PE violation affects the plant-predictor
mismatches. DeePC managed to track a reachable reference trajectory. However, when
it is not known that the desired trajectory can be described by the predictor, the con-
troller considers physically unreachable trajectories as feasible solutions.

Afterward, a case study was performed to test the SPA cost function on a greenhouse cli-
mate control problem. As the SPA-DeePC was considered failed, the experiments were
conducted in a SPA-NMPC formulation. For the sake of comparison, a conventional
rule-based climate control algorithm and a fruit maximization NMPC illustrating the op-
timal yield-cost ratio were introduced as benchmarks. The comparison indexes were the
input energy, yield production, and execution time. The SPA-NMPC came first in terms
of yield production and heating energy efficiency despite that it was not always capable
to calculate the control inputs on time. However, it was shown that the SPA-NMPC can
produce meaningful control patterns and outperform the benchmark algorithms even if
there is still room for improvements regarding the PAR above the canopy and the execu-
tion time.

7.2. ANSWERS TO RESEARCH QUESTIONS
This section intends to gather the answers to the research questions and sub-questions
noted in Chapter 1. The answers can be found below:

e Is the linear data-driven predictor, presented in [11], able to describe the behavior of
the complex climate-crop system presented in [12] without persistently exciting training
data?

— The data-driven predictor, presented in [11], is capable to describe the complex
climate-crop system presented in [12] when the testing input signals are simi-
lar to the training input trajectories, despite the violation of the PE condition.
However, the predictor fails to describe the system’s behavior for inputs that do
not conform with the training behavior. It was shown that the introduction of
state constraints, in the prediction optimization problem, are capable to reduce
the prediction errors. Nevertheless, there is no mathematical confirmation that
these constraints are exhaustive and semantically they should not be placed in
the control problem. Rephrasing, the data-driven predictor is able to describe
the climate-crop system behavior under specific conditions.

The sub-question should be answered before proceeding with the answer to the second
research question.



7.2. ANSWERS TO RESEARCH QUESTIONS 91

* What greenhouse, climate, and crop system models should be selected for the pur-
poses of ground truth, disturbance description, model-based, and/or data-based
predictive controller design?

— The pursued model should be able to describe the climate’s thermo-dynamics,
vapor pressure, carbon dioxide concentration, and artificial lighting in order
to represent a modern greenhouse. Moreover, it should properly describe
the effect of the crop stage on the climate dynamics. The model should ef-
ficiently describe the effects of high and low temperatures and not only a
narrow operating range. In this way, experimenting with novel climate con-
trol approaches is allowed. As the model will be used as ground truth for the
simulation of SPA-based experiments, it has to be mechanistic for the proper
interpretation of the results. It should also be validated permitting the sup-
port of the results. This set of requirements is satisfied by an exploratory,
validated, process-based greenhouse model named Greenlight, presented
in [12].

* Which of the available actuators are going to be controlled and why?

— The boilers for the control of the pipe-rail heating system, the thermal screen
as it can control energy leakages and provide shading, the roof aperture for
ventilation and humidity control, and the carbon dioxide enrichment system
to ensure increased photosynthetic activity. The proposed climate control al-
gorithm should be tested on different lighting conditions but artificial light-
ing creates repetitive lighting patterns. For this reason, the artificial lighting
actuators were excluded from the control design.

* Which crop processes should be incorporated in the SPA-based objective function?

— The SPA-based objective function should monitor carbohydrate production,
ensure a high degree of carbohydrate distribution from the buffer to the or-
gans, and eliminate carbohydrate losses. To do so, stomatal conductance
should be incorporated for carbohydrate production. Assimilates partition-
ing for the control of the distribution flow and maintenance respiration for
the elimination of carbohydrate losses. Growth respiration should not be
included in the loss elimination as it will negatively affect the carbohydrate
flow.

* What modifications does the SPA-based objective function need in order to fit in the
NMPC greenhouse control scheme?

— As the SPA-based objective function is unable to generate meaningful CO,
setpoint values, a reference CO, term has to be added. The SPA-NMPC has
to control the greenhouse actuators and monitor their energy consumption,
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thus two more terms have to be added. A quadratic term penalizing the con-
trol inputs and another quadratic cost penalizing the actuator’s slew rate. Fi-
nally, a penalty function for the introduction of soft state constraints in the
objective function is considered necessary.

* Which are the optimal performance metrics to become benchmarks for the intended
comparisons?

— The optimal performance metric for the intended comparison is the heating
energy efficiency per produced mass unit as the introduction of advanced
control techniques aims for the optimal exploitation of the energy resources.
The produced wet yield and the heating energy consumption are also consid-
ered benchmarks as they permit us to sanity-check the efficiency index. Fi-
nally, the photosynthetic active radiation reaching the canopy is another per-
formance index that should be exploited. The proper control of PAR above
the canopy can have a significant impact on photosynthesis and as a result on
the final yield. Finally, the algorithm’s execution time is another performance
benchmark that should be introduced to examine if the proposed approach
is able to produce results on time.

° How does the designed SPA-based climate control algorithm perform compared to a

conventional rule-based climate controller and a yield maximization NMPC algorithm?

— The SPA-NMPC outperformed the benchmark control algorithms in terms of yield

production and heating energy efficiency. Particularly, it produced 4.67% and
7.02% more wet yield than the rule-based climate controller and the fruit max-
imization NMPC accordingly. In terms of energy efficiency, SPA-NMPC outper-
formed the benchmarks by 0.76% and 9.60% respectively. Regarding heating en-
ergy consumption, the SPA-NMPC consumed 4.48% less energy than the rule-
based controller and 6.31% more energy than the fruit maximization NMPC. The
proposed SPA algorithm came second on the total PAR above the canopy with
0.65% less total PAR than the rule-based benchmark and 4.68% more PAR than
the fruit maximization NMPC. Concerning the execution time, no fair compari-
son can be conducted between the NMPCs and the proportional rule-based cli-
mate controller. It should be underlined, though, that the mean execution time
of the SPA-NMPC was 40.76% lower than the corresponding time of the fruit max-
imization NMPC. However, there were cases where both NMPC algorithms failed
to provide future control inputs on time.

During Chapter 1 a side-question was formulated to examine the applicability of the
SPA-NMPC in an industrial, real-world application. The question and its answer are
given below:

* Under which assumptions could the proposed approach be considered an applica-
ble real-world application?
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— The SPA-NMPC algorithm requires the capability of conducting canopy tem-
perature measurements in a fast, accurate, and automated manner. How-
ever, in reality such sensors are not included in the standard greenhouse
equipment. In the context of this study, it was assumed that the greenhouse
was equipped with thermal cameras. In addition, it was assumed that the
greenhouse is a "stirred tank" and the temporal climate variable values are
uniformly distributed. Finally, the crop model performs under the "big leaf"
approach with perceives the canopy as a single layer. In order to use the
SPA-NMPC algorithm in a real-life scenario, it should be assumed that the
greenhouse is properly equipped, the predictive model incorporates the dif-
ferences in spatial climate dynamics, and the objective function is properly
modified to handle multiple canopy layers.

7.3. RECOMMENDATIONS FOR FUTURE WORK

* Greenhouse-Crop Modelling: The used ground truth model was developed under
the "stirred tank" and the "bigleaf" assumptions. These assumptions simplify the
modeling of the crop and climate processes but they do not fit in a real-world sce-
nario. Therefore, it is proposed to reconstruct the SPA-NMPC approach so it can
handle multiple canopy layers and spatial differences in the distribution of the cli-
mate variables. Such a modification would test the applicability of the SPA-NMPC
in a more realistic scenario.

° Data-Driven System Representation: It was shown that the data-driven predictor
was capable to describe the greenhouse behavior when the given inputs conform
with the training input trajectories. However, a training dataset containing the
system’s behavior on the whole reachable state space would require an enormous
amount of data. Such a dataset would also conclude in great computation time for
the predictor. A solution to this problem could be found in the Linear-Parameter
Varying DeePC theory where the system representation requires the inputs and
a set of parameters defining the system’s operating region in order to predict the
future output trajectories. This approach could also be combined with the Online
DeePC algorithm to eliminate the evolution of prediction errors over time.

* SPA-NMPC Parameter Tuning: The SPA-NMPC controller contains several pa-
rameters for the scaling of the individual terms living in the objective function and
the penalization of the control inputs and their slew rate. According to the simu-
lated results presented in Chapter 6, the SPA-NMPC could have achieved greater
PAR levels above the canopy enhancing the production of carbohydrates by the
smoother control of the thermal screen. Thus, it is recommended to retune the
control algorithm aiming to achieve higher photosynthetic activity during the sun’s
peak hours.

* SPA-NMPC Computation Time: The simulated experiments showed that the pro-
posed climate control algorithm requires increased computation time which some-
times may be greater that the control horizon. The execution time can be accel-
erated by replacing the currently used climate-crop model with a simpler one and
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adjusting the algorithm to compensate for the prediction errors. Moreover, the
acceleration of the execution time would permit the evaluation of the algorithm
under the use of a longer prediction horizon. Therefore, it is recommended to
test the SPA-NMPC using a canopy temperature model as a predictive model com-
bined with prediction error compensation techniques.

SPA-NMPC Simulated Experiments: Because of the lack of time, the experiments
presented in Chapter 6 did not run for a whole crop season. It is recommended to
be repeated for a whole year.

Uncertainty on Exogenous Inputs: The development and testing of the SPA-NMPC
algorithm was conducted under the assumption that future exogenous inputs were
identical to the implemented ones. In reality, this assumption does not always
hold and mismatches occur between the predicted and the real weather. Thus,
testing the algorithm in a more realistic scenario would require the introduction
of uncertainty in exogenous inputs.

Thermal Cameras and Rule-Based Climate Control: The system identification
process of a modern greenhouse remains an open problem. As a result, rule-based
climate controllers will remain the standard in industrial climate control for some
time. Thus, it is recommended to explore how rule-based control could take ad-
vantage of crop signals such as stomatal conductance, canopy temperature, and
mean canopy temperature. For example, rules could be applied to ensure that
the canopy temperature is in its optimal range, or that the canopy temperature is
greater than the dew point.
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ASSUMPTIONS

Assumptions are an indivisible part of research as they provide a basis for developing
research questions and interpreting results. Particularly, assumptions are used to fill the
knowledge gaps, guide the research design and limit the scope of the study. The scope of
this appendix is the presentation of all assumptions made in the context of this project.

1. The greenhouse air is considered to be a "perfectly stirred tank", assuming no spatial
differences in temperature, CO2, and vapor concentration.

This assumption allows all fluxes to be expressed in units of energy or mass per
m~2 of the greenhouse floor. Furthermore, it simplifies climate-crop modeling
and climate control, in any other case, modeling, and control should incorporate
fluid dynamics.

2. Thegreenhouse is divided into two main compartments. The top compartment con-
tains the air volume above the level of the screens and the main compartment con-
sists of the volume below the screens.

According to greenhouse climate datasets, the variation of air temperature, VPD,
and CO; concentration on the top compartments differs from the variation in the
main compartment. The introduction of this assumption limits the scope of cli-
mate control to the variables living in the greenhouse’s main compartment.

3. Crop modeling has been implemented based on the big-leaf approach.

The big-leaf approach is a modeling framework used in ecosystem ecology to esti-
mate the fluxes of energy, water, and carbon dioxide between the land surface and
the atmosphere. The advantage introduced is that the ecosystem-level fluxes are
estimated by averaging the properties of the leaves over the entire canopy. In other
words, the crop model works at the scale of the whole plant, rather than consid-
ering individual leaves separately. In this way, the climate controller considers a
single canopy layer for the measurement of the canopy temperature.
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4. The simulated greenhouse system contains thermal cameras as temperature sensors.

This assumption has great importance as this thesis project explores ways to ex-
ploit the advantages of thermal cameras in climate control. The introduction of
thermal cameras lets us consider that all surface temperatures are measurable.
Surface temperatures (floor, soil, cover, screens, etc) are states of the ground truth
climate-crop model. As a result, the climate controller can measure the canopy
temperature and the need for a state observer is eliminated.

The CO,, VPD, and carbohydrate related states are considered measurable.

The scope of this project is the design of a novel SPA-based objective function for
predictive climate control. Another objective is to examine if the ground truth
climate-crop model can be effectively represented by data. Because of a lack of
time, the development of a state observer for the greenhouse system was not pos-
sible. Thus, it should be assumed that the simulated greenhouse is equipped with
all necessary sensors in order to consider The CO,, VPD, and carbohydrate states
measurable.



DEW POINT

The dew point of saturated air corresponds to the amount of water vapor in the air [45].
In other words, the dew point is the temperature where for constant air pressure and wa-
ter content the air would become saturated with water vapor. When the air temperature
is below the dew point, the water vapor condenses and forms liquid water.

The dew point can be calculated using the Magnus-Tetens formula ([46]) as shown be-
low:
100’ " b+T

RH -T
a—In(55) + 357

b-(ln(M)+ a'_T)
= (B.1)

Where a and b the Magnus coefficients, RH the relative humidity, T the temperature in
9C and T the dew point in °C. For the dew point calculation, the coefficients proposed
by Alduchov and Eskridge are used where a = 17.625 and b = 243.04 [°C] [47].

In the context of this study, is has to be ensured that the canopy temperature achieved by
the SPA-NMPC algorithm is always greater than the dew point. In this way;, it is guaran-
teed that stomata can operate properly as no liquid water is formed on the leaf surface.
Based on the post-simulation analysis, it occurred that the canopy temperature was al-
ways greater than the dew points calculated by Equation (B.1). Figure B.1 is introduced
to visualize the aforementioned outcome.
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Figure B.1: The canopy temperature and the dew point trajectories for the two consecutive days presented
in Figure 6.4. The first day corresponds to a sunny and the second on a cloudy one. The grey (x,y) plane
background represents the nighttime and the white corresponds to the daytime.



SPA-NMPC POINTS TO BE
IMPROVED

This appendix is introduced in order to depict the simulated greenhouse actuator inputs
and the climate-crop variables for two consecutive days. The first day represents a sunny
day with relatively high incident radiation and the second day is a cloudy day. Figure C.1
intends to demonstrate the points on which the SPA-NMPC controller can be improved.

In k = 4040 and k = 4322 the air temperature and as a result, the canopy temperature
starts decreasing. This is an effect of the concurrent thermal screen closure and the heat-
ing’s boiler deactivation. As the incident radiation is still on a low level, limited energy in-
put is provided by the sun, and the greenhouse loses thermal energy (for k € [4040, 4055]
and k € [4322, 4360]) till the sun radiation increases or the boiler is activated again.
This event could be prevented by the smoother closure of the thermal screen. A similar
event takes place for k = 4137 where the greenhouse loses energy for the next two hours
(k € [4137, 4163]). In this case, the energy is lost because of the ventilation. However, this
energy loss is triggered by the fact that the relative humidity reaches its upper limit. As
aresult, the P function is activated and the controller permits more aggressive behavior.
In timestamps k = 4180 and k = 4480 the greenhouse starts losing thermal energy again.
This time the reason has to do with the fact that the SPA-NMPC decides to implement
low canopy temperatures during the nighttime. The main problem, in this case, is that
the controller was heating the greenhouse during the last hours of the day and finally,
this energy was wasted. A solution to this problem could be the use of a longer predic-
tion horizon or the introduction of a different mechanism for the classification between
day and night time.
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Figure C.1: Simulated greenhouse actuator inputs and climate/crop variable for two consecutive days. The first day corresponds to a sunny and the second on a cloudy

one. The grey (x, y) plane background represents the nighttime and the white corresponds to the daytime.
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