

Delft University of Technology

CiM-BNN:Computing-in-MRAM Architecture for Stochastic Computing Based Bayesian
Neural Network

Gu, Huiyi; Jia, Xiaotao; Liu, Yuhao; Yang, Jianlei; Wang, Xueyan; Zhang, Youguang; Cotofana, Sorin Dan;
Zhao, Weisheng
DOI
10.1109/TETC.2023.3317136
Publication date
2024
Document Version
Final published version
Published in
IEEE Transactions on Emerging Topics in Computing

Citation (APA)
Gu, H., Jia, X., Liu, Y., Yang, J., Wang, X., Zhang, Y., Cotofana, S. D., & Zhao, W. (2024). CiM-
BNN:Computing-in-MRAM Architecture for Stochastic Computing Based Bayesian Neural Network. IEEE
Transactions on Emerging Topics in Computing, 12(4), 980-990.
https://doi.org/10.1109/TETC.2023.3317136
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TETC.2023.3317136
https://doi.org/10.1109/TETC.2023.3317136

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

980 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 12, NO. 4, OCTOBER-DECEMBER 2024

CiM-BNN:Computing-in-MRAM Architecture for
Stochastic Computing Based Bayesian

Neural Network
Huiyi Gu , Student Member, IEEE, Xiaotao Jia , Member, IEEE, Yuhao Liu , Student Member, IEEE,

Jianlei Yang , Member, IEEE, Xueyan Wang , Member, IEEE, Youguang Zhang , Member, IEEE,
Sorin Dan Cotofana , Fellow, IEEE, and Weisheng Zhao , Fellow, IEEE

(Invited Paper)

Abstract—Bayesian neural network (BNN) has gradually
attracted researchers’ attention with its uncertainty rep-
resentation and high robustness. However, high compu-
tational complexity, large number of sampling operations,
and the von-Neumann architecture make a great limitation
for the further deployment of BNN on edge devices. In this
article, a new computing-in-MRAM BNN architecture (CiM-
BNN) is proposed for stochastic computing (SC)-based
BNN to alleviate these problems. In SC domain, neural net-
work parameters are represented in bitstream format. In or-
der to leverage the characteristics of bitstreams, CiM-BNN
redesigns the computing-in-memory architecture without
complex peripheral circuit requirements and MRAM state
flipping. Additionally, real-time Gaussian random number
generators are designed using MRAM’s stochastic property
to further improve energy efficiency. Cadence Virtuoso is
used to evaluate the proposed architecture. Simulation re-
sults show that energy consumption is reduced more than
93.6% with slight accuracy decrease compared to FPGA im-
plementation with von-Neumann architecture in SC domain.

Manuscript received 20 October 2022; revised 28 July 2023; accepted
11 September 2023. Date of publication 25 September 2023; date of
current version 6 December 2024. This work was supported in part
by the National Natural Science Foundation of China under Grants
62006011, U20A20204, 62072019, and 62004011, and in part by the
111 Talent Program under Grant B16001. (Corresponding author: Xiao-
tao Jia.)

Huiyi Gu, Yuhao Liu, and Youguang Zhang are with the School
of Electronic and Information Engineering, Beihang University, Bei-
jing 100191, China (e-mail: guhuiyi@buaa.edu.cn; liuyho@foxmail.com;
zyg@buaa.edu.cn).

Xiaotao Jia is with the School of Integrated Circuit Science and
Engineering, Beihang University, Beijing 100191, China, and also with
the Zhongfa Aviation Institute, Beihang University, Hangzhou, Zhejiang
311115, China (e-mail: jiaxt@buaa.edu.cn).

Xueyan Wang and Weisheng Zhao are with the School of Inte-
grated Circuit Science and Engineering, Beihang University, Beijing
100191, China (e-mail: wangxueyan@buaa.edu.cn; weisheng.zhao@
buaa.edu.cn).

Jianlei Yang is with the School of Computer Science and Engineering,
State Key Laboratory of Software Development Environment, Beihang
University, Beijing 100191, China (e-mail: jianlei@buaa.edu.cn).

Sorin Dan Cotofana is with the Computer Engineering Laboratory,
Delft University of Technology, 2628 CD Delft, Netherlands (e-mail:
S.D.Cotofana@tudelft.nl).

Digital Object Identifier 10.1109/TETC.2023.3317136

Index Terms—Bayesian neural network, computing-in-
memory, energy efficiency, STT-MRAM, stochastic comput-
ing.

I. INTRODUCTION

BAYESIAN neural network (BNN) has the support of fun-
damental probability theory [1] that makes up for the short-

comings of traditional DNNs in mathematical theory. DNNs use
a large volume of weight data that is difficult to store in on-chip
memory of embedded designs [2]. Small sample learning ability
of BNN makes it possible to be deployed on edge devices. And
BNN is ideal for specific scenarios such as medical, security,
auto-driving due to its uncertainty representation [3], high ro-
bustness [4] and strong interpretability [5]. In BNN, network pa-
rameters are modeled as probability distribution, and T concrete
neural networks are instantiated through sampling operations.
High computational complexity and calculation pressure, espe-
cially in sampling and feed-forward propagation, exacerbate the
speed disparity between processor and memory. Compared with
DNNs, BNN exists a more prominent “memory-wall” problem
with traditional von-Neumann architecture.

Approximate computing can approximately (inexactly) pro-
cess data to save power and achieve high performance while
maintaining an acceptable result [6]. Stochastic Computing (SC)
is a non-conventional approximate computation method based
on probabilities [7]. SC reduces calculation complexity, hard-
ware costs and power consumption [8] by simplifying complex
data computation into bit operations. The work of [9] proposes a
StocBNN that introduces BNN into SC domain to simplify data
representation and network computing. However, StocBNN is
still based on the traditional von-Neumann architecture, so it
cannot solve the “memory wall” problem in BNN.

Computing-in-memory is considered one of the main techni-
cal routes to realize intelligent computing. It realizes the fusion
of storage elements and compute elements to alleviate “memory
wall” problem [10]. Some emerging non-volatile memories
(eNVMs) with low power consumption are welcomed such
as RRAM, PCM, FeFET and MRAM [11], [12]. Non-volatile
computing-in-memory can be achieved by using small-capacity

2168-6750 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on December 30,2024 at 10:50:57 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0001-4778-7256
https://orcid.org/0000-0003-2207-6092
https://orcid.org/0000-0001-7400-8900
https://orcid.org/0000-0001-8424-7040
https://orcid.org/0000-0003-0080-4730
https://orcid.org/0009-0008-0928-4210
https://orcid.org/0000-0001-7132-2291
https://orcid.org/0000-0001-8088-0404
mailto:guhuiyi@buaa.edu.cn
mailto:liuyho@foxmail.com
mailto:zyg@buaa.edu.cn
mailto:jiaxt@buaa.edu.cn
mailto:wangxueyan@buaa.edu.cn
mailto:weisheng.zhao@penalty -@M buaa.edu.cn
mailto:weisheng.zhao@penalty -@M buaa.edu.cn
mailto:jianlei@buaa.edu.cn
mailto:S.D.Cotofana@tudelft.nl

GU et al.: CiM-BNN:COMPUTING-IN-MRAM ARCHITECTURE FOR STOCHASTIC COMPUTING BASED BAYESIAN NEURAL NETWORK 981

memristor crossbar arrays combined with peripheral readout cir-
cuits made from discrete components [13]. PCM has been used
to implement mixed-precision in-memory computing in [14].
RRAM is leveraged in [15] to develop a computing-in-memory
accelerator for more efficient real-time inference.

It is noteworthy that MRAM is often used for in-memory
computing because of its several desirable attributes, such as
non-volatility, decoupled sensing and buffering, high density
and near-zero leakage [16]. While RRAM and other eNVMs can
realize multi-bit data computing, they may need more complex
peripheral circuits and have higher read latency. MRAM only
has two states, namely AP and P, which enable direct bitstream
storage and lower latency. Using MRAM to design a computing-
in-memory architecture in SC domain based on the work [9] can
solve the current BNN application limitations mentioned above.
Furthermore, the stochastic switching property of MRAM could
also be utilized as Gaussian random number generators. Consid-
ering these factors, this paper proposes a computing-in-MRAM
BNN architecture in SC domain.

The main contributions of this work are summarized as fol-
lows:

� A new computing-in-MRAM BNN architecture (CiM-
BNN) is proposed in SC domain. BNN inference in this
architecture is carried out in situ which is helpful to deal
with the “memory wall” problem.

� The core circuits are all made up of spintronic devices
to achieve corresponding functions. Gaussian random
number generator (GRNG) is implemented based on the
stochastic switching behavior of MRAM. Computing-in-
memory arrays are built upon the binary characteristic of
MRAM. The system energy consumption is significantly
reduced due to its almost-all-spin characteristic.

� Hardware implementations with low circuit complexity
are explored. The operations in BNN are finally sim-
plified from Dot-product operation to Read operation in
computing-in-MRAM arrays without complex peripheral
circuits. Inference stage does not involve the state flipping
of MTJs, which improves circuit stability.

The remainder of this paper is organized as follows.
Section II introduces the current research status of BNN infer-
ence acceleration. Section III briefly describes the relevant prior
knowledge. Section IV explains essential computing-in-MRAM
cells and calculation principles in detail. The overall CiM-BNN
architecture is described in Section V. Section VI evaluates
experimental results in Cadence Virtuoso. The summary can
be found in Section VII.

II. RELATED WORK

The current work related to BNN inference acceleration
can be roughly divided into two categories. The first category
focuses on software and hardware optimizations within the
existing von-Neumann architecture [9], [17], [18], [19], [20],
[21]. Jia et al. [17] optimize BNN feed-forward process by
data reuse strategy, and realize an energy consumption reduction
of 73% and a 4× speedup. FPGA-based design in [18] can
intelligently skip redundant computations of dropout masks

and zero-corresponding computations during Bayesian CNN
inferences. 3-D BayesCNNs hardware acceleration architecture
is designed and an automatic framework is provided in [19].
Cai et al. [20] explore the design space for massive amount
of Gaussian variable sampling tasks in BNNs and propose two
high performance Gaussian (pseudo) RNG. Awano et al. [21]
replace costly GRNGs with Bernoulli RNG and improve 57.5%
energy efficiency compared to [20]. StocBNN in [9] implements
BNN deployment in SC domain. These works indeed achieve
performance improvements in BNN. However, they are based on
traditional architectures and most of them only focus on either
the sampling or the feed-forward process, resulting in limited
effectiveness.

The second category explores the computing-in-memory im-
plementation of eNVMs in BNN [22], [23], [24], [25], [26]. Yang
et al. [22] make the first exploration of a BNN hardware accel-
erator enabled by SOT-MRAM and demonstrate 24× reduction
in energy consumption. Lin et al. [23] utilize RRAM inherent
stochasticity to develop a typical risk-sensitive reinforcement
learning task with a four-layer BNN. Works in [24], [25] achieve
high quality uncertainty quantification and high-precision BNN
calculation with RRAM. Ahmed et al. [26] design a binary
dropout-based BNN with an end-to-end approach and imple-
ment the architecture with MRAM. These studies demonstrate
the potential of eNVMs for various machine learning applica-
tions, highlights the importance of exploring new computing
paradigms, but they still face certain challenges. These archi-
tectures are all conducted in digital domain, the devices require
high-precision digitization capabilities. Furthermore, complex
peripheral circuits such as complex analog-to-digital converters
(ADCs) and digital-to-analog converters (DACs) may also be
necessary.

Considering these factors, this paper presents a computing-
in-MRAM BNN implementation in SC domain. The data rep-
resentation, computation and output reading in CiM-BNN are
different from existing works.

III. PRELIMINARIES

This work essentially integrates and innovates the advan-
tages of Bayesian neural network, approximate computing and
non-volatile computing-in-memory. The purpose is to find an
appropriate computing diagram and architecture that could al-
leviate the limitations of current BNN. By optimizing hardware
architecture, data flow design, circuit energy consumption to
explore BNN diversified deployment. Before the description of
overall architecture, some preliminaries are discussed in this
section.

A. Bayesian Neural Network

Different from standard neural networks, the network pa-
rameters of BNN are modeled as the probability distribution
instead of fixed parameters. Mathematical foundation support
of BNN is Bayesian theory which makes neural networks in-
terpretable [27]. In Bayesian theory, posterior probability is
derived from prior probability distribution and network input

Authorized licensed use limited to: TU Delft Library. Downloaded on December 30,2024 at 10:50:57 UTC from IEEE Xplore. Restrictions apply.

982 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 12, NO. 4, OCTOBER-DECEMBER 2024

Fig. 1. BNN diagrammatic sketch. Weight is represented by Gaussian
probability distribution and output also conforms to Gaussian probability
distribution after Dot-product operation.

data. Bayesian theory can be written as (1):

P (W |D) =
P (D|W)P (W)

P (D)
, (1)

Here, W means weight parameters, characterized by mean (μ)
and standard variation (σ), with Gaussian distribution. D means
input node data of neural network. P (W) is defined as the
prior probability distribution. It is artificially estimated data and
represents the probability of network parameters before any data
is entered. P (D|W)/P (D) is the likelihood, it can be regarded
as an adjustment factor to make the estimated probability dis-
tribution closer to the true one. P (W |D) is the posterior prob-
ability distribution. By assuming prior probability distribution
and learning posterior probability, BNN can continuously train
network parameters. Variational inference method is generally
applied in network training [28], making posterior probabil-
ity density estimation tractable and achieving faster learning
speed. After Dot-product operation, BNN output also conforms
to probability distribution characterized by mean and standard
variation as shown in Fig. 1. Standard variation is the uncertainty
measure of network. BNN’s uncertainty quantification ability
greatly improves network robustness.

For the inference stage of well-trained BNN, weight distri-
bution is instantiated into T specific neural networks through
sampling operations. Input data (such as images) would be
fed into all T neural networks and generate T outputs. Final
inference result is determined by those outputs. [20] makes it
straightforward for the first time that BNN needs to perform
“weight sampling and feed-forward propagation” many times
in the inference stage. According to the accuracy requirements
of tasks, the value of T can be different, generally about 100.
The increasing demand for memory access and computationally
intensive operations lead BNN to face more serious “memory
wall” problem than DNN.

B. Approximate Computing

Approximate computing is considered one of the few
paradigms that could reduce power consumption by orders of
magnitude. It sacrifices the pursuit of accurate results to obtain
better performance [30]. Therefore, approximate computing has
strong application prospects in error-tolerant scenarios such as

Fig. 2. Error sources in general SC circuits [29].

Fig. 3. Equivalence relation between 0-1 sequence and Gaussian
random number [9].

signal processing, machine learning, data mining, etc. [31]. It
has been applied at different levels, from devices to systems,
from hardware to algorithms.

As a non-conventional type of approximate computing, SC
is first proposed by von Neumann in 1950s [32]. It simplifies
computing requirements and trades off computational errors for
low-cost hardware, low power consumption and other bene-
fits [33]. As shown in Fig. 2, SC is not an accurate calculation
method. It has several error sources which are peculiar to SC,
including rounding errors, approximation errors, random fluc-
tuations errors and correlation errors [29].

In SC, data exists in the form of bitstream. Under different
coding modes, data will be converted into different forms of
0-1 sequence, named stochastic numbers (SNs). By counting
1’s in bitstream, we can know the corresponding digital value
of SNs. For instance, in unipolar representation, one SN can
represent a digital value in [0,1] (i.e. P (x = 1)). 01101001
contains four 1 s in an eight-bit stream, so the value is 1

2 . In
unipolar, the arithmetic operation (multiplication) is replaced by
logical operation (AND). Compared with arithmetic operation,
logic operation is bit-wised. Each memory cell only need to store
one bit data (0 or 1). As the length of the bitstream increases,
the precision of the value improves, but it will consume more
runtime.

The work in [9] proved that Gaussian random numbers could
be represented by 0-1 sequence and participate in neural network
computing directly without central limit theorem (CLT)-based
transformation. Fig. 3 shows the equivalence relation between

Authorized licensed use limited to: TU Delft Library. Downloaded on December 30,2024 at 10:50:57 UTC from IEEE Xplore. Restrictions apply.

GU et al.: CiM-BNN:COMPUTING-IN-MRAM ARCHITECTURE FOR STOCHASTIC COMPUTING BASED BAYESIAN NEURAL NETWORK 983

a series of binary random numbers and a Gaussian random
number. It indicates that data in digital domain can be directly
generated with Binary random number generators (BRNGs)
that could randomly generate 1 (or 0) with probability p (or
1 − p). Based on this proof, BRNGs can be directly used to
generate corresponding bitstream data that conforms to Gaussian
distribution. Meanwhile, the work has proved that bitstream
could participate in the feed-forward propagation as a whole
with updated equivalent mean μ′ and standard deviation σ′. Its
transformation process is shown in (2):

yi =
N∑
j=1

wijxj =
N∑
j=1

(uijσij + μij)xj

=

N∑
j=1

(
hijσ

′
ij + μ′

ij

)
xj =

N∑
j=1

hijσ
′
ijxj +

N∑
j=1

μ′
ijxj (2)

Here, hij =
∑L

k=1 b
k
ij

L , is the digital value of SNs in unipolar

encoding. σ′
ij =

√
L

p(1−p)σij and μ′
ij = μij −

√
Lp
1−pσij . This

equation forms the basis of BNN in SC domain and provides a
solid foundation for the in-memory computing application with
spintronic devices. Next, we try to design suitable computing-
in-memory arrays for μ′

ijxj and hijσ
′
ijxj .

C. Magnetic Tunnel Junction

MRAM has better process deviation and lower write voltage
than other eNVMs [34]. It is treated as one of the most suitable
candidate for on-chip cache applications and has some ex-
ploratory applications in approximate computing [35]. MRAM
uses different collective magnetization states of ferromagnetic
layers to store binary data (0 or 1). The core component is Mag-
netic Tunnel Junction with Perpendicular Magnetic Anisotropy
(PMA-MTJ). MTJ consists of three layers: two ferromagnetic
layers (CoFeB) and an intermediate oxidation layer (MgO).
One of the ferromagnetic layers is fixed layer in which the
magnetization direction is fixed. The other one is free layer in
which the magnetization direction can be changed according to
the injected current.

MTJ has two states: parallel (low resistance) and anti-parallel
(high resistance). When the magnetization directions of two
ferromagnetic layers are consistent, MTJ presents a parallel
state (P) and the resistance value is represented by RP . When
the magnetization directions are opposite, MTJ presents an
antiparallel state (AP) and the resistance is represented byRAP .
Data is written by switching the magnetization direction of free
layer. TMR ratio is used to describe the resistance difference
characteristics of MTJ in two states. It is a critical attribute of
MTJ and directly affects MTJ’s actual features.

There are two primary device types of MTJ, magnetic field
driven MTJ and current driven MTJ. Compared with magnetic
field driven MTJ, current driven MTJ can achieve higher density
and faster write speed [16], so it is currently the mainstream
device. Spin Transfer Torque-based MTJ (STT-MTJ) is current
driven MRAM. It uses injected current to change the mag-
netism direction of free layer. Fig. 4 shows a typical structure

Fig. 4. Typical Spin Transfer Torque-based Magnetic Tunnel Junction
(STT-MTJ) structure. Current is injected perpendicular to the MTJ and
passes through the thin magnetic layer to form a spin-polarized current.
Spin-polarized current enables MTJ to switch between AP and P states.

Fig. 5. Experimental measurements of the switching probability with
different programming voltages [36].

of STT-MTJ. The spin-polarized current is created by passing
a current through a thin magnetic layer. If the spin-polarized
current (IP→AP) flows from free layer to reference layer, the
MTJ state will be switched from P state to AP . On the contrary,
if IAP→P is formed, the MTJ state will be switched from AP
state to P . Once spin-polarized current is greater than its critical
reverse current IC0, magnetization direction is affected by the
intensity of current and pulse duration with a switching prob-
ability [36]. By applying different programming voltages with
suitable duration, MTJ can be flipped with a fixed probability
as shown in Fig. 5. Based on these, MTJs can be used as
the fundamental devices of computing-in-memory arrays and
simplified SC domain GRNG.

IV. CALCULATION PRINCIPLE OF CIM-BNN

As can be seen from (2), BNN calculation can be divided into
two parts. One part is μ′

ijxj , and the other part is hijσ
′
ijxj .

The two parts involve different numbers of parameters, so
different computing-in-MRAM cells (CiM-cells) are designed.
STT-MRAM is used to store the well-trained BNN parameters.
CiM-cell of mean stores the value of μ′ and CiM-cell of stan-
dard deviation stores σ′. CiM-cell of mean is slightly different

Authorized licensed use limited to: TU Delft Library. Downloaded on December 30,2024 at 10:50:57 UTC from IEEE Xplore. Restrictions apply.

984 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 12, NO. 4, OCTOBER-DECEMBER 2024

Fig. 6. Real-time GRNG based on MTJ. Reset operation puts MTJ to
parallel state. Write operation changes MTJ state. PCSA reads out the
result. Rref is set as (RP +RAP)/2 in this work.

from CiM-cell of standard deviation, so they will be described
separately.

In CiM-BNN, input data x and random sampling parameter
h are treated as transistors’ control signals to control the on-
off of the transistors. h is generated by real-time GRNG based
on MTJ for resolving the circuit complexity. Array calculation
results are read out by pre-charge sense amplifier (PCSA), so
the multiplication in BNN is finally simplified to read operation
in MRAM arrays. Multiplexers (MUXs) and counters are used
to realize data accumulation within SC method. All digital data
are converted into bitstreams in advance and all calculations are
performed in SC domain. BNN inference is achieved without
data movement with proposed computing architecture.

A. Real-Time GRNG Based on MTJ

GRNG is used in weight sampling stage of BNN. Weight
needs to be randomly sampled multiple times to ensure the
inference accuracy. In other design schemes, GRNG usually
occupies extensive hardware resources due to its complexity.
Different ways of improving GRNG performance are proposed
in [37], [38], [39].

In this paper, real-time GRNG is designed to generate h and
selection signal of MUXs. Referring to the stochastic number
generator circuit [40], we use MTJ to design real-time GRNG.
By performing reset, write and read three operations, MTJ state
can be continuously switched to generate random numbers.
Fig. 6 shows the detailed structure and random numbers gener-
ation process. When write_sel is set to be high level, read_sel
is set to be low. MTJ would be reset to parallel state first through
reset current and then written to different states through write
current. When read_sel is set to be high level, write_sel is set
to be low, and PCSA is employed for reading out MTJ’s current
state. The resistance value of reference cell is set between RP

and RAP , normally (RP +RAP)/2 or (RP ∗RAP)
1/2. C_clk

controls the working states of PCSA. The internal property
of MTJ reduces the power consumption of random numbers
generation. By selecting appropriate pulse voltage and duration
of injection current, the switching probability of MTJ can be set

Fig. 7. Basic memory cells of CiM-BNN. Data is calculated row by row,
only one RWL is activated at the same time,e.g.when x1

1 is activated, no
other rows have any input data.

to 50%. It should be note that, based on (2), even if the transition
probability of the MTJ cannot be guaranteed to be exactly 50%,
or if it cannot be ensured that each output yi corresponds to the
same transition probability, it will not affect the results. After
measuring the value of p for different MTJs in advance, the
correct calculation can be achieved by adjusting the values of μ′

i

and σ′
i.

B. CiM-Cell of Mean

As shown in Fig. 7(a), traditional 1T1R structure is chosen
as basic CiM-cell to realize the multiplication of x and μ′.
Equivalent mean μ′ are stored in MTJ arrays. Input signal x is
applied on the Wordline that plays the role of row driver (RWL
in Fig. 7). PCSA shown in Fig. 6 is also employed between
Bitline (BL) and Sourceline (SL) for identifying the final state
of calculation results.

First, set the initial state of MTJs to parallel state (P), then
write μ′ into MTJs by injecting appropriate current. Each MTJ
stores one bit, and μ′ in bitstream form is stored vertically. x
is a voltage control signal. When x = 1, the corresponding
RWL will be activated. When x = 0, the transistor remains off
and no current passes through. It should be noted that only one
RWL can be activated at a time, but all columns are calculated
together. Then the equivalent resistance value Req of CiM-cells
can be obtained. PCSA will get the result ofμ′k

ijx
k
j by comparing

Req between BL and SL with reference resistance Rref . If Req

>Rref , PCSA outputs 0, If Req <Rref , PCSA outputs 1. Truth
table of the circuit is shown in Table I. Here, we define the
anti-parallel state of MTJ as “0” and the parallel state as “1”.

C. CiM-Cell of Standard Deviation

CiM-cell needs to be modified slightly for realizing hijσ
′
ijxj .

2T1R structure shown in Fig. 7(b) is the basic CiM-cell of

Authorized licensed use limited to: TU Delft Library. Downloaded on December 30,2024 at 10:50:57 UTC from IEEE Xplore. Restrictions apply.

GU et al.: CiM-BNN:COMPUTING-IN-MRAM ARCHITECTURE FOR STOCHASTIC COMPUTING BASED BAYESIAN NEURAL NETWORK 985

TABLE I
TRUTHTABLE OF μ′

ijxj IN EQN. (2)

TABLE II
TRUTHTABLE OF hijσ

′
ijxj IN EQN. (2)

standard deviation. Input signal x is still applied on RWL and
random number h is applied on the Wordline that plays the role
of column driver (CWL in Fig. 7(b)).

Similarly, set the initial state of MTJs to parallel state (P),
then write equivalent standard deviation σ′ into MTJs. By
changing the control voltage according to the value of x and h
independently, three different equivalent resistances are formed
between BL and SL. PCSA displays the final result. Truth table
ofhijσ

′
ijxj is shown in Table II. In SC domain, multiplying three

numbers requires two AND gates, while in CiM-cell, no logical
computing unit is required. Designing computing-in-MRAM
architecture can save large numbers of AND gates and simplify
circuit complexity.

V. ARCHITECTURE OF CIM-BNN

A. Overview of Main Architecture

The overall structure of CiM-BNN is shown in Fig. 8. The sys-
tem includes computing-in-MRAM array (CiM-array) of mean,
CiM-array of standard deviation, PCSA arrays, GRNGs, MUXs,
counters and peripheral circuits. The well-trained network pa-
rameters (represented by μ′ and σ′) are written into CiM-arrays
in advance. The network performs real-time calculation with
continuous data input. PCSA outputs of corresponding columns
in two CiM-arrays are transmitted into MUXs for addition.
Counters accumulates 1’s in bitstream and get corresponding
digital domain data as the inference results.

Here, we suppose that input neural count is M , output neural
count is N and bitstream length is L. The dimension of CiM-
array of mean and CiM-array of standard deviation are both
[M × L,N].

B. Computing-in-MRAM Arrays

CiM-arrays are built according to the two CiM-cells in
Section IV. Each array have (M × L) rows, corresponding

Fig. 8. Overview architecture of CiM-BNN. Random numbers gener-
ated by real-time GRNG are fed into CiM-array of standard deviation as
sampling parameters and into MUXs as selection signals.

Fig. 9. Computing-in-MRAM arrays with M input and N output
(Bitlength = L). The dimension of both array are [M × L,N].

to input neuron nodes in bitstream format, and N columns,
corresponding to output neuron nodes. Weight parameters in
bitstream format are stored vertically in the array and each MTJ
stores one bit as shown in Fig. 9.

In Fig. 9(a), μ′ is pre-stored in CiM-array of mean. This array
is utilized to perform the calculation ofμ′

ijxj . First, set the initial
voltage of all RWLs to 0v, then change input voltage of RWLs
row by row according to the value of x. PCSAs can obtain the
multiplication result of x and μ′ in the array in real time. For

Authorized licensed use limited to: TU Delft Library. Downloaded on December 30,2024 at 10:50:57 UTC from IEEE Xplore. Restrictions apply.

986 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 12, NO. 4, OCTOBER-DECEMBER 2024

example, when the first bit of x1 (x1
1) is applied on the RWL1,

PCSAs will simultaneously sense the first-bit result of all output
neuron nodes Q1

1Q
1
2· · ·Q1

N .
For CiM-array of standard deviation shown in Fig. 9(b), the

computing mechanism is similar to that in CiM-array of mean.
The array is utilized to perform the calculation of hijσ

′
ijxj . All

RWLs and CWLs keep off first, then the corresponding row
(xk

j) are activated. Real-time GRNGs generate different random
numbers (hk

1jh
k
2j · · ·hk

Nj) and all CWLs are activated simultane-
ously according to corresponding random numbers. Calculation
results are obtained by PCSAs. BNN requires multiple sampling,
so CiM-array of standard deviation will be calculated T times.

C. Data input/output

The operation of the entire computing-in-memory circuit is
controlled by timing control logic. Equivalent weight parameter
μ′ and σ′ need to be pre-processed by a shifter and converter
from digital domain to SC domain. Then control logic writes
equivalent weight parameters to CiM-arrays at one time. Input
data x is converted into bitstream as voltage signals to control
different RWLs and random sampling parameter h is real-time
generated by GRNGs to control different CWLs.

The result of the CiM-arrays are read out by PCSAs. A
proper bias voltage V _clamp is applied in NMOS transistor
and V _load is applied in PMOS transistor to prevent read
disturbance. V _load and V _clamp are set to about 0.8 V. PCSA
is triggered at the rising edge ofC_clk. The resistance difference
is converted into voltage difference which could be sensed by a
dynamic latched voltage comparator with clock enabled.

VI. EXPERIMENTAL RESULTS

A series of experiments are designed to prove the feasibility
and inherent advantages of CiM-BNN.

A. Functional Verification

Functional verification is the first step of the experiments to
ensure that the circuit can operate multiplication and addition
correctly. In two cases of given input (specific bitstream data)
and random real data input (image input data), multiple function
verification experiments are carried out, respectively. For each
CiM-array of mean and CiM-array of standard deviation, two
8*1 small arrays are taken to perform functional verification. The
state of MTJs in the first array are all parallel state (“1”) and in
the second array are all anti-parallel state (“0”). Q1 corresponds
to PCSA outputs of the first array, and Q2 corresponds to the
second one.

It can be summarized from Fig. 10(a) and (c) that when the in-
put data are given manually, Q1 and Q2 show the corresponding
results meeting the conditions in Tables I and II, respectively.
And when the input data is random real data and h is generated
by STT-MRAM (with 50% switching probability), Q1 and Q2

shown in Fig. 10(b) and (d) also meet the situation of Tables I
and II.

Fig. 10(e) shows the calculation results of MUX with given
input, where η represent the multiplication results of μ′

ijxj and

TABLE III
INFERENCE ACCURACY COMPARISON

γ is equivalent to hijσ
′
ijxj . When the selection signal of MUX

is high level, MUX outputs γ, and when the selection signal is
low level, it outputs η. Maintain 50% of the selection signal at
high level, MUX can output the calculation result meeting (3).

yi
2

=

∑N
j=1 hijσ

′
ijxj +

∑N
j=1 μ

′
ijxj

2
. (3)

Fig. 10(f) shows functional verification of MUX under ran-
dom real data input. The selection signal is also generated by
STT-MRAM with 50% probability and the results meet the
expectations.

B. Inference Accuracy

We select MNIST [41] and Fashion-MNIST [42] to evaluate
the classification accuracy of CiM-BNN. The BNN is pre-trained
using Edward [43]. A 784-200-200-10 configuration with fully
connected layers (named as 4-FC) and LeNet-5 [44] are adopted.
Considering the issue of compounding errors over multiple
layers [45], we implement the first layer with SC method and
the remaining layers are implemented in the digital domain.
ReLU is taken as the activation function. The concrete neural
network count T is set as 100 and bitstream length is selected
as 64 and 128. Three methods are implemented to evaluate the
inference accuracy as well as the energy efficiency: (1) Conven-
tional binary radixbase computing domain BNN (DigtBNN),
(2) Stochastic computing domain BNN (StocBNN) and (3)
CiM-BNN. CiM-BNN is implemented based on the architecture
shown in Fig. 8. All three methods are realized using Python,
and the experimental results are demonstrated in Table III.

CiM-BNN and StocBNN have basically the same compu-
tational paradigm on software implementation, but they are
slightly different in MUX selection signals. Hardware circuit
is redesigned in CiM-BNN, and selection signal of MUXs are
shared with the same GRNG to reduce hardware cost further. In
StocBNN, selection signals are generated by different GRNGs.
It can be seen that CiM-BNN maintains the inference accuracy
well when compared with StocBNN. For 4-FC and LeNet-5,
when the bitstream length is 128, there is only a slight decrease
with about 0.33% and 0.05% in MNIST and 0.15% and 0.03%
in Fashion-MNIST, respectively.

C. Hardware Performance

In order to demonstrate the energy efficiency of CiM-BNN,
two comparisons are performed. CiM-BNN is implemented with

Authorized licensed use limited to: TU Delft Library. Downloaded on December 30,2024 at 10:50:57 UTC from IEEE Xplore. Restrictions apply.

GU et al.: CiM-BNN:COMPUTING-IN-MRAM ARCHITECTURE FOR STOCHASTIC COMPUTING BASED BAYESIAN NEURAL NETWORK 987

Fig. 10. Functional verification of circuit calculation. (a)∼(f) represent the final results of different modules under the condition of given input and
random real data input. Q1 is the output of array 1, in which MTJs are stored with parallel state (“1”). Q2 is the output of array 2, in which MTJs are
stored with anti-parallel state (“0”).

45 nm CMOS and 40 nm MTJ technologies and evaluated by
Virtuoso. Fig. 11 illustrates CiM-BNN energy consumption of
different components at different bitlengths. The consumption
of CiM-arrays in blue is the sum of CiM-array of mean and
CiM-array of standard deviation. For CiM-BNN, the demand
for Gaussian random numbers and the amount of multiplication

and addition are directly proportional to the bitlength, resulting
in a linear increase in energy consumption as the bitlength
increases. The overall consumption of CiM-BNN with 128 b
is 1.342 μJ /image, which is twice that of 64-bit and four times
that of 32-bit. Energy consumption of CiM-arrays, GRNG, and
other components also conform to this linear relationship.

Authorized licensed use limited to: TU Delft Library. Downloaded on December 30,2024 at 10:50:57 UTC from IEEE Xplore. Restrictions apply.

988 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 12, NO. 4, OCTOBER-DECEMBER 2024

Fig. 11. Energy consumption with different bitlengths. The consump-
tion of CiM-arrays is the sum of μ′

ijxj and hijσ
′
ijxj . Overall structure

contains the energy consumption of CiM-arrasys, GRNG and the other
remaining components.

TABLE IV
ENERGY COMPARISON WITH RELATED WORK

Table IV presents a comparison of CiM-BNN with some re-
lated works of different implementation platforms. Compared to
StocBNN [9] that is implemented on FPGA, CiM-BNN has the
same computation process but achieves a 93.6% reduction in en-
ergy consumption. When compared to the computing-in-RRAM
architecture in [25] and [24], CiM-BNN reduces the energy
consumption by 85.7% and 51.9%, respectively. Compared to
the binary BNN implementation in BayBNN [26], which has
a simpler data representation, CiM-BNN still reduces energy
consumption by 32.9% due to more efficient architecture. The
read latency of RRAM computing-in-memory architecture is re-
ported to be 10 ns in [25] and 100 ns in [24]. In this work, the read
latency of MRAM is only 3 ns. The CiM-arrays can be divided
into multiple small arrays for parallel computation that could
improve the computation latency of CiM-BNN. This approach
may increase the circuit area by adding some additional circuits
such as PCSA, MUX and so on, but the area of CiM-arrays won’t
increase. The trade-off between circuit area and computation
latency could be made based on specific application scenarios.

VII. CONCLUSION

This paper designs the computing-in-MRAM architecture
for BNN in SC domain. CiM-BNN combines the advantages
of BNN, SC, eNVMs and in-memory computing. It resolves
the disadvantages of high computational complexity and high
hardware resource consumption of BNN, as well as the “memory
wall” of traditional von-Neumann architecture. On the premise

that Gaussian random numbers can be represented by bitstream
and bitstream can participate in feed-forward propagation, this
paper utilizes binary feature of MTJ to realize high efficiency
in-memory computing. Cadence Virtuoso is used to simulate the
proposed architecture. Compared with FPGA implementation,
CiM-BNN maintains inference accuracy well and reduces the
overall energy consumption by 93.6%. In the future, we will
try to improve the utilization efficiency of circuits and design
more computing-in-memory architectures suitable for complex
Bayesian neural networks.

REFERENCES

[1] Z. Ghahramani, “Probabilistic machine learning and artificial intelli-
gence,” Nature, vol. 521, no. 7553, pp. 452–459, 2015.

[2] T. Yuan, W. Liu, J. Han, and F. Lombardi, “High performance CNN
accelerators based on hardware and algorithm co-optimization,” IEEE
Trans. Circuits Syst. I, Regular Papers, vol. 68, no. 1, pp. 250–263,
Jan. 2021.

[3] A. Kendall and Y. Gal, “What uncertainties do we need in Bayesian deep
learning for computer vision?,” in Proc. Adv. Neural Inf. Process. Syst.,
2017, pp. 5574–5584.

[4] C. R. N. Tassi, “Bayesian convolutional neural network: Robustly quantify
uncertainty for misclassifications detection,” in Proc. Mediterranean Conf.
Pattern Recognit. Artif. Intell., 2019, pp. 118–132.

[5] H. Park, A. Haghani, and X. Zhang, “Interpretation of Bayesian neural
networks for predicting the duration of detected incidents,” J. Intell.
Transp. Syst., vol. 20, no. 4, pp. 385–400, 2016.

[6] W. Liu, F. Lombardi, and M. Shulte, “A retrospective and prospective view
of approximate computing,” in Proc. IEEE, vol. 108, no. 3, pp. 394–399,
Mar. 2020.

[7] H. Ichihara, S. Ishii, D. Sunamori, T. Iwagaki, and T. Inoue,
“Compact and accurate stochastic circuits with shared random num-
ber sources,” in Proc. IEEE 32nd Int. Conf. Comput. Des., 2014,
pp. 361–366.

[8] A. Mondal and A. Srivastava, “Power optimizations in MTJ-based neural
networks through stochastic computing,” in Proc. IEEE Int. Symp. Low
Power Electron. Des., 2017, pp. 1–6.

[9] X. Jia et al., “An energy-efficient Bayesian neural network implementation
using stochastic computing method,” IEEE Trans. Neural Netw. Learn.
Syst., to be published, doi: 10.1109/TNNLS.2023.3265533.

[10] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou,
“Memory devices and applications for in-memory computing,” Nature
Nanotechnol., vol. 15, no. 7, pp. 529–544, 2020.

[11] S. Yu, “Neuro-inspired computing with emerging nonvolatile memorys,”
in Proc. IEEE, vol. 106, no. 2, pp. 260–285, Feb. 2018.

[12] K. Zhang et al., “High on/off ratio spintronic multi-level memory unit for
deep neural network,” Adv. Sci., vol. 9, no. 13, 2022, Art. no. 2103357.

[13] W.-H. Chen et al., “CMOS-integrated memristive non-volatile computing-
in-memory for ai edge processors,” Nature Electron., vol. 2, no. 9, pp. 420–
428, 2019.

[14] M. Le Gallo et al., “Mixed-precision in-memory computing,” Nature
Electron., vol. 1, no. 4, pp. 246–253, 2018.

[15] S. Yu, W. Shim, X. Peng, and Y. Luo, “RRAM for compute-in-memory:
From inference to training,” IEEE Trans. Circuits Syst. I, Regular Papers,
vol. 68, no. 7, pp. 2753–2765, Jul. 2021.

[16] Z. Guo et al., “Spintronics for energy- efficient computing: An overview
and outlook,” in Proc. IEEE, vol. 109, no. 8, pp. 1398–1417, Aug. 2021.

[17] X. Jia, J. Yang, R. Liu, X. Wang, S. D. Cotofana, and W. Zhao, “Efficient
computation reduction in Bayesian neural networks through feature de-
composition and memorization,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 32, no. 4, pp. 1703–1712, Apr. 2021.

[18] Q. Wan and X. Fu, “Fast-BCNN: Massive neuron skipping in Bayesian
convolutional neural networks,” in Proc. IEEE/ACM 53rd Annu. Int. Symp.
Microarchitecture, 2020, pp. 229–240.

[19] H. Fan et al., “FPGA-based acceleration for Bayesian convolutional neural
networks,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 41,
no. 12, pp. 5343–5356, Dec. 2022.

[20] R. Cai et al., “VIBNN: Hardware acceleration of Bayesian neural net-
works,” in Proc. Int. Conf. ACM Architectural Support Program. Lang.
Operating Syst., 2018, pp. 476–488.

Authorized licensed use limited to: TU Delft Library. Downloaded on December 30,2024 at 10:50:57 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TNNLS.2023.3265533

GU et al.: CiM-BNN:COMPUTING-IN-MRAM ARCHITECTURE FOR STOCHASTIC COMPUTING BASED BAYESIAN NEURAL NETWORK 989

[21] H. Awano and M. Hashimoto, “B2N2: Resource efficient Bayesian neu-
ral network accelerator using Bernoulli sampler on FPGA,” Integration,
vol. 89, pp. 1–8, 2023.

[22] K. Yang, A. Malhotra, S. Lu, and A. Sengupta, “All-spin Bayesian neural
networks,” IEEE Trans. Electron Devices, vol. 67, no. 3, pp. 1340–1347,
Mar. 2020.

[23] Y. Lin et al., “Uncertainty quantification via a memristor Bayesian deep
neural network for risk-sensitive reinforcement learning,” Nature Mach.
Intell., vol. 5, pp. 714–723, 2023.

[24] X. Li et al., “Enabling high-quality uncertainty quantification in a pim
designed for Bayesian neural network,” in Proc. IEEE Int. Symp. High-
Perform. Comput. Archit., 2022, pp. 1043–1055.

[25] A. Malhotra, S. Lu, K. Yang, and A. Sengupta, “Exploiting oxide based
resistive RAM variability for Bayesian neural network hardware design,”
IEEE Trans. Nanotechnol., vol. 19, pp. 328–331, 2020.

[26] S. T. Ahmed, K. Danouchi, C. Münch, G. Prenat, L. Anghel, and M. B.
Tahoori, “SpinDrop: Dropout-based Bayesian binary neural networks with
spintronic implementation,” IEEE Trans. Emerg. Sel. Topics Circuits Syst.,
vol. 13, no. 1, pp. 150–164, Mar. 2023.

[27] L. V. Jospin, H. Laga, F. Boussaid, W. Buntine, and M. Bennamoun,
“Hands-on Bayesian neural networks–a tutorial for deep learning users,”
IEEE Comput. Intell. Mag., vol. 17, no. 2, pp. 29–48, May 2022.

[28] A. Graves, “Practical variational inference for neural networks,” in Proc.
Adv. Neural Inf. Process. Syst., 2011, pp. 2348–2356.

[29] W. J. Gross and V. C. Gaudet, Stochastic Computing: Techniques and
Applications. Berlin, Germany: Springer, 2019.

[30] G. Rodrigues, F. Lima Kastensmidt, and A. Bosio, “Survey on approximate
computing and its intrinsic fault tolerance,” Electronics, vol. 9, no. 4, 2020,
Art. no. 557.

[31] W. Liu and F. Lombardi, Approximate Computing. Berlin, Germany:
Springer, 2022.

[32] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM Trans.
Embedded Comput., vol. 12, no. 2s, 2013, Art. no. 92.

[33] T.-H. Chen and J. P. Hayes, “Analyzing and controlling accuracy in
stochastic circuits,” in Proc. IEEE 32nd Int. Conf. Comput. Des., 2014,
pp. 367–373.

[34] J. Doevenspeck et al., “SOT-MRAM based analog in-memory computing
for DNN inference,” in Proc. IEEE Symp. VLSI Technol., 2020, pp. 1–2.

[35] Y. Wang, K. Zhang, B. Wu, D. Zhang, H. Cai, and W. Zhao, “Magnetic
random-access memory-based approximate computing: An overview,”
IEEE Nanotechnol. Mag., vol. 16, no. 1, pp. 25–32, Feb. 2022.

[36] K. Cao et al., “In-memory direct processing based on nanoscale perpendic-
ular magnetic tunnel junctions,” Nanoscale, vol. 10, no. 45, pp. 21 225–21
230, 2018.

[37] Y. Hirayama, T. Asai, M. Motomura, and S. Takamaeda-Yamazaki, “A
resource-efficient weight sampling method for Bayesian neural network
accelerators,” in Proc. IEEE Int. Symp. Comput. Netw., 2019, pp. 137–142.

[38] H. Awano and M. Hashimoto, “BYNQNet: Bayesian neural network with
quadratic activations for sampling-free uncertainty estimation on FPGA,”
in Proc. Des. Automat. Test Eur. Conf. Exhib., 2020, pp. 1402–1407.

[39] R. Cai, A. Ren, L. Wangy, M. Pedramy, and Y. Wang, “Hardware accel-
eration of Bayesian neural networks using RAM based linear feedback
Gaussian random number generators,” in Proc. IEEE Int. Conf. Comput.
Des., 2017, pp. 289–296.

[40] X. Jia, J. Yang, P. Dai, R. Liu, Y. Chen, and W. Zhao, “SPINBIS:
Spintronics based Bayesian inference system with stochastic computing,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 39, no. 4,
pp. 789–802, Apr. 2020.

[41] C. C. Yann LeCun and C. J. Burges, “MNIST handwritten digit database,”
2010. [Online]. Available: http://yann.lecun.com/exdb/mnist

[42] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: A novel image
dataset for benchmarking machine learning algorithms,” 2017, arXiv:
1708.07747.

[43] D. Tran, M. D. Hoffman, R. A. Saurous, E. Brevdo, K. Murphy, and D.
M. Blei, “Deep probabilistic programming,” in Proc. Int. Conf. Learn.
Representations, 2017, pp. 1–18.

[44] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” in Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[45] S. R. Faraji, M. H. Najafi, B. Li, D. J. Lilja, and K. Bazargan, “Energy-
efficient convolutional neural networks with deterministic bit-stream pro-
cessing,” in Proc. IEEE/ACM Proc. Des. Automat. Test Eurpoe, 2019,
pp. 1757–1762.

Huiyi Gu (Student Member, IEEE) received the
BS degree in electronic information engineer-
ing from Beihang University, Beijing, China, in
2017. She is currently working toward the doctor
degree with the School of Electronic and Infor-
mation Engineering, Beihang University, Beijing,
China. Her research interests include Bayesian
deep learning and computing-in-memory archi-
tecture.

Xiaotao Jia (Member, IEEE) received the BS
degree in mathematics from Beijing Jiao Tong
University, Beijing, China, in 2011, and the
PhD degree in computer science and technol-
ogy from Tsinghua University, Beijing, China,
in 2016. He is currently an associate profes-
sor with the School of Integrated Circuit Sci-
ence and Engineering, Beihang University, Bei-
jing, China. From 2016 to 2019, he was a
postdoctoral researcher with the School of In-
tegrated Circuit Science and Engineering, Bei-

hang University. His current research interests include spintronic cir-
cuits, stochastic computing, Bayesian deep learning, and EDA.

Yuhao Liu (Student Member, IEEE) received
the BS degree in electronic information engi-
neering from Beihang University, Beijing, China,
in 2020. He is currently working toward the mas-
ter’s degree with the School of Electronic and In-
formation Engineer, Beihang University, Beijing,
China. His research interests include analog cir-
cuit design and neuron computing.

Jianlei Yang (Member, IEEE) received the BS
degree in microelectronics from Xidian Univer-
sity, Xi’an, China, in 2009, and the PhD degree
in computer science and technology from Ts-
inghua University, Beijing, China, in 2014. He is
currently an associate professor with the School
of Computer Science and Engineering, Beihang
University, Beijing, China. From 2014 to 2016,
he was a postdoctoral researcher with the De-
partment of ECE, University of Pittsburgh, Penn-
sylvania, USA. His current research interests

include computer architectures and neuromorphic computing systems.
He was the recipient of the First/Second place on ACM TAU Power Grid
Simulation Contest in 2011/2012. He was a recipient of IEEE ICCD Best
Paper Award in 2013, ACM GLSVLSI Best Paper Nomination in 2015,
IEEE ICESS Best Paper Award in 2017, ACM SIGKDD Best Student
Paper Award in 2020.

Xueyan Wang (Member, IEEE) received the
BS degree in computer science from Shan-
dong University, Jinan, China, in 2013, and the
PhD degree in computer science and technol-
ogy from Tsinghua University, Beijing, China, in
2018. From 2015 to 2016, she was a visiting
scholar with the University of Maryland, College
Park, MD, USA. She is currently a postdoctoral
researcher with the School of Integrated Circuit
Science and Engineering in Beihang University,
Beijing, China. Her current research interests

include highly efficient processing-in-memory (PIM) architectures and
hardware security.

Authorized licensed use limited to: TU Delft Library. Downloaded on December 30,2024 at 10:50:57 UTC from IEEE Xplore. Restrictions apply.

http://yann.lecun.com/exdb/mnist

990 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 12, NO. 4, OCTOBER-DECEMBER 2024

Youguang Zhang (Member, IEEE) received the
MS degree in mathematics from Peking Uni-
versity, Beijing, China, in 1987, and the PhD
degree in communication and electronic sys-
tems from Beihang University, Beijing, in 1990.
He is currently a professor with the School
of Electronic and Information Engineering,
Beihang University. His research interests
include microelectronics and wireless communi-
cation. In particular, he recently focuses on the
circuit and system codesign for the emerging

memory and computing systems.

Sorin Dan Cotofana (Fellow, IEEE) received
the MSc degree in computer science from the
“Politehnica” University of Bucharest, Romania,
in 1984, and the PhD degree in electrical en-
gineering from the Delft University of Technol-
ogy, Delft, The Netherlands. He is currently with
the Faculty of Electrical Engineering, Mathemat-
ics and Computer Science, the Computer Engi-
neering Laboratory, Delft University of Technol-
ogy, The Netherlands. He has coauthored more
than 250 papers in peer-reviewed international

journal and conferences, and received 12 best paper awards in interna-
tional conferences. His current research interests include the following:
1) the design and implementation of dependable/reliable systems out
of unpredictable/unreliable components; 2) aging assessment/prediction
and lifetime reliability aware resource management; and 3) unconven-
tional computation paradigms and computation with emerging nano-
devices. He is currently the editor in chief of IEEE Transactions on
Nanotechnology, associate editor for IEEE Transactions on Computers,
and IEEE Circuits and Systems Society (CASS) distinguished lecturer
and Board of Governors member.

Weisheng Zhao (Fellow, IEEE) received the
PhD degree in physics from the University of
Paris Sud, Paris, France, in 2007. He is cur-
rently the professor with the School of Micro-
electronics, Beihang University, Beijing, China.
In 2009, he joined the French National Research
Center(CNRS), as a tenured research scientist.
Since 2014, he has been a distinguished profes-
sor with Beihang University, Beijing, China. He
has published more than 200 scientific articles
in leading journals and conferences, such as

Nature Electronics, Nature Communications, Advanced Materials, IEEE
Transactions, ISCA and DAC. His current research interests include
the hybrid integration of nano-devices with CMOS circuit and new non-
volatile memory (40-nm technology node and below) like MRAM circuit
and architecture design. He is currently the editor-in-chief for IEEE
Transactions on Circuits and Systems I: Regular Paper.

Authorized licensed use limited to: TU Delft Library. Downloaded on December 30,2024 at 10:50:57 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

