Delft University of Technology, In Partial Fulfilment of the Requirements For the Bachelor of Computer Science and Engineering

Adding Bloom to High-Dynamic-Range Tone Mapping

Ricardo Vogel
Supervisors: Ruben Wiersma, Elmar Eisemann

Delft University of Technology

Abstract

We present a technique for enhancing high-
dynamic-range tone mapping algorithms by adding
the bloom effect to bright areas. Bloom is based
on the fact that real-life lenses convolve light and
make bright areas emit a glow. The algorithm takes
a set of images with different exposures as input,
and performs a tone mapping algorithm on these. It
then takes the image with the lowest exposure value
to create the bloom effect. It then perform a convo-
lution on this image with with a kernel that repre-
sents the response to one point of light. The result-
ing image is then added on top of the tone mapped
image. We also present parameters to change the
spread of the glowing effect, how bright an area
needs to be to get a significant glow, and the in-
tensity of the glow when applied. Furthermore, the
kernel can be changed to create different types of
glow and highlights. These things make the tech-
nique versatile and allows the photographer to cus-
tomize the effect.

1 Introduction

When taking pictures in places with large differences in
brightness, it is often not possible to capture the full dy-
namic range of the scene. To approximate the appearance
of the high-dynamic-range scene, images with multiple expo-
sure rates can be taken and combined using a technique called
tone mapping. The resulting image can then be shown on a
medium with a lower dynamic range, and has details in both
dark and bright areas. Two examples of tone mapped images
can be seen in Figure 1 (a).

The brightest areas in tone mapped images however, might
not seem as bright as the photographer wants. One way bright
areas in an image can be perceived brighter is by the presence
of glare effects. These effects are caused by light scattering in
the human eye or a camera lens and make bright points emit
a glow [1, 2]. These effects can also be added to images to
amplify the effects of bright areas.

One common way to achieve this glowing effect is the
bloom shader effect. Bloom is used in video games and other

(a) Tone mapped images.

(b) Images as generated by the algorithm described in this paper.

Figure 1: Three different types of picture for two scenes. The im-
ages in (c) are the ones generated by the techniques presented in this
paper. Left image by Daniel Pircildboiu [3], right image by Kevin
McCoy [4].

digital media to create the illusion of a higher dynamic range,
by making bright areas emit a glow [5]. Similarly to photog-
raphy, digital media runs into the issue of having to display
a high-dynamic-range scene onto a lower dynamic range me-
dia. The bloom effect helps solve this issue by creating a glow
around the areas brighter than the displayable dynamic range.
Outside of digital media, bloom is used as well, these how-
ever often rely on a more manual approach, or use a single
image as input.

In this paper, we present an algorithm that adds the bloom
effect to tone mapped high-dynamic-range images. The pre-
sented technique takes the images of multiple exposure rates
as input. Using this additional information on the brightness
of the scene, the brightest areas are selected to perform bloom
on. We also use a modern form of bloom called convolu-
tion bloom, which is used by Unreal Engine [6], to make the
bloom effect more realistic and versatile compared to older
techniques. The generated bloom overlay is then merged with
a tone mapped image to create an image that has the qualities
of a tone mapped image, and has the intended glowing effect.

The images in Figure 1 (b) are generated using the technique
presented in this paper.

One other major advantage of using this technique is the
control the photographer has when editing the image. Multi-
ple parameters to tweak the final result are presented, which
can be used to increase the spread of the glow effect, se-
lect how bright an area has to be for it to give off a signifi-
cant amount of bloom, and change the intensity of the bloom
when applied. Furthermore, changing the kernel image used
in the convolution bloom also greatly impacts the final result.
Overall the technique is versatile and allows a photographer
to change the qualities of the bright areas of the image.

2 Related Works

Because of the nature of the technique proposed in this pa-
per, the related works is split into the two main parts of the
algorithm. In Section 2.1 different tone mapping algorithms
are discussed. Section 2.2 explains the theoretical basis for
bloom, a common bloom implementation, and recent devel-
opments in the field.

2.1 High-dynamic-range Tone Mapping

High-dynamic-range tone mapping operators can be split up
into two categories, based on the methods they use to reduce
contrast. Global operators apply the same mapping function
across the whole image, while in local operators the mapping
varies based on the neighborhood of a pixel.

A good example of a global operator is that created by
Drago et al. [7]. They use a logarithmic compression of lu-
minance values, which imitates the response to light of the
human eye. The operator also provides several parameters
to change the brightness, contrast compression, and detail re-
production in an intuitive way.

One major issue with local operators is that they can pro-
duce artifacts around hard edges if no way is found to cir-
cumvent them. The operator proposed by Fattal et al. uses
gradients to detect the edges [8]. They argue that hard edges
will create a large gradient, and finer textures correspond to
smaller gradients. They try to find these large gradients and
weaken them, while keeping smaller gradients intact. Simi-
larly to the operator created by Drago et al. discussed earlier,
this technique also uses the logarithm of luminance values.
Durand and Dorsey use the edge-preserving bilateral filtering
to separate a base layer and a detail layer, followed by reduc-
ing the contrast only in the base layer, assuring the detail is
retained [9].

Mertens et al. [10] propose a solution that skips the assem-
bly steps and simplifies the process. They assign a quality
value to each pixel based on measures like contrast and satu-
ration and then blend the pictures of different exposures based
on the weighted average of these quality measures. To im-
prove the quality of the result, a pyramid of different resolu-
tions is used during the blending of the images which creates
smoother transitions between different areas of the picture.

By its nature, tone mapping attempts to create an image
where each area is as detailed as possible. Images like this

(a) A (b) Sampled Gaussian (c) Example
computer-generated kernel. convolution kernel, by
Airy disk from Epic Games Inc. [6].
diffracted white light.

By SiriusB [12].

Figure 2: Three different kernels. The Airy disk of (a) is the theo-
retical framework for bloom. The Gaussian kernel of (b) is a rough
approximation that is often used. The kernel in (c) is an example
kernel used by Unreal Engine to generate more appealing bloom.

(a) A scene without bloom. (b) The same scene with the

bloom effect added.

Figure 3: Two scenes created in the Unity engine showcasing the
effects of bloom. By Unity Technologies [13].

might not always be what a photographer wants, so the tech-
nique is not always appropriate. This paper aims to add an
extra layer on top of existing tone mapping techniques that
uses the information from the pictures with multiple expo-
sures to generate a glowing effect.

2.2 Bloom

When bright lights hit a lens, such as one in a camera or in
the human eye, it reflects in a pattern named the Airy disk
[11]. This pattern has a large peak in the center with rings of
light around it, as shown in Figure 2 (a). Although this effect
happens for any point of light, it is especially noticeable in
brighter areas. Bright areas look like they bleed into areas
around it [1]. Effects like these make humans perceive the
areas as brighter.

One method to add these glowing effects is the bloom
shader effect. This is an effect often used in digital media
such as animation and video games. An example of the ef-
fects of bloom can be seen in Figure 3.

One common bloom implementation is a simple Gaussian
blur. The Gaussian blur is a decent and fast approximation of

the Airy disk. Its main downside is that it is missing the rings,
as seen in 2 (b). In this version of bloom, a Gaussian blur is
performed on the brightest areas and the result is added on top
of the original image. This way, these areas appear to light up.
While this technique often works well for video games, it is
only an imprecise approximation. For this reason it might not
look realistic enough for photography purposes.

A more modern technique, used by Unreal Engine, is
called convolution bloom [6]. With this technique, you can
set a kernel representing the response of the camera lens to a
single point of light. An example of such a kernel can be
seen in Figure 2 (c). Each pixel in the image contributes
some of its brightness to its neighbors based on this kernel.
The brighter the pixel is, the more brightness its neighbors
will receive. Unreal’s convolution bloom uses a fast Fourier
transform to perform the convolution efficiently [14]. With
the right kernel, this technique is an excellent implementa-
tion of the Airy disk theory, and as such it creates a more
realistic result than the Gaussian bloom discussed earlier. It
also allows for more customization compared to the Guassian
bloom, since the kernel can be altered to create different types
of effects.

For computer generated scenes, a threshold is often ap-
plied. Both Unreal Engine and the Unity engine allow for
the use of such a threshold [6, 13]. This threshold can be set
to 1, meaning maximum brightness, if the image has a high-
dynamic-range. This way, only areas brighter than can be
displayed will create the bloom effect. The threshold can also
be disabled.

The examples so far have been for computer generated
scenes. However, the bloom effect can also be used for pho-
tography. The Oneric plugin for Adobe Photoshop CC can be
used to create bloom manually [15], and there are a number
of tutorials online that explain how to achieve the effect, such
as [16, 17].

The existing techniques for photographs rely on a single
image as input, and usually use a Gaussian blur to create the
effect. We aim to use the information provided by the multi-
ple exposures to create a better effect, and to implement the
convolution bloom to make a more realistic effect and to give
more control over the final result.

3 Method

We aim to create an image that has the qualities of a tone
mapped image, and has a glowing effect around the brightest
areas to make them seem more bright. Furthermore, we aim
to create a versatile technique that allows for customization
of the effects.

Our technique first creates a tone mapped image using an
existing tone mapping operator, followed by creating a bloom
overlay using information from the lowest exposure rate.
These two images are then blended to create a final result.
We will assume the input images are perfectly aligned.Figure
4 shows an overview of the full method.

First the tone mapping algorithm is explained in Section
3.1, then the bloom overlay is discussed in Section 3.2. Sec-
tion 3.3 explains how these two steps are merged, and Section

3.4 shows some important implementation details.

3.1 Tone Mapping

As discussed in Section 2.1, there are many different tone
mapping operators. We need an operator that is high quality,
efficient, and has some creative freedom. Mertens et al.” ex-
posure fusion [10] provides these qualities. This operator as-
signs a weight to each pixel of each input image, and then av-
erages them based on these weights to generate a final result.
To blend them, a Laplacian pyramid is used for the images,
and a Gaussian pyramid for the weights. The weights and
images in the pyramid are multiplied on each level. The fi-
nal result is obtained by collapsing the pyramid. This is done
by keeping an intermediate result, set to the smallest image in
the pyramid at first, and continuously scaling it up and adding
the next image in the pyramid. One other reason this operator
was originally chosen over other high-quality operators was
to make use of the weighted blending for adding the bloom
effect. This idea however did not prove useful in the end.

The final weight assigned to each pixel is based on three
factors: the pixel’s contrast, its saturation, and its well-
exposedness. The specific method used to find the values
of these factors is described by Mertens et al. [10]. These
components each have a certain weight of their own. These
weights are applied globally, and are not tied to specific pix-
els. Increasing one of these will increase the final weight of
pixels with a certain quality. The final weight is calculated by
taking the product of the factor, each raised to the exponent of
their corresponding weight, as shown in Equation 1 (which is
a simplified version of Mertens et al.’s original equation [10]).

W = C“C x §¥S x E“F (1)

In this equation, C', S, and E are the contrast, saturation,
and well-exposedness measures. w¢, wg, and wg are their
corresponding weights. While these weights do not tend to
drastically change the final result, their inclusion does add a
small amount of extra creative control.

While this operator has some extra benefits, replacing it
with another high-quality and efficient tone mapping opera-
tors will likely produce similar results.

3.2 Creating the Bloom Overlay

To create the bloom overlay, convolution bloom will be used.
This technique is similar to that used by Unreal Engine [14].

To start, we select the input image with the lowest expo-
sure value. This image has the most detail in the brightest
areas. While it might seem more intuitive to select the image
with the highest exposure value, given that this image looks
the most like the desired effect, with the bright areas being
very bright and bleeding into the surrounding area, the image
with the lowest exposure value tells us which areas of the im-
age are the brightest, and gives us the most information about
these areas, allowing us to customize the bloom effect.

If we were to continue with this image directly, we have
found that this creates too extreme of an effect around areas
that have some brightness in the image, but are not among
the brightest. To circumvent this issue, we use a smoothing

Figure 4: A complete overview of the tone map and bloom method. Given as input are pictures with multiple exposures, which are combined
into a tone mapped image using Merten’s Exposure fusion [10]. The picture with the lowest exposure rate is taken to create the bloom effect.
It is smoothed first, then convolved with a kernel. The tone mapped image and the bloom overlay are combined into a final image. Original

images by Kevin McCoy [4].

function. While a simple threshold, as used by Unreal Engine
and the Unity engine [6, 13], would already help, this could
create an undesired pattern in pixels close to the threshold.
Instead, we use a function similar to that used in gamma cor-
rection to make darker areas less prevalent. The function for
this is shown in Equation 2, with py,,, being the new value, p
being the old value of the pixel, and o being the smoothing
factor. The equation is applied to each color channel of each
pixel separately, with the color range being a decimal number
between zero and one.

Psm = D° 2)

By using this equation, the brightest areas will remain
bright, and darker areas will become darker without becom-
ing black. The falloff rate is determined by the smoothing
factor o. A higher smoothing factor will assure that only the
brightest areas will remain bright. A smoothing factor of one
means there will be no smoothing, and a smoothing factor
lower than one will not create the desired effect. Figure 5
shows the resulting images for three different smoothing fac-
tors, as well as a plot for the function.

This function was chosen because it keeps pixels with
the maximum and minimum possible brightness at the same
value, while scaling the rest down. In a way it allows the user
to select how bright an area must be to give off a significant
amount of bloom. In Figure 5 (b) the whole sky will still give
off a significant amount of bloom, while in figure (d) only the
right part will seem significant, with the left part giving of a
more subtle glow.

To perform the convolution bloom, an appropriate kernel
should be provided. This is perhaps the most impactful pa-
rameter of the algorithm, as the kernel can change the im-
age drastically. To create the most realistic effect, the kernel
should simulate how a camera or the human eye captures a
single point of light in the center, similar to the Airy disk
shown in Figure 2 (a). Besides the choice of kernel, the ker-
nel structure should not be cropped too tightly, since a too
tight crop will create a bloom overlay with square edges. An

0.8 Psm

0.6
0.4
0.2

2
3 p

0.2 04 0.6 0.8 1
(a) A graph showing the values of (b) Image where o = 1 (i.e. no
pixels after smoothing. smoothing).

(c) Image where o = 2. (d) Image where o = 3.

Figure 5: A comparison of three different smoothing factors. Pixels
with a brightness of one and zero stay like that, while other pixels
get darker. The smoothing factors determines the falloff rate. A
smoothing factor of one means no smoothing is applied. Original
images by Daniel Pircdldboiu [3].

example of an appropriate kernel can be seen in Figure 2 (c).

Before the convolution is performed, the kernel can be re-
sized with a given x and y size. This allows for the spread
of the bloom to be altered easily without the help of outside
tools.

To perform the convolution, the values in the kernel should
be in the range of zero to one. Effectively, the kernel acts as
a multiplier. Each color channel in the image is convolved
separately with its corresponding channel in the kernel. Each
pixel is added to its local area weighted by the kernel. The
higher the value of pixel, the more it influences its neighbors.
A more formal definition can be found in Equation 3, with

g(x,y) being the new image, f(z,y) being the old picture, w
being the kernel, and a and b being the width and height of
the kernel image.

a b
gz y)= Y Y wlde,dy)f(x+de,y+dy) ()

de=—a dy=—>b

Given the versatility of the convolution bloom method, dif-
ferent effects can be achieved by changing the kernel. By us-
ing a colored kernel for example, the brightest areas can give
off a colored glow. The shape of the kernel can also be seen in
smaller highlights. Another interesting effect is a more hori-
zontal kernel, which creates horizontal glows similar to those
created by anamorphic lenses.

The Gaussian bloom alternative, as mentioned in Section
2.2, is also still possible within convolution bloom. A Gaus-
sian blur is simply a convolution using a Gaussian function as
kernel. In practice, the Gaussian function is sampled to create
akernel. A sampled kernel such as the one in Figure 2 (b) can
be provided to the algorithm.

3.3 Blending the Components

The final step in the process is to blend the tone mapped im-
age and bloom overlay. One final parameter is introduced,
the bloom intensity .. The new image is computed as shown
in Equation 4, again with each pixel and color channel sepa-
rately. p; represents the final computed pixel, p, the pixel in
the bloom overlay, and p; the pixel in the tone mapped image.
The bloom intensity should be positive for the desired bloom
effect.

Df = *pp+ Py (€]

3.4 Implementation Details

The most important implementation detail is the use of the
fast Fourier transform instead of the standard convolution de-
fined in Equation 3. This will greatly increase the efficiency
of the generation of the bloom overlay. The resulting bloom
overlay should also be the same size as the input image to
allow for the merging step.

4 Results

In this section, the images created using the technique de-
scribed in Section 3 are shown. We also show how the dif-
ferent parameters change the image. Appendix A shows the
settings used for each figure.

Adding the bloom overlay has an impact on different kinds
of high-dynamic-range images. Take for example Figure 6.
In this image the bloom effect highlights the areas close to
the horizon, and makes the difference between the blue and
orange parts of sky more prevalent. Compare this to Figure
7, a picture taken in a city at night. While the tone mapped
image already has some glow coming off bright areas, adding
the bloom overlay helps highlight these areas even more.

(a) Tone mapped (b) Bloom overlay

(c) Final result

Figure 6: The three steps of the algorithm, tone mapping, bloom,
and the fused result, applied to a mountain scene. Original images
by Daniel Pircilaboiu [3].

An example of a picture that does not work as well can be
seen in Figure 8. The image with the lowest exposure value,
(b), is very dark and primarily green. Setting the kernel size
to be small, like in (c), works well enough, but when setting
the size to be larger, like in (d), the window emits a green
glow that looks unappealing and unrealistic.

Changing the kernel is one of the most impactful changes
one can make to change the outcome. Figure 9 shows the
same image with different kernels. The kernels can be seen
in Figure 10. The first image shows a very wide but thin
kernel. This creates an effect similar to an anamorphic lens
used in cinema. The second image uses a cross shape as a
kernel, which can be seen in highlights. The third images
uses a red kernel, which creates red highlights around red-
tinted and bright areas. The final image uses three colored
squares as a kernel, which creates a sort of “glitching” effect.

A comparison of different smoothing factors is found in
Figure 11. The first image shows that the smoothing factor is
an important step, without it some images turn out with too
much bloom. The second image still has too much glow in
the sky and railing of the bridge. From the third picture on,
the results are as intended, with a different amount of glow.

A similar effect, but less extreme, can be seen when chang-
ing the bloom intensity «, as seen in Figure 12. This factor
does does not change where the bloom is applied, but how
bright the bloom is. In the first picture the bloom is still no-
ticeable, but more subtle than in the fourth picture.

(a) Tone mapped (b) Bloom overlay

(c) Final result

Figure 7: The three steps of the algorithm, tone mapping, bloom,
and the fused result, applied to a picture of the Jefferson National
Expansion Memorial. Original images by Kevin McCoy [4].

The performance of our Python implementation can be
seen in Table 1. Overall, it seems that the tone mapping and
bloom steps take a similar amount of time, with slight vari-
ations depending on the amount of different exposures. The
merging step seems mostly negligible.

5 Discussion

The discussion is structured as follows: Section 5.1 discusses
the creative control in the method, and how the different pa-
rameters affect it. In Section 5.2 our method will be compared
to existing bloom methods, and finally Section 5.3 shows
shortcomings of the algorithm and offers some suggestions
for future research.

5.1 Artistic Control

Changing the kernel can have major effects on the outcome
of the algorithm. Changing the shape creates highlights that
look like the kernel. Looking at Figure 9 (b) and (c) show this
well in small highlights such as the street lights. In generally
bright areas, such as the entrance to the courthouse, the shape
is less prevalent but the bloom is still appealing. One area
where the shaped kernels do not work well is detailed bright
areas, such as the sign on top of the building on the left side

(a) Tone mapped (b) Lowest EV Image

(c) With a small kernel Size (d) With a large kernel

Figure 8: A showcase of a scene where the algorithm does not work
as well. Original images by Axel Jacobs [18],

wxh x N K ™ | B M T
1440x1080 x 5 | 55x55 | 0.8 | 0.7 | 0.04 | 1.6
1440x1080 x 3 | 55x55 | 0.5 | 0.7 | 0.04 | 1.3
14401080 x 1 | 55x55 | 0.0 | 0.7 | 0.04 | 0.7
28002112 x4 | 55x55 | 23 | 2.7 | 0.16 | 5.5
2800%2112 x 4 | 5x5 27 128|017 | 5.7
4928x3264 x 3 | 55x55 | 6.1 | 7.6 | 0.41 | 14.0

Table 1: Computation times for the technique. All times are in sec-
onds. N is the amount of different exposures, K is the kernel size,
TM is the tone mapping part, B is the bloom overlay generation, M
is the merging step, and T is the final merged time. The average is
taken over 100 runs of our Python implementation. The total time
is the average of 100 runs of the whole algorithm, so might not be
equal to the sum of the averages of all parts.

of the picture. With the more standard kernel, like in Figure
7, there is a lot of overlap between kernels applied around the
bright areas, this way details are less noticeable.

The other two major parameters are the smoothing factor o
and the bloom intensity o. Both of these parameters change
the intensity of the bloom effect, but in different ways. The
smoothing factor determines how bright areas need to be to
have bloom applied, while the bloom intensity only makes
areas with bloom more or less bright.

The smoothing factor seems to have a de facto minimum
value which depends on the picture. The smoothing factors
in Figure 11 (a) is clearly not high enough, since the bloom
is applied even to areas that are not very bright. To a lesser
extent the same can be said about (b). Once this minimum
is found, the images are generally appealing, but do look dif-
ferent, allowing the photographer to choose what effect they
want.

(a) Wide and thin kernel (b) Cross shape kernel

(c) Red star kernel (d) Colored kernel
Figure 9: Images with different kernels applied, showcasing the ef-
fect the kernel has on the final result. All other settings remain the
same. Original images by Kevin McCoy [4].

(a) Kernel by (b) Cross kernel ~ (c) Red star (d) Multiple
Epic Games Inc. by Starline [19] kernel by colors kernel
[6] Starline [20]

Figure 10: Different kernels used in the results.

The bloom intensity does not suffer from the same issue.
All images in Figure 12 seem appealing, but there is a notice-
able difference. This difference is especially noticeable on the
right side, where the glow overlaps more with a higher bloom
intensity. An intensity of one seems to be a good starting
point for any image, from which the result can be tweaked.

5.2 Relation to Previous Works

The methods presented in this paper differ from those often
used previously in several ways. We compare four of our ad-
ditions, the use of the custom kernel, the use of the smooth-
ing factor instead of a threshold, the use of a higher dynamic
range, and the use of the image with the lowest EV, to alter-
ations of our algorithm with these features missing.

Two common elements used by other techniques for gen-
erating bloom are the use of Guassian blur and a threshold.
Figure 13 (c) shows a version of our method with the bloom
overlay changed to be a Gaussian blur of the smoothed ver-
sion of the lowest EV image. This glowing does look similar
to our method, showing that the Guassian blur is a good al-

@o=1 b)o=2 ©o=3

do=4 (e)o=5) o=6

Figure 11: A comparison of different smoothing factors. All other
settings remain the same.

ternative to the custom convolution kernel. However, there is
not as much option for customization, since the effects shown
in Figure 9 are not achievable. Another common tool that is
used to create bloom is the threshold. Figure 13 (d) shows a
version of our algorithm with the smoothing factor replaced
with a threshold. This creates some artifacts, for example the
unappealing red glow on the building on the right. This is
caused by values close to the threshold being cut off.

The other addition presented in this paper is the use of
high-dynamic-range tone mapping instead of a regular image.
Figure 13 (e) shows an image which only uses the medium ex-
posure value to generate the result. The bloom effect is still
present, but there are less details in the image. The reflections
in the water are not as clear, and the colors of the trees are not
as saturated. When using the tone mapped image to create
the bloom overlay, as seen in figure Figure 13 (f), these de-
tails are present. With a higher smoothing factor, this method
works for this scene. The same cannot be said about Figure
14. Even with an extremely high smoothing factor or a max-
imal threshold, the image looks unappealing. This is because
in the tone mapped image many of the pixels have the max-
imum value within this dynamic range. This shows us that
taking the image with the lowest exposure value does help
the algorithm, since it gives information on pixels above the
maximum value in the tone mapped image.

5.3 Shortcomings and Future Work

One result where the algorithm did not perform very well was
Figure 8. This image has one prevalent color in the lowest
EV image. This makes the glow too green if the kernel size
is set too large. The ideal result in this image might be a
white window, with glow around it. A good addition to the
algorithm could be a pre-processing step where certain areas
can be selected to “force” bloom.

One other potential issue with the technique is that the
bloom is added without discrimination. This means that even
bright areas that the photographer might not want highlighted
will still emit a glow. The image in Figure 12 for example

(@) a = 0.5 b)a=1.0

©a=1.5 (da=20

Figure 12: A comparison of different intensities. All other settings
remain the same.

(a) A tone mapped (b) An image (c) An image
image. generated using our generated using
method. Gaussian bloom.
(d) An image (e) An image without (f) An image which
generated with a tone mapping, using uses the tone mapped
threshold. the picture with an image to generate the

exposure value of zero. overlay.

Figure 13: The method described in this paper compared to different
alterations or existing techniques.

needed a high smoothing factor to ensure the sky did not get
the bloom effect as well. Similarly to the previous problem, a
solution for this could be a pre-processing step where certain
areas can be selected to exclude from the bloom generation.

One other shortcoming of the algorithm is the supposed
minimum value of the smoothing factor. Figure 11 (a) is
clearly not a pleasing image, and the same holds for most
other images when the smoothing factor is equal to one. Find-
ing this minimum value currently has to be done by trial and

(a) An image generated using the (b) An image which uses the tone
methods described in this paper. mapped to generate the bloom
overlay.

Figure 14: A case where generating the bloom overlay on the the
tone mapped image produces a bad result. Original images by Kevin
McCoy [4].

error. Determining a decent smoothing factor automatically,
to then be customized to the photographer’s liking, could be
an interesting addition to the algorithm.

The patterns around highly detailed bright areas are an-
other point of improvement. It is possible that this is a a prob-
lem with the kernels used. Researching what types of kernels
are good for convolution bloom could be a useful topic, not
just to extend the algorithm presented in this paper, but also
for other areas where bloom is applied, such as video games
and computer animation.

With regards of the performance of the implementation, a
16 MP image with three different exposure rates took just
over fourteen seconds. If the parameters for tone mapping
are not changed, that part will only need to be computed the
first time, reducing the total time for further runs to just under
eight seconds. This is an acceptable time to wait to make the
system interactive. Our implementation is unoptimized, and
could likely be sped up, possibly by making use of a GPU-
accelerated FFT implementation, such as [21].

6 Conclusions

We presented a technique for adding a glowing effect to tone
mapped high-dynamic-range images. The technique is based
on the fact that real-life lenses convolve light and make bright
areas emit a glow. The algorithm takes a set of images with
different exposures as input, and produces a tone mapped im-
age using Mertens et al.’s Exposure Fusion [10]. The tech-
nique then creates an overlay using a modern form of bloom
called convolution bloom. This overlay is generated by con-
volving a kernel with the image with the lowest exposure
value. For a realistic effect, this kernel should be similar to a
camera’s response to a single point of light.

The custom kernel allows for a great deal of customization.
Changing the kernel can greatly impact the look of the final
result, and can create different types of effects. Furthermore,
parameters are presented that add further control for the pho-
tographer, allowing them to chose how bright an area needs to
be to emit a significant amount of glow, how intense the glow
will be, and the spread of the glow. Overall, the technique is
versatile and allows the photographer to customize the effect.

Broader Impact and Responsible Research

When creating software it is always important to consider its
broader impact and ethical implications. While its intended
use is often creating art, software that alters or creates me-
dia does bring ethical concerns. Modified images can be used
for various illegal and otherwise unethical purposes, includ-
ing misleading information and propaganda [22]. While these
concerns are present in any image manipulation software, the
technique presented in this paper only serve a specific pur-
pose that might not be as susceptible to unethical manipula-
tion.

One other important consideration for research is its repro-
ducibility. If the paper is not reproducible, it is difficult for
others to extend on the paper and perform further research.
To help with this, the Python source code used to generate
the results will be available on GitHub', released under the
MIT license. Appendix A also shows a table of the settings
used in the images in the paper. Finally, most pictures used
in this paper are released under a Creative Commons license,
and all pictures taken by us will also be released under the
Creative Commons Attribution-ShareAlike 4.0 license. With
the source code, settings, and example images easily avail-
able, others will be able to reproduce the results of this paper.

Acknowledgments

We would like to thank Ruben Wiersma and Elmar Eisemann
for their support during the project. We would also like to
thank the academic communication skills lecturers and the re-
sponsible research coaches of the TU Delft. Thanks also goes
to Kevin McCoy and Axel Jacobs for sharing their images
with a Creative Commons license, and to Daniel Pircildboiu
for allowing us to use his images.

References

[1] G. Spencer, P. Shirley, K. Zimmerman, and D. P.
Greenberg, “Physically-based glare effects for digital
images,” in Proceedings of the 22nd annual conference
on Computer graphics and interactive techniques, ser.
SIGGRAPH ’95. New York, NY, USA: Association
for Computing Machinery, Sep. 1995, pp. 325-334.
[Online]. Available: http://doi.org/10.1145/218380.
218466

[2] C. Beckman, O. Nilsson, and L.-E. Paulsson, “In-
traocular light scattering in vision, artistic painting,
and photography,” Applied Optics, vol. 33, no. 21,
pp. 4749-4753, Jul. 1994, publisher: Optical So-
ciety of America. [Online]. Available: http://www.
osapublishing.org/ao/abstract.cfm?uri=ao-33-21-4749

[3] D. Pircélaboiu, 2013.

[4] K. McCoy, “The Jefferson National Expansion Memo-
rial, including the Gateway Arch and Old Court-
house, in St Louis, MO, USA. Taken at night as
part of a set of different exposures.” May 2008.

"https://github.com/ricardovogel/tonemap-and-bloom

(5]

(6]

(8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[Online]. Available: https://en.wikipedia.org/wiki/File:
StLouisArchMultExpEV-4.72.JPG

G. James and J. O’Rorke, “Real-Time Glow,” May
2004. [Online]. Available: https://www.gamasutra.com/
view/feature/130520/realtime_glow.php

Epic Games, Inc.,, “Bloom | Unreal Engine
Documentation.” [Online]. Available: https://docs.
unrealengine.com/en-US/RenderingAndGraphics/
PostProcessEffects/Bloom/index.html

F. Drago, K. Myszkowski, T. Annen, and N. Chiba,
“Adaptive Logarithmic Mapping For Displaying
High Contrast Scenes,” Computer Graphics Forum,
vol. 22, no. 3, pp. 419-426, 2003, _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-
8659.00689. [Online]. Available: http://onlinelibrary.
wiley.com/doi/abs/10.1111/1467-8659.00689

R. Fattal, D. Lischinski, and M. Werman, “Gradient
domain high dynamic range compression,” in Pro-
ceedings of the 29th annual conference on Computer
graphics and interactive techniques, ser. SIGGRAPH
’02. New York, NY, USA: Association for Computing
Machinery, Jul. 2002, pp. 249-256. [Online]. Available:
http://doi.org/10.1145/566570.566573

F. Durand and J. Dorsey, “Fast bilateral filtering
for the display of high-dynamic-range images,” ACM
Transactions on Graphics, vol. 21, no. 3, pp.
257-266, Jul. 2002. [Online]. Available: https:
//dl.acm.org/doi/10.1145/566654.566574

T. Mertens, J. Kautz, and F. Van Reeth, “Exposure Fu-
sion,” in 15th Pacific Conference on Computer Graph-
ics and Applications (PG’07), Oct. 2007, pp. 382-390,
iSSN: 1550-4085.

C. Sheppard, “MICROSCOPY | Overview,” in En-
cyclopedia of Modern Optics. Elsevier, 2005, pp.
61-69. [Online]. Available: https://linkinghub.elsevier.
com/retrieve/pii/B012369395000823X

SiriusB, “Airy disk and pattern from diffracted white
light (D65 spectrum). The color stimuli have been
calculated in the CIE 1931 color space and then
converted into SRGB. Apart from the sSRGB definition
there is a moderate additional gamma correction of
0.7 0.8 to enhance brightness in the outer rings.
This may cause a slight but acceptable distortion
in colours, however.” Apr. 2018. [Online]. Available:
https://en.wikipedia.org/wiki/File: Airy_disk_D65.png

Unity Software Inc., “Unity - Manual: Bloom,” 2017.

[Online]. Available: https://docs.unity3d.com/560/
Documentation/Manual/PostProcessing-Bloom.html

Epic Games, Inc., “Unreal Engine - Image-Based (FFT)
Convolution for Bloom,” 2017. [Online]. Available:
https://www.youtube.com/watch?v=SkJgopq-JQA

Composite Nation, “Oniric - A powerful non-
destructive glow generator for Adobe Photo-
shop CC 2018 and up.” [Online]. Available:

https://www.compositenation.com/plugins/oniric

http://doi.org/10.1145/218380.218466
http://doi.org/10.1145/218380.218466
http://www.osapublishing.org/ao/abstract.cfm?uri=ao-33-21-4749
http://www.osapublishing.org/ao/abstract.cfm?uri=ao-33-21-4749
https://github.com/ricardovogel/tonemap-and-bloom
https://en.wikipedia.org/wiki/File:StLouisArchMultExpEV-4.72.JPG
https://en.wikipedia.org/wiki/File:StLouisArchMultExpEV-4.72.JPG
https://www.gamasutra.com/view/feature/130520/realtime_glow.php
https://www.gamasutra.com/view/feature/130520/realtime_glow.php
https://docs.unrealengine.com/en-US/RenderingAndGraphics/PostProcessEffects/Bloom/index.html
https://docs.unrealengine.com/en-US/RenderingAndGraphics/PostProcessEffects/Bloom/index.html
https://docs.unrealengine.com/en-US/RenderingAndGraphics/PostProcessEffects/Bloom/index.html
http://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.00689
http://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.00689
http://doi.org/10.1145/566570.566573
https://dl.acm.org/doi/10.1145/566654.566574
https://dl.acm.org/doi/10.1145/566654.566574
https://linkinghub.elsevier.com/retrieve/pii/B012369395000823X
https://linkinghub.elsevier.com/retrieve/pii/B012369395000823X
https://en.wikipedia.org/wiki/File:Airy_disk_D65.png
https://docs.unity3d.com/560/Documentation/Manual/PostProcessing-Bloom.html
https://docs.unity3d.com/560/Documentation/Manual/PostProcessing-Bloom.html
https://www.youtube.com/watch?v=SkJgopq-JQA
https://www.compositenation.com/plugins/oniric

[16]

[17]

[18]

[19]

[20]

[21]

[22]

2000px Media Inc., “_USBloom | Photoshop Tu-
torials,” Nov. 2006, section: Photo Effects. [On-
line]. Available: https://www.photoshoptutorials.ws/
photoshop-tutorials/photo-effects/bloom/

V. Kovalcik, “Add a Bloom Effect to
Lights in Your Pictures,” Jan. 2017.
[Online]. Available: https://learn.zoner.com/
add-a-bloom-effect-to-lights-in-your-pictures/

A. Jacobs, “Open window with armchair and
manequin. Sample scene for HDRIL” Jan. 2006.
[Online]. Available: https://en.wikipedia.org/wiki/File:
HDRI_Sample_Scene_Window_-_01.jpg

starline, “White sparkles and lens flare
big set Free Vector,” 2021. [Online].
Auvailable: https://www.freepik.com/free-vector/

white-sparkles-lens-flare-big-set_12686002.htm

, “Set of transparent blue light streak
and lens flares Free Vector,” 2021. [Online].
Available: https://www.freepik.com/free-vector/
set-transparent-blue-light-streak-lens-flares_12686004.
htm

Nvidia Corporation, “cuFFT,” Jan. 2012. [Online].
Available: https://developer.nvidia.com/cufft

M. J. Shapter, “Image manipulation and the
question of ethics,” Journal of Audiovisual Me-
dia in Medicine, vol. 16, no. 3, pp. 130-
132, 1993, publisher: Taylor & Francis
_eprint: https://doi.org/10.3109/17453059309064840.
[Online]. Available: https://doi.org/10.3109/
17453059309064840

A Image settings

Figure Kernel | o « Kernel size
6&1(b) | 10(a) | 45 1.0 | 25,25
7&1(M) | 10() | 3.0 1.4 | 55,55
8 (c) 10(@ | 1.5 1.0 | 25,25
8 (d) 10(@ | 1.5 1.0 | 55,55
9 (a) 10(a) | 3.0 1.4 | 155,5
9 (b) 10(b) | 3.0 1.4 | 55,55
9 (c) 10(c) | 3.0 1.4 | 55,55
9(d) 10(@) | 3.0 1.4 | 55,55
11 10(a) | * 1.0 | 25,25
12 10(a) | 8.0 * 25,25
13 (b) 10(a) | 3.0 1.0 | 15,15
13 (c) T 3.0 1.0 | 15,15
13 (d) 10(@) |1 1.0 | 15,15
13 (e) 10(@) | 7.0 1.0 | 15,15
13 (f) 10 (a) | 10.0 1.0 | 15,15
14 (a) 10(a) | 3.0 1.4 | 55,55
14 (b) 10 (a) | 10000 | 1.4 | 55,55

Table 2: Settings for different figures. *: These settings are vari-
able, see the figures for their different values. t: This image uses
OpenCV’s Guassian blur instead of a convolution. I: This image
uses a threshold of 100 instead of a smoothing factor.

B Enlarged Figures

The following pages show larger versions of some figures
from the main paper that might be to small when printed.

https://www.photoshoptutorials.ws/photoshop-tutorials/photo-effects/bloom/
https://www.photoshoptutorials.ws/photoshop-tutorials/photo-effects/bloom/
https://learn.zoner.com/add-a-bloom-effect-to-lights-in-your-pictures/
https://learn.zoner.com/add-a-bloom-effect-to-lights-in-your-pictures/
https://en.wikipedia.org/wiki/File:HDRI_Sample_Scene_Window_-_01.jpg
https://en.wikipedia.org/wiki/File:HDRI_Sample_Scene_Window_-_01.jpg
https://www.freepik.com/free-vector/white-sparkles-lens-flare-big-set_12686002.htm
https://www.freepik.com/free-vector/white-sparkles-lens-flare-big-set_12686002.htm
https://www.freepik.com/free-vector/set-transparent-blue-light-streak-lens-flares_12686004.htm
https://www.freepik.com/free-vector/set-transparent-blue-light-streak-lens-flares_12686004.htm
https://www.freepik.com/free-vector/set-transparent-blue-light-streak-lens-flares_12686004.htm
https://developer.nvidia.com/cufft
https://doi.org/10.3109/17453059309064840
https://doi.org/10.3109/17453059309064840

(a) Wide and thin kernel (b) Cross shape kernel

(¢) Red star kernel (d) Colored kernel

Figure 9: Images with different kernels applied, showcasing the effect the kernel has on the final result. All other settings remain the same.
Original images by Kevin McCoy [4].

(@o=1 b)o=2 ©)o=3

(do=4 eo=5 fHo=6

Figure 11: A comparison of different smoothing factors. All other settings remain the same.

(@a=05 ®a=10

©a=15 da=20

Figure 12: A comparison of different intensities. All other settings remain the same.

(a) A tone mapped image. (b) An image generated using our method. (c) An image generated using Gaussian bloom.

(d) An image generated with a threshold. (e) An image without tone mapping, using the (f) image which uses the tone mapped image to
picture with an exposure value of zero. ~ generate the overlay.

Figure 13: The method described in this paper compared to different alterations or existing techniques.

(a) An image generated using the methods described in this paper. (b) An image which uses the tone mapped to generate the bloom
overlay.

Figure 14: A case where generating the bloom overlay on the the tone mapped image produces a bad result. Original images by Kevin McCoy

[4].

	Introduction
	Related Works
	High-dynamic-range Tone Mapping
	Bloom

	Method
	Tone Mapping
	Creating the Bloom Overlay
	Blending the Components
	Implementation Details

	Results
	Discussion
	Artistic Control
	Relation to Previous Works
	Shortcomings and Future Work

	Conclusions
	Image settings
	Enlarged Figures

