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Abstract—We present Stork—an extension of the EPC C1G2
protocol allowing streaming of data to multiple Computational
Radio Frequency IDentification tags (CRFIDs) simultaneously
at up to 20 times faster than the prior state of the art. Stork
introduces downstream attributes never before seen in (C)RFIDs:
(i) fast feedback for CRFID downstream verification based on
the internal EPC C1G2 memory check command—which we
analytically and experimentally show to be the best possible
downstream verification process based on EPC C1G2; (ii) ability
to perform multi-CRFID transfer—which in our experiments
speeds up downstream by more than two times compared to
sequential transmission; and (iii) the use of compressed data
streams—which improves firmware reprogramming times by up
to 10% at large reader-to-CRFID distances.

I. INTRODUCTION

Computational Radio Frequency IDentification (CRFID)
platforms are embedded batteryless systems with communica-
tion, computation and sensing capabilities. Because CRFIDs
run solely on harvested energy [1] they are considered to
be a favorable replacement for conventional wireless sensors,
e.g. in applications that require perennial operation in hard-
to-reach/embedded/implanted locations [1], [2]. Examples of
CRFIDs include the WISP [3] and Moo [4] platforms. Unique
to CRFIDs, in contrast to standard sensor nodes, is the
frequent loss of power (on a milliseconds time scale during
operation [5, Fig. 1]).

Despite rapid progress in research, many aspects of CRFIDs
are still unexplored. For instance, it is hard to communicate
robustly between a host (PC, controlling RFID reader) and
CRFID—due to frequent power interrupts. Furthermore, key
communication features (like broadcast) are not available and
host-to-CRFID transmission speeds are slow, in comparison to
battery-powered sensor networks. CRFIDs aside, even classi-
cal RFID systems have not yet demonstrated fast and robust
data transfer and storage protocols.

A. Robust Host to (C)RFID Downstream: Background

This work focuses on downstream transmission in CR-
FID/RFID applications—sending large portions of data from
a host to (many) (C)RFIDs. In the context of CRFIDs, a
downstream protocol based on EPC C1G2! can be used for
firmware updates [5], [7], [8].

Supported by the Dutch Technology Foundation STW grant 12491 and in
part by US NSF grant CNS 1305072, CNS 1407583 and EEC 1028725, Intel
Corporation, and the Google Faculty Research Awards program.

ITo the best of our knowledge, all CRFIDs use EPC C1G2 protocol [6] for
communication. EPC C1G2 supports backscatter, which is orders of magnitude
more energy efficient than active transmissions such as those based on IEEE
802.11x [1].
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Fig. 1. State of the art (C)RFID downstream protocol (Wisent [S]) trace by
custom-made EPCC1G2 [6] sniffer. Setup: Impinj R1000 reader (3.2.4.240
firmware), WISP 5.1. We notice large overheads due to: (a) Wisent protocol
itself (handshake every EPC C1G2 data frame: BlockWrite)—48% over-
head, and (b) limitations of ImpinjR1000 firmware (unnecessary slicing of
BlockWrite into parts, marked as D(z); RN: tag handle)—85% overhead.
Delay between ~2(1,3) ms in (a), is also due to Impinj firmware.

Wireless reprogramming capability would allow CRFIDs
to realize their full battery-less potential in deeply embed-
ded/implanted use cases. Other applications of a robust and
fast downstream include delivery of datasets to be used at
the CRFID, e.g., feature sets for pattern matching by CRFID
cameras [2]. A specific example use case explored herein
is the storage of maintenance history in CRFIDs integrated
in airplane parts [9]. Despite some prior work exploring
downstream communication, e.g. the Wisent protocol [5] or
R? protocol [7], many challenges remain.

B. (C)RFID Downstream: Challenges and Contributions

We introduce three challenges facing CRFID downstream
development, and a solution to address them, in a new down-
stream protocol called Stork. We frame this work by posing
the following research question: What are the speed limits
of robust downstream communication for multiple (Computa-
tional) RFIDs, operating over the EPC CIG2 protocol, and
how can we reach them?

1) Slow Downstream Speeds: Existing (C)RFID down-
stream protocols are slow. It takes approximately a minute
to transfer a ~5 kB firmware file with Wisent [5]—the fastest
protocol to date. This duration, which is an order of magnitude
longer than conventional RFID tag access times, would require
a procedural overhaul of industry practices in order to be
accepted. As a point of reference, updating access rights to
contactless door keys requires ~4 seconds (measured using
commercial door access system of [10]).

Contribution 1—Fastest EPC C1G2 Downstream: Stork
enables immediate acknowledgments for downstream data by
leveraging the ability for an EPC C1G2 Read command to be
issued immediately after a Write event, eliminating the need
to re-singulate the CRFID in order to get an acknowledgement.
Stork demonstrates a 20 times improvement in downstream
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transfer speeds over prior art by more efficiently utilizing
the underlying EPC C1G2 protocol in this way, making it the
fastest protocol to date.

2) Lack of Multi-CRFID Capability: EPC C1G2 does not
provide a means for sending the same data to many (C)RFID
tags simultaneously. Even if it did, there is no strategy for
optimizing the transfer acknowledgement process for multi-
(C)RFID populations—something that is desirable since each
host-to-(C)RFID handshake takes a significant amount of time
compared to actual data transmission, see Fig. 1.

Contribution 2—Low-Overhead Multi-CRFID Transfer:
Stork enables multi-tag transfer through opportunistic CRFID
connections and introduces broadcast as an overhearing mech-
anism, the first (to the best of our knowledge) for CRFIDs.
Overhearing allows selected nearby CRFIDs to ‘listen in’
to transmissions which contain data intended for other tags,
such as a common firmware file or configuration data. After
transmission, file segments which were not correctly overheard
are identified using a new mechanism called binary memory
search, and the missing pieces are then filled in by the reader.
For even small tag populations, Stork’s overhearing scheme
provides more than a two times improvement in file transfer
speeds to multiple tags over simple tag-for-tag transfer.

3) Uncompressed Data Streams: Transmitting data without
compression often leads to inefficient utilization of the link. In
the context of energy-constrained CRFIDs, there is a tradeoff
between communication and computation: Decompressing a
compressed data stream at the CRFID, requires more com-
putation but allows for less data to be sent, saving on the
energy cost of communication. However, decompressing at the
CRFID also introduces costs in terms of energy and time.
Furthermore, the transient power availability on a CRFID
poses a significant hurdle in doing reliable decompression.

Contribution 3—Robust Decompression at CRFID: Stork
implements the first downstream (de)compression scheme for
CRFIDs, allowing a communication/computation tradeoff to
be traversed for the first time. A CRFID-centric Huffman
coder reduces the size of any data transferred to the CRFID.
Stork addresses the issue of transient power availability by
checkpointing [11], [12]. It preserves the state of program
execution during mid-computation power outages in a novel
adaptive way based on the observed energy stability. We
demonstrate that transfer speeds benefit from compression
when performing longer-range, i.e. low-energy region, trans-
missions (e.g., 10% improvement at 60 cm distance).

For results replication, source code and measurement data is
accessible upon request or via [13]. The video showing Stork
in action is accessible upon request or via goo.gl/xuH%uf.

II. (C)RFID DOWNSTREAM PROTOCOL: PRELIMINARIES
A. System Overview: Architecture, Hardware and Software

1) EPC CIG2 Downstream Architecture: Any UHF RFID
system is composed of: (i) a PC or host device, translat-
ing data to be stored into a (C)RFID-compliant format and
controlling message flow; (ii) an RFID reader, translating PC
commands into EPC C1G2 messages; and (iii) a CRFID (or

Stork

Downstream

Broadcast
: Compression

Reader

EPCCIG2 LLRP

(a) Stork and (C)RFID architecture (b) Experiment setup

Fig. 2. Stork: (a) features mapped to (C)RFID components, described in
Section III; (b) experimental setup (refer to Section II-B1): (1) PC running
Stork and EPCC1G2 sniffer, (2) four WISP(s) 5.1 on paper stands, (3)
reader/sniffer antenna, (4) RFID reader, (5) software defined radio for protocol
sniffing.

RFID), recording and/or acting on messages received from the
reader. The standard bidirectional reader-to-CRFID protocol
is EPC C1G2 [6], while the PC-to-reader interface is the Low
Level Reader Protocol (LLRP) [14], see Fig. 2(a).

2) Hardware and Software: The CRFID platform used in
this evaluation is the WISP 5.1: an MSP430-based CRFID with
64 kB non-volatile FRAM [3]. The reader used is the Impinj
R1000? (firmware version 3.2.4.240) transmitting 30 dBm at
915MHz into an RFMAX S9028PCRJ 8 dBic gain antenna.
The reader is controlled by a PC using Ubuntu 14.04; refer to
Fig. 2(b). The Python-based sllurp library [15] is extended to
enable Stork-specific LLRP requests.

B. EPC CIG?2 Sniffer

An EPC C1G2 protocol sniffer is developed which measures
timing on a sub-packet level. This is used in assessing Stork
performance (result in Fig. 1 is also sniffer-generated).

1) Sniffer Design: The EPC C1G2 sniffer is based on a
USRP N210 software defined radio, which is connected to
the same antenna type as the RFID reader for downstream
transmission (Section II-A2). The PC hosts MATLAB R2016a
and GNU Radio version 3.7.8.1 (Fig. 2(b)). Because the
standards-compliant reader performs frequency hopping every
400 ms, the entire band over which it hops must be captured
in order to recover the baseband signal. Thus, a 50 MS/s rate
was selected in order to capture the entire 902-928 MHz band.

2) EPCCIG2 Message Extraction: The raw signal is
smoothed with a moving average filter. A near-zero threshold
is used to distinguish between transmissions and regions of
inactivity. Reliable peaks are selected and used to determine an
ASK demodulation threshold for each transmission. Data edge
timing is extracted, and the resulting symbols are compared
against EPC C1G2 symbols including Data-0, Data-1, TRCal,
RTCal, and delimiter [6, Sec. 6.3.1.2.3]. Symbols are stored
and mapped to EPC messages, e.g. QueryRep and Write.
Finally, the sniffer searches for the tag’s backscattered signals
between reader messages. Once a backscattered signal is
detected, the sniffer uses a similar decoding process to extract
the timestamps and information?. Using this tool, we were

2The Impinj R420 is also compatible with the WISP but was excluded from
the experiments as the only stable firmware available (4.8.3.240) had a bug
disabling BlockWrite.

3We note that alternative sniffer has been described in [16, App. Al,
however it followed a less direct path to extract the information which led to
significant processing delay [16, A.9].

Authorized licensed use limited to: TU Delft Library. Downloaded on February 22,2021 at 09:04:13 UTC from IEEE Xplore. Restrictions apply.



IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

-
3
X X, =
[&) b4 O
< % (Y4 § ] ° AS: AccessSpec <4
\ o @ 7\ o : 5}
o\ 27\ o g 3 AS_Report: result o
s % > 2 el EAN of the AccessSpec !
g ®y O o oy <
e o\ 2 ol ol X/o| X
2 » = S
(EPc(Cmdicommand) 5\ &/ B\ &/ 3\ &/ 3\ §/ -
E Sl R\ W a2 s\
e
(&)
~ LLRP commands EPC C1G2 handshake EPC C1G2 commands
Fig. 3. Host-tag data flow. Alternating EPC C1G2 commands (instructed

by LLRP AccessSpec, the one command that encapsulates EPC C1G2,
which when issued one after the other enables continuous host-to-reader data
streaming)—Cmd1: ‘send data to the tag’, Cmd2: ‘report data reception to
the reader’, are possible only when Cmd2<—Read. For Cmd2<-EPC field, a
new EPC C1G2 handshake is enforced, limiting downstream speed.

able to sniff EPC C1G2 frames (upstream/downstream) from
~10meters line-of-sight in an office corridor.

III. STORK: FAST DOWNSTREAM TO MANY (C)RFIDS
A. Fast and Reliable Downstream to (C)RFID with EPC C1G2

For a (C)RFID downstream protocol to be reliable, all data
must be stored correctly in the (C)RFID memory.

Observation 1: In EPC C1G2, only two types of messages
could potentially be used as a feedback mechanism for mem-
ory verification: (i) the EPC field itself [6, Sec. 6.3.2.1.2] and
(ii) the Read command [6, Sec. 6.3.2.11.1].

Feedback using the EPC field was used by Wisent [5], a
choice presumably inspired by Flit [17], which argued that
the fastest transfer method for tag to reader communication
(upstream) was by using the EPC field [17, Sec. 4.1]. The
R? [7] did not consider any reliability check. Taking on
upstream challenges, and starting from the above observation,
we introduce the following proposition.

Proposition 1: Verifying stored data in (C)RFID memory
using the Read command is faster than using the EPC field.

Proof: The amount of data the EPC field can hold
(|[EPC]|) is less than what can be accessed with the Read
command [6, Sec. 6.3.2]. Thus, even if ignoring reader-tag
handshake overhead for EPC-based memory verification (see
Fig. 3), it would take m = [X/|EPC|] more messages to
verify X bytes of data using the EPC field, compared to using
one Read command®. O

1) Implementation: With Proposition 1 we introduce the
components of Stork.

a) Data Representation: Stork uses a new input data
format, with Intel HEX as a basis. Prior to transmission,
data must be converted into Intel HEX format and mapped
to CRFID memory addresses, for instance using TI Code
Composer Studio in the case of WISP reprogramming. The
Intel HEX format is composed of address and data fields.
Unlike Wisent, in which the Intel HEX file was sourced
directly [5, Sec. IV-B], Stork concatenates contiguous data in

“In practice m = 3, as |[EPC| = 12B (of which at least two bytes are
necessary to identify the CRFID, such that only ten bytes can be used) and
X = 64 B (the size of Read command), which in practice it reduces to 32 B,
because the maximum response time of the Read command is too short to
load more than 32B (due to WISP 5.1 firmware limitations).

the HEX file into one transmission, getting around the Intel
HEX format’s limitation of 16 words per line.

b) Message Format: Stork reuses and adapts the Wisent
message format by splitting the payload size field (I in [5,
Fig. 6]) into two parts. The first part is a shortened (five
bits long) payload size field, providing a maximum payload
size of 32 words. This is sufficient since the BlockWrite
command itself has a maximum length (including header) of
32 words for the Impinj R1000. The remaining three bits of
the original payload size field [ are used to inform the WISP
in which location the BlockWrite memory verification
CRC should be stored. This allows for up to eight different
BlockWrite commands to be issued without interspersed
Read-based memory checks, greatly reducing overhead.

c) Transmitted Frame Acknowledgment: By applying
Proposition 1 and executing a Read command (i.e. reading
the result location) directly after the BlockWrite, a mes-
sage acknowledgment is executed within the same handshake
sequence, see again Fig. 3. To make this approach possible
we extended the sllurp library [15], amassing to ~180 lines
of code in python (excluding anything directly related to
Stork) [13], to allow sending of multiple commands after a
single handshake, i.e. in a single LLRP AccessSpec. With
this extension we define two possible message verification
methods: (i) Secure Progress Method (SPM): Performing
BlockWrite/Read command pairs, such that data from
a BlockWrite command is verified by its correspond-
ing Read command; and (ii) Minimize Overhead Method
(MOM): Performing multiple BlockWrite commands and
one (longer) Read command, which checks all the data
written at once in the end. Although more data can be sent
with MOM in a single AccessSpec, MOM is also more
vulnerable to power failures, because each BlockWrite
will stay unchecked until the end of this operation sequence.
Therefore, SPM will be used for the remainder of this work>.

d) Message Length Throttling: A throttling mechanism
for the BlockWrite payload is fundamental for combining
high speed data transfer with CRFID mobility, as proven
in [5, Sec. IV-D3]. Stork leverages throttling, with an improved
frame adaptation method. Wisent EX has only a limited set of
possible payload sizes, i.e. Py = {1,2,3,4,6,8,16} [5, (2)].
Stork expands this list to Py € Ps = {1,2,...,30}. The
limit of 30 comes from the BlockWrite size limit imposed
by the Impinj readers (both R1000 and R420), which is 32
words (2 words are reserved for Stork metadata).

For throttling up/down, a novel timeout mechanism is used,
see Algorithm 1. The throttling factor (line 2) should be chosen
based on the expected channel quality. The period of the
timer (line 10) must be larger than the expected time of an
AccessSpec, such that any errors have minimum effect.

Proposition 2: Stork is faster than Wisent [5].

Proof: See Appendix A. O

Following Proposition 2, we present a numerical example
in Fig. 4(a). The Stork and Wisent speed decreases slowly

5A third method of providing memory verification (not implemented here)
watches for timeouts in the tags’ reply to BlockWrite.
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Algorithm 1 Stork payload throttling

Algorithm 2 Stork Binary memory search (host-executed)

1: Py > Message payload (words); SPM method (default)
2: s > Increments/decrements factor of P; s = 1.2 chosen for all experiments
3: upon receiving an AccessSpec report

4: if npy = 1 then > Exact one BlockWrite check successful
5: P, < Py > Do nothing
6: else if ny, > 1 then > Multiple BlockWrite checks successful
7: Py + [Pns] > Only if P, < 30; otherwise switch to MOM method
8: else D> npy < 1
9: Py < | Pn/s]

10: upon timer overflow > AccessSpec report timeout

11: if tag not seen then

I: R={R:} > Memory location blocks; content might differ between (C)RFID and
host; initially largest memory block

2:G=10 > List of good memory parts
3 W=20 > List of wrong memory parts—to be resent by the host
4: while R # () do

5 for all R; in R do

6 CrCrag — CRCREQUEST(R;) > Calculate and send CRC by (C)RFID
7 CrChost <+ CRC(R;) > Calculate correct CRC by the reader
8 R\ R; > Remove R; from R
9: if Crciag = CrCpost then > Tag data correct
10: G+ R;

11 else > Tag data incorrect
12 if LENGTH(R;) < Rpmin then > R; too small to split
13 W + R; > Send R; as is
14 else > Request CRCs of smaller blocks
15 R < SpLIT(R;, S) > Split R; in S equal parts, see Section III-B2

12: reset timer > Wait until tag response
13: else > AccessSpec error
14: Py < | Pn/s]

2 25 ;
— — Stork (MOM) | | @ 20
T —-—- Stork (SPM) [ s _____
fe)
= - - Wisent & 15 !

o 1 - - 8=2

= 10 2 2
€ F g 10 J— --—-8=4
= 5 - 1< Y —5S=8
B minimum tyg < 5 - _? S=16
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thstt Limp (ms] Data size [words]

(a) Protocol-dependent downstream (b) Maximum AccessSpec number
speed limits to check the complete memory

Fig. 4. Numerical examples: (a) the sniffed parameter values of the Impinj
R1000 reader, as given in Table II, combined with the protocol parameters
of Table III are used in generating this result. The vertical line denotes the
minimal observed time of handshake (¢y). Observe that the benefit of MOM
over SPM is marginal; (b) illustration of (1), Cpyin = 8.

when the overhead of handshake (¢s) and LLRP access time
(tLLrp) increases, because the combined (on air) packet time
(i.e. Ntmsg in (3)) is large compared to tps + tLLRp- R? suffers
most from the small combined packet time.

B. Multi-CRFIDs Downstream

To stream data to multiple CRFIDs, we have designed
and implemented three transmission schemes for Stork: (i)
Sequential (baseline), where data is sent to each (C)RFID
in turn/successively; (ii) Opportunistic, where only one Ac-
cessSpec is sent (of maximum size of 210 words, Table III)
following the same process as for a single (C)RFID, to the
first responding tag in a population—this will continue until all
tags have received the intended data; and (iii) Broadcasting,
described below.

Observation 2: The EPCC1G2 protocol only allows the
sending of commands to RFID tags to be sequential [6, Sec.
6.3.2.11], even if the command is the same for all tags.

Proposition 3: A broadcasting scheme can be EPC C1G2-
compatible.

Proof: According to the EPC C1G2 specification, a com-
mand can be sent to tag ¢ only after a handshake [6, Sec.
6.3.2.11]. The command m; holds a handle chosen by tag
at the handshake. However, any other tag j # ¢ in the vicinity
may also able to receive m;, which enables broadcasting of
data to multiple tags. O

1) Broadcast Implementation: We proceed with the details.

a) Broadcast Process: The broadcasting scheme in Stork
is divided as follows: (i) set all but one CRFID in overhearing
mode; (ii) send all the data to the one CRFID that is not
in overhearing mode; (iii) pick one CRFID and turn its

overhearing mode OFF; (iv) check the memory of this CRFID
and send missing data parts; (v) repeat previous two steps
until all CRFIDs have received the correct data®. The complete
implementation of broadcast in Stork amasses to ~100 lines
of Python code [13].

b) Broadcast Enablement in EPC C1G2: We implement
a special mode for the CRFID that does not discard messages if
the handle (Req_H, Fig. 3) is wrong (amassing to just ten lines
of TI MSP430 assembly code [13]): If a CRFID j receives a
BlockWrite command m,; with i # j, it will check if it
is in overhearing mode. If this is the case, it will execute the
command, without replying—a reply would interfere with the
reply of the communicating CRFID <. Finally, to switch a tag
to/from an overhearing mode Stork sends a specific Write
command which is decoded by the CRFID as Overhear ON
or OFF.

c¢) Memory Check: Since the (C)RFIDs listening to
the broadcast cannot immediately provide feedback to each
BlockWrite with the Read command (this is impossible
with EPC C1G2, see Observation 2), there must be a mech-
anism to verify if the targets have overheard the broadcast
successfully. An intuitive way would be to read the memory
from each CRFID after each data fragment was sent to a
‘handshaked’ CRFID. Although upstream is generally faster
than downstream, a reliable and fast upstream transfer of
a large (C)RFID memory section is still an unsolved chal-
lenge [17, Sec. 8] [2, Fig. 14]. Therefore, we propose a new
low-overhead (C)RFID memory check, the binary memory
search, inspired by [18] and outlined in Algorithm 2. The
idea behind the algorithm is to “zoom in” to increasingly small
memory segments to isolate a corrupted block, by comparing
the CRC-16 (default CRC implementation in WISP 5.1) of
the sent data independently by the reader (which has a correct
copy of the data) and the (C)RFID. This is needed, as starting
with small memory blocks will increase the number of CRC
checks needed, and thus the overall transmission time. The
binary memory search algorithm implementation amasses to
300 lines of Python code [13].

To request a CRC, the BlockWrite command is used. The

The proposed method could also be used for automatically sending smaller,
differential firmware updates.
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request message contains the address of the starting location
(from which the CRC must be calculated), length (amount of
words that need to be verified) and a parity check. A Read
command must follow to receive the calculated CRC, because
the BlockWrite command does not allow a custom reply.
Since the maximum number of commands per AccessSpec is
eight, a single AccessSpec can hold up to four memory check
requests and four replies. Moreover, since the Read command
has capacity for eight CRCs (for WISP 5.1), we let the CRFID
compute by default eight CRCs of sequential memory parts per
request. Therefore, up to 32 memory sections can be checked
in one AccessSpec if those 32 sections can be grouped into
four contiguous memory parts.

2) Speed versus Memory Splitting Factor S: Enabling
overhearing comes at a price: the need to change tags to/from
overhearing mode and perform memory checks. The number
of these operations is determined by the memory splitting
factor S (line 15 of Algorithm 2).

Proposition 4: The maximum number of AccessSpecs it
takes to check all the memory for various S is

[logs(DCrt )]

D

n=0

STL
an@,?n?/S)—‘ , for D < Chax, (1)
where D is the data size (in words) that need to be checked,
Chin s the minimum data length for which requesting a CRC
is faster than sending the data itself, and Cy,.x is the maximum
number of words that the CRC can check at once’.

Proof: If D < Cpy, no CRC has to be requested. If D <
SChin, only one CRC will be requested, because splitting the
data in S parts would make the parts smaller than Cly;,. This
CRC request will be placed in a single AccessSpec. If D >
S Chin, the first CRC will be requested, and will be split into .S
parts in the worst case, which will be placed in [m—‘

AccessSpecs. The factor min(4, 32/5) is determined by the
AccessSpec limitation, i.e. it can hold up to 32 CRC requests
of at most four different memory blocks. The process of this
memory splitting halts just before a part would become too
small, i.e. smaller than Cl;,. O

Using Proposition 1 we now compute the optimal S. Since
the CRC can only be computed over data parts with length a
power of two, so S must also be a power of two. Second, we
set Cnin = 8, since the time it takes to send eight words is
comparable with the time it takes to request a CRC of eight
words. We have observed that the CRFID was not capable
of calculating CRCs larger than 512 words in low energy
environments, so Cp,x = 512. Inputting these parameters we
get S = 8 as the best value for the largest range of data
lengths, as shown in Fig. 4(b).

C. Compression for CRFID Downstream

We proceed with the final component of Stork—
data/firmware compression for CRFIDs.

"Due to either the max response time of the CRFID or to available energy.

Algorithm 3 Stork Decompression on CRFID

1: VvV > Set of variables used in the decompression—kept in volatile memory
2: Fe,Fi = F2 =V > F.: consistency flag; Fy: copies of V—kept in non-volatile
memory

3: function DECOMPRESS() > Called by MAIN() after every power failure
4: ENSURECONSISTENCY ()

5: Ser < 0 > The size of the checkpoint region
6: c+—0 > ¢ (counter) and S¢, will be reset on power interrupt
7 while LEN(data compressed) > 0 do

8

if lpur < lpis then > lpis = 8 for byte

9: buffer <— READBYTEFROMDATA() > Load one byte into the buffer
10: lvis <— DECODE(buffer) > Decompression function call
11: SHIFTBUEF(buffer, lyis) > Shift buffer by lpis
12: c+c+1 > Dynamic checkpoint step indicator
13: if ¢ > S, then

14: SAFELYUPDATESTATE()

15: c+ 0,Sq < Ser +1 > Dynamic checkpoint step increase

16: function ENSURECONSISTENCY()

17: if Fc =S; then > Power loss during S;

18: F1 < F2 > Keep F1, F» consistent
19: else if F. = S, then > Power loss during S»
20: F2 < F1 > Keep F1, F2 consistent
21: V «+ F; > No power fail, initialize V during update

22: function SAFELYUPDATESTATE()

23: Fc < S1 > Program is state Sy

24: F1 <V > Save operational variables in non-volatile memory
25: Fc < Sy > Program is state Sy
26: Fo «+ V > Repeat variable copy for data consistency check
27: Fc < null > State already consistent after power loss

1) Compression/Transmission in CRFIDs: We begin with
the observation that, for CRFIDs, using a compressed data
stream will always eventually (with increased frequency of
energy interrupts) result in faster end-to-end communication,
due to the lesser impact of energy interrupts on decompression
operations as compared with transmission. To demonstrate this
we use the following example. Let F' be the size of a file to be
sent/compressed (in bits), ¢, € (0,1) the file reduction ratio
(through compression), s; the message size into which the file
must be split (i.e., the length of one BlockWrite), and s4
the number of data units decompressed in one decompression
iteration (e.g. one nibble in our implementation). Hence,
the expected number of transmission trials to complete is
N, = Fs;'p; ! and the expected number of decompression
trials to complete is Ny = Fs;'p ', where p, = (1 — p.)'
is the respective probability of a successful unit transmission
(z = t) and decompression (z = d) respectively, and [; is the
time needed to transmit a unit message, [4 is the time needed
to decompress one unit of data, and p. is the probability
of power interruption per unit time (independently and uni-
formly distributed). Showing that sending data uncompressed
is slower than sending it compressed (and decompressing it at
the CRFID) is equal to showing

sa(l—¢p) o Sy
(1 _pe)lt (1 _pE)ld'

Inequality (2) will hold if Iy > [, i.e. when the length
of the atomic data transfer operation is larger than atomic
decompression (irrespective of the numerator values in (2)),
and large p.. Using (2), we shall proceed by introducing a
proof-of-concept file decompressor tailored for CRFIDs.

2) Data Compression: Stork utilizes the (lossless) Huffman
algorithm to compress downstream data. The host PC converts

Ntlt > Ntltcr + Ndld = (2)
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a binary file to be transmitted into an Intel HEX file, appending
a coding table at the end (e.g. see [13]). This file is then sent
to CRFID tag(s) via Stork. Compression required ~450 lines
of C code and ~250 lines of Python code on the host side.

3) Data Decompression across Power Failures: For CR-
FID reprogramming, the transmitted firmware image must be
decompressed by the CRFID itself. In Stork, this involves a
table lookup of Huffman codes in the transmitted firmware.
The key challenge is to keep program state consistent in the
face of power outages [12], [19]. To provide this consistency
we use checkpointing in Stork. Prior approaches followed one
of two strategies: (i) rely on external hardware to dynamically
place a checkpoint and to save the program state, e.g. [11] or
(ii) use of software-based checkpointing, e.g. [19].

In this work we propose a new solution called dynamic step
checkpointing (DSC), see Algorithm 3, which combines the
advantages of both approaches: (i) it relies only on software
(necessary as WISP 5.1 does not have external low-power
hardware for energy availability measurements, like [20]); that
(ii) adapts the location of checkpoints during the program
execution to minimize overhead of checkpointing.

DSC is based on two ideas. First, assuming that the CRFID
will keep its state, with each successful consistency check
within the execution loop, the algorithm will increase the
checkpointing interval by one (see line 13 of Algorithm 3).
Second, to insure consistency between states, DSC will exploit
the double buffering principle. The program state is saved in
two different locations in non-volatile memory (see line 22)
to allow restoration of the data reliably after a power failure
(line 16). This simple mechanism does not require storage
of all registers in non-volatile memory, in contrast to earlier
approaches [11], [19]. Nonetheless, further in-depth investiga-
tion of DSC with other programs, compared against, e.g. [11],
[19], is required. Our implementation of Huffman coding-
based decompressor amasses to 280 lines of C code.

IV. STORK: EXPERIMENTAL RESULTS

To demonstrate all contributions (listed in Section I-B) we
proceed with the evaluation of Stork in single and multi-
CRFID scenarios. Tests with commercial RFID tags were not
performed, as commercial tags are not capable of firmware
modifications, thus cannot be made to run the Stork protocol.

A. Host to CRFID Downstream—Single CRFID

The first set of experiments characterizes the speed of
transmission as a function of distance. One WISP is positioned
at distances d = {10,20,...,50} cm from the reader antenna,
in a setup similar to Fig. 2(b). At every position we send
a complete 5054 B WISP 5.1 base firmware. The results are
presented in Fig. 5(a). Each experiment was repeated five
times. With Stork we can wirelessly reprogram the WISP
5.1 in under ten seconds at a distance up to 30cm, which
is ten times faster than Wisent (and more than 20 times faster
within d = {10, 20} cm distance). Furthermore, at a distance
of d = 50cm, Stork is able to reprogram the WISP, while
Wisent was unable to complete the transfer.

s 1w
inf
1000 100
@ )
= 100 [}
g g %0
T =
0
10 20 30 40 50 L C R
Distance tag to reader [cm] Position

(a) Effect of frame size (b) Effect of location

Fig. 5. Single CRFID: (a) transmission of WISP 5.1 base firmware to WISP
at different distances and various BlockWrite lengths compared against
throttling (min Pyy=2 was used). Wisent [5] (version EX, throttling enabled),
is added for comparison; (b) impact of location differences of WISP against
the reader antenna for fixed tag to reader antenna distance d = 20 cm, with
the WISP antenna parallel to the left edge (L), right edge (R) of the reader
antenna and its center (C); Legend—S: Stork, W: Wisent, T: throttle.

We have also measured Stork’s performance across CRFID
position changes, see Fig. 5(b), for tag to reader antenna
distance of d = 20 cm. Despite the location-dependent channel
variations, Stork consistently shows a tenfold improvement in
speed over Wisent.

We do not directly compare Stork to R? [7]: applying the
transmission speed result from [7, Sec. V] to Fig. 5(a) is
not possible for two reasons. First, the experimental setup is
different from ours (indoor versus outdoor). Second, R? does
not consider memory write verification [7, Sec. III-B].

B. Reader to CRFID Transmission—Many CRFIDs

a) Multi-CRFID Transmission Method Comparison: The
second set of experiments characterizes the speed of firmware
transfer to up to four tags simultaneously® (the same firmware
as used in Section IV-A), using (i) broadcasting, (ii) oppor-
tunistic, and (iii) sequential transfer schemes. All four WISPs
are positioned each at fixed distances from the reader antenna,
exactly as shown in Fig. 2(b). The result is presented in
Fig. 6(a). Each experiment was repeated five times.

When multiple WISPs need to receive the same data, our
broadcast mechanism can reduce the transfer time by at least
two times at d = {10,20} cm compared to sequential trans-
mission (51.2 and 112.8 seconds sequential versus 17.0 and
51.2 seconds broadcast, respectively). As the distance from the
reader antenna to the CRFIDs increases, the benefit of using
a broadcasting scheme diminishes, making the opportunistic
transmission at d = 40cm (106.7 versus 76.7 seconds) the
most efficient scheme of the three. This can be explained
by the increase of overhead required for memory verification
when broadcasting. This observation calls for an adaptive
selection of broadcasting versus opportunistic transmission
in future CRFID downstream protocols. We also observe a
decrease in multi-tag transmission at short distances, which
we verified to be caused by a WISP demodulator power
overload. We observe that this effect is not connected to the
implementation of Stork, however affects all WISPs.

80ur experimental setup consisted of at most four tags, with this limit being
imposed by practical RF propagation constraints and the high incident power
needed by the WISP to maintain operation.
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TABLE I
HUFFMAN COMPRESSION ALGORITHM IMPLEMENTATION AGAINST GZIP
File type | Size (B) | This work (%) | Gzip (%)
Example WISP firmware 7.07k 10.8 35.7
Example ASCII file 1.9M 15.6 539

b) Scalability of Multi-CRFID Transmission: For the
same setup as previously we measured the transmission speed
as a function of number of CRFIDs to transmit the data to. The
number of CRFIDs in vicinity of the reader antenna is fixed,
i.e. four, so if data is transmitted to x CRFIDs, then 4 — x are
still in vicinity of the reader, with the distance from CRFID
to the reader also fixed (d = 20 cm). The result is presented in
Fig. 6(b). Each experiment was repeated five times. Transfer
speed for all methods scales linearly with the number of tags
to transmit. The benefit of using broadcasting increases with
increasing number of CRFIDs, provided all CRFIDs are well
positioned against the reader antenna.

C. Reader to CRFID Transmission—Firmware Compression

1) Checkpointing Overhead: To measure the benefit of
using compression for downstream we will first measure the
overhead of checkpointing during decompression. Thus we
power the WISP directly to prevent power interrupts. The
measured time needed to decompress the same WISP firmware
used in the earlier experiments without checkpointing was
1.50 s—comparable to a battery-based embedded system de-
compression time [21, Fig. 5]. The same experiment was then
repeated using checkpoints (positioned statically in line 12
of Algorithm 3) which increased the time by ~20% (1.79s).
To measure the benefit of dynamic checkpointing, we also
performed the experiment with the WISP moving back and
forth from the antenna using the Gondola open source indoor
mobility testbed [22], at distances d = {(10,...,60} cm (to
induce repeatable varying channel conditions). Each experi-
ment was repeated 20 times. Dynamic checkpointing reduced
the minimum decompression time, when power is uninter-
rupted, to 1.55sec. The maximum execution time in the
experiment was reduced from 3.85 to 3.0 seconds.

2) Decompression/Transmission Time Trade-off: Second,
we measured the overall benefit of compression for CRFID
reprogramming, using the same setup as in Section IV-A. The
results are given in Fig. 6(c). As shown in Section III-C1
the decompression reduced the overall reprogramming time
by 10% at the largest reader to CRFID distance (d = 60cm),
while it increased transmission speed at d < 30cm by
1.65s (30%), Fig. 6(c). However, looking at the relative
compression gain, Fig. 6(d), we see an improvement of almost
30s at d > 50cm. Comparing our implementation to a
benchmark, Table I, we demonstrate reasonable compression
levels, although three times lower than Gzip. This shows the
potential transmission savings of up to 50 % if more powerful
compression methods were implemented on CRFID.

D. Stork Energy Consumption

To evaluate the energy cost of downstream transmission,
we compare Stork to Wisent. Stork needs only 7.78 mJ to

send 5054 B (1.54 uJ/B) versus 81.70mJ for Wisent to send
5387B [5, Sec. V-C2] (15.2 4J/B). The measurement was
performed with the open source measurement circuit provided
by [23, Sec. 3A-2c]. Considering decompression of Stork, the
energy consumption of the transmission of the compressed file
decreased to 6.92mlJ, while the decompression uses 2.65 mJ.

E. Case Study: Aircraft Part Maintenance History Storage

In the final experiment, we demonstrate how Stork can
enable storage of maintenance history of individual airplane
parts [9], [24]. In case 1, the WISP was attached to the
outermost rib of a VFW-Fokker 614 wing, separated by a
7mm thin expanded polystyrene (to enable reception in the
presence of a metal backdrop), see Fig. 7(a). In case 2, it was
attached to the inner surface of the rudder, (creating a non-line
of sight path)°, see Fig. 7(b).

In both cases we have transferred the EASA 2015-0133
Airworthiness Directive, converted (prior to the transmission)
to text format. The transmitted file size was 9.4kB in Intel
HEX format. The rest of the CRFID ecosystem was the same
as in other experiments (refer to Section II-A). In both cases,
the reader antenna was handheld, see Fig. 7, and kept at a
distance of ~40cm and ~20cm from the surface of the wing
for case 1 and 2, respectively. Successful file transfer times
were 17.7 and 20 s for case 1 and case 2, respectively, showing
the feasibility of using Stork in managing airplane part history.

V. RELATED WORK: FAST (C)RFID TRANSFER

EPC CI1G2-based (C)RFID Downstream Analysis: To our
knowledge there are no studies that analyze the performance
of the EPCC1G2 downstream. Analyses of the EPC C1G2
protocol overwhelmingly focus only on the upstream (tag to
reader) transmission. Modern commercial tags used in aviation
allow downstream of only a single message, fitting within one
BlockWrite, e.g. [25, Sec. 7.3.13]. We identified no studies
reporting actual speeds of streaming large portions of data
(>1kB) to commercial RFID tags.

(C)RFID-based Data Storage: We are aware of only one
patent that proposes to use RFID tags as a means for data
storage [26]. No experimental studies of such systems appear
to have been performed so far.

CRFID Wireless Reprogramming: FirmSwitch [8] was
the first work demonstrating remote firmware execution, but
without actual firmware transfer. Wisent [5] was the first
protocol to demonstrate complete wireless reprogramming on
top of EPC C1G2, followed by R? [7].

Program Construction for CRFID: There are a growing
number of papers discussing CRFID programming methods
that guarantee execution integrity despite power interrupts. The
majority, as exemplified by Mementos [11] or Chime [12]
consider hardware support (using external voltage measure-
ment circuit). The only purely software-based system for

9We acknowledge that WISP 5.1 is not designed to withstand harsh airborne
environment. Making it robust to large temperature and pressure variations is
beyond the scope of this work. An example of an EPC C1G2-compliant RFID
targeting aerospace industry is described in [25].
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Fig. 6. Stork performance: (a) sending WISP 5.1 base firmware to four CRFIDs (positioned as in Fig. 2(b)) at a time. Broadcasting (Bdc.) improves the
transmission performance compared to sequential transfer (Sqtl.) by almost 100 seconds at 50 cm distance; (b) scalability of broadcasting against opportunistic
(Optn.) and sequential at 20 cm; (c) complete CRFID reprogramming times using uncompressed and compressed WISP 5.1 firmware. At longer distances the
benefit of compression increases; (d) benefit (sending less data) and penalty (computation) of compression for the same experiment as in (c).
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]
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Fig. 7. Experiment setup demonstrating transmission to (C)RFID, attached
to the aircraft part, from the host. WISP 5.1 is adhesively attached to: (left)
metallic, line of sight, and (right) composite, non-line of sight, aircraft part.
Attachment locations marked with red rectangle. Using Stork we demonstrated
transmission of 4.7kB file in 17.7s and 20s for left and right scenario,
respectively. Refer to Section IV-E for details.

CRFID checkpointing is DINO [19]. DINO, however, does not
consider checkpoint step adaptivity, which has been introduced
in Chime [12, Sec. 6.3], but the step adaptivity of Chime is
only supported by dedicated hardware.

VI. STORK: LIMITATIONS AND IMPROVEMENTS

Better Frame Adaptation: We speculate that Stork would
be further improved by throttling down to Write mes-
sage (atomic message of R?) once shortest BlockWrite is
reached in harsh channel conditions.

Adaptive Multi-Tag Transmission: We noted that in the
multi-CRFID downstream there is no technique that minimizes
transmission time for all scenarios. It would be then desired
to connect proposed methods into an adaptive system.

Bi-directional Fast/Robust CRFID Transfer: Stork fo-
cused on downstream only. Thus, further research is needed on
reaching the limits of bi-directional CRFID communication. A
first possible approach is to integrate Stork with Flit [17] (for
upstream).

Better Compression Mechanism: Stork used a simple
compression mechanism based on Huffman coding to traverse
the computation/communication tradeoff inherent in (C)RFID
systems. This is only a first step—many other compression
methods are available and should be explored in this context.

VII. CONCLUSIONS

We have introduced and characterized Stork, the fastest pro-
tocol for downstream transmission to multiple (Computational)
RFIDs. Stork is based on three novel contributions: (i) an
order of magnitude speedup of (C)RFID downstream transfer
compared to all state-of-the-art experimental and industry
protocols (20 times improvement compared against the best

protocol we found), brought about by immediate feedback
mechanism for data verification; (ii) implementation of an
EPC C1G2-complaint broadcast mechanism which improves
sequential transfer by two times, and (iii) a compression
mechanism enabling faster CRFID reprogramming speeds,
by 10%, supported by dynamic step checkpointing, a novel
programming primitive for Transiently Powered Computers.
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APPENDIX

Proof: We define the speed of a EPC C1G2-based down-
stream protocol x as the number of bits in a single LLRP
AccessSpec divided by the time it takes to send them, i.e.

Lw = bdaN(Ntmsg + ths + tLLRP + tRA + tmela + tcheck) -t ) (3)

where by, is the number of bits per data message in the
AccessSpec, N number of such data messages, t,s iS the
time of setting up a connection, ¢y jgp is the LLRP protocol
overhead, tgra is the random access overhead, tpew 1S the
overhead of sending meta data for the data bits, tps is
the time of sending a data message (including a default
acknowledgement), and t.peck iS the time of checking if the
data is stored correctly. To compare any existing or future
downstream protocol, and specifically, to compare Stork over
Wisent [5] one needs to derive individual variables in (3)
for each protocol. For completeness, in the analysis we also
consider R? protocol [7], despite R? lacks data verification.
Assumptions: To simplify derivation we assume: (i) a
single tag environment, i.e. tra = 0; (ii) no errors, i.e. no
message resends present; (iii) connection setup time, random
access overhead and LLRP overhead are downstream protocol
independent; and (iv) the data to be send is large, such that
the border effects, e.g. the very last message might be small
creating an AccessSpec with large overhead, are neglected.
Message Overhead—t,,;: The EPC messages that are
designed for downstream data transfer, BlockWrite and
Write [6, Sec. 6.3.2.12.3], add b,, overhead bits on each
bg, data bits. The data in EPC C1G?2 is transferred using Pulse
Interval Encoding for which the symbol times of the Data-0
(to) and Data-1 (ty), respectively, are not equal. Each message
needs to be acknowledged by the tag with a b, bits message.
For this message FMO baseband encoding is used [6, Sec.
6.3.1.3], for which the symbol time ¢, = tpﬂ where t1R is
a calibration value and c4 a divide ratio [6, ‘Sec. 6.3.1.2.8].
Each message also has (i) a frame sync as a preamble
which defines ¢y, and t; with a fixed time delimiter tq;, i.e.
trs = taeli + 2to + t; (ii) a preamble for the acknowledging
message as a function of ¢, and a constant cp, t,; = cpt,, (iii) a
minimum time after a message and after the acknowledgement,

tﬁ]sg and t; ,, respectively. Thus, denoting 7 as zeros/ones ratio,

thg 2 trs + (Tt0+(1 - r)tl )(bov+bda) + t;‘:‘lsg + tpr + taback
+ tzck 2 tm({bow baa; back, T, t;sgv tgck})- 4)

TABLE II
LimiTs oF EPC C1G2 [6] VERSUS IMPINJ R1000 IMPLEMENTATION
Sym. | Unit Min Max R1000* | SD (0)*
back | Dbits 17 17 17 —
Cdr — 8 64/3 64/3 —
to us 6.25 25 7.12 0.030
t1 us 1.5ty 2.0tp 10.64 0.026
tTR | MS 1.1(to+11) 3.0(to+t1) 32.48 0.035
tdeli | MS 11.88 13.12 12.48 0.220
thse | ps |max(to+t;,10ta)0.8—2 — 171.8 | 0.090
thy | ps 3ta — 82.7 6.30
ths us 977.3 — 2600 171
* Sniffed values are averages from a single trace with over 1500 EPC C1G2 messages.
TABLE III
CRFID DOWNSTREAM PROTOCOL PARAMETERS BUILD UPON EPC C1G2

Param. Wisent R2 Stork (MOM) | Stork (SPM)

bda 16 16 16 16

bov 58 58 58 58

N 16 1 210 120

tmeta 2tmsg tRRN 14tmsg 8tmsg
teheck trA +ihs +Ntmsg 0 tRead 4tRead

Connection Overhead—ty,: The handshake [6, Sec.
6.3.2.6] consists of two messages (Query and ACK—Fig. 3),
that have the same structure as g, but different parameter
set, i.e.

ths = 1R + tm(VQuery) + tm (VACK)7 @)

where vy is a parameter set of message x mapped into (4).

LLRP Protocol Overhead—ty gp: The average (Ethernet-
dependent) delay of instructing the reader will be considered
as fixed. We refer to [16, Sec. 4.7] for details.

Downstream Protocol Overhead—t.,: Since Impinj
readers split the BlockWrite into train of Writes,
Fig. 1(b) [5, Sec. IV-D1], Wisent and Stork add two words of
meta data to each BlockWrite, i.€. tmeta = 2tmsg. For R?,
tmeta 1S €Xecuting a request random number command
(tRRN), SO tmeta = tm (VRequest) s it uses Write, which needs
a random number for data encryption.

Data Verification Overhead—t pecr: For Wisent tepeck 1S
the time of performing the handshake and BlockWrite com-
mand again, i.e. tcheck = tRA +ths + Ntmsg, and for Stork #cpeck
is executing a Read command (tread)s tcheck = Cm(VRead)-
Although authors of R? remark about resending if data is not
received successful [7, Sec. III-B], R? performs no verification,
S0 teheck = 0 making it unsuitable for reliable downstream.

Downstream Protocol Overhead—N: Wisent limit is
N = 16 words/AccessSpec. Stork is limited by seven, 30
words long BlockWrites/AccessSpec, i.e. N = 210. For
R? N =1 as it splits data in Writes, with no grouping.

Now, considering Stork (MOM)—with SPM conclusion
being equivalent—see Section III-Ala, we insert specific pa-
rameters tmeta, teheck and IV into (3) with respective vectors v,
provided by the EPC C1G2 standard [6] (refer also to [13]).
To show that Lgiox > Lg2 we need to show (after parameter
assignment) that 209(tps + trirp + tra) + 210tgrN > 14Emsg +
Read. Proof is completed by observing that ty, > tpn and
tmsg > tRead as defined in [6, Sec. 6.3.2.12]. Showing that
Lgiork > Lyisent 1 analogous. O
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