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Abstract

Superconducting parametric amplifiers have been developed for fast and high
fidelity single shot readout of superconducting qubits. The nonliniarity re-
quired for those amplifiers is either based on various types of Josephson
junctions or high kinetic inductance materials. The Andersen Lab currently
develops a novel type of superconducting parametric amplifiers based on
superconducting-semiconducting hybrid nanowires, which will allow for in-
situ tuning of the amplifier characteristics with a gate voltage.

To prepare for the required performance tests of nanowire-based para-
metric amplifiers, we characterize a commercially available travelling wave
parametric amplifier in terms of 5 figures of merit: gain, bandwidth, satu-
ration power, noise temperature and quantum efficiency. We find a state of
the art amplifier performances, but also detect several hardware problems
in the measurement setup, which must be solved prior to further test. The
method implemented here can be generalized to the characterization of all
types superconducting parametric amplifiers.



Chapter 1

Introduction

One of the most promising routes towards building a quantum computer is
using the architecture of superconducting circuits [1]. Among other imper-
fections in current devices, the readout of superconducting qubits needs to
be improved to reach higher fidelities. Recent developments of superconduct-
ing parametric amplifiers overcame the measurement problem of measuring
weak microwave signals [2]. These amplifiers typically feature sufficient gain,
bandwidth, saturation power and little added noise.

The amplification process relies on the wave mixing of the signal tone
with the pump tone mediated by a nonlinear circuit elements, during which
the energy from the pump is converted into signal photons, thereby provid-
ing gain. Most commonly, Josephson junctions or high kinetic inductance
materials are used as nonlinear circuit element, thus the amplifiers are called
Josephson parametric amplifier (JPA) [2] or kinetic inductance parametric
Amplifier (KIPA) [3, 4].

Although Josephson parametric amplifiers achieve near-quantum limited
noise performance[4], they have many limitations, including narrow band-
width and low saturation power. While the narrow bandwidth originates
from the narrow linewidth of the resonator forming the JPA, the low satura-
tion power is mainly linked to the critical current of the Josephson junction
[5, 2]. These limitations could be problematic in up-scaling of superconduct-
ing circuits, where multiple qubits need to be read out simultaneously [6, 7].
Despite the inherent problem of JPAs, they are still widely used.

The Andersen Lab is currently developing a novel type of kinetic in-
ductance parametric amplifier, which is based on hybrid superconductor-
semiconductor nanowires. The key motivation for the use of nanowires is
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their gate voltage tunability. As apposed to current or flux-driven JPA, mul-
tiple voltage-tuned parametric amplifier can be positioned more closely in
the same circuit due to reduced inter device cross-talk. Moreover, this prop-
erty facilitates the tuning of the parametric amplifier since it alleviates the
need for large currents or fluxes in the vicinity of the JPA [8, 9]. Moreover,
these nanowire parametric amplifier (NPA) are magnetic field compatible
[10]. This compatibility can be important for hybrid systems where circuit
QED is used to read out spin qubits[11].

Because superconducting parametric amplifier works in milli-Kelvin tem-
perature environment and works with very weak microwave signal(only a few
photons), it is not easy to directly detect the input and output power of the
amplifier[12]. However, this problem could be circumvented by installing the
parametric amplifier into a complete qubit readout chain[13, 14, 15, 16, 5,
17], where the gain, bandwidth, saturation power, noise temperature and
quantum efficiency could all be characterized.

In preparation for the performance tests of this novel nanowire parametric
amplifier that is being developed by Lukas Splitthoff in Andersen Lab at
QuTech, we characterize a commercially available travelling wave parametric
amplifier (TWPA), which had already been installed and used in one of
the available measurement stations. In this thesis, we established a general
measurement protocol to test the amplifier performance. We reported the
gain, bandwidth and saturation power of the TWPA. Using a transmon qubit,
we quantified the quantum efficiency of the entire readout chain. We found
hardware problems, which must be solved prior to further tests.

2



Chapter 2

Theory

We need quantum limited amplifier to improve the measurement in circuit
QED. Here we characterize the performance of amplifier by measuring the
quantum measurement efficiency of the system. In this chapter, we pre-
sented and explained the basic figures of a general amplifier, the readout of
Transmon qubit, and the concept of quantum efficiency.

2.1 Superconducting parametric amplifier

Superconducting parametric amplifiers are also referred as a quantum-limited
amplifier, the type of amplifiers whose intrinsic noise reaches the lower limit
given by quantum mechanics. For superconducting parametric amplifier,
the environmental source of noise is reduced to its minimum by working
in a cryogenic environment(kbT ≪ h̄ω) where the thermal fluctuations are
canceled.

2.1.1 Introduction to TWPA

One example of quantum-limited amplifier is Josephson traveling wave para-
metric amplifier (JTWPA). It is widely used to amplify microwave signals[2].
JTWPA is made up of transmission lines with series-connected Josephson
junctions, as shown in Fig.2.1. By injecting a strong pump tone(at frequency
fp), the signal tone(at frequency fs) will be amplified while traveling through
JTWPA.

Fig.2.1(b) describes a general amplifying circuit of JTWPA[2]. In this
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configuration, a microwave signal comes out of a qubit chip, goes into a
cryogenic isolator, then a directional coupler, where an additional pump tone
is introduced. While pump tone and signal tone are traveling through TWPA
together, a portion of the energy of the pump tone is converted into that of
the signal tone, with an additional idler tone generated. When JTWPA is
set into ”four-wave mixing” configuration, the pump tone, signal tone, and
idler tone together follow a frequency relation 2fp = fs + fi.

Fig.2.1(c) describes a typical amplification behavior of JTWPA[15]. JTWPA
could maintain a good power gain over a wide range of signal frequency[15,
12, 6]. Variations in the gain on the order of 2-3dB would most like come
from imperfect impedance matching inside JTWPA. Notice that there exists
a dip in the middle of the gain profile, and a localized peak within that dip.
The localized peak corresponds to the pump frequency, the two dips nearby
correspond to the reflection of either signal or idler tone when measuring
close to the pump frequency[6].

2.1.2 Gain, bandwidth, and saturation power

Here we explain the three basic figures of merit for a general amplifier: gain,
bandwidth and saturation power.

Gain

As explained in Subsec.2.1.1, signal tone is amplified only when it travels
through TWPA with an additional power source pump tone. In other words,
by turning pump tone on/off, we could measure the signal amplified/un-
amplified by TWPA. Therefore, the power gain provided by TWPA can de-
fined as

G =
PAmplified

PNot amplified

, (2.1)

where PAmplified and PNot amplified denotes the power of the amplified/un-
amplified signal. Because superconducting circuits operate at GHz frequen-
cies, standard microwave techniques could be used to measure the signal
amplitudes, i.e., in the units of Voltage. Using unit of decibels, Eq.2.1 is
rewritten as:
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Figure 2.1: Schematic description of JTWPA(Cited from [2]).(a)The JTWPA
is constructed as a 50-Ω transmission line with series Josephson junctions
(b)The qubit measurement configuration, including cryogenic isolators(box
with grey arrows) and a directional coupler(box with two black lines, one
of which is shorted). Arrows with color denote different Microwave tones
(c)Measured gain versus signal frequency, the pump frequency lies within
the transmission dips. The red dots correspond to theoretical values.
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G = 10log10
PAmplified

PNot amplified

= 20log10
|S21|Amplified

|S21|Not amplified

,

(2.2)

where |S21| corresponds to the scattering parameter of the signal tone. It
could be understood as the measured amplitude of the output signal. There-
fore it has a square relation with the power.

Bandwidth

Bandwidth describes the signal frequency range where the signal could be
sufficiently amplified. In this thesis, the bandwidth is defined as the frequency
range at half maximum performance, i.e. the frequency range where G(ωs) >
Gmax − 3dB in decibels units.

Saturation power

Saturation power describes the upper limit of power under which the signal
tone can be effectively amplified. Here the saturation power is defined as the
power threshold under which G(Ps) > Gmax − 1dB in decibels units.

2.1.3 Noise temperature of amplifier and amplifier chain

In order to characterize the intrinsic noise of an amplifier with a bandwidth
B and gain G, noise temperature is introduced and defined as[18]:

Te =
No

GkB
, (2.3)

whereNo is the output noise power that comes only from the intrinsic channel
of the amplifier and k is Boltzmann’s constant. One way to understand
noise temperature is to imagine two equivalent model where a noisy amplifier
connected to noiseless signal source and another noiseless amplifier connected
to noisy signal source, as shown in Fig.2.2. For the noisy signal source, the
noise is the thermal noise generated by a resistor of temperature Te.

For a chain of cascaded amplifiers, the effective noise temperature of the
whole amplifier chain can be expressed as[12]:

Tsys = TN,1 +
TN,2

G1

+
TN,3

G1G2

+ · · · , (2.4)
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Figure 2.2: Defining the equivalent noise temperature of a noisy am-
plifier(Cited from [18]). The two models have the same output load
power.(a)Noisy amplifier. (b)Noiseless amplifier

where n = 1, 2, 3, ... denotes the order of amplifiers starting from the signal
input, T and G denote the noise temperature and gain. As shown in Eq.,
Tsys is dominated by the noise contribution from the first amplifier, whereas
the gain of the first amplifier has the effect of supperssing the noise from the
amplifier of higher order[12].

2.1.4 Representation Microwaves in Heisenberg pic-
ture

Microwaves are electromagnetic fields and therefore considered to be coher-
ent light comprising microwave photons[12]. In Heisenberg picture, the mi-
crowave field could be represented as an operator â with commutation rela-
tion[12, 19, 20, 21]:

[â, â†] = 1 (2.5)
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2.1.5 Quantum-limited amplifier

Core message: For phase-insensitive amplifier, the minimum noise allowed
by quantum mechanics is half quanta.

Quantum mechanics uses operators to describe the process of signal am-
plification. For a phase-insensitive amplifier, the amplified signal could be
expressed as[21, 22]:

âamp =
√
Gâin +

√
G− 1ĥ†, (2.6)

where G is the power gain, âin represents the input field, and ĥ† accounts for
noise added by amplifier. This input-output relation could be cast in another
form:

⟨|âamp|2⟩ = G(A+ ⟨|âin|2⟩). (2.7)

Here ⟨|Ô|2⟩ = ⟨{Ô†, Ô}⟩/2 is the symmetrized fluctuations. According Caves’
theorem, the noise added by amplifier is[21]

A =
(G− 1)

G

(
⟨ĥ†ĥ⟩+ 1

2

)
. (2.8)

In the limit of low amplifier noise ⟨ĥ†ĥ⟩ → 0 and large gain, this added noise
is found to be bounded by A ≥ 1/2, corresponding to half a photon of noise.
Therefore, quantum mechanics throw a lower limit on the noise added by
amplifier during signal amplification, and a amplifier that reaches this limit
is referred as quantum-limited amplifier.

2.1.6 Quantum efficiency of a quantum-limited ampli-
fier

Quantum efficiency η can be used to characterize the performance of a
quantum-limited amplifier, as shown in Fig.2.3. It is defined by modeling the
noisy amplifier with a noiseless amplifier of gain G/η̄ preceded by a beam
splitter of transmittivity η̄. To avoid the violation of commutation relation
in Eq.2.5, vacuum noise v̂ is added in the beam splitter. The input-output
relation of this noiseless amplifier reads âamp =

√
G/η(

√
ηâin +

√
1− ηv̂).

Similar to Eq.2.7, the output noise of this noiseless amplifier could be ex-
pressed as:

⟨|âamp|2⟩ =
G

η

[
(1− η)

1

2
+ η⟨|âin|2⟩

]
. (2.9)
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Figure 2.3: Modeling a noisy amplifier with a noiseless amplifier preceded by
a beam splitter(Cited from [23])

Comparing it to Eq.2.7 and Eq.2.8, we arrive at

η = 1/(2A+ 1) ≤ 1/2 (2.10)

Importantly, the concept of quantum efficiency is not limited to ampli-
fication, and can be applied to the whole chain that consists of all kinds of
electronic components[23].
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2.2 Transmon Qubit

2.2.1 Circuit Hamiltonian for Transmon Qubit

Here, we discuss the circuit Hamiltonian for the transmon qubit coupled
to a resonator to understand its importance for the extraction of quantum
efficiency of qubit readout system. For this coupled system, the Hamiltonian
can be written as [23]:

Ĥ = 4EC (n̂+ n̂r)
2 − EJ cos φ̂+

∑
m

h̄ωmâ
†
mâm, (2.11)

where n̂r =
∑

m n̂m with n̂m = (Cg/Cm) Q̂m/2e is the contribution to the
charge bias due to the m-th resonator mode. Cg is the gate capacitance and
Cm is the associated resonator mode capacitance.

We restrict the Hamiltonian by assuming that the transmon frequency is
much closer to the fundamental resonator modes, |ω0 − ωq| ≪ |ωm − ωq| for
m ≥ 1, we truncate the sum over m to a single term:

Ĥ = 4EC (n̂+ n̂r)
2 − EJ cos φ̂+ h̄ωrâ

†â (2.12)

In this single-mode approximation, the transmon-resonator system is equiv-
alent to a transmon capacitively coupled to an LC resonator, as in Fig. 2.4.

Figure 2.4: A lumped-element LC circuit representing a transmon capaci-
tively coupled to an LC oscillator(Cited from [23]).

Now, we rewrite the charge and flux variables φ̂ and n̂ for the transmon
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in terms of ladder operators b̂† and b̂:

φ̂ =

(
2EC

EJ

)1/4 (
b̂† + b̂

)
(2.13)

n̂ =
i

2

(
EJ

2EC

)1/4 (
b̂† − b̂

)
(2.14)

Thus, we can rewrite the transmon-resonator Hamiltonian as:

Ĥ ≈ h̄ωrâ
†â+ h̄ωq b̂

†b̂− EC

2
b̂†b̂†b̂b̂− h̄g

(
b̂† − b̂

) (
â† − â

)
, (2.15)

where ωr is the frequency of the resonator and

g = ωr
Cg

CΣ

(
EJ

2EC

)1/4√
πZr

RK

, (2.16)

where Zr is the characteristic impedance of the resonator mode and RK =
h/e2 ∼ 25.8kΩ is the resistance quantum.

In practice, the coupling between transmon and resonator is usually weak
in comparison to the qubit transition energy, with |g| ≪ ωr, ωq. This allows
us to use a rotating-wave approximation to further simplifying the original
Hamiltonian into:

Ĥ ≈ h̄ωrâ
†â+ h̄ωq b̂

†b̂− EC

2
b̂†b̂†b̂b̂+ h̄g

(
b̂†â+ b̂â†

)
. (2.17)

2.2.2 Transmon Circuit in Dispersive Regime

For quantum information processing, it is practical to work in the dispersive
regime where the qubit-resonator detuning is large with respect to the cou-
pling strength |g/∆| ≪ 1, where ∆ = ωq−ωr is the qubit-resonator detuning
[23]. In this regime, qubit and resonator are only weakly entangled and a
simplified model can be obtained from second-order perturbation theory. Us-
ing Schrieffer-Wolff perturbation theory [23] and truncating Eq. (2.17) to the
first two levels of the transmon, we obtain:

Ĥdisp ≈ h̄ω′
râ

†â+
h̄ω′

q

2
σ̂z + h̄χâ†âσ̂z, (2.18)
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with the dressed frequencies and the qubit-state-dependent dispersive cavity
shift:

ω′
r = ωr −

g2

∆− EC/h̄
(2.19)

ω′
q = ωq +

g2

∆
(2.20)

χ = − g2EC/h̄

∆(∆− EC/h̄)
(2.21)

It is noteworthy that this approximation is valid only when the average res-
onator photon number is way below the critical value: n̄ ≪ (∆/2g)2 = ncrit.
In practice this criteria is usually written as n̄/ncrit < 0.1 [23]. If we set
∆ = 2π × 2GHz and g = 2π × 200MHz, the critical photon value should
equal to 25, which means that the average photon number should be below
2.5.

It is instructive to rewrite Eq. (2.21) as to emphasise the frequency shifts
that appear in the experiment:

Ĥdisp ≈ h̄ωrâ
†â+

h̄

2

[
ωq + 2χ

(
â†â+

1

2

)]
σ̂z. (2.22)

The cavity frequency is pulled by this interaction with the qubit and reads
ωr ± χ depending on the qubit state. In the dispersive regime, the g-e tran-
sition frequency of the qubit in the absence of resonator photons is Lamb
shifted and takes the value ωq + χ. An increase in the photon population
leads to a qubit-frequency shift, so called ac start shift, by an average value
of ∆ωq = 2χ

〈
â†â

〉
. Given the dependence of the qubit frequency on the

measurement power, knowing the value of χ will allow us to infer the intra-
cavity photon number as a function of input power at the cavity frequency
[24].

2.2.3 Resonator spectroscopy and qubit spectroscopy

Core message: Both resonator spectroscopy and qubit spectroscopy are re-
peated with different powers until the resonance is found.

Spectroscopy generally refers to the measurement of intensity as a func-
tion of frequency and is commonly used in cQED experiments to determine
resonance frequencies of resonators and qubits[1].

12



To begin with, a single-tone spectroscopy is performed to identify the
frequency of the readout resonator. In the case of several λ/4 CPW(co-
planar waveguide) resonators capacitively coupled to a common microwave
feedline, the measured scattering parameter S21 of each resonator in response
to a readout tone at ω = 2πf is described by a Lorentzian line shape[1, 25]:

S21 = A

[
1 + α

ω − ωr

ωr

] [
1− |κc|/κ

1 + 2iω−ωr

κ

]
ei(τω+ϕ0), (2.23)

where A is the transmission amplitude away from resonance, ωr is the qubit-
state-dependent resonance frequency of the readout mode, α allows a linear
variation in the overall transmission chain in the narrow frequency range
around any given resonance, τ and ϕ0 relate to propagation delays to and
from the sample, κc and κ are frequency independent coupling rate deter-
mined by system configuration.

This model also includes a number of non-ideal elements, including both
inductive and capacitive coupling, and impedance mismatch in the feed-
line[25]. As seen from Fig.2.5(b), for a hanger configuration, the resonance
corresponds to a dip in the measured |S21|, and a clear asymmetry in the line
shape is also observed, which is due to the coupling line mismatch[26].

It is important to note that this one-tone spectroscopy experiment takes
place before the optimization of the various pulses and amplification config-
urations. Thus, it can be challenging to obtain a clean signal at this stage[1].
A useful technique to address this issue is to repeatedly perform one-tone
spectroscopy at different power level. In the high-power limit, the resonator
could be driven to a ”bright” state regardless the state of the qubit[27], where
the bare resonance frequency of the readout mode ωR could be located[1].
On the other hand, the resonance will undergo a clear shift as the power is
progressively reduced to the few photon limit, where a qubit is dispersively
coupled to the resonator[1]. This power-dependent frequency shift is the
Lamb shift Λχ = g2/∆. In this sense, this power sweep provides a convenient
test of whether the resonator is coupled to a qubit mode[1].

Based on this power-versus-frequency sweep, we can now choose an ap-
propriate readout power for the subsequent characterization experiments[1].
It should be low enough that the qubit is dispersively coupled to the res-
onator. Meanwhile, it should be high enough to produce a sufficiently high
signal for detection.

After targeting the resonator frequency, qubit frequency could also be
targeted using a technique referred as ”two-tone” continuous-wave spec-
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Figure 2.5: Typical measured response of a CPW resonator around its reso-
nance frequency(Cited from [25]). (a) Trajectory of S21 in the complex plane
with a fit. (b) Normalized |S21| calculated from (a)

troscopy[1]. In this protocol, a constant drive tone is applied on resonance
with the resonant ωr while a second drive ωs with variable frequency is em-
ployed to probe the state of the qubit. While the second tone is near reso-
nance with the qubit, it will induce a state transition of the qubit, which will
in turn change the frequency of the resonator through dispersive coupling.
As a result, the response of the resonator to the constant drive tone will be
reverted.

2.2.4 Nanowire transmon and the gate tunability

Core message: Nanowire Transmon’s Josephson junction is made of nanowire
with a gate beneath it. Tuning the gate could change Transmon’s qubit
frequency.

Core message2: Performing a resonator spectroscopy in the low-power
regime while tuning the gate could help us find the sweet spot for qubit. The
qubit is at the sweet spot when resonator frequency is at a maximum.

Nanowire-transmon is a transmon whose Josephson junction is made of
a semiconductor nanowire with an controlling electrostatic gate. In con-
trast to a flux-tunable Transmon, e.g., SQUID qubit[28], Josephson energy
of nanowire-transmon is controlled the electrostatic gate. As a result, the
qubit frequency could be tuned by tuning the biasing voltage of the gate[29].

While it is convenient to tune qubit frequency through gate biasing, the
qubit is could be subject to charge dispersion, as shown in Fig.2.6.
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Figure 2.6: Evolution of the qubit frequency and charge dispersion as a
function of gate voltage Vj(Cited from [30]) (a) Qubit frequency versus offset
charge tuned by Vj (b) Extracted f01(markers) and δf01 (shading and marker
size versus Vj). Open markers indicate the positions of (a)

2.2.5 Rabi experiment and X gate

In Rabi experiments, qubit state oscillates between |0⟩ and |1⟩ as a function
of the external ”impulse”, i.e., the time integral of the applied pulse am-
plitude[1]. Rabi experiments could done by applying a pulse at the qubit
frequency with a fixed duration and varying its amplitude, also referred as
”Amplitude Rabi”. From the resulting oscillations, the amplitude required
to flip qubit state between |0⟩ and |1⟩ could be determined[1]. The resulting
pulse is referred as pi pulse.

To be more general, for a coherent drive of time-dependent amplitude
ϵ(t), frequency ωd and phase ϕd on a transmon could be modeled by[23]:

Ĥ =
h̄δq
2

σ̂z + h̄ϵ(t)[cos(ϕd)σ̂x + sin(ϕd)σ̂y], (2.24)

where δq = ωq −ωd is the detuning between the qubit and the drive frequen-
cies, σ̂z denotes the truncated two-level transmon qubit system, σ̂x and σ̂y

represent the π rotation along X -axis and Y -axis in the Bloch sphere. As
described in the Hamiltonian, the phase of the drive ϕd controls the axis of
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rotation. In other words, any axis of rotation in the X − Y plane could be
achieved by tuning ϕd.

2.2.6 Relaxation time and dephasing time

Relaxation time T1 and dephasing time T2 describes the coherence properties
of the qubit. Here we introduce the experiment used to measure T1 and T2.

To measure the relaxation time T1, qubit is repeatedly prepared in excited
state and then measured the state after a variable interval time t. This results
in an exponentially decaying signal, given by[1]

S(t) = A× e−t/T1 +B, (2.25)

where S(t) is the signal as a function of wait time t, A and B are scaling and
offset factors.

The Ramsey dephasing time T2 can be obtained by initializing the qubit
in |0⟩, applying a pi/2 pulse, waiting for a time t, applying a final pi/2 pulse
and then measuring the qubit. This will produce an (often exponentially)
decaying oscillation described by[1]:

S(t) = Ae−(t/T2)n × [cos(ωt+ ϕ) + C] +B, (2.26)

where A, B,and C are scaling and offset factors, n describes the profile of
the exponential decay, and ω the angular frequency of the oscillation.

The profile of the decay n in Eq.2.26 provides some indication of the lim-
iting mechanism of T2. If T2 is limited by T1 or another source of incoherent
noise, n ≈ 1. If there is a coherent noise process, such as a slow drift in the
qubit frequency, n will be larger than 1[1].

The oscillation frequency ω corresponds to the frequency detuning be-
tween the pi/2 pulse and the actual qubit frequency. In practice this fre-
quency can be increased by tuning the phase of the second pi/2 pulse (arti-
ficial detuning)[1].

The Ramsey time contains information on both energy relaxation and
pure dephasing(Tϕ) in the qubit, i.e., 1/T2 = 1/(2T1) + 1/Tϕ[1]. It quantifies
the effective decoherence timescales of the qubit.

2.2.7 Fine coherence experiment

In order to measure qubit’s coherence after certain amount of dephasing, an
experiment similar to T2 measurement could be applied. As shown in Fig.2.7,
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Figure 2.7: Coherence measurement. The second pi/2 pulse has a variable
phase φ

Figure 2.8: Bloch-sphere visualization of qubit state and the rotation of
which. The green arrow denotes the original qubit state. The brown arrow
denotes the rotation vector. The grey dots denote the possible final state for
different rotation axis. We see that the projection of the final state would
have a maximum value(blue arrow) when the rotation axis is perpendicular
to initial arrow.

by sweeping the phase of the second pi/2 pulse of the Ramsey sequence, the
remaining of the coherence of qubit after a fixed amount of dephasing time
could be measured.

To understand this process, consider a random qubit state in the X-Y
plane of the Bloch sphere. By sweeping the rotation axis of the second π/2
pulse and then projecting the state into computational basis, an oscillation
of expected value could be observed. The amplitude of this oscillation cor-
responds to the coherence of qubit. According to Eq.2.24, the rotation axis
orientation in the Bloch sphere could be changed by tuning the phase of the
second drive pulse.
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2.2.8 Source of noise

Introduced here were four kinds of stochastic noise. They arise from random
fluctuations of parameters that are coupled to the qubit[12].

Charge noise

Charge noise arises from charged fluctuators present in the defects or charge
traps that reside in solid-state devices[12]. It is usually modeled as an en-
semble of fluctuating two-level systems or as bulk dielectric loss[31, 32].

In the case of a transmon qubit, this noise is mainly responsible energy
relaxation(T1). However, if the EJ/EC ratio is not sufficiently large(smaller
than 60), the qubit frequency itself will also be sensitive to broadband charge
fluctuations. In this case, charge noise also causes pure dephasing(Tϕ)[12].
This effect could be modeled by the transmon Hamiltonian:

Ĥ = 4EC(n̂− ng)
2 − EJ cos(φ̂), (2.27)

where n̂ = Q̂/2e is the charge number operator, ng is the possible offset
charge that describes charge noise, ϕ is the phase operator, EC and EJ are
the charging energy and Josephson energy.

From this Hamiltonian we see that the energy spectrum of transmon
depends on the offset charge ng. In fact, this dependence decrease with
regards to the increase of ratio EJ/EC , as shown in Fig.2.9.

Photon number fluctuations

In the circuit QED architecture, resonator photon number fluctuation is an-
other major decoherence source147[12, 24]. Photon-number fluctuations of
the residual microwave fields in the cavity could also lead to a qubit frequency
shift ∆Stark = 2ηχn̄, where n̄ is the average photon number inside the cavity,
and η is a scaling coefficient decided by χ and resonator decay rate κ.

Quasiparticles

Another important noise source for superconducting devices are Quasipar-
ticles, i.e., unpaired electrons[12]. They are naturally excited due to ther-
modynamics, and the quasiparticle density in equilibrium superconductors
should be exponentially suppressed as temperature decreases. However, this
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Figure 2.9: Frequency difference ωj−ω0 for the first three energy levels of the
transmon Hamiltonian obtained from numerical diagonalization of Eq.2.27.
Qubit frequency was set to 5GHz.(Cited from [23])

is not the case below about 150 mK, where the quasiparticle population is
much higher than expected due to unknown reasons[12].

The tunneling of quasiparticles through a qubit junction may lead to both
T1 relaxation and pure dephasing Tϕ, depending on the type of qubit, the
bias point, and the junction through which the tunneling event occurs [12,
33, 34]

2.3 Readout of superconducting qubits

2.3.1 Microwave detection and qubit state

In the dispersive regime, the transmon-resonator Hamiltonian is approxi-
mated by:

Ĥdisp ≈ h̄ (ωr + χσ̂z) â
†â+

h̄ωq

2
σ̂z (2.28)

As seen in the Hamiltonian, the resonator frequency becomes qubit-state
dependent in the dispersive regime. As a result, the internal field α (t) of the
resonator, which is usually referred as the intra-cavity field, becomes qubit
state dependent.

In fact, the internal field of the resonator is determined by the qubit state
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and the pulse that was driving the resonator:

ȧ|0⟩/|1⟩ = −iϵf(t)− i (δ ± χ)α(t)− κ

2
α(t), (2.29)

where ϵf(t) is the envelope of the pulse, and ∆ the detuning of it from the
resonator frequency. In this situation, driving the cavity results in a qubit-
state dependent coherent state |α0/1. In addition, if qubit is in a superposition
state, the system would evolve to an entangled qubit-resonator state of the
form[23]:

c0|0, α0⟩+ c1|1, α1⟩. (2.30)

In conclusion, we could read out the qubit state by inputting a readout
pulse and then measuring the scattered output, which will be denoted as the
signal for further discussion.

2.3.2 Qubit measurement chain

Core message: A typical chain is made up of quantum-limited amplifier,
HEMT, IQ mixer.

In the architecture of circuit QED, superconducting qubit state is mea-
sured by measuring scattering of a microwave probe tone off an oscillator
coupled to the qubit[23]. Because of the small energy of microwave pho-
tons with respect to the room temperature thermal radiation, measurements
in circuit QED rely on amplification of weak microwave signals followed by
detection of field quadratures using heterodyne detection[23].

A typical measurement chain in circuit QED is illustrated in Figure
2.10[23]. The signal (RF) from a microwave source is applied to the in-
put port of the resonator. Then the resonator’s output field is first amplified
by a quantum-limited amplifier, a amplifier whose internal noise reaches the
limit allowed by quantum mechanics, and then by an HEMT amplifier. Af-
ter amplification, the amplified microwave signal is down-converted into two
lower Intermediate-frequency(IF) signals. These two IF signals are referred
as the two quadrature components the original signal. Therefore they are
denoted as I(In-phase) signal and Q(Quadrature) signal. The two signals are
then digitized and processed by an analog-to-digital converter (ADC) and
field-programmable gate array (FPGA).
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Figure 2.10: Schematic representation of the microwave measurement chain
for field detection in circuit QED, with the resonator depicted as a Fabry-
Perot cavity(Cited from [23]). Here the signal of interest is denoted as âamp,

whereas b̂in denotes the input field moving towards the transmon chip in the
opposite direction to the signal âamp
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2.3.3 Quantum efficiency of measurement chain

In a circuit QED measurement, the maximum information acquired, given
by the SNR, is equal to the amount of qubit information destroyed, given
by the total dephasing γφ =

∫ τ

0
Γφ(t)dt (up to a numerical factor)[1]. Here

Γφ is referred to as the measurement-induced dephasing rate, and τ denotes
the total measurement time. In practice, signal suffers from degradation due
to either photon loss or added noise as it travels to the acquisition system
at room temperature. The resulting SNR will therefore be lower compared
to its theoretical maximum. This nonideality is quantified by the quantum
efficiency η given by[1]

η =
SNR2

4γφ
. (2.31)

On the other hand, quantum efficiency is related with the noise temper-
ature by[12, 15]

η =
h̄ωs

kbTsys

, (2.32)

where ωr denotes the frequency of the signal, kb the Boltzmann’s constant,
and Tsys the noise temperature of the whole readout chain.

As discussed in Eq.2.1.3, implementing a quantum-limited amplifier as
the first amplifier of the amplifier chain can reduce the noise temperature
of the system and hence increase the quantum efficiency. For state-of-art
circuit QED setups, the quantum efficiency is reported to be between 0.1
and 0.6[35, 36, 37, 38, 39].

Notice that the definition of quantum efficiency of the whole measure-
ment chain is consistent with that of a single amplifier, as mentioned in
Subsec.2.1.6. In fact, the quantum efficiency of the measurement chain could
be decomposed into the product of the quantum efficiency of every individual
components[14, 15].

2.3.4 IQ detection

Core message: The amplified signal is down-converted and decomposed into
I signal and Q signal.

A readout event commences with a short microwave tone directed to the
resonator at the resonator probe frequency ωRO. After interacting with the
resonator, the scattered microwave signal would carry the resonator signa-
ture, i.e. the qubit-state-dependent amplitude and phase. Therefore, the
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goal is to best distinguish the classical resonator signatures corresponding to
our qubit states[12].

To gain intuition, we could use phasor ARO exp(jθRO) ≡ ARO ̸ θRO to
specify a harmonic signal s(t) at a known frequency ωRO[12]. Here ARO and
θRO are respectively the signal amplitude and phase that could be used to
read out the qubit states. To perform qubit readout, the goal is to measure
the ”in-phase” component I and a ”quadrature” component Q of the complex
number represented by the phasor,

AROe
jθRO ≡ I + jQ, (2.33)

to determine ARO and θRO (or their scaled and offset versions)[12].
One direct means to extract I and Q is to perform a heterodyne measure-

ment using an analog IQ mixer. As illustrated in Figure 2.11(a), the local
oscillator and readout tone are detuned such that ωIF = |ωRO − ωLO| > 0,
usually in the range of few tens to a few hundreds of MHz[23]. They are then
mixed in the IQ mixer, yielding IIF (t) quadrature and QIF (t) quadrature at
a down-converted intermediate frequency ωIF . The intermediate frequency
is now low enough such that IIF (t) and QIF (t) could be digitized using com-
monly available analog-to-digital converters (ADCs)[12].

As shown in Figure 2.11(b), pulsing the resonator is necessarily accompa-
nied by a ring-up time, which is related to the quality factor of the resonator.
This results in an increase and decrease of the amplitude of the field that
passes through ADCs at the beginning and end of the measurement. The
field at these two stage is expected to reveal low signal while having the same
noise as the middle plateau due to the internal dynamics of the readout res-
onator.[1, 14, 40]. Therefore, to avoid sampling the resonator transient, some
readout delay (τrd) corresponding to the resonator linewidth will be added,
and IQ quadratures are sampled for a time window of length τs, where both
quadratures are stable[12].

Figure 2.11(c) visualizes the workflow of how the sampled IQ quadratures
are together demodulated into a single point in the complex I −Q plane. In
the first step, sampled IQ quadratures IIF [n] and QIF [n] are assembled into
a single function zIF :

zIF [n] = IIF [n] + jQIF [n] ≡ VI [n] + jVQ[n], (2.34)

where the digital in-phase and quadrature signals are represented here as the
voltages VI [n] and VQ[n] sampled by the ADC, as shown in Figure 2.11(b).
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Figure 2.11: Schematic of the heterodyne detection technique(Cited from
[12]).

As seen in the first step of the demodulation workflow, zIF [n] is a time series
that is rotating around the origin with an oscillatory exponential ejΩIFn,
where ΩIF = ωIF∆t is the digital frequency, and ∆t is the sampling period.

In the second step, zIF is point-by-point multiplied by the complex con-
jugate of the oscillatory exponential:

z[n] = zIF [n]. ∗ e−jΩIFn. (2.35)

For every sample point of zIF , this multiplication will result in a phasor
denoted in a point in the I −Q plane. As a result we obtained an assemble
of phasor with a small amount of deviation.

For the third step, this assemble of phasor is averaged into one single
phasor z̄, which could be used to find ARO and θRO of interest. For the
fourth step, the “single-shot measurement” described in the previous three is
repeated a large number of times to obtain an ensemble average ⟨z̄⟩. Mean-
while, the statics of single-shot measurement result z̄ can be used to analyze
the readout performance of the system, i.e. single-shot readout fidelity and
SNR.

2.3.5 Q function and qubit state signal distribution

Here we aimed at explaining why qubit sate signal distribution is expected
to follow a Gaussian distribution.
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In the context of field detection, it is particularly useful to represent the
quantum state of the electromagnetic field using phase-space representations.
One of such is the Husimi-Q representation:

Qρ(α) =
1

π
⟨α|ρ|α⟩, (2.36)

where ρ is the state of the electromagnetic field and |α⟩ is one of the eigenstate
of the intra-cavity field â in the Heisenberg picture. This function represents
the probability distribution of finding ρ in the coherent state |α⟩. Here α is a
complex number with α = x+jp, where x and p defined as the dimensionless
position and momentum coordinate of the phase space.

If the cavity is in a coherent state |β⟩, then the Q-function takes the
form[23]:

Q|β⟩(α) = W|β⟩(α) ∗W|0⟩(α), (2.37)

where W|β⟩(α) =
2
π
e−2|α−β|2 is a Gaussian centered at β in phase space and

W|0⟩(α) is also a Gaussian that describes quantum fluctuation of vacuum
state.

According to Caves et al.[41], the probability distributions for the simul-
taneous measurement of two orthogonal quadratures in heterodyne detection
is given by the marginals of the Husimi-Q distribution. In other words, the
probability distribution for the ’single-shot measurement’ z̄ described above
is expected to be characterized by the marginal of the Q-function of the
intra-cavity field. If the resonator is driven by a coherent readout pulse, then
z̄ is expected to be Gaussian distributed in the I−Q plane due to both clas-
sical and quantum noise[23, 12, 1], where the quantum noise part is shown
in Eq.2.37.

2.3.6 State discrimination, square weights and optimal
weights

Core message: To discriminate qubit state, I signal and Q signal are inte-
grated together. During the integration, two kinds of weights were imple-
mented.

Subsection 2.3.5 focuses on measuring the steady-state heterodyne signal
by adding a readout delay τrd as shown in Figure2.11(b). Meanwhile, it
described the process of demodulation as combining I quadrature and Q
quadrature signal into a complex complex analytic function, then rotating
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and averaging such function. While it could be easy to understanding and
intuitively straight forward to perform such measurement, it undermines the
potential to perform a fast qubit readout.

In practice, for the sake of fast qubit state discrimination, the I/Q quadra-
tures are each multiplied with a weight function and then together integrated
into a single value over the measurement window of duration T:

Vint,|i⟩ =

∫ T

0

ωIVI,|i⟩ + ωQVQ,|i⟩dt, (2.38)

where this single integrated voltage value is used to discriminate qubit state
directly. Therefore it is denoted with subscript |i⟩ that corresponds to the
qubit states |0⟩ and |1⟩. Here the weight function is chosen to increase the
difference between ground state signal and excited state signal ⟨|VI,|0⟩⟩ −
⟨VI,|1⟩⟩|.

It has been shown that the optimal weight function is given by the differ-
ence between the average signals corresponding to the two-qubit states[42,
43, 14]:

ωI/Q = ⟨VI/Q,|1⟩ − VI/Q,|0⟩⟩. (2.39)

As an alternative to optimal weight functions, often constant weight(or
square weight) functions are used[14]:

ωI = cosφω, ωQ = sinφω. (2.40)

This weight function could be imagined as rotating the signal distribution
⟨z̄|0⟩⟩ and ⟨z̄|1⟩⟩ in the I − Q plane and use only the I component for state
discrimination. Therefore, the demodulation phase φω is usually chosen as to
maximize the difference of the I quadrature: ⟨|VI,|0⟩⟩ − ⟨VI,|1⟩⟩|. Then there
is no information on the qubit state in the Q quadrature. Reflecting this,
using only the I quadrature for discrimination could prevent the noise in Q
quadrature from being integrated[23].

2.3.7 SNR and fidelity

Core message: From the integrated value distribution we get to extract the
SNR and fidelity, where SNR has the strict relation if the signal distribution
is real Gaussian.
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As explained in subsection 2.3.4, single-shot measurement result z̄|0⟩/|1⟩
follows a Gaussian distribution in the I-Q plane, and the center of the Gaus-
sian depends on the state of the qubit[35]. When the separation between the
Gaussian centers(’signal’) is larger than their width(”noise”), the qubit state
could be measured with sufficient confidence. Therefore, SNR is defined to
characterize the readout performance:

SNR2 ≡
|⟨Vint⟩|0⟩ − ⟨Vint⟩|1⟩|2

⟨N2
int⟩|0⟩ + ⟨N2

int⟩|1⟩
. (2.41)

Here ⟨Vint⟩σ is the average integrated heterodyne signal given that the qubit
is in state σ, and Nint = Vint − ⟨Vint⟩ the noise operator which takes into
account the system-added noise as well as the intrinsic vacuum noise of the
quantum states[23].

Another figure of merit used to characterize the performance of a readout
configuration is the measurement fidelity, which is defined by the measure-
ment error[44, 43]:

Fm = 1− [P (g|e) + P (e|g)], (2.42)

where g/e represents the
ground/excited state, and P (σ′|σ) denotes the empirical conditional proba-
bility of measuring state σ′ when qubit was originally prepared in state σ.
When single-shot measurement results strictly follow a Gaussian distribution,
the measurement fidelity can be related with SNR by

Fm = 1− erfc(SNR), (2.43)

where erfc is the complementary error function[44].
However, in practice, qubit relaxation and higher-order effects omitted in

the dispersive Hamiltonian2.18 can lead to distortion of the coherent states
and therefore to non-Gaussian marginals[23, 44]. Therefore, by measuring fi-
delity and SNR independently and comparing them using Eq.2.43, this equa-
tion could be used to check if the qubit stays in the dispersive regime.

2.3.8 Projection error and double-Gaussian model

Core message: One reason the distribution is non-Gaussian is due to projec-
tion error. In this case, a double-Gaussian is needed.

In practice, unwanted state transitions will happen during the process
of measurement. Those transitions could be due to natural relaxation time
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of the qubit, as well as induced state transitions due to a strong drive[45,
46, 47]. One direct result of those unwanted state transitions is that single-
shot measurement result z̄|0⟩/|1⟩ no longer obey Gaussian distribution but a
double-Gaussian distribution[43, 14].

2.3.9 Weak measurement

Core message: Weak measurement regime is when SNR¡1, usually due to
short pulse length and strength.

Generally, while performing a qubit measurement, we assume that the
quantum state is projected into either computational basis |0⟩ or |1⟩ and the
projected state could be readout with sufficient confidence(SNR > 1). This
type of measurement is referred as a ”strong measurement”[12]. As opposed
to a strong measurement, a weak measurement refers to those measurements
whose SNR is smaller than one, which means that only partial information
of the quantum state is revealed to the observer.

A weak measurement corresponds to a short readout pulse length with
weak pulse amplitude. In the weak measurement regime, an increase in
the pulse length would result in a square root increase in SNR[22], and an
increase in the pulse strength would result in a linear increase in SNR[14].

2.3.10 Quantum efficiency and noise temperature

Core message: Bultink’s method could extract quantum efficiency, the quan-
tum efficiency is related with noise temperature, the noise temperature could
be measured using Macklin’s method.

By measuring qubit in the weak measurement regime, quantum measure-
ment efficiency of the system could be extracted using a three-step method
proposed by Bultink et al.[14]. In this method, a readout pulse sequence
categorized in the weak measurement regime is implemented. While increas-
ing the readout amplitude ϵ, the resulted SNR scales linearly, SNR = aϵ,
and the remaining coherence of qubit state would exhibit a Gaussian decay,
|ρ01(ϵ)| = A · exp (− ϵ2

2σ2
m
). Here |ρ01| is the off-diagonal component of the

density matrix of the qubit state. Then quantum efficiency of the system
could be characterized as:

η =
SNR2

4γφ
=

σ2
ma

2

2
. (2.44)
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Two conditions are required for the second equality above: 1) opti-
mal integration functions are used to optimally extract information from
both quadratures, and 2) the intra-resonator field vanishes at the begin-
ning and end; i.e., photons should be depleted from the resonator post-
measurement[14]. This can either be done by simply waiting long enough
or by using active photon depletion[14].

After the extraction of quantum efficiency, the noise temperature of the
system could be calculated by[15]:

η =
h̄ωs

kbTsys

, (2.45)

whereNo is the output noise power that comes only from the intrinsic channel
of the amplifier and k is Boltzmann’s constant. On the other hand, the noise
temperature is a quantity that could be independently characterized using
a sensitive thermometer[12], such as a shot-noise tunnel junction[48] or a
qubit[15], as a sensor.
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Chapter 3

TWPA characterization

This chapter focuses on the experiment results and the relevant discussion.
It could be chunked into three sections: Basic TWPA characterization, trans-
mon characterization and Quantum efficiency characterization of the whole
readout chain. In the basic TWPA characterization, we prepared our TWPA
in a suitable working configuration. By measuring the gain, bandwidth and
saturation we proved that our TWPA was suitable for the further qubit
experiment. The transmon characterization served as a preparation for the
third section, the extraction of quantum efficiency of the qubit readout chain.
In the transmon characterization, we performed a series of basics characteri-
zation experiments about transmon. Finally, in the quantum efficiency char-
acterization, we characterized the performance of the qubit readout chain by
extracting the quantum efficiency of it.

The measurement circuit is shown in Fig.3.1. Here we used VNA to gen-
erate and analyze continuous microwave in all basic TWPA characterization
experiment and partially transmon measurements. We also used OPX, a
versatile qubit measurement machine, to generate and analyze microwave
pulses.

3.1 Basic TWPA characterization

Using VNA(Vector Network Analyzer) to generate and analyse continuous
microwave, we characterized the basic properties of amplifier. The workflow
is illustrated as Fig.3.2. Firstly, we chose a signal tone with power and
frequency close to the readout resonator of the transmon qubit, that we will
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Figure 3.1: Diagram of measurement configuration
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Figure 3.2: Workflow of basic TWPA characterization. The flow is chunked
by 4 steps.

study later. Secondly, we find a the pump tone for maximal gain. We call
this setting the working point for a given signal tone. Thirdly, we sweep the
signal frequency to find TWPA’s bandwidth. Fourthly, we sweep the signal
power to find TWPA’s saturation power.
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Figure 3.3: Extended frequency sweep. (a) A full frequency sweep ranging
from 1GHz to 12GHz. Here a transmittivity plateau was observed, which is
due to the bandwidth of the whole readout chain. (b) A zoom-in inset at a
frequency window near resonance with local resonator. Four resonance dips
were observed. They corresponds to 4 resonators respectively. These four
resonators are labelled with R1, R2, R3 and R4 respectively. Right after
every resonance dip a transmittivity peak was also observed. This is due
to impedance mismatch. (c) Bonding diagram of experiment chip, where 4
resonator are capacitively coupled to the common feedline. The resonance
dips of these four resonators are shown in graph (b).

3.1.1 Choice of signal parameters

Before characterizing the TWPA, we need to find out the signal frequency
window we are going to work with. We performed a frequency sweep rang-
ing from 1GHz to 12GHz to find the resonance frequency, shown in Fig.3.3
We observed a plateau in the magnitude of the scattering parameter. This
is due to the bandwidth of the whole readout chain, e.g. HEMT, room-
temperature amplifiers and IQ mixer. On this plateau 4 significant dips were
also observed. They correspond to the resonance frequencies of 4 resonators
that are connected to the feedline.

After targeting the signal frequency window for resonator frequencies,
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Figure 3.4: Single-tone spectroscopy for all four resonators, where the dark
regime represents a resonance dip. From (a) to (d), the four graphs corre-
spond to resonator R1, R2, R3 and R4 respectively, which are also labeled in
figure3.3 as well. Here the pulse is denoted as ”readout tone”, that’s because
the frequency and power is similar to that of the pulse for qubit readout.

we proceeded to find a suitable signal power. Therefore, we performed a 2D
sweep of S21 versus readout frequency and readout power. In the 2D map, the
dark regime corresponds to the resonator resonance dip. Here we observed
a frequency shift of resonator when readout power is above -15dBm. This
indicates that the Jaynes-Cummings interaction between qubit and resonator
is breaking down, and that this coupling system do not stay at dispersive
region any more[23, 1].

As shown in Fig.3.4, for resonator R1, R2 and R4, we observed a frequency
shift when readout power reached -10dBm. We also observed the measured
resonance dip stayed stable for readout power smaller than -25dBm. While
looking for a maximal signal power for the convenience of signal detection
without driving the qubit-resonator off their dispersive coupling region, we
set the signal tone with power -25dBm for further experiments.

We choose a signal power of -25dBm since this will correspond approxi-
mately to the drive strength of the readout resonator in the dispersive qubit
readout.
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In conclusion, we chose a signal tone with -25dBm power and 6.805GHz
frequency(on resonance with R2).

3.1.2 Gain and working point of TWPA

In order to amplify a signal tone, TWPA need an additional pump tone
to provide power, whose frequency and power are referred as the ”working
point” to TWPA. When the pump is turned on/off, we will measure an
amplified/un-amplified signal. Therefore, here the gain provided by TWPA
is described as the ratio of the signal when the TWPA is on over when the
TWPA is off.

To begin with, we performed a wide range 1D sweep of both pump fre-
quency and pump power, as shown in Fig.3.5. This allows us to narrow down
the parameter window to execute a finer 2D sweep. For the chosen signal
tone of (6.805GHz, -25dBm), we observed that TWPA could provide 20dB
gain and above for pump power ranging from -20dBm to -12dBm(Notice that
this is the power of signal tone when just leaving the arbitrary wave gener-
ator. Due to the attenuation, the signal tone that went into the TWPA is
approximately 72dB weaker than its power source, and the pump tone 28dB
weaker than its power source.) and for pump frequency ranging from 7.6GHz
to 8GHz.

After wide range single-parameter sweep, we proceeded to perform a fine
2D sweep. From the 2D sweep we selected the working point as pump fre-
quency 7.955GHz and pump power -15.5dBm.
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Figure 3.5: Extended single parameter sweep of pump tone (a) Measured
|S21| with pump turned on and off versus pump frequency. (b) Measured
|S21| when TWPA turned on and off versus pump power. (c) Gain provided
by TWPA versus pump frequency. (d) Gain provided by TWPA versus pump
power.
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Figure 3.6: Coarse sweep of TWPA’s working regime. We find optimal per-
formance at a working point of 7.955GHz frequency and -15.5dBm power.

3.1.3 Bandwidth of TWPA

Bandwidth represent the frequency window of signal in which it can be ef-
fectively amplified by TWPA. Since the working point was manually chosen,
here we slightly explored TWPA’s general bandwidth performance around
the chosen working point.

Firstly, we performed a 2D sweep of gain versus signal frequency and
pump frequency, as shown in Fig.3.7(a). From the 2D sweep, two data sets
were selected and plotted in Fig.3.7(b). One data set corresponds to original
pump frequency 7.955GHz, one corresponds to the optimal pump frequency
7.979GHz, where TWPA was observed to provide a higher power gain over
a larger signal frequency range. For original pump frequency, TWPA were
observed to have a stable amplifying performance above 20dB over the fre-
quency ranging from 6GHz to 7.5GHz, which from figure 3.7 we could see is
slightly smaller than the optimal pump frequency.

Secondly, we performed a 2D sweep of gain versus signal frequency and
pump power, as shown in Fig.3.8(a). From the 2D sweep, the optimal pump
power -15.67dBm was selected and plotted in Fig.3.8(b). The standard for
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Figure 3.7: 2D sweep of gain versus signal frequency and pump frequency.
(a) A 2D sweep with signal frequency window 3-7.5GHz and pump frequency
window 7.6-8.4GHz. Here two horizontal lines marks the optimal pump fre-
quency and original selected pump frequency. (b) A 1D-plot of gain versus
signal frequency. Here two data set were selected from the 2D sweep, as is
marked in (a).
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Figure 3.8: 2D sweep of gain versus signal frequency and pump power. (a)
A 2D sweep with signal frequency window 3-7GHz and pump power window
from -10dBm to -30dBm. (b) Gain versus signal frequency with optimal
pump power.This data set corresponds to the dash line marked black in (a)

selection is that TWPA has a stable power gain over the largest signal fre-
quency window. For this optimal pump power -15.67dBm, TWPA were ob-
served to have a stable amplifying performance above 20dB for signal fre-
quency ranging from 6GHz to 7.5GHz. The original pump power was only
denoted Fig.3.8(a) and not plotted in (b). This is because that this value is
not included in the 2D sweep. However, we could assume that TWPA have
a similar performance given the proximity of these two parameter in figure
3.8.

For the chosen working point of (7.955GHz, -15.5dBm) we find a band-
width of approximately 1.5GHz. By slightly adjusting the drive tone in
frequency and power we are able to reach even better performance as indi-
cated in Fig.3.7 and Fig.3.8 our TWPA for test has near optimal bandwidth
performance with the originally chosen working point. In this working point,
TWPA could provide a gain above 20dB for a band-width of 1.5GHz. In
further experiments, we would continue to use the same working point for
TWPA characterization.
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Figure 3.9: Gain versus signal power as well as the measured |S21| versus
signal power when pump is turned on and off

3.1.4 Saturation Power of TWPA

Here we performed a 1D sweep of gain versus signal power when setting the
TWPA drive to the original working point and signal frequency 6.805GHz
that was used to find working point. As shown in Fig.3.9, a severe fluctuation
in measurement result was observed for signal power below -40dBm. This
was due to the insufficient average time. Meanwhile, an unexpected peak was
also observed for signal power around 5dBm.Despite the two aforementioned
problems, from the 1D sweep we could still safely conclude that TWPA work
stably in the power range of -10dBm to -30dBm.
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3.2 Transmon measurements

Our final goal is to characterize the readout system quantum efficiency.
This requires the characterization of transmon qubit. In our experiments,
we used a nanowire-based transmon, the frequency of which can be tuned
through voltage-biasing. The workflow of characterizing transmon is shown
in Figure3.10. Firstly, we set the gate-biasing to adjust the qubit frequency
of the nanowire-based Transmon and hence the dispersive of the qubit and
resonator. Then, we used 1-tone spectroscopy to find the resonator fre-
quency and 2-tone spectroscopy to find the qubit frequency. We iterated
the transmon spectroscopy until we fit a transmon frequency more than 2.5
GHz separated from the resonator. Secondly, we performed amplitude Rabi
experiment to calibrate the X gate pulse. We continued with the charac-
terize the relaxation time and dephasing time of Transmon qubit. Thirdly,
we study the signal distribution for qubit ground state and excited state. A
double-Gaussian model was used to fit the histogram. Discriminator between
ground/excited state was calibrated. More importantly, SNR and fidelity was
extracted.
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Figure 3.10: Workflow of Transmon characterization. Every box represents
an individual experiment. The arrows denote the dependency, where the
pink arrow is the most important one.
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Figure 3.11: Resonator spectroscopy. (a) A wide range sweep of |S21| versus
readout frequency and gate voltage, here the dashed window was the param-
eter range of interest (b) A finer 2D sweep with parameter range denoted as
dashed window in (a), the white cross marker denoted the gate biasing we
chose for further experiment and the corresponding resonator frequency. (c)
A 1D frequency sweep of transmittivity when gate voltage was set to 710mV,
the data was chosen from (b). From (c) we measured the resonator frequency
as 6.805GHz.

3.2.1 Resonator spectroscopy and gate control of qubit
frequency

We scan the signal frequency of the VNA versus the gate voltage applied to
the bottom gate of the nanowire Josephson junction, see Fig.3.11 Due to the
dispersive coupling between qubit and resonator, the resonator frequency is
shifted in response to the change the qubit frequency. The frequency response
is non-monotonic due to the microscopic properties of the nanowire junction.

After the spectroscopy we fixed the gate biasing to 710mV such that the
resonator and qubit were detuned far enough: The resonator frequency was
set to 6.805GHz and the qubit frequency around 4GHz.
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Figure 3.12: 2-tone spectroscopy used to determine qubit frequency. (a) 2D
sweep of |S21| versus drive frequency and power. The light yellow region
corresponds to the qubit resonance with drive tone. (b) A 1D sweep of
readout tone transmittivity versus drive tone frequency. Data was selected
from the white dash line in (a), which corresponded to the drive power set to
-14dBm. From this 1D sweep we measured the qubit frequency as 4.173GHz.

3.2.2 Use 2-tone spectroscopy to find qubit frequency

We do 2-tone spectroscopy to find the qubit frequency. Firstly, we sent in
a continuous wave readout tone at resonance frequency of the resonator.
Secondly, we apply a drive tone with variable power and frequency near the
eigenfrequency of the qubit, see Fig.3.12. From the 2D map we observed a
regime with higher transmission. This is the regime where the drive tone is
on resonance with qubit transition frequency, i.e., where the drive tone can
effectively flip the qubit into excited state. When flipped into a different
state, the qubit would pull resonator off its original resonance, causing an
inversion of transmittivity observed. Since our resonance corresponds to
a transmission dip, the peak of transmission peak in this 2D spectroscopy
corresponds to the qubit resonance with the drive.
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Figure 3.13: Amplitude Rabi experiment

3.2.3 Amplitude Rabi experiment

After finding the resonator frequency and qubit frequency. We are able
to perform an amplitude Rabi experiment. The pulse schedule is shown
Fig.3.13. We sent in a Gaussian pulse to drive the qubit to the excited state
of the qubit. This drive pulse has a fixed drive frequency that is on resonance
with qubit transition frequency, a fixed drive length of 80ns, and a variable
drive amplitude. Right after the drive pulse, we sent in a readout pulse that
is on resonance with the resonator and then measured the readout signal. For
every drive amplitude we repeat the process for 105 times and then averaged
the measured signals. The averaged signal corresponds to the expectation
value of qubit state created by that drive amplitude. When plotting all the
results together, we observed an oscillation of measured signal versus drive
amplitude. The drive amplitude corresponding to half a period yields the
required drive strength for a pi-pulse.
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Figure 3.14: Amplitude Rabi experiment. Here the average signal was nor-
malized to correspond to the expected value of qubit state. The fitting is a
simple sinusoidal model S(t) = A sin(Bx+ ϕ) + C

Figure 3.15: T1 experiment pulse schedule

3.2.4 Measure relaxation time T1

Here we characterized the time scale in which a qubit will decay from excited
state into ground state. When increasing the time interval, we observed
an exponential decay of average signal(proportional to exp [−t/T1]), which
corresponds to the change of qubit population. Fitting model is described in
Eq.2.25. We characterized the relaxation time T1 as 1.220µs.
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Figure 3.16: Relaxation time measurement. Fitting gave a relaxation time
T1 of 1222ns.

Figure 3.17: T2 experiment pulse schedule

3.2.5 Measure dephasing time T2

We implemented a Ramsey pulse sequence to measure dephasing time T2
of the qubit. This pulse sequence consists of two separated pi/2 pulse with
a variable interval time τ in between. Before the Ramsey experiment, we
prepared qubit in ground state, injected the Ramsey pulse sequence and then
measured the qubit. The pulse schedule is shown in Fig.3.17 We observed a
decayed oscillation of the measured signal with respect to the time interval
τ .

Characterizing T2 requires a good fitting of this decayed oscillation. Here
we chose a fitting model with tunable decaying profile, as described with
coefficient n in Eq.2.26. This fitting gave a dephasing time T2 = 224ns and
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Figure 3.18: Ramsey experiment with fitting, where R2 denotes the coeffi-
cient of confidence.

decaying profile exp[−(t/T2)
n] with n = 1.391, as shown in Fig.3.17. The

Ramsey time T2 contains information n both energy relaxation and pure
dephasing Tϕ in the qubit, i.e., 1/T2 = 1/(2T1) + 1/Tϕ. Therefore, the pure
dephasing time Tϕ can be extracted as Tphi = 246ns. The fact that Tphi is
much shorter than T1 and the fact that decaying profile n > 1 indicate an
existence of strong dephasing channel that leads to strong qubit frequency
fluctuation, as observed in Subsec.3.2.7.

In the later experiments, we studied the remaining coherence of qubit
after subjecting to a weak readout pulse of fixed pulse length. Therefore,
the pulse length should be short than the dephasing time T2, or otherwise
the contribution of dephasing from the weak readout pulse would become
indiscernible. Looking only at raw data at delay time 200ns, we observed
that there was still approximately 42% of coherence remained, as denoted in
Fig.3.18. Therefore, we assumed that qubit still remain sufficiency coherence
for experiment after 200ns of dephasing.
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Figure 3.19: Experiment design to study qubit state signal probability dis-
tribution

3.2.6 Signal calibration: Discriminator, SNR and fi-
delity

By studying the signal distribution of single-shot measurements z̄|0⟩/|1⟩, we
could characterize the readout chain’s performance with SNR and fidelity.
We did this by repeatedly prepare qubit in ground/excited state and measure
it right after using a strong, long square pulse(1000ns pulse length, 0.12V
pulse amplitude), as shown in Fig.3.19

The resulting signal distribution in I-Q plane is shown in Fig.3.20(a). For
each qubit state, we observed that the population of measured signal in the
phase space can be divided into one major blob and one subsidiary blob that
partially overlap with each other. While the major blob corresponds to the
correct signal of corresponding qubit state, the subsidiary blob corresponds to
the signal of residual opposite qubit state. Those residual states could either
due to the failure to correctly prepare qubit state or due to the unwanted
state transition or relaxation behavior during the measurement process.

Fig.3.20(b) shows the rotated signal distribution, this is equivalent to per-
forming a integral with square weight function, as is explained in subsection
2.3.6 This rotation maximized the difference between ground state signal and
excited state signal in horizontal direction, as denoted in Fig.3.20(e). From
Fig.3.20(f) we observed that there still remains some difference in the vertical
direction. This could be due to the existence of higher level. By using only
the I component for qubit state discrimination, the noise from higher level
could then be eliminated.

After projecting all the information into the I-quadrature, we proceeded
to count the distribution of measured signal and then perform double-Gaussian
fitting. The histogram of the measured signal and fitting are shown in Figure
3.21. As for the fitting model, the main Gaussian represents the qubit state
of interest and the subsidiary Gaussian represents the residual qubit state.
Ignoring the influence of higher-level qubit state, we expect that the main
Gaussian positions and subsidiary Gaussian positions that corresponds to
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Figure 3.20: Measured signal represented in phase-space.
(a)I-Q representation of signal population.(b) and (c) describes the distribu-
tion in single one component of all dots in (a).
(d)Rotated phase-space representation of signal population.(e) and (f) de-
scribes the distribution in single one component of all dots in (d).

ground state and excited state should align with each other. From the fitting
in Figure3.21(b) we also observed that excited-state signal distribution has
a larger subsidiary Gaussian than that of the ground state. This is because
that excited state could decay to ground state due to qubit relaxation in
addition to the measurement induced transition.

Here we performed fitting for both signal distribution individually. Then
we checked the alignment of Gaussian peaks between ground and excited
signals, as denoted as the vertical line in (b).

The discriminator could be used to differentiate ground state signal from
excited state signal. The discrimination error, or the measurement error, is
then denoted in the overlap of the distribution for the two qubit states.

Here the signal is defined as the distance between the main Gaussian for
|0⟩ and |1⟩.

After double-Gaussian fitting in Fig. 3.21(b), we calibrated the discrimi-
nator that differentiates ground state signal from excited state signal. Then
the measurement error could be defined as the signal that appears in the
”wrong” side of the discriminator, as shown in Figure 3.21(c). From mea-
surement error we calculated the fidelity for this measurement. The result
value is 0.425. It is worth noting that the calibration of the discriminator is
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Figure 3.21: Histogram and fitting of measured signal. (a)Histogram of 105

shots for ground state signal and excited state signal respectively. (b)Double-
Gaussian model for both ground state signal and excited state signal. (c)The
intersection point of fitted curve for both states is used to define the discrim-
inator. The measurement error is denoted in grey area(d)The definition of
the signal.

not the main purpose of this thesis project, but a way to double-check the
correctness of obtained single-shot measurement distribution, as in Fig.3.30

Apart from measurement error and fidelity, we also calculated the signal-
to-noise ratio (SNR) of the measurement. As in Fig. 3.21(d), here is the
signal is defined as the distance between the two main Gaussian and the
noise is defined by averaging the standard deviation of excited and ground
state signal.

3.2.7 Qubit frequency instability and frequency shift-
ing

During the measurement, we noticed that the qubit frequency unstable in
time. As shown in Fig.3.22, we monitored the change of qubit frequency
within one hour. We observe that for only half of the time the qubit frequency
stays within a fixed window between 4.08GHz and 4.10GHz. The biggest
jump between two records are up to 300MHz and the standard deviation of
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Figure 3.22: A qubit frequency log in 1 hour. (a) 75 qubit frequency mea-
surement data points in 55 minutes. From the graph, we measured a average
qubit frequency of 4.123GHz with 66MHz standard deviation, which is de-
noted in the error bar. We observed a frequency window of width 20MHz.
Histogram in (b) showed that approximately half the counts lied in this win-
dow. It also showed that qubit with frequency outside the frequency window
is unstable because of the few repeatability. Therefore, we argued that the
frequency window encompasses qubit’s bare frequency, whereas the drastic
frequency jumping is a result of external noise.

the measured data set reaches 66MHz. We also observed that the frequency
jumping usually happened within 3 minutes, since the data points were taken
approximately every 0.75 minutes and from Fig.3.22 we observed 4 incidence
within the stable window in a row. This frequency jumping is problematic
since all the further measurements individually take about the same time
of 3-4 minutes and there’s large change that the frequency jumping will
undermine the gate fidelity during.

One potential cause of this frequency jumping is the existence of charge
noise. Using a python package called QuTiP[49], we studied the influence of
charge noise by simulating the transmon Hamiltonian described in Eq.2.27.
However, simulation of Transmon’s Hamiltonian revealed that the charge
noise could not explain the 300MHz jump range but only the width of fre-
quency window(approximate 20MHz), as denoted in charge noise, as shown
in Fig.3.23. Meanwhile, the charge noise couldn’t explain the distribution
of qubit frequency. As shown in Fig.3.23(b), charge noise would result in a
bipolar distribution of qubit frequency, which is exactly the opposite of the
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Figure 3.23: Simulation of qubit frequency at the influence of charge noise.
Here capacitive energy EC is set to 450MHz, and the ratio EJ/EC is tuned
into 13.12, as shown in Table 3.2.8.

real situation. Therefore, we excluded the charge noise on the transmon as
the cause of frequency jumping. On the other hand, the charge noise (or
charge jumps) on the gate-control line of the qubit could cause this observed
qubit jumping in principle. The real source of noise that caused this observed
qubit fluctuation required more inspection.

Apart from the problem of sudden frequency jumping, there was one
additional problem that was related. For most of the time, the qubit tends
to stay within a fixed frequency window with a width of 20MHz. However,
we noticed, that this frequency window also drifts over time. In Fig. 3.24 we
show the qubit transition frequency versus time on two different days. We
observed that the frequency window drifted by 7MHz. Despite the problem
of window drifting, we assumed that frequency window would remain stable
on the time scale of a few hours.

Let me outline the problem of the frequency drift again: The calibra-
tion of pi-pulse requires the exact knowledge of the qubit frequency. That
means, if the qubit frequency changes after the the pi-pulse was calibrated,
the original pi-pulse could no longer successfully flip the qubit into excited
state. Therefore, a direct result of any qubit frequency jumping is that we
fail to obtain the correct signal distribution that corresponds to the excited
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Figure 3.24: Two collection of qubit frequency in two different days. We
observed that the frequency window drifted from [4.08GHz, 4.10GHz] to
[4.15GHz, 4.17GHz].

state. Fig. 3.25 shows the resulting signal distribution for five independent
qubit state signal histogram experiments with the same readout pulse(500ns
pulse length, 0.31V pulse amplitude). In the insets, we plot two dots denote
the measured qubit frequency before and after a single experiment. We also
plotted two blue lines to denote the stable frequency window. We observed
that when the qubit frequency was off the stable window, we completely lose
the signal population that corresponds to excited state, as shown in Figure
3.25(a) and (c). This is because that there is very few chance for qubit to stay
stable at the same frequency outside the frequency window. This statement
is supported by the histogram in Figure 3.22(b).
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Figure 3.25: Five repeated experiments to determine signal distribution. The
insets depict the qubit frequency before and after experiments and the stable
frequency window. The frequency record within the window is plotted a red
dot

3.2.8 Summary

Below is a table for the measured quantities of Transmon qubit. Here the
resonator frequency and qubit frequency is measured with a large standard
deviation, the data comes from Figure3.29(b) and (c). The Josephson energy
EJ , capacitive Energy EC and coupling strength g are pre-measured value.

Quantity Value
T1 1.222µs
T2 224ns
fr 6.805±0.001GHz
fq 4.160±0.068GHz
Ec 0.45GHz
EJ 5.903GHz
EJ/Ec 13.12
g 250MHz
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3.3 Quantum efficiency

Here we use the 3-step method introduced by Bultink el al. to characterize
the quantum efficiency of the readout chain. As described in subsection2.3.10,
when working in weak measurement regime, SNR is expected to scale linear,
SNR = aϵ, and qubit coherence is expected to exhibit a Gaussian depen-
dence, |ρ01(ϵ)| = A · exp (− ϵ2

2σ2
m
). Then system’s quantum efficiency could be

measured as:

η =
σ2
ma

2

2
. (3.1)

It is worth noting that the 3-step method has 2 preconditions: 1) optimal
integration functions are used to optimally extract information from both
quadratures, and 2) the intra-resonator field vanishes at the beginning and
end. However, here in our experiment the square weight integration functions
were used. This would result in a relatively smaller Quantum Efficiency[14].

3.3.1 Experiment design

This section explained the experiments carried to extract quantum efficiency.
Two topic were discussed here: First one is about choosing the readout pulse
with suitable pulse length, second one is about using frequency sifting to
remove untrustworthy data.

Choice of readout pulse

To begin with, we need to choose a readout pulse for the variable strength
measurement. For the sake of simplicity, a square pulse envelope was chosen
here. However, the choice of pulse length requires more scrutiny.

The pulse length should be chosen such that we could measure both SNR
and qubit coherence afterwards with a range of different readout amplitude.
On the one hand, the pulse length should be shorter than the dephasing time
T2, or otherwise the qubit will completely lose it’s coherence even the pulse
amplitude equals zero. On the other hand, the pulse length should be long
enough so that we could measure at least some signal difference between state
|0⟩ and state |1⟩. As illustrated in Fig. 3.18(c), the qubit could still remain
40% of coherence after 200ns of dephasing. Therefore, here we choose the
pulse length as 200ns.
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X gate calibration and data-sifting based qubit frequency

Given the fact that our qubit frequency was jumping at least in a timescale
of 5 minutes, as shown in 3.22, and the fact that it is the same time scale
to perform a single SNR measurement and coherence measurement, we re-
calibrate the X-gate pulse amplitude before every experiment. This requires
the re-calibration of resonator frequency and qubit frequency. Therefore,
for every single SNR/coherence experiment, we calibrated the resonator fre-
quency and qubit frequency, then we calibrated the X gate amplitude, then
we prepare the qubit in the state and perform the measurements.

Since those single experiments are performed consecutively, for every ex-
periment we could know the qubit frequency before and right after the mea-
surement. This allowed us to perform a post-measurement selection based of
whether the qubit was in the stable frequency window that was mentioned
in section 3.2.7.

In conclusion, we used square pulse with fixed pulse length 200ns and
variable pulse amplitude to perform the weak measurement. We studied the
change of SNR with respect to different readout amplitude(SNR measure-
ments), and studied different readout amplitudes’ impact on qubit’s coher-
ence using Ramsey sequence(Coherence measurements). For every individual
experiment, qubit frequency was recorded before and after. Those records
were used for post-measurement data selection. The whole experiment pro-
cess is depicted in Figure3.26.
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Figure 3.26: Quantum effi-
ciency experiment design.
(a)General process to
perform a SNR/coherence
experiment.
(b)Pulse schedule for co-
herence experiment. Here
”RO” represent a strong
measurement to fully col-
lect qubit’s coherence.
(c)Pulse schedule for SNR
measurement. Notice that
no additional ”RO” is
needed here, but to collect
all the scattered signal
of the weak pulse that’s
injected.

3.3.2 Measurement result

SNR measurement versus readout amplitude ϵ

In total 300 SNR experiments were carried here, where 30 different readout
amplitude ranging from 0V to 0.2V were used, and for every readout ampli-
tude the experiment was repeated for 10 times. When increasing the readout
amplitude, we observe an increase in the separation of two signal distribution
for ground and excited state, as shown in Figure 3.28.

The histogram for the excited/ground state usually fit a double-Gaussian
fitting. This is due to the existence of projection error. As shown in Figure
3.27, the measurement pulse could cause unwanted state transitions. Mean-
while, the excited state could decay into ground state due to qubit’s natural
relaxation.

However, here we used single-Gaussian model for the fitting of signal
histogram. The legitimacy of this use was argued in the later part of this
sub-subsection.

Here we performed a frequency sifting to eradicate those experiments
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Figure 3.27: Illustration of qubit state projection and double-Gaussian dis-
tribution of measured signal[16]. (a)Illustration of qubit state projection
between the qubit state and measured state. Here the projection error is de-
noted in purple. (b)Corresponding double-Gaussian probability distribution
of single-shot measurement value z̄|0⟩/|1⟩
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Figure 3.28: SNR measurement versus different readout amplitude. Here we
inject a square readout pulse with pulse length of 200ns. By varying the
readout amplitude ϵ from 0V to 0.2V we observed a slight shift between the
signal distribution for |0⟩ and |1⟩. In the weak measurement regime, we fitted
the data with single-Gaussian model.
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where qubit frequency has jumped drastically. The frequency sifting criteria
states that the qubit frequency before and after qubit state should lie within
the stable window that was observed in that experiment series. Using this
criteria, 67 out of 300 SNR experiments were selected, and the results were
plotted in Figure 3.29.

As mentioned before, single-Gaussian model was used in the process of
extracting SNR from signal histograms. The calculation of determination
coefficient R2 showed a good fit of single-Gaussian model, the result is shown
in Figure 3.30(a). Furthermore, according to [44], the measurement fidelity
should be related to the SNR by Fm = 1− erfc(SNR/2) if the state signal
distributions are single Gaussian, where Fm and SNR are two quantities that
can be extracted independently from the signal histogram. Here we extracted
the SNR for signal distributions and then computed the expecting Fidelity.
The result showed a good match with the actual measured Fidelity, as shown
in Figure 3.30(b).

Here we argued the legitimacy of using single-Gaussian model for the
fitting of signal histograms. There are two reasons that support this usage:(i),
the readout process(200ns) is much shorter than the relaxation time(1200ns)
such that few excited states would decay into ground state. (ii), the readout
pulse is too weak to populate the ground state into excited state due to
both its short duration and low amplitude. To prove our argument that, we
performed a series of stronger measurement as shown below.

For the stronger measurement that has longer readout pulse length and
readout pulse amplitude, we implemented a square readout pulse with pulse
duration of 500ns and pulse amplitude ranging from 0.25V to 0.5V. The mea-
surement time is long enough for qubit relaxation and pulse strength is strong
enough for state-transition. Here we observed a double-Gaussian distribu-
tion. The alignment of main Gaussian and subsidiary Gaussian supported
supports the hypothesis, that only two states are involved here. As seen in
Fig. 3.31(a), subsidiary Gaussian for |1⟩ is higher than that of |0⟩. This
is reasonable because |1⟩ has one more channel to transition into |0⟩ during
measurement, as shown in Figure3.27. When the readout amplitude was
increased further, there were more |0⟩ to |1⟩ state transition, which would
account for the increase of subsidiary Gaussian for |0⟩. On the other hand,
the decrease of subsidiary Gaussian for |1⟩ could be because that the excited
state is further excited into non-computational basis.
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Figure 3.29: SNR measure-
ments result.
(a)Extracted SNR versus
different readout ampli-
tude.
(b) Qubit frequency
records. The box plot in
the left shows that near half
the qubit frequency records
stayed at the frequency
window [4.15GHz,4.17GHz]
(c)Resonator frequency
records. In contrast to
qubit frequency, the res-
onator stayed relatively
stable with only 1MHz of
fluctuation.
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62



Coherence measurement versus readout amplitude ϵ.

We used Ramsey experiment to measure the remaining coherence of qubit.
We did this by inserting the weak readout pulse between the 2 pi/2-pulse.
The pulse sequence is shown in Figure 3.26. To increase the accuracy the
measured coherence, we rotated the azimuthal angle ϕ of the second pi/2-
pulse until we could measure the coherence to the fullest. As shown in Fig.
3.32, an increase in the readout amplitude would lead to more dephasing of
qubit coherence.

In the coherence measurement, two data sets obtained at different time
of the same day were stacked together for the analysis. Together there are
91 raw data points in total, whose corresponding readout power ranges from
0V to 0.03V. From the raw data points 34 data points were chosen using
the frequency sifting mentioned in sub-subsection3.3.1. From the sifted data
we observed that the remaining qubit coherence for every readout amplitude
has a ceiling value, and that the ceiling value experienced a Gaussian decays
with respect to the increment of readout amplitude. Here we postulated
that those under-ceiling coherence value is a signature of frequency jumping,
which could be modeled as the influence of the environment noise. Therefore,
after performing a frequency sifting for both data sets, we selected the ceiling
values out of those data points and performed a decay fitting so to calculate
the quantum efficiency. From the fitting we observed that coherence was
already completely destroyed when readout amplitude reached 0.04V. The
results together with the qubit frequency and resonator frequency records
were shown in Figure 3.33

63



0 2 3 4

-1

0

1

z
 [a

.u
]

4
|

01
|

a) = 0.002V

0 2 3 4
 [rad]

b) =0.014V

0 2 3 4

c) =0.030V

Figure 3.32: Coherence measurement result versus different readout pulse.
We observed a rapid decreasing of coherence while increasing the readout
amplitude from 0V to 0.03V, as denoted from (a) to (c).

0.00 0.04 0.08
 [V]

0

3

6

|
01

| [
a.

u.
]

1e 6

| 01| = Aexp( 2

2 2
m
)

m = 0.01493±0.00165
R2 = 0.829

a) data set 1
data set 2
ceiling data
ceiling fit

0 40 80
Experiment ID

4.10

4.20

Qu
bi

t f
re

q.
 [G

Hz
]

b) raw data, whole
sift window
sifted data set 1
sifted data set 2
ceiling data set

0 40 80
Experiment ID

6.802

6.806

Re
so

na
to

r f
re

q.
 [G

Hz
]

c)

raw data, whole
sifted data set 1
sifted data set 2
ceiling data set

Figure 3.33: Coherence measurement
result
(a)Coherence measurement versus
readout amplitude.
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Quantum efficiency and converted noise temperature

Bringing the results from the SNR measurements and coherence measure-
ments together, we were able to extract the quantum efficiency of the whole
readout system. Using the formula 3.1, we extracted the value as η =
0.002145± 0.000529.

The quantum efficiency is also related to the system’s noise temperature
through the formula η = h̄ωr

kBTsys
. We extracted the system noise temperature

to be Tsys = 15225± 3754K. This is a temperature three times hotter than
the surface of sun. This abnormal value indicated either the existence of a
strong internal source of noise of the measurement chain or the failure to
collect and amplify the signal.

To target the internal source of noise, the dilution refrigerator was opened.
While no obvious problem was revealed in the cryogenic part of measurement
chain, an severe instability was spotted in the amplifier response. As shown in
Figure3.34, the range of gain could fluctuate up to 30dB(from blue and red).
Meanwhile, the amplifier response was spotted to undergo an abrupt jump
when the connecting cable was touched or even someone stepping around
without touching anything.

The conclusion is that there exists one or more bad contacts in the room-
temperature measurement chain. Those bad contacts account for the fluctu-
ation of amplification response. It could be the case that those data points
were acquired when the system response is trapped at some wire configura-
tion with very low gain. This assumption could explain the low SNR and
henceforth the low quantum efficiency. Further examination has been being
carried.
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Figure 3.34: System amplification response over a short period of time. With
the same experiment condition, the system gain could fluctuate at a level of
30dB, between the bottom blue lie and top red line.
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Chapter 4

Conclusion and Outlook

Conclusion

In this work, we have set the basis for the characterization of superconducting
parametric amplifier. Using TWPA as the amplifier to test, this research
entailed two sections: The basic and the advanced characterization. The
basic characterization focused on the gain, bandwidth and saturation power
of TWPA. A series of qubit characterization experiments were carried out as
well. They served as a preparation for the advanced characterization, which
characterization focused on extracting the quantum efficiency of the whole
qubit readout chain where TWPA is installed.

Using a VNA, we had performed a series of basic TWPA characterization
experiments. We started by setting the signal frequency and power that
resemble the actual qubit readout. After setting the input signal, we found
the optimal working point for TWPA. For this working point we characterized
the three basic figures of merits for TWPA: gain, bandwidth, and saturation
power. From the result we concluded that TWPA stays in its optimal working
configuration in the case of qubit readout.

Using VNA and OPX, we had performed a series of basic transmon qubit
characterization experiments. These experiments mainly served as a prepara-
tion for the characterization of quantum measurement efficiency of the read-
out chain. We performed: resonator spectroscopy for resonator frequency,
qubit spectroscopy for qubit frequency, amplitude Rabi experiment for pi-
pulse characterization, T1 and T2 measurement, fidelity and Signal-to-Noise
ratio (SNR) characterization, and qubit frequency tracking. In cases where
the readout signal population was expected to obey Gaussian distribution,
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the fidelity and SNR were used to compared with each other to check if the
signal distribution is Gaussian or not [23]. The fact that dephasing time T2

is much shorter than relaxation time T1 indicated that there exists a strong
dephasing channel, one contribution of which would be the frequency fluctua-
tion of the qubit[12]. In support of this argument, we observed a drastic qubit
frequency jumping at a frequency range of 300MHz and in the time scale of
at least minutes, where there existed a relatively stable frequency window of
width 20MHz. According to the numerical modeling[49], we showed that the
charge noise could neither account for the range of frequency jumping nor
the distribution of observed qubit frequency. The real source of noise remain
unknown.

Using the 3-step method developed by Bultink et al.[14], we have ex-
tracted the quantum efficiency of the qubit readout chain. We performed a
series of SNR characterization with respect to different amplitude of the weak
readout pulse. The readout pulse length was adjusted to be 200ns, which is
slightly shorter that the qubit dephasing time T2. Using a strong readout
pulse, we also measured the remaining coherence of the qubit after subject-
ing to the weak readout pulse for SNR characterization. We performed a
post-measurement data sifting based on the qubit frequency before and after
each individual measurement. From the remaining data we extracted the
system’s quantum efficiency of approximately 0.002, a value that is much
lower than the state-of-art[1]. This low quantum efficiency value arises from
the low SNR and strong qubit dephasing. On the one hand, the strong qubit
dephasing corresponded to the unknown noise source that caused drastic
qubit frequency jumping. On the other hand, the low SNR, according to
the latest experiment setup examination, could be attributed to the unstable
room-temperature amplifier response and poor cable connection.

In summary, we had established a complete and replicable workflow with
written code for the characterization of a general quantum limited ampli-
fier. The reusable code included the control of the pulse sequence and data
analyzing in the complete characterization process. To highlight the contri-
bution of the author of this thesis, the code for data analyzing and partially
pulse sequence control of OPX was developed by Master student Duiquan
Zheng. We had also targeted two major problem in the qubit readout chain.
Once a better experiment setup is available, the quantum limited amplifier
that is currently being developed by Lukas Splitthoff in Andersen Lab could
be characterized immediately.
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Outlook

For the outlook, there exists a list of things that could be done in the future.
The goal is to improve SNR, to reduce qubit dephasing strength, and to
strengthen the credibility of quantum measurement efficiency.

To begin with, the problems of unstable amplifier response and poor cable
connection need to addressed. Another big problem is about the drastic qubit
frequency jumping. The noise source that cause the qubit fluctuation needs
to be targeted and eradicated.

On the other hand, if the noise source locates somewhere in the original
qubit chip(QPP-5p5-rev4), it is tempting to fabricate and install a new qubit
that is more resilient to environmental charge noise. One other motive to
fabricate a new qubit chip is to improve the SNR. To date, a transmon qubit
that is more suitable for characterizing amplifier had been being designed
and simulated. With a larger EJ/EC = 32, this new transmon qubit is
more resilient to charge noise. An unsymmetrical coupling of the resonator
increases the efficiency of collecting readout signal. To further this project,
this newly designed transmon could be fabricated.

One other thing to improve the SNR is to optimize the readout pulse by
tuning the pulse frequency and pulse envelope[1]. For example, the pulse
envelope could be tailored such that it accelerated the photon depletion of
the resonator. Meanwhile, for the readout signal demodulation, the optimal
weight function is also a must, because it is a precondition for the robust
extraction of the quantum efficiency of the system[14].

To improve the credibility of the extracted quantum efficiency, an inde-
pendent method to extract quantum efficiency should be carried out in the
future. There exists a method to extracts the quantum efficiency of the sys-
tem[15], a method that implements the stark-shift effect of the qubit. This
method could be carried out in the same readout chain configuration. By
implementing this parallel method to extract the quantum efficiency of the
readout chain and comparing it to the quantum efficiency extracted using
the original method, the credibility of the result would be strengthen.

Since this project focuses on the characterization of a quantum-limited
amplifier. It is reasonable to try to extract the quantum efficiency of the
amplifier-to-test in the future. This could be done by using a three-stage
model[14], which determines the contribution of each individual components
to the quantum efficiency of the readout chain.
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[40] Nicolas Didier, Jérôme Bourassa, and Alexandre Blais. “Fast quan-
tum nondemolition readout by parametric modulation of longitudinal
qubit-oscillator interaction”. In: Physical review letters 115.20 (2015),
p. 203601.

[41] Carlton M Caves et al. “Quantum limits on phase-preserving linear
amplifiers”. In: Physical Review A 86.6 (2012), p. 063802.

[42] Colm A Ryan et al. “Tomography via correlation of noisy measurement
records”. In: Physical Review A 91.2 (2015), p. 022118.

[43] Theodore Walter et al. “Rapid high-fidelity single-shot dispersive read-
out of superconducting qubits”. In: Physical Review Applied 7.5 (2017),
p. 054020.

[44] Jay Gambetta et al. “Protocols for optimal readout of qubits using a
continuous quantum nondemolition measurement”. In: Physical Review
A 76.1 (2007), p. 012325.

[45] DH Slichter et al. “Measurement-induced qubit state mixing in circuit
QED from up-converted dephasing noise”. In: Physical Review Letters
109.15 (2012), p. 153601.

[46] Maxime Boissonneault, Jay M Gambetta, and Alexandre Blais. “Dis-
persive regime of circuit QED: Photon-dependent qubit dephasing and
relaxation rates”. In: Physical Review A 79.1 (2009), p. 013819.

[47] Daniel Sank et al. “Measurement-induced state transitions in a su-
perconducting qubit: Beyond the rotating wave approximation”. In:
Physical review letters 117.19 (2016), p. 190503.

[48] Michael Simoen et al. “Characterization of a multimode coplanar waveg-
uide parametric amplifier”. In: Journal of Applied Physics 118.15 (2015),
p. 154501.

74



[49] J Robert Johansson, Paul D Nation, and Franco Nori. “QuTiP: An
open-source Python framework for the dynamics of open quantum sys-
tems”. In: Computer Physics Communications 183.8 (2012), pp. 1760–
1772.

75


