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Abstract
In order for the offshore wind industry to be competitive, the cost has to be driven down.
One of the major factors that contribute to the overall cost is the over-dimensioning of the
substructure. The response of the structure under various loading conditions can provide
valuable insight in the design phase so as to provide a structural design that is cost effective
yet reliable, and can withstand the loads that are considered to act on the structure.

The objective of the present thesis is the development of a 1D finite element model, that
allows for a dynamic analysis of an offshore wind turbine under the combined actions of
wind and wave or wind and ice. For this purpose, different models have been combined and
improved or extended. Through this model the importance of accounting for non-linear and
breaking waves, the effect of the kinematic stretching on the response and the manner in
which the misalignment of the load affects the response can be investigated.

A detailed design of the NREL-5MW offshore wind turbine supported by a monopile is sub-
jected to wind, wave and ice action. The aerodynamic action is evaluated through a model
valid for the above rated regime when pitch control is active, using a turbulent wind signal
resulting from the Kaimal spectrum. The hydrodynamic action is calculated either with the
Morison equation or the MacCamy and Fuchs equation with the use of either linear or non-
linear water particle kinematics. An approach towards the calculation of the load from a
breaking wave is considered accounting for the wave skewness and asymmetry during such
an event. The ice action is calculated through a model that evaluates the force while in the
crushing regime. The soil is represented with linear soil springs.

The structure’s response is investigated for all the loads separately at first. The next step
is the combined analysis. Aligned and misaligned cases are considered. Results show that
wind load is dominating the response in the aligned and misaligned wind and wave case re-
gardless of the method used to calculate the hydrodynamic load in the case of a small wave
height. In the case of a larger wave height, using Stokes theory and the Morison equation,
the hydrodynamic load is contributing to the resulting response. Concerning the ice loading,
the intermittent crushing and the continuous brittle crushing regimes occur for the turbine.
The response to the combined wind and ice action appears to be affected by both loads in all
examined cases.
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1
Introduction

Currently each of the forces acting on an offshore wind turbine can be addressed separately
with the models that have been developed by the Offshore and Dredging Engineering sec-
tion of TU Delft. The response to each environmental load can be evaluated separately and
then by means of superposition the response to the combined loads can be calculated. This
can lead to an underestimation of the loads that are actually exerted on the structure. This
underestimation can prove to be very important, especially in the case of fatigue analysis,
when the accumulated damage will be under-predicted in every step leading to serious mis-
calculations over the lifetime of the project. For this reason there is a need for a model that
integrates the actions and allows a combined analysis. This combined analysis will allow for
the investigation of cases such as the misalignment of wind and wave action, as well as wind
and ice action.

The thesis aims to create a user friendly, modular, numerical model that can be used to mon-
itor the response of the structure under various loading cases. In order to produce realistic
results all of the loading components are represented accurately, but making the necessary
assumptions. The hydrodynamics model considers three main areas of application based on
the wave height. Linear theory, Stokes second order theory, and an approach to describe a
breaking wave are used along with kinematic stretching to evaluate the hydrodynamic force
using the Morison or MacCamy and Fuchs equations. A simplified aero-servo elastic model
is employed to evaluate the aerodynamic load. Furthermore, a phenomenological model is
used to predict the ice-induced vibrations. Every component is combined into a finite element
model in MATLAB, using Timoshenko beam elements to describe the structure.

1.1. Integrated modeling of offshore wind turbines
The energy industry has been conducting a lot of research into the offshore wind sector,
as the vast resource of the offshore wind climate makes it an attractive form of renewable
energy. Currently a lot of integrated models used to analyze offshore wind turbines exist.
Universities, research institutions, and the industry have been working towards the cre-
ation of models capable of predicting the coupled dynamic loads and response of the system.
ADAMS2AD was developed by NREL and MSC Software and links the aerodynamics module
AeroDyn to MSC.ADAMS dynamics software, the hydrodynamic loading is evaluated with
the Morison equation using linear theory or a user defined routine [1]. ADCoS-Offshore,
developed by ADC and IWES, evaluates the hydrodynamic load as ADAMS2AD and allows
for different types of foundation types [1]. BLADED is a simulation software from DNV-GL,
hydrodynamic calculations are done using Airy theory or stream function and the Morison
equation along with a MacCamy and Fuchs correction. Additionally, it allows to import ad-
vanced hydrodynamics from other software packages such as WAMIT or AQWA, contains a
seismic module and allows for various foundation types as well [2]. FAST, developed by NREL
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2 1. Introduction

couples aerodynamic, hydrodynamic, control and electrical system and structural dynam-
ics to perform time domain simulations of a turbine [3]. SIMPACK has interfaces that can
link the Rotorblade Generator, which simulates flexible rotor blades, with the AeroDyn and
HydroDyn (only linear hydrodynamics and Morison equation) from NREL [4]. HAWC2, devel-
oped by DTU, allows for various foundation types, hydrodynamic load is based on Morison
equation, WAMIT or MacCamy and Fuchs equation. HAWC2 is for horizontal axis turbines
but has been extended for vertical axis as well (VAWT) [5], [1]. These models were compared
against each other when they were newly developed through the Offshore Code Comparison
Collaboration OC3 for IEA in 2010. The compared models performed quite well, however this
was attributed to the continuous adjustment and modification of the codes while the task
was ongoing [1]. These software packages are very sophisticated and complex, their capa-
bilities include aerodynamic loading, hydrodynamic loading, control system and structural
analysis, DNV-GL developed the IceFloe routine for NREL, that allows for ice load calcula-
tions and can be used with FAST, HAWC2, ADAMS and Bladed [6]. Another set of routines,
the IceDyn was developed the University of Michigan for NREL and the FAST framework and
can be used with other wind turbine aeroelastic simulation codes as well [7].

1.2. Thesis outline

• Chapter 2: The reference wind turbine: Key information on the used wind turbine and
substructure

• Chapter 3: Structural model: Basic formulas to construct the structural model: the
mass, damping and stiffness matrices

• Chapter 4: Hydrodynamic loading: Theories that were used to predict the water particle
kinematics

• Chapter 5: Soil structure interaction: Applied method and alternative advanced meth-
ods towards soil structure interaction

• Chapter 6: Ice structure interaction: Ice induced vibrations in a flexible offshore struc-
ture and the approach used to calculate the forces from the incoming ice sheet

• Chapter 7: Aerodynamic loading: Aerodynamic load types and the used model

• Chapter 8: Results

• Chapter 9: Concluding remarks and recommendations for further work



2
The reference wind turbine

The NREL 5-MW reference turbine was created by the National Renewable Energy Laboratory
(NREL) of the U.S. Department of Energy, as part of the research for offshore wind technol-
ogy. It is a realistic detailed design for a reasonably large MW turbine that can be deployed in
deep waters. The information on which the design is based on, is gathered from the Multibrid
M5000 and the REPower 5M wind turbines, as well as the WindPACT, RECOFF and DOWEC
projects.

Furthermore, as part of the UpWind project, support structure concepts have been proposed
for this turbine. The concepts include a monopile, a jacket and a floating alternative.

2.1. Turbine properties

An overview of the turbine properties of the NREL 5-MW, are listed in Table 2.1.

Property Value
Rotor, Hub diameter 126𝑚, 3𝑚
Hub height 90𝑚
Cut-in, Rated, Cut-out wind speed 3𝑚/𝑠, 11.4𝑚/𝑠, 25𝑚/𝑠
Cut-in, Rated rotor speed 6.9𝑟𝑝𝑚, 12.1𝑟𝑝𝑚
Rated tip speed 80𝑚/𝑠
Overhang, Shaft tilt, Precone 5𝑚, 5∘, 2.5∘
Rotor mass 110000𝑘𝑔
Nacelle mass 240000𝑘𝑔
Tower mass 347460𝑘𝑔
Coordinate location of overall CM -0.2𝑚, 0.0𝑚, 64.0𝑚

Table 2.1: Properties for the upwind 3-bladed NREL 5-MW wind turbine [8].

2.2. Rotor nacelle assembly properties

The NREL-5MW offshore wind turbine is a three bladed turbine. The properties of the blades
are based on the 62.6𝑚 long LM Glasfiber blade. The structural properties are listed in Table
2.2.
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4 2. The reference wind turbine

Property Value
Length (w.r.t. root along preconed axis 61.5𝑚
Mass scaling factor 4.536%
Overall (integrated) mass 17740𝑘𝑔
Second mass moment of inertia (w.r.t. root) 11776047𝑘𝑔𝑚ኼ
First mass moment of inertia (w.r.t. root) 363231𝑘𝑔𝑚
CM location (w.r.t. root along preconed axis) 20.475𝑚
Structural damping ratio (all modes) 0.477465%

Table 2.2: Undistributed blade structural properties [8].

The hub is located 5𝑚 upwind of the tower centerline, at 90𝑚 above the seabed. A summary
of the hub and nacelle properties is listed in Table 2.3.

Property Value
Elevation of yaw bearing above ground 87.6𝑚
Vertical distance along yaw axis from yaw bearing to shaft 1.96256𝑚
Distance along shaft from hub center to yaw axis 5.01910𝑚
Distance along shaft from hub center to main bearing 1.912 𝑚
Hub mass 56780𝑘𝑔
Hub inertia about low-speed shaft 115926𝑘𝑔𝑚ኼ
Nacelle mass 240000𝑘𝑔
Nacelle inertia about yaw axis 2607890𝑘𝑔𝑚ኼ
Nacelle CM location downwind of yaw axis 1.9𝑚
Nacelle CM location above yaw bearing 1.75𝑚 %
Equivalent nacelle-yaw-actuator linear spring constant 9028320000𝑁𝑚/𝑟𝑎𝑑
Equivalent nacelle-yaw-actuator linear damping constant 19160000𝑁𝑚𝑠/𝑟𝑎𝑑
Nominal nacelle-yaw rate 0.3∘/𝑠

Table 2.3: Nacelle and hub properties [8].

Additional information can be found in [8].

2.3. Tower and monopile properties
A summary of the tower and monopile properties can be found in Tables 2.4 and 2.5.

Property Value
Height above ground 87.6𝑚
Diameter top 4.0𝑚
Diameter bottom 5.6𝑚
Wall thickness top 20𝑚𝑚
Wall thickness bottom 32𝑚𝑚
Overall (integrated) mass 347460𝑘𝑔
CM location (w.r.t. ground along tower centerline) 38.234𝑚
Structural damping ratio (all modes) 1.0 %

Table 2.4: Tower properties [8], [9].

One of the work packages of the UpWind project included the design of substructure concepts
for the NREL 5-MW. These were a monopile, a jacket and a floating option. According to
[10] the vast majority of the installed offshore wind turbines are supported by a monopile
(approximately 81%). Additionally, monopiles appear to still be themost favorable option with
a total of 493 monopiles being installed in 2016 in Europe compared to 67 jacket installations
as it is shown in Figure 2.1. For this reason the monopile proposed in [9] is selected as the
foundation type.
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Figure 2.1: Foundation types installed in 2016 (in units) [10].

Property Value
Interface level 14.76𝑚 above MSL
Pile top elevation 5.0𝑚 above MSL
Diameter monopile 5.5𝑚
Diameter transition piece bottom 5.9𝑚
Overlap length of transition piece and monopile 8.75𝑚
CM location (w.r.t. ground along tower centerline) 38.234𝑚
Structural damping ratio (all modes) 1.0 %

Table 2.5: Transition piece and monopile properties [8], [9].





3
Structural model

3.1. Introduction
The structure is mainly loaded laterally by the aerodynamic, hydrodynamic loading, ice ac-
tion and soil action. The beam is a structural element that is loaded mainly laterally with
respect to its axis. Consequently, the substructure of the offshore wind turbine is modeled
as a beam.

The Timoshenko beam theory is considered, accounting for shear deformations and rota-
tional bending stiffness, to obtain the mass and stiffness matrices and eventually solve the
equation of motion. The deformed Timoshenko beam element is illustrated in Figure 3.1,
showing the stretching, rotation and shear strain of a typical point.

In order to solve the equation of motion and extract the response of the structure over time,
when subjected to environmental loading, a numerical model in MATLAB is used. In this
model the structure is discretized using finite elements and a qubic shape function. The
set of differential equations are solved in the time domain based on an explicit Runge-Kutta
formula.

Figure 3.1: Deformation of a Timoshenko beam element [11].

3.2. Mass matrix
The derivation of the mass and stiffness matrices is provided in [12]. The translational mass
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matrix of an element is a 4x4 matrix, for each element, given by the following expression:
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𝜌𝐴𝑙
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(3.1)
The rotary inertia mass matrix of an element is also a 4x4 matrix, for each element, given by
the following expression:
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(3.2)

The radius of gyration of the cross section given by:

𝑟፠ =√
𝐼
𝐴 (3.3)

Φ is a dimensionless parameter, as it approaches zero the Timoshenko model reduces to the
Euler-Bernoulli model, it is given by:

Φ = 12𝐸𝐼𝜅
𝐺𝐴𝑙ኼ = 24𝜅(1 + 𝜈)(𝑟፠𝑙 )

ኼ (3.4)

In the case of a hollow circular cross section 𝜅 is given by:

𝜅 = 6(𝑟ኼ።፧ + 𝑟ኼ፨፮፭)(1 + 𝜈)ኼ
7𝑟ኾ።፧ + 34𝑟ኼ።፧𝑟ኼ፨፮፭ + 7𝑟ኾ፨፮፭ + 𝜈(12𝑟ኾ።፧ + 48𝑟ኼ።፧𝑟ኼ፨፮፭ + 12𝑟ኾ፨፮፭) + 𝜈ኼ(4𝑟ኾ።፧ + 16𝑟ኼ።፧𝑟ኼ፨፮፭ + 4𝑟ኾ፨፮፭)

(3.5)

The total mass matrix of each element results from the summation of Equations 3.1 and 3.2.

3.3. Stiffness matrix
The bending stiffness matrix of an element is given as follows:

𝐾 =
𝐸𝐼

𝑙ኽ(1 + Φ)ኼ
⎡
⎢
⎢
⎣

12 6𝑙 −12 6𝑙
6𝑙 4𝑙ኼ + 2Φ𝑙ኼ + Φኼ𝑙ኼ −6𝑙 2𝑙ኼ − 2Φ𝑙ኼ − Φኼ𝑙ኼ
−12 −6𝑙 12 −6𝑙
6𝑙 2𝑙ኼ − 2Φ𝑙ኼ − Φኼ𝑙ኼ −6𝑙 4𝑙ኼ + 2Φ𝑙ኼ + Φኼ𝑙ኼ

⎤
⎥
⎥
⎦

(3.6)

The RNA assembly introduces a significant compressive load on the substructure, to account
for this effect on the stiffness as well the compressive load introduced in each element by the
weight of the previous one, the geometric matrix of each element has to be taken into account:

𝐾፠ =
𝑃

𝑙(1 + Φ)ኼ
⎡
⎢
⎢
⎢
⎣

ዀ
 + 2Φ +Φኼ ፥

ኻኺ −ዀ
 − 2Φ −Φኼ ፥

ኻኺ
፥
ኻኺ

ኼ፥Ꮄ
ኻ + ጓ፥Ꮄ

ዀ + ጓᎴ፥Ꮄ
ኻኼ − ፥

ኻኺ − ፥Ꮄ
ኽኺ − ጓ፥Ꮄ

ዀ − ጓᎴ፥Ꮄ
ኻኼ

−ዀ
 − 2Φ −Φኼ − ፥

ኻኺ
ዀ
 + 2Φ +Φኼ ፥

ኻኺ
፥
ኻኺ − ፥Ꮄ

ኽኺ − ጓ፥Ꮄ
ዀ − ጓᎴ፥Ꮄ

ኻኼ − ፥
ኻኺ

ኼ፥Ꮄ
ኻ + ጓ፥Ꮄ

ዀ + ጓᎴ፥Ꮄ
ኻኼ

⎤
⎥
⎥
⎥
⎦

(3.7)

3.4. Damping matrix
The damping, represents the means by which the system loses energy which consequently
results in the reduction of the structure’s response. Unlike the mass and stiffness of the sys-
tem, the damping is difficult to define. Knowledge on the assessment of damping is generally
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limited. A decision can be made between applying the same modal damping to all adopted
modes, or proportional damping that increases with increasing mode number. In this study
proportional damping is used.

Mass participation decreases as the mode index number increases [13]. The natural fre-
quency is given as:

𝜔፧ =√
𝐾
𝑀 (3.8)

thus, with the mass decreasing, the frequency increases, and this is generally observed. The
modal damping ratio is:

𝜉 = 𝐶
𝐶

(3.9)

Based on the above this ratio increases with increasing modes. Rayleigh damping, is propor-
tional to a linear combination of mass and stiffness.

𝐶 = 𝛼ኺ𝑀 + 𝛼ኻ𝐾 (3.10)

where, 𝛼ኺ and 𝛼ኻ are unknown constants. These constants are defined based on two values
of the damping ratio, that are presumed known, as follows:

𝑎ኺ =
2𝜔ኻ𝜔ኼ(𝜉ኻ𝜔ኼ − 𝜉ኼ𝜔ኻ)

𝜔ኼኼ − 𝜔ኼኻ
(3.11)

𝑎ኻ =
(𝜉ኼ𝜔ኼ − 𝜉ኻ𝜔ኻ)
𝜔ኼኼ − 𝜔ኼኻ

(3.12)

The indexes 1 and 2 denote the two modes where the damping ratio is known. The modal
damping ratio then, takes the form:

𝜉። =
𝑎ኺ
2𝜔።

+ 𝑎ኻ𝜔።2 (3.13)

which is increasing with increasing frequency.

It should be noted that the presented matrices correspond to one plane, the derivation of
the shape functions, that are necessary for the finite element discretization of the beam, for
the second plane is presented in [14].





4
Hydrodynamic loading

4.1. Introduction
Bottom founded offshore structures are subjected to significant hydrodynamic loading. In
the context of the present thesis three different areas are examined with respect to the hydro-
dynamic loading. The distinction is made based on the wave height. In each area a different
theory is used to calculate the water particle hydrodynamics:

1. Linear theory (Airy wave theory), for small wave heights

2. Higher order theory (Stokes 2፧፝ order theory), for larger wave heights

3. Linear theory with skewness and asymmetry, for breaking waves

In order to determine the loads exerted on the turbine in the two first areas the Morison equa-
tion or the MacCamy & Fuchs equation can be used, while in the last the force is calculated
using the Morison equation, according to DNV provisions. In Figure 4.1 the areas where each
theory can be applied can be seen. A combination of the water depth, wave height and period
define the limits.

Figure 4.1: Water wave theories [15].

11
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4.2. Water particle kinematics
In the following subsections descriptions for the theories that are used to evaluate the hy-
drodynamic loading can be found.

4.2.1. Airy wave theory for small wave heights

In the linear wave theory the kinematics are derived from the velocity potential. More specif-
ically, the horizontal water particle velocity is the derivative of the velocity potential function
in the horizontal direction and by definition the acceleration is the time derivative of the
velocity. Assuming a sinusoidal wave, the surface elevation profile is given by:

𝜂(𝑥, 𝑡) = 𝛼𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡 + 𝜙) (4.1)

The water particle velocity and acceleration follow from:

𝑢፱(𝑥, 𝑡) = −𝛼𝜔
𝑐𝑜𝑠ℎ(𝑘𝑧)
𝑠𝑖𝑛ℎ(𝑘𝑑)𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡 + 𝜙) (4.2)

𝑎፱(𝑥, 𝑡) = −𝛼𝜔ኼ
𝑐𝑜𝑠ℎ(𝑘𝑧)
𝑠𝑖𝑛ℎ(𝑘𝑑)𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡 + 𝜙) (4.3)

In the linear theory the superposition principle can be used. According to this the spec-
trum can be seen as the superposition of many propagating harmonic waves, each with its
own amplitude, frequency, wave length, direction and phase (the random-phase/amplitude
model) [16]. This will result in an irregular surface elevation.

For example, for the case of a wave height of 0.5𝑚 with a period of 22𝑠, according to Fig-
ure 4.1 linear theory can be used. Using linear theory the resulting surface elevation will be
a regular, sinusoidal profile, as it is shown in Figure 4.4. However, if one makes use of the
superposition principle the result will be irregular and closer to an actual sea state.

The first step to this end, is to create the spectrum. The spectrum, when multiplied with the
density and the gravitational acceleration results in the energy that is contained in the sig-
nal. Different spectra can be found in literature, most commonly in engineering applications
either the JONSWAP or the two parameter Pierson-Moskowitz (PM) spectra are used. Both
require a wave height and a period, however for the definition of the JONSWAP spectrum
the peakedness of the spectrum is required, which is defined based on three parameters.
This peakedness causes the difference in the distribution of energy between the different fre-
quency components. The JONSWAP spectrum is a modification of the PM spectrum, if the
peak enhancement factor, 𝛾, is equal to 1 then both spectra are the same. In this thesis the
PM spectrum is used.

𝑆ፏፌ(𝜔) =
𝐴ፏፌ
𝜔 𝑒

Ꮍᐹᑇᑄ
ᒞᎶ (4.4)

with,

𝐴ፏፌ = 487
𝐻ኼ፬
𝑇ኾፏ

and 𝐵ፏፌ =
1949
𝑇ኾፏ

(4.5)

In order to create the spectrum a choice has to be made regarding the frequency components.
With increasing number of harmonic components there is a better distribution of the energy
between them, while a few frequency components will result in a more rough representation
this effect is seen in Figures 4.2 and 4.3. The choice of 200 harmonic components produces
a smoother curve and the difference between the successive frequencies is smaller. With
200 components and the same wave height, an irregular surface profile is created (Figure
4.5), the graph is noisy and completely different than the regular profile. Using the same
principle both velocities and accelerations can be produced based on a number of harmonic
components. Since different phases are used for the components, the elevation is not zero
at t=0𝑠.
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Figure 4.2: PM spectrum for ፇᑊ=0.5, ፓᑇ=15.96፦, ፝=25፦ and 50 harmonic components.

Figure 4.3: PM spectrum for ፇᑊ=0.5, ፓᑇ=15.96፬, ፝=25፦ and 200 harmonic components.

Figure 4.4: Surface elevation for ፇᑊ=0.5, ፓᑇ=15.96፬ and ፝=25፦.
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Figure 4.5: Surface elevation for ፇᑊ=0.5, ፓᑇ=15.96፦, ፝=25፦ using the PM spectrum and 200 harmonic components.

4.2.2. Stokes finite amplitude wave theory for larger wave heights

This theory is valid for ፇ
፝ << (𝑘𝑑)ኼ, for 𝑘𝑑 < 1 and ፇ

ፋ << 1. It is generally not applicable in
shallow water due to these conditions [17]. In this theory the velocity potential considers a
second order term as well:

Φፖ = 𝜖Φፖኻ + 𝜖ኼΦፖኼ (4.6)
The surface elevation profile is given by:

𝜂(𝑥, 𝑡) = 𝛼𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡 + 𝜙) + 𝛼𝑘4
𝑐𝑜𝑠ℎ(𝑘𝑑)
𝑠𝑖𝑛ℎኽ(𝑘𝑑)(2 + 𝑐𝑜𝑠ℎ(2𝑘𝑑))𝑐𝑜𝑠(2(𝑘𝑥 − 𝜔𝑡 + 𝜙)) (4.7)

The horizontal water particle kinematics are given by:

𝑢፱(𝑥, 𝑡) = 𝛼𝜔
𝑐𝑜𝑠ℎ(𝑘𝑧)
𝑠𝑖𝑛ℎ(𝑘𝑑)𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡 + 𝜙) + 3𝑘𝛼

ኼ𝜔 𝑐𝑜𝑠ℎ(2𝑘𝑧)4𝑠𝑖𝑛ℎኾ(𝑘𝑑)𝑐𝑜𝑠(2(𝑘𝑥 − 𝜔𝑡 + 𝜙)) (4.8)

𝑎፱(𝑥, 𝑡) = 𝛼𝜔ኼ
𝑐𝑜𝑠ℎ(𝑘𝑧)
𝑠𝑖𝑛ℎ(𝑘𝑑)𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡 + 𝜙) + 3𝑘𝛼

ኼ𝜔ኼ 𝑐𝑜𝑠ℎ(2𝑘𝑧)2𝑠𝑖𝑛ℎኾ(𝑘𝑑)𝑠𝑖𝑛(2(𝑘𝑥 − 𝜔𝑡 + 𝜙)) (4.9)

The superposition principle cannot be applied in this case due to the non-linear nature of the
equations. The surface profile is illustrated in Figure 4.6 for the a wave height 𝐻ፒ=2.5𝑚 and
period 𝑇ፏ=22.58𝑠 using both, the linear theory and the Stokes 2፧፝ order theory. According
to Figure 4.1 this set is suitable for the use of the Stokes 2፧፝ order theory:

𝐻
𝑔𝑇ኼ = 0.0005 and

𝑑
𝑔𝑇ኼ = 0.005 (4.10)

Figure 4.6: Surface elevation for ፇᑊ=2.5፦, ፓᑇ=22.58፬ and ፝=25፦.
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The Stokes wave has a sharper wave crest and a flatter through compared to those of the
linear wave as a result of the addition of the second order correction term to the linear wave.
As both harmonics travel at the same speed and the wave height remains the same, there is
no evolution of the surface profile, it remains the same. Furthermore, the crests are located
higher than the wave amplitude.

These differences in the surface profile, cause a difference in the underlying water column
and the depth that is used to calculate the velocities and accelerations and later on the hy-
drodynamic forces exerted on the structure. As expected the profile of the velocity follows
that of the surface elevation, flatter troughs and sharper crests, this is shown in Figure 4.7.

Figure 4.7: Velocity profile for ፇᑊ=2.5፦, ፓᑇ=22.58፬ and ፝=25፦.

4.2.3. Non-linear orbital velocity for breaking waves

The depth-induced breaking of the waves is a highly non-linear phenomenon and it is not well
understood yet. The above theories are not applicable to a breaking wave. An assumption is
made in this case to account for the skewness and asymmetry that characterizes the wave
shape. The following expression proposed in [18] is used to calculate the horizontal water
particle velocity:

𝑢፱(𝑥, 𝑡) = 𝑈፰√1 − 𝑟ኼ
𝑠𝑖𝑛(𝜔𝑡)+ ፫፬።፧᎕

ኻዄ√ኻዅ፫Ꮄ
1 − 𝑟𝑐𝑜𝑠(𝜔𝑡 + 𝜃) (4.11)

with 𝑈፰ being the water particle velocity as described in the linear theory. The values of r
and 𝜃 determine the wave shape, accounting for skewness and asymmetry. These can be
found through a parametrization as a function of the Ursell number [18]. The Ursell number
is a dimensionless number that describes the non-linearity of a wave and is given by [16]:

𝑈 = 𝐻𝐿ኼ
𝑑ኽ (4.12)

The values of r and 𝜃 are found through the total non-linearity B and phase 𝜓.

𝐵 = 𝑝ኻ +
𝑝ኼ − 𝑝ኻ

1 + 𝑒
ᑡᎵᎽᑝᑠᑘᑌ

ᑡᎶ
(4.13)

𝜓 = −90∘ + 90∘𝑡𝑎𝑛ℎ( 𝑝𝑈፩Ꮈ ) (4.14)

Using the values, as suggested in [18] with pኻ=0:
pኼ=0.857±0.016, pኽ=-0.471±0.025, pኾ=0.297±0.021, p=0.815±0.055, pዀ=0.672±0.073.
Once the values of B and 𝜓 are defined, the non linearity parameter r and the phase 𝜃 are
found through the following equations.

𝐵 = 3𝑏
2(1 − 𝑏ኼ) (4.15)
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𝑏 = 𝑟
1 +√1 − 𝑟ኼ

(4.16)

𝜃 = −𝜓 − 𝜋2 (4.17)

Figure 4.8: Velocity profile for a breaking wave with ፇ=20፦, ፓ=32፬ and ፝=25፦, for 21 different sets of parameters

The velocity is plotted for 21 values in Figure 4.8 from the minimum until the maximum
that each of the parameters can have, with a step of the corresponding deviation divided
by ten. The difference in the values of parameters appears to have little influence in the
velocity profile. More specifically, the term that is multiplied with the linear velocity was
evaluated over this range of parameters separately, the skewness parameter varies only by
2% between minimum and maximum values. The multiplying term is time dependent, over
the first 8 seconds the difference in the term drops from 9% to 1% . The velocity profile is
more influenced in the case of a smaller wave height, yet not significantly. However, this
formula will be used only in the case of the breaking waves, which means in general large
wave heights. As there is little influence the mean values of the parameters will be used. The
water particle velocity, for a wave that is on the breaking limit, is calculated using the three
aforementioned theories, the result is illustrated in Figure 4.9.

Figure 4.9: Velocity profile for a breaking wave with ፇ=20፦, ፓ=32፬ and ፝=25፦.

As mentioned in Subsection 4.2.2 the Stokes theory is strictly limited. In this case these
conditions are not met and the profile deviates a lot from the previously flatter troughs and
sharper crests. Within one wave period the profile reaches 3 maximum values and 2 min-
imum values instead of 2 and 1 respectively. The velocity profile given by [18], considers,
through r and 𝜃 the changes in the wave shape. This is assumed to account for the breaking
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of the wave in an indirect manner. The surface is also assumed to follow this skewed and
asymmetric profile.

4.3. Kinematic stretching
The equations for linear waves satisfy the non-linear boundary condition on the mean water
level and not at the free surface, making the theory valid for very small wave heights. As
a result the water particle kinematics can be predicted from the seabed up to the mean
water level, kinematics at the crests and troughs cannot be predicted. In order to predict
the kinematics above and below the mean sea level, a wave profile stretching method has to
be used. Wheeler stretching is widely used to evaluate the velocities and accelerations. Is is
a linear stretching (in crests) and compression (in troughs) of the water column. It is done
using this formula:

𝑧፧፞፰ = 𝑑
𝑑 + 𝑧
𝑑 + 𝜂 − 𝑑 (4.18)

Figure 4.10: Stretching of the surface profile [19].

The Wheeler stretching method was developed for the case of linear waves (Airy). In the case
of a non-linear surface profile the Wheeler method can be used and the non-linear kinematics
components are added as if they are independent, then the horizontal velocities and acceler-
ations can be modeled up to the free surface [19].

In the case of the Airy waves this method underestimates the velocity at the free surface.
In the case of a second order surface elevation, as the Stokes, the method underestimates
the velocity around z=0𝑚 and at lower elevations [19].

4.4. Hydrodynamic force
There are different methods to calculate the hydrodynamic force acting on an offshore struc-
ture. The application of each method depends on the wave height H, the cross-sectional
dimension d and the wave length L. The importance of viscous and diffraction effects is what
defines these areas of application. When the value of ፇ

ኼ፝ becomes large, there is flow sepa-
ration and loss of energy due to the vortices that are formed. Additionally, when ኼ፝

ፋ < 1 it
is considered that the wave field is not influenced by the structure’s presence. The suitable
methods for these areas are:

1. Morison equation, when diffraction effects can be neglected

2. Diffraction theory, when viscous effects can be neglected

3. Either Morison equation or diffraction theory, for small values of ፇ
ኼ፝ and ኼ፝

ፋ
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4. Navier-Stokes equations, when neither diffraction effects nor viscous effects can be ne-
glected

Figure 4.11: Regions of applicability [20].

For the calculation of the hydrodynamic actions acting on slender offshore structures, in
most engineering applications the Morison equation is used. If the dimensions of the struc-
ture are small with respect to the wave length, the diffraction effects can be neglected and
the Morison equation results in a valid engineering solution. However, when the structure’s
dimensions are larger and in the order of the wave length, then viscous effects are negligible
and the most accurate solution is given by the diffraction theory.

In [21] a classification of calculation methods for wave actions is presented. Assuming a
real fluid, there is a division on whether the viscous effects on pressures are negligible or
not, if they are by following approximate theoretical solutions and assuming potential the-
ory the force is calculated with the diffraction theory. If not, the force is calculated with the
Morison equation.

4.4.1. Morison equation

The Morison equation, developed in 1950, provides a solution to the calculation of the hy-
drodynamic force exerted on a vertical cylinder that is submerged and extends above the free
surface. The basic assumption is that the structure’s presence does not influence the wave
field around it. It consists of two parts, the inertia part and the drag part. The first is pro-
portional to the horizontal acceleration of the water particles and the second is proportional
to the square of the horizontal velocity of the water particles, taking into consideration the
sign of the velocity. The expression below is for a static structure, if the structure moves the
relative velocity and acceleration must be considered. The change in the drag force can lead
to hydrodynamic damping. The inertia part is then divided in the Froude-Krylov force and
the added mass force, as Cፌ can be rewritten as Cፌ=1+Cᎎ. The horizontal hydrodynamic
force is given as:

𝐹(𝑡) = 𝐶ፌ𝜌ፖ
𝜋𝐷ኼ
4 𝑎፱(𝑡) +

1
2𝐶ፃ𝜌ፖ𝐷𝑢፱(𝑡)|𝑢፱(𝑡)| (4.19)

This expression provides the force per meter length of the cylinder. Another limitation of
the Morison equation is the uncertainty of the inertia and drag coefficients, Cፌ and Cፃ re-
spectively. These were initially defined experimentally by Morison by measuring the forces
on the structure and the shape of the wave and calculating the velocities and accelerations
using linear theory. In this manner, at times of zero velocity and zero acceleration the inertia
and drag coefficients were defined respectively. From the limited number of experiments the
following range was given [22]:

Cፌ=1.508 ± 0.197
Cፃ=1.626 ± 0.414
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with the Reynolds number Re=0.22 × 10ኾ − 1.11 × 10ኾ. Keulegan and Carpenter studied the-
oretically and experimentally the forces in an oscillatory flow [23]. In their study the two
coefficients appeared to change their value within the wave period, they concluded in relat-
ing the mean values of Cፌ and Cፃ with the Keulegan-Carpenter number:

𝐾ፂ =
𝑢፦𝑇
𝐷 (4.20)

They present the coefficients as a function of the Kፂ number, which is related with the flow
separation and vortex formation. For a small value there is no separation, for large values
(Kፂ≈ 110) Kármán vortices are developed. No influence of the Reynolds number was noticed,
which was of the order of 10ኾ. Several different studies can be found in literature, Trasher
and Aagaard [24], Evans [25], Dean and Aagaard [26], Kim and Hibbard [27], Chakrabarti et
al [28] have all tried to relate the coefficients with the Reynolds number or the Kፂ number.
There is however, a lot of scatter in the results and no certain conclusion is drawn. Addi-
tionally, there is the issue of the different wave theories used and the limited range of the
parameters studied (Re, Kፂ). For this reason the application of these coefficients to a differ-
ent case, with different environmental data and structural dimensions may be invalid. In
the experimental studies of Sarpkaya [29], [30] large ranges in the Reynolds and Kፂ numbers
were used, additionally the water particle kinematics were measured and not calculated, to
eliminate the problem of the different wave theories and possibly steady currents affecting
the flow.

Figure 4.12: Keulegan-Carpenter’s drag coefficient as functions of Kᐺ for 12 values of ᎏ  ᑉᑖ
ᑂᐺ [31].

Figure 4.13: Keulegan-Carpenter’s inertia coefficient as functions of Kᐺ for 12 values of ᎏ  ᑉᑖ
ᑂᐺ [31].

The values of Cፌ and Cፃ to this day, present a lot of uncertainty.

4.4.2. Diffraction theory

The Morison equation is considered to be valid for ፃ
ፋ < 0.2, above this limit diffraction effects
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should not be neglected and diffraction theory must be used. The initial analytical solution
was given by MacCamy & Fuchs in 1954 with the use of the Bessel functions. The study
is for one cylinder. Additional studies have been conducted, Spring and Monkmeyer [32]
described an analytical method for an arbitrary number of cylinders and presented results
for two cylinders, Chakrabarti [33] used their method for more than two cylinders, for ge-
ometries more general than the case of the cylinder, Garrison [34] and Garrison and Stacey
[35] presented a linear theory based on the Green functions, Raman et al [36] developed a
second order theory for a cylinder, Yue et al [37] presented a hybrid finite element method.
The horizontal force exerted on the pile according to MacCamy & Fuchs is given by:

𝐹(𝑡) = 2𝜌ፖ𝑔𝐻
𝑘

𝑐𝑜𝑠ℎ(𝑘𝑧)
𝑐𝑜𝑠ℎ(𝑘𝑑)𝐴፝።፟፟(

𝐷
𝐿 )𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡 + 𝜙 − 𝛼፝።፟፟) (4.21)

where

𝑡𝑎𝑛𝛼፝።፟፟ =
𝐽ᖣኻ(𝜋ፃፋ )
𝑌ᖣኻ(𝜋ፃፋ )

(4.22)

𝐴፝።፟፟(
𝐷
𝐿 ) =

1

√𝐽ᖣኼኻ (𝜋ፃፋ ) + 𝑌ᖣኼኻ (𝜋ፃፋ )
(4.23)

assuming a wave of the form given in Equation 4.1. This equation was developed using linear
theory, assuming a cylindrical shape. If the geometry deviates a lot from the cylindical shape
an example would be the presence of conically shaped pieces in the wave splash zone that
are used when ice is present to force the ice sheet to break in bending and not in crushing
to reduce the exerted load, then the formula may not produce accurate results. According to
[38], for the special case of small pile diameters, the accelerative force of the Morison equa-
tion can be identified with the MacCamy & Fuchs force, provided that the 𝐶ጊ coefficient is
taken as 2.

The forces calculated with diffraction theory might exceed those calculated with the Mori-
son equation, for reasons such as:

• the dependence of forces resulting from diffraction theory on the order of the theory
used

• the values of Cፌ and Cፃ present uncertainties

forces and moments resulting from these two methods should not be compared [31].

4.4.3. Breaking wave theory
Momentum theory

In classical mechanics, momentum is the product of the mass and the velocity of a body.
The wave momentum is the product of the mass and the water particle velocity. The rate of
change of the momentum, i.e. the momentum flux, is the force contained in the specified
volume of water. The horizontal momentum is given by [16]:

𝑞፱ = (∫
᎔

ዅ፝
𝜌ፖ𝑢፱𝑑𝑧)Δ𝑥Δ𝑦 (4.24)

Which becomes:

𝑄፱ = ∫
᎔

ዅ፝
𝜌ፖ𝑢፱𝑑𝑧 (4.25)

averaged over time and per unit surface area, u፱ is the one described in Equation 4.11. The
calculation of the integral is as follows:

∫
᎔

ዅ፝
𝜌ፖ𝑢፱𝑑𝑧 = ∫

ኺ

ዅ፝
𝜌ፖ𝑢፱𝑑𝑧 + ∫

᎔

ኺ
𝜌ፖ𝑢፱𝑑𝑧 =

𝜌ፖ𝛼ኼ
2𝑡𝑎𝑛ℎ(𝑘𝑑)𝜔 (4.26)
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When assuming linear theory, which is also the case for the velocity of Equation 4.11 as
the only depth dependent term is the one contained in U፰, which is the velocity using linear
theory. The integral then takes the following form:

𝑄፱ =
𝜌ፖ𝛼ኼ

2𝑡𝑎𝑛ℎ(𝑘𝑑)𝜔√1 − 𝑟
ኼ
𝑠𝑖𝑛(𝜔𝑡)+ ፫፬።፧᎕

ኻዄ√ኻዅ፫Ꮄ
1 − 𝑟𝑐𝑜𝑠(𝜔𝑡 + 𝜃) (4.27)

For the given water depth and assuming the limit of:

𝐻
𝑑 = 0.8 (4.28)

Any wave with a height larger than 0.8×d will break. In order to calculate the forces on the
structure when the wave is breaking the momentum flux is utilized.

The main assumption in this case is the description of the water particle hydrodynamics.
Neither linear theory, nor Stokes 2፧፝ order theory are applicable to a breaking wave. For this
reason the description for the velocity that accounts for asymmetry and skewness is used.
To calculate the force based on the momentum flux theory first the momentum has to be
calculated. This is done in the following manner:

1. The velocity is integrated over the length of each element that is under water at each
time instance

2. Then the time derivative of the result is calculated

3. This is then multiplied with the water density and it is the momentum flux per unit
horizontal area

The momentum flux theory as it was presented above was used to investigate the hydro-
dynamic force. An attempt was made to calculate the force using Newton’s second law of
motion:

Σ𝐹 = 𝑚𝛼 (4.29)

and compare it with the one resulting from the Morison equation for a non-breaking wave,
assuming that since the momentum flux theory could apply to a breaking wave then it should
also apply to a non-breaking one. Since the momentum flux essentially produces the accel-
eration, when taking the time derivative of Equation 4.27, there was a deviation from the
Morison equation. The difference was the inertia coefficient. This approach was dismissed
and the Morison equation is used instead.

Impact force

The force from a breaking wave can be alternatively investigated. It can be added as a third
component in the Morison equation, an impact force normal to the monopile given as:

𝐹(𝑡) = 𝜆𝜂𝜌ፖ
𝐷
2 𝐶

ኼ(2𝜋 − 2𝑎𝑟𝑡𝑎𝑛ℎ(√1 − 𝐶
4ፃኼ
𝑡)√ 𝐶ፃ

ኼ
𝑡) (4.30)

that takes place simultaneously along the length of the monopile exposed to the wave, details
can be found in [39], [40], [41]. This approach was not examined during this thesis.

Morison equation

According to the DNV regulations for the design of offshore wind turbines [42], the Morison
equation as it is formulated, per unit length, is considered valid to calculate the force exerted
from a breaking wave on a vertical element, given that the element is fully submerged. The
condition of the elements being fully submerged is taken into in the developed model.





5
Soil structure interaction

5.1. Introduction
The foundation of every structure is responsible for the safe transfer of the loads to the soil
around it. The main purpose of the design is to limit the soil deformation. The large dimen-
sions of the monopile in combination with the uncertainties and lack of understanding of the
behavior of saturated soil under cyclic loading make it difficult to design the substructure.

The monopile is mainly loaded laterally. These lateral loads are the aerodynamic load, the
hydrodynamic load, 1P load and 2P/3P loads. Additionally, the structure is subjected to
cyclic loading from these. Under cyclic loading the soil is able to dissipate energy through
hysteresis. This energy dissipation is described through the damping ratio. The soil struc-
ture interaction is crucial when trying to evaluate the longterm behavior of the structure.
Soil properties such as:

• shear strain

• saturation

• void ratio

• number of cycles

have an influence on the soil’s behavior under cyclic loading.

5.2. P-Y curves
As previously mentioned the monopile is subjected to considerable lateral loads due to the
combined hydrodynamic and aerodynamic actions. The design regulations (DNV-OS-J101
and API RP 2A-WSD) suggest the use of the so-called p-y curves for laterally loaded piles.

The curves provide the relation between the soil resistance p when the pile is deflected lat-
erally by a distance y. The soil is then modeled as a Winkler foundation, the monopile is
represented by consecutive beam elements that are supported by uncoupled discrete springs
at the nodal points between the elements. The stiffness of the springs results from the p-y
curves. It should be noted that the recommended by the code p-y curves have been calibrated
for long slender flexible jacket piles, whose diameters can reach up to 1.0𝑚 and their bending
stiffness is significantly smaller than that of the monopiles. The p-y curves are generally not
valid for monopiles [42].
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5.3. Translation of 3D modeling to simplified springs

With the current practice the first and second natural frequencies, which are close due to
symmetry and correspond to bending, of an offshore wind turbine are not accurately pre-
dicted. The underestimation of the soil stiffness leads to an underestimation of the natural
frequency. A well defined natural frequency is needed to avoid resonance due to hydrody-
namic and aerodynamic loading.

In order to accurately define the natural frequency, soil properties are needed. Soil stiffness
is dependent on the soil profile, the shape of the embedded structure and the type of the
exerted load [43]. For this reason it is troublesome to present a generally applicable method
to resolve the issue. Advanced methods as those proposed in [43], suggest seismic measure-
ments as an input. For the investigated structure there are no such measurements available.

An approach to model the soil structure interaction of the NREL-5MW offshore wind turbine
with a monopile substructure was recently proposed by [44]. In that study the foundation soil
that is considered is a homogeneous deposit of medium dense silica sand. The soil properties
considered are presented in the following table.

Property Value
G፫ 100𝑀𝑃𝑎
K፫ 170𝑀𝑃𝑎
p’፫ 100𝑘𝑃𝑎
𝜙’ 35.5∘
𝛾፦ፚ፱ 8.5%
𝜙ፏፓ 31∘
𝛾ፒᑞᑒᑩ 0%
cኻ 0.125 [-]
cኼ 0.5 [-]
cኽ 1 [-]
dኻ 0.25 [-]
dኼ 3.9 [-]
dኽ 5.7 [-]
p’፲ 1.95 [-]

Table 5.1: Sand parameters [44].

A 3D finite element model is created that takes into account the effects of cyclic behavior of the
soil. The purpose of the study is to tune spring models for dynamic soil-structure interaction
based on the results of a finite element analysis of the soil domain. It is considered to be a
simplified but effective manner to consider soil in the dynamic analysis of an offshore wind
turbine. In the proposed method, the embedded in the soil part of the monopile is being
replaced by soil springs, the model is shown in Figure 5.1. Three different calibrations are
performed, based on three wind and wave loading combinations. The proposed properties
perform very good when compared to the 3D model, as no significant deviations are observed.
The results of the calibrations are summarized below.

Calibration Translational stiffness Kፒ,ፋ Rotational stiffness Kፒ,ፑ Viscous damping Cፒ,ፃ
Simplified model 1 450𝑀𝑁𝑚ዅኻ 56𝑀𝑁𝑚𝑚𝑟𝑎𝑑ዅኻ -
Simplified model 2 210𝑀𝑁𝑚ዅኻ 52𝑀𝑁𝑚𝑚𝑟𝑎𝑑ዅኻ -
Simplified model 3 90𝑀𝑁𝑚ዅኻ 40𝑀𝑁𝑚𝑚𝑟𝑎𝑑ዅኻ 20𝑀𝑁𝑚ዅኻ𝑠

Table 5.2: Calibrated springs for the NREL 5MW offshore wind turbine [44].
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Figure 5.1: Simplified offshore wind turbine model with translational and rotational spring supports [44].

The first case corresponds to a static force and displacement regime, the second to a weak
vibration and the last one for a strong vibration with the damper used to represent the energy
dissipation due to hysteresis.

There is however, a difference in some of the dimensions that were used to derive this springs
with the ones that were used to construct the structural model according to [8] and [9]. Al-
though it is not the best approach, distributed soil springs were used as suggested by the
design codes.





6
Ice structure interaction

6.1. Introduction
The offshore wind industry is expanding to ice infested waters, such as the Baltic Sea.
Since this autumn, the world’s first offshore wind farm designed to withstand ice loads,
the Tahkoluoto offshore wind farm, is producing energy in the Gulf of Bothnia.

According to ISO 19906, various interaction scenarios between ice and structure, failure
modes and ice actions can occur. Some of the factors that have a contribution to these are
presented below.

Figure 6.1: Factors influencing interaction scenarios [45].

For vertical cylindrical structures, such as monopiles, dynamic ice structure interaction is
of interest. This dynamic interaction is divided into three main types:

1. Intermittent ice crushing

2. Frequency lock-in and

3. Random vibrations due to continuous brittle ice crushing

These vibrations are the result of ice failing in crushing against the structure. The dynamic
analysis should be performed so that the structure does not fall into the frequency lock-in
type [45]. There is a dependence of the ice sheet velocity and the waterline displacement
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of the structure with the regime. In particular, for low velocities intermittent crushing can
occur, for intermediate velocities frequency lock-in and for higher velocities continuous brittle
crushing. Ice-induced vibrations are not present in rigid structures, additionally some types
of vibrations may not occur for each type of flexible structure.

Figure 6.2: Ice action (top) and structural response (bottom) for (a) intermittent crushing (b) frequency lock-in and (c) continuous
brittle crushing [45].

6.2. Intermittent crushing
As seen in Figure 6.2, ice force and structure displacement are both following a saw-tooth
pattern. In the same event an alternating creep and brittle crushing is present [46]. In this
regime there is a loading and an unloading phase. When in the loading phase, structure
and ice sheet move in the same direction, the ice force increases continuously and the ice
edge is deformed in a ductile manner, the ice sheet deflects the structure and undergoes
creep deformation. When the ice action reaches its peak, the ice edge deforms in a brittle
manner and the unloading phase begins. In the unloading phase, the structural vibrations
are decaying, the stored energy in the structure is used to restore the structure in its original
position, as the relative speed is high the ice fails in a brittle manner [46]. The total damping
in the system is an important factor in the decay of the vibrations. The period of the ice
action is much longer than the longest natural period of the structure [45].

6.3. Frequency lock-in
The vibrations in this case have a sinusoidal pattern. Similarly to intermittent crushing,
there is a loading and an unloading phase. Typically lock-in occurs to some of the lowest
natural modes of the structure. Frequency lock-in has been observed for natural frequencies
in the range of 0 to 10𝐻𝑧 [47]. As the stiffness and natural frequency increase the frequency
lock-in regime moves to lower velocities and the range over which it occurs decreases [47].
As the frequency of the exerted force reaches that of the natural frequency of the structure,
the accelerations of the structure are larger when compared to the other regimes.

6.4. Continuous brittle crushing
The ice action and the response of the structure do not follow any pattern in this regime
but rather they appear to be random, however there is an oscillation around a mean value.
This regime is present in all flexible structures for higher indentation velocity [47]. At these
high velocity rates the ice is crushing continuously in a brittle manner against narrow and
wide structures. During this regime the ice is partially in contact with the structure and
a non-uniform pressure is applied to the nominal contact area [46]. The load exerted on
the structure is higher in the case of intermittent crushing compared to continuous brittle
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crushing.

6.5. Formulation of ice elements and ice load around the monopile
In order to calculate the force from the ice sheet the procedure developed by [47], is followed.
In order to do so, the ice is represented with a spring-dashpot system. The circumference
of the monopile is divided into zones, each with a width of w፳፨፧፞, where each ice element is
acting, as shown in Figure 6.3.

Figure 6.3: Illustration of the contact zones around the monopile [47].

In the case that the load is applied slowly the ice will respond visco-plastically. This means
that the ice element will not return to its original state once the load is removed, due to
energy dissipation, and the deformation is not recoverable. The elastic response is repre-
sented with the spring, the visco-plastic with the dashpots and plasticity with the slider. The
configuration of this element is shown below.

Figure 6.4: Ice element [47].

The force exerted on each of the zones, in the x and y directions, is given by [47]:

𝐹፲, 𝑖 = 𝑠𝑖𝑛ኼ(𝛽።)𝐾ኼ(𝑢።,ኻ − 𝑢ፒ) + 𝑐𝑜𝑠(𝛽።)𝑠𝑖𝑛(𝛽።)𝐾ኼ(𝑣።,ኻ − 𝑣ፒ) (6.1)

𝐹፱, 𝑖 = −𝑠𝑖𝑛(𝛽።)𝑐𝑜𝑠(𝛽።)𝐾ኼ(𝑢።,ኻ − 𝑢ፒ) + 𝑐𝑜𝑠ኼ(𝛽።)𝐾ኼ(𝑣።,ኻ − 𝑣ፒ) (6.2)

More details on the equation of motion of the elements can be found in [47]. The model
allows for the calculation of the ice load, provided that reference values are known for the ice
conditions that are investigated.





7
Aerodynamic loading

7.1. Introduction

Wind is one of the most important environmental loads in offshore structures, and even more
in offshore wind turbines. Wind is not constant, it can vary both in speed and direction. Due
to the relatively flat and smooth water surface the flow is generally horizontal. The impor-
tance of the wind load depends on the nature of the structure, in stiff structures the wind
load adds up to about 15% of the total environmental load [21]. In the case of the offshore
wind turbine wind load must be considered carefully and thoroughly.

The wind generated forces directly exerted on the structure can be divided into two parts,
the aerodynamic load acting on the blades and the aerodynamic drag force acting along the
length of the tower and the exposed to the wind part of the transition piece. The former is
present during operation, parking and idling, braking and start-up.

7.2. Rotor model

A three bladed rotor is presented below, where the Y axis coincides with the rotational axis
of the rotor. For the specific case of a rotor with identical blades, which is the case of the
NREL-5MW turbine, mass, stiffness and damping matrices have been developed by [48] to
represent the rotor. Due to the fact that the first natural frequency of the blades is a lot
higher than the first natural bending frequency of the complete structure, the blades can be
assumed to be rigid.

Figure 7.1: Definition of the rigid rotor model indicating the azimuthsጕᎳ,ጕᎴ,ጕᎵ, of the blades and the rotational velocity  [48].
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The mass matrix is given as:

𝑀ፑ = ∫
ፑ

፫Ꮂ
𝑚፣(𝑟፣)𝑟፣

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ኽ
፫ᑛ 0 0 0 0 3 ፝፫ᑛ
0 ኽ

፫ᑛ 0 0 0 0
0 0 ኽ

፫ᑛ −3 ፝፫ᑛ 0 0
0 0 −3 ፝፫ᑛ

ኽ
ኼ𝑟፣ +3፝

Ꮄ
፫ᑛ 0 0

0 0 0 0 3𝑟፣ 0
3 ፝፫ᑛ 0 0 0 0 ኽ

ኼ𝑟፣ +3፝
Ꮄ
፫ᑛ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝑑𝑟፣ (7.1)

The damping matrix is:

𝐶ፑ = ∫
ፑ

፫Ꮂ
𝑚፣(𝑟፣)𝑟፣Ω𝑟፣

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 3𝑟፣
0 0 0 0 0 0
0 0 0 −3𝑟፣ 0 0

⎤
⎥
⎥
⎥
⎥
⎦

𝑑𝑟፣ (7.2)

And the stiffness:
𝐾ፑ = 0ዀ፱ዀ (7.3)

The rotor does not contribute to the total stiffness, hence it is a zero matrix. Details on the
derivation of these matrices can be found in [48].

7.3. Aerodynamic load on the blades
A wind signal is necessary to generate the aerodynamic load acting on the RNA assembly. For
this reason a turbulent wind signal is considered. This signal was created with Bladed in [49].

That signal is used to evaluate the aerodynamic force. The aerodynamic force that is proposed
in [49] is a result of the combined effect and actions of wind speed, pitch angle, rotational
speed of the turbine, induction factor and the structure’s acceleration and velocity.

7.4. Aerodynamic load on the tower
The aerodynamic drag force is a distributed load over the length of the tower. The formulation
is similar to that of the drag term in the Morison equation. The aerodynamic drag force per
unit length of the tower and the exposed to the air transition piece is given by:

𝐹ፃᑨᑚᑟᑕ =
1
2𝐶ፃ𝜌ፚ።፫𝑢

ኼ
፰።፧፝𝐷 (7.4)

and it is dependent on the diameter D of the structure at each elevation.

The wind signal can be transfered to each elevation by making use of the power law.

𝑢፰።፧፝(𝑧) = 𝑢፰።፧፝(𝑧፫፞፟)(
𝑧
𝑧፫፞፟

)ᎎᑒᑚᑣ (7.5)

The exponent 𝛼ፚ።፫ is derived empirically, for the case of open water a value of 𝛼ፚ።፫ = 0.11 is
assumed. The simplest approach to the selection of the drag coefficients is given by API and
SNAME based on the smoothness of the cylinder [50].
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Smooth cylinder Rough cylinder
Cፃ Cፌ Cፃ Cፌ

API 0.65 1.6 1.05 1.2
SNAME 0.65 2.0 1.0 1.8

Table 7.1: Indicative coefficients for cylindrical members according to API and SNAME.

In the case of the NREL-5MW, with the assumption of a smooth cylinder the value of Cፃ=0.65
can be used.





8
Results

8.1. Modal analysis
In the manner that the problem is formulated, each node of the structure has five degrees of
freedom (two translational and three rotations), when a sensible number of nodes is selected
it will result in large sized mass, damping and stiffness matrices. This will have an impact
on the computational time. For this reason modal analysis was employed.

In modal analysis a summation of synchronized motions is assumed. The motion is rep-
resented by a superposition of the normal modes of the free undamped vibrations [51]. The
coupled equations of motion are then transformed into uncoupled. The matrices are reduced
based on the selected number of modes. Every uncoupled equation is analogous to the equa-
tion of motion for a single degree of freedom system.

So essentially the multi degree of freedom system is reduced to a number of single degree of
freedom systems and the number of equations to be solved is reduced. This reduction has
a significant impact on the running time of the model. The physical response of the multi
degree of freedom system can be reproduced using the modal responses of the single degree
of freedom systems.

The first three modes for both planes are presented below. The mode shapes resemble those
of the cantilever beam. It is expected that the mode shapes in the two planes will be similar
due to the symmetry of the structure. The mode shapes have not been normalized and are
shown in Figures 8.1 and 8.2.

Figure 8.1: From left to right the first, second and third mode in the XZ plane (Side-Side motion).
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Figure 8.2: From left to right the first, second and third mode in the YZ plane (Fore-Aft motion).

The estimated first natural frequency is deviating from the one calculated in [52] due to the
changes in geometry. The used natural frequencies in the modal analysis are presented here.

Number XZ plane YZ plane Yaw axis
1 0.24𝐻𝑧 0.24𝐻𝑧 1.68𝐻𝑧
2 1.21𝐻𝑧 1.24𝐻𝑧 13.41𝐻𝑧
3 2.79𝐻𝑧 3.10𝐻𝑧 23.57𝐻𝑧
4 5.42𝐻𝑧 5.87𝐻𝑧 37.51𝐻𝑧
5 9.24𝐻𝑧 9.51𝐻𝑧 48.25𝐻𝑧
6 14.25𝐻𝑧 14.38𝐻𝑧 60.05𝐻𝑧
7 18.52𝐻𝑧 18.58𝐻𝑧 72.31𝐻𝑧
8 22.68𝐻𝑧 22.76𝐻𝑧 87.08𝐻𝑧
9 31.30𝐻𝑧 31.35𝐻𝑧 96.38𝐻𝑧
10 38.08𝐻𝑧 38.12𝐻𝑧 113.49𝐻𝑧

Table 8.1: The first thirty natural frequencies of the structure in ፇ፳.

8.2. Aerodynamic load
For the calculation of the aerodynamic load, a turbulent wind signal was used. The wind
speed is at all times above the rated wind speed and has a mean speed of 15𝑚/𝑠. The signal
is presented in Figure 8.3.

Figure 8.3: Turbulent wind signal at the hub height.
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The signal provides the wind speed at the hub height, which is then transfered to the corre-
sponding elevations of the tower and the transition piece using the power law.

The response is calculated first for the aerodynamic load acting on the blades. The Fore-
Aft motion in the YZ plane (Figure 8.4), is dominating the response of the structure, as the
direction of the wind is parallel to this direction. There is no wind component in the XZ plane,
the response is shown in Figure 8.5.

During the analysis a set of static deflection is created and used as initial conditions for
the structure. The deflection is calculated by using the following equation:

𝑢፬፭ፚ፭። =
𝐹፦፞ፚ፧
𝐾 (8.1)

The mean force is a lift force and a result of the combined contributions of the angle of attack,
the camber of the airfoils and drag generated by the rotor. The turbine is oscillating, in both
planes, around a mean value that is not zero, indicating this static deflection.

Figure 8.4: Displacement of the RNA in the YZ plane (Fore-Aft motion).

Figure 8.5: Displacement of the RNA in the XZ plane (Side-Side motion), resulting from the aerodynamic load on the blades.

The next step is to include the drag force, as described in Section 7.4. Note that for this stage
the response is examined only for the load resulting from the wind, therefore no waves are
included and the surface elevation is constant at the mean water level.

The response in the Fore-Aft and Side-Side directions are presented in Figures 8.6 and 8.7.
The RNA is oscillating in a random pattern without a clear frequency.
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Figure 8.6: Displacement of the RNA in the YZ plane (Fore-Aft motion), resulting from both the aerodynamic load on the blades
and the drag force on the exposed elements.

Figure 8.7: Displacement of the RNA in the XZ plane (Side-Side motion), resulting from both the aerodynamic load on the blades
and the drag force on the exposed elements.

The response was transfered to the frequency domain by means of Fast Fourier Transform
(FFT). Most of the energy is stored in the first natural frequency, this is indicated by the peak
near this frequency in both planes, Figures 8.8 and 8.9. The peak before that could be the
frequency of the exerted load.

Figure 8.8: Single sided amplitude spectrum of the response of Figure 8.6.
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Figure 8.9: Single sided amplitude spectrum of the response of Figure 8.7.

Note that the amplitude in the plots above, as in other frequency plots that follow has been
normalized with the sampling number. Frequencies above 1𝐻𝑧 in both cases are not of
significance as the amplitude is zero or very small compared to the smaller frequencies.

8.3. Hydrodynamic load

The cases presented in this section correspond to an incoming wave with an angle of 0∘,
consequently no motion in the XZ plane is expected. Cases are run using both the Morison
equation and the MacCamy and Fuchs equation. As previously mentioned a comparison be-
tween the results that these methods produce should not be performed.

The displacement of the structure in the Fore-Aft direction is presented in Figures 8.10 and
8.12 and the corresponding amplitude spectra in Figures 8.11 and 8.13. The displacement
follows a random pattern and the amplitude is very small regardless of the hydrodynamic
force calculation method, there is no static deflection in this case therefore the oscillation is
around zero.

Figure 8.10: Displacement of the RNA in the YZ plane (Fore-Aft motion), resulting from the Airy wave theory and the Morison
equation, for a wave height of ፇᑊ=0.5፦ and ፓᑇ=15.96፬.
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Figure 8.11: Single sided amplitude spectrum of the response for the same conditions as in Figure 8.10.

The plot in the frequency domain indicates that in the examined case the frequency that is
of importance is the first natural frequency of the structure. The signal is decaying after that
point and no other peak is observed.

Figure 8.12: Displacement of the RNA in the YZ plane (Fore-Aft motion), resulting from the diffraction theory and the MacCamy
and Fuchs equation, for a wave height of ፇᑊ=0.5፦ and ፓᑇ=15.96፬.

Figure 8.13: Single sided amplitude spectrum of the response for the same conditions as in Figure 8.12.

The plot in the frequency domain has a peak near the first natural frequency of the structure.
Since superposition is employed there is no clear frequency in the signal when viewing the
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response in the time domain, however both spectra indicate a peak right after 0.2𝐻𝑧 that
could be the main loading frequency.

In Figure 8.14, the displacement in the Fore-Aft direction is shown when the load is cal-
culated with the Morison equation, the signal is sinusoidal as there is one frequency in the
load and there is no superposition used, so the structure is vibrating to the frequency of the
applied load. The displacement is larger due to the larger wave height, and consequently
water particle kinematics. The corresponding amplitude spectrum is presented in Figure
8.15.

Figure 8.14: Displacement of the RNA in the YZ plane (Fore-Aft motion), resulting from the Stokes theory and the Morison
equation, for a wave height of ፇᑊ=2.5፦ and ፓᑇ=22.58፬.

Figure 8.15: Single sided amplitude spectrum of the response for the same conditions as in Figure 8.14.

In the case of the Stokes wave, the signal has a distinct frequency based on the period of the
wave, in this particular case that is 0.044𝐻𝑧, and is also indicated by the peak in the plot in
the frequency domain.

The response in the same direction using the MacCamy & Fuchs equation is shown in Figure
8.16, the signal is again random as the water particle kinematics are calculated using linear
theory and the superposition principle. Therefore, the previously distinct frequency of the
wave is no longer present in the new signal. The displacement of the structure is larger in
the case of the Stokes wave when compared with the Airy, this is due to the fact that the
wave height is larger in the case of the Stokes. The amplitude spectrum is shown in Figure
8.17. The amplitude spectrum appears to be odd. There is no peak at the natural frequency,
and the two peaks in the range between 0.1 and 0.2𝐻𝑧 cannot be explained.
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Figure 8.16: Displacement of the RNA in the YZ plane (Fore-Aft motion), resulting from the diffraction theory and the MacCamy
and Fuchs equation, for a wave height of ፇᑊ=2.5፦ and ፓᑇ=22.58፬.

Figure 8.17: Single sided amplitude spectrum of the response for the same conditions as in Figure 8.16.

The strict limitations of the Stokes second order theory render it invalid in the area that the
Airy theory is applicable and vice versa. To evaluate the error in the calculations where the
linear theory is no longer valid, the response is calculated for the area where the Stokes is
applicable using both theories, the result is shown in Figure 8.18.

Figure 8.18: Displacement of the RNA in the YZ plane (Fore-Aft motion), resulting from the Stokes vs the Airy theory and the
Morison equation, for a wave height of ፇᑊ=2.5፦ and ፓᑇ=22.58፬.
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The Airy theory produces a displacement that is very small compared to the one with the
Stokes theory, and when plotted together resembles a line of nearly zero. For this reason it
was plotted separately as well (Figure 8.19).

When comparing Figures 8.14 and 8.19, the response in the latter is random and from the
time domain plot is difficult to extract frequency information. This is a result of the super-
position principle and the different frequency components that compose the wave signal. As
the superposition cannot be applied in the case of the Stokes 2፧፝ order theory, the signal is
made of one component and the frequency of the response is the same as that of the wave
signal.

Figure 8.19: Displacement of the RNA in the YZ plane (Fore-Aft motion), resulting from the Airy theory and the Morison equation,
for a wave height of ፇᑊ=2.5፦ and ፓᑇ=22.58፬.

Figure 8.20: Displacement of the RNA in the YZ plane (Fore-Aft motion), for a wave height of ፇᑊ=20፦ and ፓᑇ=32፬.

The response shown in Figure 8.20 is that in the assumed case of a breaking wave. The
correspondin amplitude spectrum shown in Figure 8.21 shows a peak near the natural fre-
quency and near the frequency of the applied load which is 0.03𝐻𝑧.

For the particular depth, such a wave height is rather extreme, for this reason it is just
presented here and does not constitute a solid solution to the problem that is the force ex-
erted from a breaking wave.
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Figure 8.21: Single sided amplitude spectrum of the response for the same conditions as in Figure 8.20.

There is no vibration in the XZ plane for the these cases, therefore the response is only plotted
once in Figure 8.22.

Figure 8.22: Displacement of the RNA in the XZ plane (Side-Side motion), for the cases with an incoming angle of 0∘.

8.4. Ice load

Various ice sheet velocities were tested, results are shown in this section for velocities where
the intermittent crushing and continuous brittle crushing regime where identified. The struc-
ture is in the intermittent crushing regime for a 𝑣።፞=0.005𝑚/𝑠, results for the Fore-Aft and
Side-Side motion are shown in Figures 8.23 and 8.24.
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Figure 8.23: Displacement at the ice action point in the YZ plane (Fore-Aft motion), for an indentation velocity of ፯ᑚᑔᑖ=0.005፦/፬
and thickness ፡ᑚᑔᑖ=0.4፦.

Figure 8.24: Displacement at the ice action point in the XZ plane (Side-Side motion), for an indentation velocity of vᑚᑔᑖ=0.005፦/፬
and thickness hᑚᑔᑖ=0.4፦.

The period of the intermittent crushing is about 5𝑠 and it is indeed larger than the longest
natural period of the structure which is about 4𝑠, but not much larger as stated in ISO [45].
Peaks appear near the first two natural frequencies of the structure in the Fore-Aft motion
and near the first in the Side-Side motion in the sprectra (Figures 8.25 and 8.26). The first
bending mode is dominating the response of the structure.

Figure 8.25: Single sided amplitude spectrum of the response for the same conditions as in Figure 8.23.
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Figure 8.26: Single sided amplitude spectrum of the response for the same conditions as in Figure 8.24.

For an indentation velocity of 𝑣።፞=0.15𝑚/𝑠, no pattern is observed and the ice is in the
continuous brittle crushing regime. The Fore-Aft motion (Figure 8.27) is again more intense
than the Side-Side (Figure 8.28) due to the direction of the incoming ice sheet. The amplitude
of the vibrations is very small compared to the one in the intermittent crushing regime in both
planes.

Figure 8.27: Displacement at the ice action point in the YZ plane (Fore-Aft motion), for an indentation velocity of ፯ᑚᑔᑖ=0.15፦/፬
and thickness ፡ᑚᑔᑖ=0.4፦.

Figure 8.28: Displacement at the ice action point in the ΧZ plane (Side-Side motion), for an indentation velocity of ፯ᑚᑔᑖ=0.15፦/፬
and thickness ፡ᑚᑔᑖ=0.4፦.
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Figure 8.29: Single sided amplitude spectrum of the response for the same conditions as in Figure 8.28.

The amplitude spectra (Figures 8.29 and 8.30) present peaks near the first two natural fre-
quencies of the structure in the Fore-Aft motion and near the first natural frequency in the
Side-Side motion. The first bending mode is dominating the response in this case as well.

Figure 8.30: Single sided amplitude spectrum of the response for the same conditions as in Figure 8.28.

8.5. Aerodynamic and hydrodynamic load
8.5.1. Aligned

The hydrodynamic action is combined with the aerodynamic action in this section. For the
case of a wave height 𝐻ፒ=0.5𝑚 with a period 𝑇ፏ=15.96𝑠 combined with the turbulent wind
signal, the response is dominated by the wind load, the hydrodynamic load is very small and
has no or very little influence on the response.

This is the result regardless of the equation that is used to predict the hydrodynamic ac-
tion. The limitations of the linear theory for the given depth would allow for a maximum
wave height of about 𝐻ፒ=0.80𝑚 with a period of 𝑇ፏ=36𝑠, this is not expected to alter the re-
sponse significantly in the combined case.

As the response is found to be identical with the one in Section 8.2 frequency plots are
omitted. The Fore-Aft motion is shown in Figures 8.31, 8.33, 8.35 and 8.37. The Side-Side
in presented in Figures 8.32, 8.34, 8.36 and 8.38.
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Figure 8.31: Displacement of the RNA in the YZ plane (Fore-Aft motion), resulting from the Airy theory and the Morison equation,
for a wave height of ፇᑊ=0.5፦ and ፓᑇ=15.96፬.

Figure 8.32: Displacement of the RNA in the XZ plane (Side-Sidemotion), resulting from the Airy theory and theMorison equation,
for a wave height of ፇᑊ=0.5፦ and ፓᑇ=15.96፬.

Figure 8.33: Displacement of the RNA in the YZ plane (Fore-Aft motion), resulting from the diffraction theory and the MacCamy
and Fuchs equation, for a wave height of ፇᑊ=0.5፦ and ፓᑇ=15.96፬.
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Figure 8.34: Displacement of the RNA in the XZ plane (Side-Side motion), resulting from the diffraction theory and the MacCamy
and Fuchs equation, for a wave height of ፇᑊ=0.5፦ and ፓᑇ=15.96፬.

The hydrodynamic action resulting from a wave with 𝐻ፒ=2.5𝑚 and 𝑇ፏ=22.58𝑠 using either
the Morison or the MacCamy and Fuchs equation is also combined with the aerodynamic
action. The results are presented in the following graphs.

Figure 8.35: Displacement of the RNA in the YZ plane (Fore-Aft motion), resulting from the Airy theory and the Morison equation,
for a wave height of ፇᑊ=2.5፦ and ፓᑇ=22.58፬.

Figure 8.36: Displacement of the RNA in the XZ plane (Side-Sidemotion), resulting from the Airy theory and theMorison equation,
for a wave height of ፇᑊ=2.5፦ and ፓᑇ=22.58፬.
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Figure 8.37: Displacement of the RNA in the YZ plane (Fore-Aft motion), resulting from the diffraction theory and the MacCamy
and Fuchs equation, for a wave height of ፇᑊ=2.5፦ and ፓᑇ=22.58፬.

Figure 8.38: Displacement of the RNA in the XZ plane (Side-Side motion), resulting from the diffraction theory and the MacCamy
and Fuchs equation, for a wave height of ፇᑊ=2.5፦ and ፓᑇ=22.58፬.

In this case the wind load appears to be dominating the response as well. The response due
to the combined loads in the YZ plane is slightly decreased when using the Morison equation,
because the displacement only for the wave action is towards the negative while for the wind
load towards the positive side as indicated in Sections 8.2 and 8.3, when using the MacCamy
equation, water particle kinematics are not calculated in the same manner therefore this de-
crease is no longer present.

As there is alignment of the loads, there is no significant difference in the response in the
XZ plane, a small difference not visible in the plots is present due to the difference in the re-
sponse in the other plane when using the Morison equation. For the same reasons, frequency
plots are omitted.

8.5.2. Misaligned
The same cases are examined considering a misalignment of the applied loads. An angle
of attack of 30∘, is considered for the incoming wave. The resulting hydrodynamic force is
analyzed into XZ and YZ components. The Fore-Aft motion is shown in Figures 8.39, 8.41,
8.43 and 8.47 while in the Side-Side motion in Figures 8.40, 8.42, 8.44 and 8.48.
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Figure 8.39: Displacement of the RNA in the YZ plane (Fore-Aft motion), resulting from the Airy theory and the Morison equation,
for a wave height of ፇᑊ=0.5፦ and ፓᑇ=15.96፬ and a 30∘angle of attack.

Figure 8.40: Displacement of the RNA in the XZ plane (Side-Sidemotion), resulting from the Airy theory and theMorison equation,
for a wave height of Hᑊ=0.5፦ and Tᑡ=15.96፬ and a 30∘angle of attack.

Figure 8.41: Displacement of the RNA in the YZ plane (Fore-Aft motion), resulting from the diffraction theory and the MacCamy
and Fuchs equation, for a wave height of ፇᑊ=0.5፦ and ፓᑇ=15.96፬ and a 30∘angle of attack.
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Figure 8.42: Displacement of the RNA in the XZ plane (Side-Side motion), resulting from the diffraction theory and the MacCamy
and Fuchs equation, for a wave height of ፇᑊ=0.5፦ and ፓᑇ=15.96፬ and a 30∘angle of attack.

The response remains unchanged compared to the aligned one. Since no contribution of the
hydrodynamic load was present in the aligned case it is logical that also in the misaligned
the response will be dominated by the wind load. Frequency plots are omitted.

The wave with 𝐻ፒ=2.5𝑚 and 𝑇ፏ=22.58𝑠 allows for a calculation of the water particle kine-
matics using the Stokes theory. When the response is calculated with the Morison equation
and the Stokes theory, the response is altered from the wind only case however the result is
odd.

Since the response in the parallel case did not differ much it is not expected that it will
be here, since the hydrodynamic force is split between the two directions. This however is
not the outcome of the analysis as it is shown in Figures 8.43 and 8.44. Accompanying am-
plitude spectra are shown in Figures 8.45 and 8.46. It must be stated however that this is
considered a wrong result.

Figure 8.43: Displacement of the RNA in the YZ plane (Fore-Aft motion), resulting from the Stokes theory and the Morison
equation, for a wave height of ፇᑊ=2.5፦ and ፓᑇ=22.58፬ and a 30∘angle of attack.
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Figure 8.44: Displacement of the RNA in the XZ plane (Side-Side motion), resulting from the Stokes theory and the Morison
equation, for a wave height of ፇᑊ=2.5፦ and ፓᑇ=22.58፬ and a 30∘angle of attack.

Figure 8.45: Single sided amplitude spectrum of the response of Figure 8.43.

The structure presents a strange behavior in this examined case, the displacement was ex-
pected to be less than that caused only by the wind load as in the parallel case the dis-
placement between wind only and wave and wind did not differ significantly. The amplitude
spectra of both motions show a peak at the first natural frequency.

Figure 8.46: Single sided amplitude spectrum of the response of Figure 8.44.

When the force is calculated using the MacCamy and Fuchs equation the response is dom-
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inated by the wind load and the response is identical to the previously calculated. For this
reason frequency plots are omitted.

Figure 8.47: Displacement of the RNA in the YZ plane (Fore-Aft motion), resulting from the diffraction theory and the MacCamy
and Fuchs equation, for a wave height of ፇᑊ=2.5፦ and ፓᑇ=22.58፬ and a 30∘angle of attack.

Figure 8.48: Displacement of the RNA in the XZ plane (Side-Side motion), resulting from the diffraction theory and the MacCamy
and Fuchs equation, for a wave height of ፇᑊ=2.5፦ and ፓᑇ=22.58፬ and a 30∘angle of attack.

8.6. Aerodynamic and ice load
8.6.1. Aligned

When considering only ice action, for the velocity of 𝑣።፞=0.005𝑚/𝑠 the intermittent crushing
regime was present. The same indentation velocity is now combined with the turbulent wind
signal. The response is affected by both loads, the Fore-Aft motion is shown in Figure 8.57
and the Side-Side in Figure 8.58. The resulting response is shifted towards the positive side
for the Fore-Aft motion, as a result of the force from the ice sheet. The ice load is depending
on the relative velocity between the ice sheet and the structure, the aerodynamic load causes
a significant displacement of the structure, in the combined analysis this is causing a higher
ice load to be exerted when the relative velocity term is higher. This is a behavior that is also
present in [53]. Although the saw-tooth pattern is no longer visible, peaks appear because
of this combined action, this is clear in the peak near 35𝑠.
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Figure 8.49: Displacement at the ice action point in the YZ plane (Fore-Aft motion), for an indentation velocity of ፯ᑚᑔᑖ=0.005፦/፬.

Figure 8.50: Displacement at the ice action point in the XZ plane (Side-Side motion), for an indentation velocity of ፯ᑚᑔᑖ=0.005፦/፬.

The amplitude spectra (Figures 8.59 and 8.60) show a peak near the first natural frequency
of the structure indicating that the first bending mode is dominating the response.

Figure 8.51: Single sided amplitude spectrum of the response of Figure 8.57.
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Figure 8.52: Single sided amplitude spectrum of the response of Figure 8.58.

With an indentation velocity of 𝑣።፞=0.15𝑚/𝑠 the ice induced vibrations are in the random
crushing regime. Although vibrations only from the ice action do not have a significant
amplitude, the combined action of the loads is a lot different from the one considering only
the aerodynamic load (Figures 8.53 and 8.54) due to the increase in the relative velocity.

Figure 8.53: Displacement at the ice action point in the YZ plane (Fore-Aft motion), for an indentation velocity of ፯ᑚᑔᑖ=0.15፦/፬.

Figure 8.54: Displacement at the ice action point in the XZ plane (Side-Side motion), for an indentation velocity of ፯ᑚᑔᑖ=0.15፦/፬.
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Figure 8.55: Single sided amplitude spectrum of the response of Figure 8.53.

In this case amplitude spectra (Figures 8.55 and 8.56) show a peak near the first natural
frequency, with the first mode dominating the response.

Figure 8.56: Single sided amplitude spectrum of the response of Figure 8.54.

8.6.2. Misaligned

The same cases are examined assuming a misalignment of 30∘. The misalignment of the ice
load causes a small decrease in most instances of the response in the Fore-Aft motion (Figure
8.58) compared to the parallel case, for an ice sheet velocity, 𝑣።፞=0.005𝑚/𝑠. This is a logical
outcome as now the load that the ice exerts on the structure is distributed in two directions.
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Figure 8.57: Displacement at the ice action point in the YZ plane (Fore-Aft motion), for an indentation velocity of ፯ᑚᑔᑖ=0.005፦/፬.

The same is observed in the Side-Side motion (Figure 8.58). Although the response does not
appear to vary significantly between the aligned and misaligned cases.

Figure 8.58: Displacement at the ice action point in the XZ plane (Side-Side motion), for an indentation velocity of ፯ᑚᑔᑖ=0.005፦/፬.

Figure 8.59: Single sided amplitude spectrum of the response of Figure 8.57.



8.6. Aerodynamic and ice load 59

Figure 8.60: Single sided amplitude spectrum of the response of Figure 8.58.

Both spectra (Figures 8.59 and 8.60) show a peak near the first natural frequency of the
structure. The results for an indentation velocity of 𝑣።፞=0.15𝑚/𝑠 follow. The Fore-Aft and
Side-Side motions are shown in Figures 8.61 and 8.62 respectively.

Figure 8.61: Displacement at the ice action point in the YZ plane (Fore-Aft motion), for an indentation velocity of ፯ᑚᑔᑖ=0.15፦/፬.

The resulting response does not change a lot between the aligned and misaligned case in
both planes. However, a decrease in the Fore-Aft and increase in the Side-Side is visible due
to the distribution of the load between the two directions.

Figure 8.62: Displacement at the ice action point in the XZ plane (Side-Side motion), for an indentation velocity of ፯ᑚᑔᑖ=0.15፦/፬.
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Figure 8.63: Single sided amplitude spectrum of the response of Figure 8.61.

Figure 8.64: Single sided amplitude spectrum of the response of Figure 8.62.

The amplitude spectra (Figures 8.63 and 8.64) show a peak near the first natural frequency
of the structure indicating that the first mode is dominating the response.
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Conclusion and recommendations

9.1. Concluding remarks
In the present thesis a 3D finite element model in MATLAB was created that provides as
an output the response of the NREL-5MW offshore wind turbine under various loading com-
binations. The model is a result of the combination of already developed models from TU
Delft and extensions applied to them. It can be easily adjusted to analyze a different wind
turbine by providing basic dimensions. The model can be particularly useful in the case of
the preliminary design of an offshore wind turbine. This study aimed to integrate different
models to create one that can simulate the response of an offshore wind turbine under var-
ious types of loading. In order to proceed in the creation of the model, certain assumptions
and simplifications had to be made. These assumptions are considered valid and logical. As
with every assumption, however, there is a toll on the accuracy. In order to have a model that
can surely produce results that can be trusted for a design, additional research is suggested.
The loading combinations that can be generated with this model are the following:

• Aerodynamic load only

• Hydrodynamic load only, wave parameters are user defined and kinematics are calcu-
lated with Airy or Stokes 2፧፝ order theory

• Ice load only

• Aerodynamic in combination with hydrodynamic load, the angle between the loads is
user defined

• Aerodynamic and ice load, the angle between the loads is user defined

The model also comes with limitations, the signal that is given to the model must be above
rated wind speed and reference values for the ice load must be known to proceed to the anal-
ysis.

The produced results are an outcome of analyses with high modal damping ratios (see Ap-
pendix A), for this reason, frequency lock-in could not be identified. The analyses for the
ice-structure interaction were rerun for smaller damping ratios for velocities ranging from
0.006𝑚/𝑠 (right after intermittent crushing) to 0.15𝑚/𝑠 with a step of 0.01 however, fre-
quency lock-in was not found in that range as well, modal damping must be further reduced
for the structure to be in the frequency lock-in regime. The hydrodynamic loading results
indicate very small contributions on the combined analyses, of course more analyses must
be performed within the allowable limits of each theory. The aerodynamic load appears to be
dominating the response of the turbine.
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The amplitude spectra indicate that the selected number of modes is more than enough
to describe the behavior of the structure and modal reduction can be further applied, this is
of course depending also on the applied load.

This finite element model produces reasonable results, however it is not yet validated. It
should be used with caution. A validation of the model is required. This can be done with
experiments that might be available in literature or with a finite element analysis software
package.

9.2. Recommendations for further work

An offshore wind turbine is subjected to cyclic loading. This repetitive loading will cause a
local damage in the structure, which is generally known as fatigue damage. A fatigue as-
sessment is necessary to monitor how these loads affect the structure and its response over
the lifetime. While the structure is designed to withstand the Ultimate Limit State (ULS), it
might not be sufficient to withstand fatigue damage and be able to produce energy with the
same efficiency.

With respect to the hydrodynamic analysis, the assumption made to describe the velocity
accounting for skewness and asymmetry needs to be further investigated regarding its valid-
ity, against software packages or experimental results.

The current practice to design an offshore wind support structure, often leads to an over-
dimensioning of the monopile. The main reason for this is the uncertainty regarding the soil.
For this reason soil structure interaction needs to be carefully assessed, as cyclic loading
might make the soil more loose or more dense. An additional issue regarding soil is the
possible scouring around the monopile, and the scouring protection and how it affects the
natural frequency. An alternative approach compared to Winkler foundation, could be the
Pasternak foundation, in which the springs are not discrete but linked.

Regarding ice-structure interaction, the model currently used should be extended in order
to simulate the ice sheet and its response around the whole circumference of the monopile,
as it now covers half of it. Additionally, conditions must be added to check the distance of
the ice elements with the monopile. In an extreme case where the lateral displacement of the
monopile at the ice action node is large, the ice elements should be regenerated to surround
the monopile otherwise they would remain in the displaced position and not exert any force
on the structure.

The model that was used to predict the aerodynamic force comes with its limitations and
assumptions. The blades are assumed to be rigid, as mentioned it is considered a valid as-
sumption, an extension nevertheless would be to account for the flexibility of the blades and
evaluate the impact of this effect. Additionally it is valid only for above rated wind speeds
where pitch angle control is used. A wider range, including velocities from cut-in to cut-out
will allow for a complete analysis in every operational condition of the turbine. An extension
would also be the angle of attack, which in this case is low and allows for the assumption of
no flow separation, as the low angle of attack assumption is not always valid [49].

It is highly recommended before taking any step towards the extension of this model, to
validate it against experimental data.
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Appendix A: Modeling

A.1. Parameters
In order to start building the finite element model in MATLAB, some necessary parameters
need to be provided. The model is split into four parts, the tower, the transition piece above
water, the transition piece below water and the monopile. The following dimensions need to
be provided: the length, the outer diameter and the wall thickness of the tower at the top
and at the bottom as the cross-section is tapered, the length the outer diameter and the wall
thickness of the transition piece at the top and at the bottom, for both above and below mean
water level, the length of the monopile and its wall thickness. Additionally the mass of the
rotor and the nacelle has to be provided. The steel parameters that are required with the
values that are used in this thesis are summarized below.

Property Value
Density 7850𝑘𝑔/𝑚ኽ
Poisson ratio 0.33[-]
Young’s modulus 210×10ዃ𝑁/𝑚ኼ
Shear modulus 80×10ዃ𝑁/𝑚ኼ

Table A.1: Steel properties used for the finite element model.

The last requirement to build the model is the discretization parameters, the number of
elements selected for each of the sections. Once these are defined the structural model can
be built in MATLAB resulting in the necessary M, C, K matrices, the size of whom depends on
the discretization that is selected. Each element has five degrees of freedom, two translational
and three rotational. For 𝑛 elements, 𝑛 + 1 nodes are created, in the way that the matrices
are constructed the first 2×(𝑛 + 1) degrees of freedom correspond to the side side motions in
the XZ plane, the next 2×(𝑛+1) degrees of freedom correspond to the fore aft motions in the
YZ plane and the last 𝑛 + 1 correspond to yaw motions.

A.2. Discretization
As the element size decreases the accuracy of the solution increases, however this has a toll
on the computational time. As the element number increases the solution is expected to con-
verge, meaning that the difference in the resulting response will decrease. As the load from
the ice sheet and the maximum values of hydrodynamic load, as the water particle kinemat-
ics decrease with increasing depth, will both occur near the splash zone, the discretization
in the transition piece is investigated. The optimal element number is a trade of between the
accuracy of the solution and the computational time. Once the solution starts to converge
the element number can be selected and considered sufficient. This effect is investigated for
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a simple case, with just a hydrodynamic load resulting from a wave with the following char-
acteristics: Hፒ=0.5𝑚 and Tፏ=15.96𝑠. The choice of including only the hydrodynamic load
is strictly to reduce the computational time. Four options are considered, with the element
number of all but the transition piece remaining constant.

Discretization Tower Above water transition Below water transition Monopile
option elements piece elements piece elements elements
1 15 2 2 15
2 15 3 3 15
3 15 4 4 15
4 15 5 5 15

Table A.2: Explanation of the examined discretization options.

Figure A.1: Effect of discretization in the response of the RNA in the YZ plane.

It can be seen from the graph that with an increasing number of elements, the solution is
converging. To support this statement, the mean difference between the consecutive dis-
cretization options was calculated.

Discretization Δ x
Between option 1 & 2 1.1448×10ዅ𝑚
Between option 2 & 3 6.3554×10ዅዀ𝑚
Between option 3 & 4 4.6841×10ዅዀ𝑚

Table A.3: Convergence of the response of the RNA based on the discretization.

As expected, with increasing number of nodes the difference of the plots decreases, hence
the solution is converging. The discretization option that is selected is option 4 resulting in
total 40 elements in the structure.

A.3. Varying surface elevation
As the surface of the water changes constantly with time, the length over which the force acts
changes accordingly. This has an impact on force acting on the elements that are in every
time instance located in the splash zone. For this reason the model was adjusted to account
for this variation.

More specifically, the basic assumption is that the elevation of the transition piece is such
that the waves only affect the transition piece and the monopile, an assumption which can
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be considered valid as the design is based on providing sufficient clearance to assure this.
Additionally, a wave profile stretching is needed to calculate the water particle kinematics
above MSL, as mentioned in Section 4.3, Wheeler stretching is selected.

A.4. Modal damping ratios
In Table A.4 the damping ratios that were used in the analyses, for the lowest modes are
presented. Frequency lock-in in the case of ice-structure interaction is expected to be present
in one of these modes. With these values frequency lock-in was not identified. In Table A.5
the ratios used in the reruns are presented. Lock-in was not identified using those either.

Mode number XZ plane YZ plane
1 2% 2%
2 5% 5%
3 11% 12%
4 22% 24%

Table A.4: Modal damping ratios for the lowest modes with ᎎᎲ=0.0048 and ᎎᎳ=0.0841.

Mode number XZ plane YZ plane
1 0.5% 0.5%
2 1% 1%
3 3% 3%
4 5% 5%

Table A.5: Modal damping ratios for the lowest modes with ᎎᎲ=0.0012 and ᎎᎳ=0.0207.
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