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ON THE DUALITY OF GLOBALLY CONSTRAINED SEPARABLE PROBLEMS AND ITS
APPLICATION TO DISTRIBUTED SIGNAL PROCESSING

Thomas Sherson1 Richard Heusdens1 W. Bastiaan Kleijn1,2

1 Faculty of EEMCS, Delft University of Technology, Netherlands
2 School of Engineering and Computer Science, Victoria University of Wellington, New Zealand

ABSTRACT
In this paper, we focus on the challenge of processing data
generated within decentralised wireless sensor networks in
a distributed manner. When the desired operations can be
expressed as globally constrained separable convex optimi-
sation problems, we show how we can convert these to
extended monotropic programs and exploit Lagrangian dual-
ity to form equivalent distributed consensus problems. Such
problems can be embedded in sensor network applications
via existing solvers such as the alternating direction method
of multipliers or the primal dual method of multipliers. We
then demonstrate how this approach can be used to solve
specific problems including linearly constrained quadratic
problems and the classic Gaussian channel capacity max-
imisation problem in a distributed manner.

Index Terms— Wireless sensor networks, distributed
signal processing, Lagrangian duality, extended monotropic
programs.

I. INTRODUCTION
Following the miniaturisation of sensor technologies over

the last few decades, there has been a significant increase
in the interest in, and deployment of, large scale wireless
sensor networks (WSN) [1]. In many applications, including
environmental monitoring [1] and distributed power gener-
ation [2], the size of such networks makes it impractical
to deploy centralised signal processing systems. This stems
from the inability of such structures to scale dynamically
with changes in network size coupled with the high trans-
mission costs required to communicate data to a central
location. In contrast, distributed systems are attractive as they
utilise on-node computation and localised communication to
achieve the same functionality whilst addressing many of
these limitations.

Distributed networks, characterised by their limited con-
nectivity, implicitly restrict the data available at any one
node. As data is often generated within the network, this
makes many traditional signal processing operations chal-
lenging to perform. One approach commonly used in the
literature, in applications such as in sensor localisation [3],
global averaging of data [4] and network utility optimisation
[5], is to embed desired signal processing operations inside

convex optimisation problem, which can then be solved dis-
tributedly. Commonly used distributed solvers leverage sub-
gradient[6], message passing [7], randomised Gossip [8] and
primal-dual based algorithms [9], where each algorithm is
chosen based on the specifications of a particular application.

The major challenge faced by this approach is in the trans-
formation of desired problems to equivalent distributable
forms. Within the literature, existing approaches have aimed
to address this point. In [10], a parallelised proximal based
approach was demonstrated, able to exploit the separability
of both the objective and constraint functions to distribute
part of the computation. However, for global constraints,
such methods still require the aggregation of data within
the network for some operations and thus can suffer from
the same limitations as centralised methods.

In this paper we highlight the observation that neigh-
bourhood separable problems with global separable con-
straints (NSGC) can be transformed to extended monotropic
problems [11] and from there to fully distributable dual
forms. We then demonstrate how this transformation can
be used to form distributed versions of particular sensor
network optimisation problems, specifically for the cases
of linearly constrained quadratic problems as well as the
Gaussian channel capacity maximisation problem.

The remainder of this paper is organised as follows. In
Section II, we introduce the family of NSGC problems
which can be transformed to a distributable dual problem.
In Section III we demonstrate how this approach can be
used to derive distributed algorithms for solving both linearly
constrained quadratic problems as well as the Gaussian
channel capacity maximisation problem. Finally in Section
IV we draw some conclusions about this approach.

II. DISTRIBUTED DUALITY OF
NEIGHBOURHOOD SEPARABLE PROBLEMS

In this section we highlight how particular globally con-
strained convex optimisation problems can be cast in an
equivalent distributed form via Lagrangian duality. Subsec-
tion II-A outlines the basic model we will use for a dis-
tributed WSN whilst subsection II-B demonstrates the dual-
distributability of NSGC problems through their equivalence
to extended monotropic programs.
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II-A. A Distributed Wireless Sensor Network Model
Consider the problem of processing a set of measured data

(a ∈ RN ) collected by a WSN comprised on N nodes. We
will denote by G = (V,E) the associated undirected graph of
this network with vertex set V and edge set E. It is assumed
that the structure of the network may vary with time but does
so at a slow rate such that G describes a dynamic distributed
sensor network. A basic example of such a G is included
below in Figure 1.

1

2

3

4 5

Fig. 1: A simple model of a distributed network topology.

The decentralised nature of G imposes that no one node
has access to the entire set of node-generated data. For
even simple operations, such as computing the inner product
between α and a known vector α̃ ∈ RN , this limited access
restricts the use of traditional signal processing techniques
without the use of additional data aggregation methods [12].
The problem with such approaches is that the memory
required by each node to store α during this aggregation
scales with the dimension of the network thereby increasing
the cost of node based hardware. Furthermore, aggrega-
tion techniques require each node’s data to be uniquely
identifiable where the allocation of these identifies requires
network wide consensus to ensure their uniqueness. We
are therefore interested in the transformation of centralised
signal processing algorithms to distributed forms to directly
exploit the nature of data generation in such sensor networks.

II-B. A Distributable Class of Optimisation Problems
To develop distributed algorithms for use with G, we can
embed a desired signal processing operation within a convex
optimisation problem and then transform this to an equiv-
alent distributed form. By distributed form we specifically
refer to optimisation problems with convex node-separable
objective functions and edge-based constraints such that

min
x

∑
i∈V

fi (xi)

s.t gi (xi) + gj (xj) ≤ 0 ∀ (i, j) ∈ E
Ai,jxi + Aj,ixj = ci,j ∀ (i, j) ∈ E,

where xi denotes the local variables (potentially vector
valued) at node i. Unfortunately, the transformation of
centralised optimisation problems to a distributed form is
not always feasible. However, for a specific subclass of
problems, we will show how this is possible.

We consider what we term as neighbourhood separable
problems with global constraints which have the following
form:

min
x

∑
i∈V

(
fi

(
xi, {xj

∣∣ j ∈ N (i)}
))

s.t.
∑
i∈V

gi,k

(
xi, {xj

∣∣ j ∈ N (i)}
)
≤ 0 ∀ k = 1, ...,K

Alx = bl ∀ l = 1, ..., L

where fi and gi,k are closed proper convex (CCP) functions
and j ∈ N (i) denotes the set of nodes in the neighbourhood
of node i. We will assume that this problem is strictly
feasible such that strong duality holds.

By introducing local versions of neighbouring variables
at each node, denoted by zi,j ∀ j ∈ N (i), and imposing the
constraint that at concensus each zi,j = xj , we can transform
any NSGC to the following form:

min
x,z

∑
i∈V

(
fi

(
xi, {zi,j

∣∣ j ∈ N (i)}
))

s.t.
∑
i∈V

gi,k

(
xi, {zi,j

∣∣ j ∈ N (i)}
)
≤ 0 ∀ k = 1, ...,K

Alx = bl ∀ l = 1, ..., L

xj − zi,j = 0 ∀ (i, j) ∈ E (1)

The reformulated problem, reduces the broader class of
NSGC problems, to equivalent extended monotropic pro-
grams [11] which are a generalisation of monotropic
programs, first proposed by Rockafellar [13]. Extended
monotropic programs are separable objective problems with
separable convex constraints and contain as a subset all dis-
tributed optimisation problems. However, due to the global
constraints noted in (1), this problem is not yet distributable.

The associated Lagrangian of Eq. (1) is given by

L(x, z,λ,ν,µ) =
∑
i∈V

(
fi

(
xi, {zi,j | j ∈ N (i)}

)

+
K∑
k=1

λkgi,k

(
xi, {zi,j | j ∈ N (i)}

)
+
∑

j∈N (i)

νTi,jzi,j

−
∑

j∈N (i)

νTj,ixi −
L∑
l=1

µTl (ai,lxi − bl)
)

where λ, ν and µ denote the introduced dual variables an
ai,l denotes the ith column vector of Al. It can then be shown
that the dual problem also exhibits the same separability as
the Lagrangian such that

q (λ,ν,µ) = inf
x,z
L(x, z,λ,ν,µ)

=
∑
i∈V

inf
xi,zi
Li(xi, zi,λ,ν,µ)

=
∑
i∈V

qi (λ,ν,µ) .
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Introducing local versions of the dual variables, λi, νi and
µi ∀i ∈ V , and imposing that at consensus each are equal
to λ, ν and µ, respectively, we can form a final distributed
dual problem given by

min
λ,ν,µ

−
∑
i∈V

qi (λi,νi,µi)

s.t.
[
λTi ,ν

T
i ,µ

T
i

]
−
[
λTj ,ν

T
j ,µ

T
j

]
= 0 ∀ (i, j) ∈ E

(λi,νi,µi) ∈ Di ∀ i ∈ V (2)

Here Di represent the dual feasible domains relative to each
node. Importantly, Eq. (2) is distributable, noted in the node-
separable objective and edge-based constraints assuming that
each qi is closed proper concave. Utilising existing solvers,
such as the alternating direction method of multipliers
(ADMM) [14] or the primal dual method of multipliers
(PDMM) [15], and assuming that the negative of the dual
functions are CCP, the equivalent dual problem can be solved
in general network topologies.

To form distributed signal processing algorithms we there-
fore only need to show that our desired operation can be
rephrased as a NSGC problem and to then exploit duality to
construct an equivalent distributable form.

III. SEPARABLE PROBLEMS WITH GLOBAL
CONSTRAINTS

In this section, given the distributed duality of NSGC
problems, we demonstrate how we can develop distributed
algorithms for specific problems instances. In particular,
in subsection III-A we apply this approach to a linearly
constrained quadratic problems whilst in subsection III-B
we demonstrate the distributability of the classic Gaussian
channel capacity maximisation problem.

III-A. Example: Constrained Quadratic Programming
Consider a linearly constrained problem given by

min
x

1

2
xT (Q +Φ) x + qT x

s.t. Ax = b
(3)

where Q ∈ SN×N+ , Φ ∈ SN×N++ is a diagonal positive
definite matrix and q ∈ RN . Additionally, A ∈ RN×P
whilst b ∈ RP . In general, the entries of A, b and q may
be dependent on node-based measurements of the network.
The eigenvalue decomposition of Q is given by

Q = UΛUT

where U ∈ RN×N denotes the unitary matrix of eigenvectors
of Q and Λ ∈ RN×N denotes the diagonal matrix of
eigenvalues. Furthermore M < N denotes the number of
non-zero entries of Λ. Traditionally, to solve such problems
in a centralised context, U and Λ would require the storage
of M(N+1) data entries, a memory requirement that scales
with the network size. In contrast, if each node were to store
the ith elements of the columns of U, ui,k ∀ k = 1, ...,M ,

and the non-zero diagonal entries of Λ, then only 2M data
values would need to be stored at each node. This motivates
us to rewrite Eq. (3) as

min
x

1

2

M∑
k=1

λk(∑
i∈V

ui,kxi

)2
+

1

2
xTΦx + qT x

s.t. Ax = b

(4)

If the number of nodes in the network were to increase,
assuming the rank of Q remains constant, then the on-node
memory requirements of the network would remain fixed.
Thus, the question is, to take advantage of the distributed
storage of Q and node based generation of A, b or q, is it
possible to solve Eq. (4) in a fully distributed manner?

We will first show that (4) can be transformed to a NSGC
problem by utilising a tight convex relaxation, as previously
demonstrated in [16]. To do so, we introduce local variables
yi,k and impose the constraint that, at consensus∑

i∈V
yi,k = N

∑
i∈V

ui,kxi

Thus (4) can be rewritten as

min
x

∑
i∈V

(
M∑
k=1

(
λk|yi,k|2

2N

)
+
φi|xi|2

2
+ qTi xi

)
s.t.

∑
i∈V

aixi = b∑
i∈V

yi,k = N
∑
i∈V

uTi,kxi ∀ k = 1, ...,M (5)

where ai denotes the ith column of A.
By considering the Lagrangian of (5), with dual variables

ν and ω,

L(x, y,ν,ω) =
∑
i∈V

(
M∑
k=1

λk|yi,k|2

2N
+
φi|xi|2

2

−

(
aTi ω − qi −

M∑
k=1

Nui,kνk

)
xi

+
ωTb
N
−

M∑
k=1

νkyi,k

) (6)

it can be shown that problems (5) and (3) are equivalent
[16]. As the stationary points of (6) occur when

∂L
∂xi

= φixi − aTi ω + qi +
M∑
k=1

Nui,kνkω = 0

∂L
∂yi,k

=
λk
N
yi,k − νk = 0

∴ xi =
1

φi

(
aTi ω − qi −

M∑
k=1

Nui,kνk

)

∴ yi,k =
N

λk
νk, (7)
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one can note that yi,k = yk ∀ k = 1, ...,M, i ∈ V .
By inspection this means that (4) and (5) have the same
minimum and optimal x.

The dual function of (6) is given by

q(ν,ω) =
∑
i∈V

(
ωTb
N

+
M∑
k=1

−N
2λk
|νk|2

− 1

2φi

∣∣∣∣aTi ω − qi − M∑
k=1

Nui,kνk

∣∣∣∣2
)
,

Introducing local estimates of ω and ν we define the
equivalent distributed dual problem given by

min
ν,γ,ω

∑
i∈V

(
−ω

T
i b
N

+
M∑
k=1

N

2λk
|νi,k|2

+
1

2φi

∣∣∣∣aTi ωi − qi − M∑
k=1

Nui,kνi,k

∣∣∣∣2
)

s.t.
ωi − ωj = 0
νi,k − νj,k = 0

∀

{
(i, j) ∈ E,
k = 1, ...,M.

(8)

As desired, (8) has a fully distributable form. Figure 2
demonstrates the convergence rates of two different dis-
tributed solvers, ADMM and PDMM, in optimising (8) for
a randomly generated 25 node network with approximately
25% connectivity. Once consensus is reached, the optimal x

Average iterations per node
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Fig. 2: Convergence of quadratic minimisation using empir-
ically derived optimal step size for each algorithm.

can be recovered via (7) allowing both the optimal solution
and optimisers of the original non-separable quadratic prob-
lem to be computed in a fully distributed manner. The linear
convergence of both algorithms in this figure stems from the
strong convexity of (8).

III-B. Example: Channel Capacity Maximisation
As a more practical example, consider the use of a WSN
of N antennas to cooperatively transmit a signal back to a
target location over a set of additive white Gaussian channels
(AWGNs). Given that each channel has equal bandwidth
B, the objective is to optimally configure the transmission
power of the antennas (x) to maximise channel capacity

whilst restricting the total output power. From the Shannon-
Hartley theorem [17], the capacity for each channel (Ci) is
given by

Ci = B log2

(
1 +

xi
σ2
i

)
=
B
(
ln
(
σ2
i + xi

)
− ln

(
σ2
i

))
ln(2)

,

where σ2
i is the noise variance of the ith channel. In

practice, each σ2 will most likely be estimated locally at each
node. Thus, where traditional water-filling algorithms would
require the aggregation of these estimates to a central point
for processing, we are instead interested in computing the
optimal x in a distributed manner. The maximisation of the
total channel capacity of our system is equivalent to solving

min
x

−
∑
i∈V

ln(σ2
i + xi)

s.t. 0 ≤ x
1T x = 1,

(9)

where, unlike the previous quadratic programming example
we have an additional separable inequality constraint. By
inspection, we can note that this optimisation problem takes
the form of a monotropic program and thus has a distributed
dual form. The Lagrangian of (9) is given by

L(x,λ, µ) =
∑
i∈V

(
− ln(σ2

i + xi)
)
− λT x− µ

(
1T x− 1

)
s.t. 0 ≤ λ, (10)

where λ and µ are the introduced dual variables.
The stationary points of (10) occur when

∂L
∂xi

=
−1

σ2
i + xi

− λi − µ

∴ xi =
−1

λi + µ
− σ2

i , (11)

and thus, by substituting (11) into (10) it can be shown that
the dual function is given by

q(λ, µ) =
∑
i∈V

(
− ln

(
−1

λi + µ

)
+1 + (λi + µ)σ2

i

)
+ µ

s.t. 0 ≤ λ.

The distributed dual problem of (9) can then be found by
introducing local versions of µ at each node and constraining
these µi along each edge such that

min
λ,µ

∑
i∈V

(
ln

(
−1

λi + µi

)
− (λi + µi)σ

2
i −

µi
N

)
s.t. 0 ≤ λi ∀i ∈ V

µi − µj = 0 ∀ (i, j) ∈ E, (12)

where implicitly it is imposed that λi + µi ≤ 0 such
that ln

(
−1

λi+µi

)
is real valued. It is worth noting that,
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due to the inequality constraints, (12) has no analytical
solution but fortunately, as it is distributable, each local
optimisation problem will only require solving a constrained
convex problem of two variables at each iteration. Echoing
III-A, Figure 3 serves as an example to demonstrate the
convergence rate of (12) when solved via both ADMM and
PDMM for a randomly generated network of 25 nodes.
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Fig. 3: Convergence of channel capacity maximisation using
empirically derived optimal step size for each algorithm.

Again, at consensus, the optimal x can then be recovered
via (11) therefore solving (9) in a fully distributed manner.

IV. CONCLUSIONS
In this paper we have demonstrated how the class of non-
distributable NSGC convex optimisation problems can be
transformed to a distributed form via Lagrangian duality. For
WSN problems, were data is generated locally at each node,
we can use this transformation to develop distributed signal
processing algorithms by first embedding desired operations
within convex optimisation problems and then casting these
into an NSGC form. Furthermore we have shown that by
combining this approach with existing distributed solvers,
such as ADMM and PDMM, we can solve specific problem
classes including linearly constrained quadratic problems as
well as the Gaussian channel capacity maximisation in a
fully distributable manner.
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