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In this paper we present two new designs of spherical flexure joints, which are the compliant equivalent of a
traditional ball-and-socket joint. The designs are formed by tetrahedron-shaped elements, each composed of
three blade flexures with a trapezoidal shape, that are connected in series without intermediate bodies. This is
new with respect to the designs currently found in literature and helps to increase the range of motion. We also
present two planar (x-y-6,) flexure joint designs which were derived as special versions of the spherical designs.
In these designs the tetrahedron elements have degenerated to a triangular prisms. For detailed investigation we
developed equivalent representations of the tetrahedron and triangular prism elements and proved that three of
the four constraint stiffness terms depend solely on the properties of the main blade flexure. Furthermore, we
derived equations for these stiffness terms which are compared to finite-element simulations, showing a good
correspondence for the prism element with a Normalized Mean Absolute Error (NMAE) of 1.9%. For the tetra-
hedron element, the equations showed to only capture the qualitative behaviour with a NMAE of 34.9%. Also, we

derived an equation for the optimal width of the prism element regarding rotational stiffness.

1. Introduction

Spherical flexure joints can provide a high-precision alternative for
traditional ball-and-socket joints. This is because they gain their motion
due to the deflection of slender segments such as thin spring steel plates,
which eliminates friction and backlash in the rolling and sliding surfaces
in these traditional joints. Four types of spherical flexure joint designs
can currently be distinguished in literature [1], all allowing solely three
rotations in a single point.

The first type consists of a rod with a thinner part or short wire as
illustrated in Fig. 1a [2], which allows solely three rotations because all
strains are concentrated in the thinner part. The second type consists of
three wire flexures or slender rods which intersect in a common point as
shown in Fig. 1b [3,4], where each wire flexure constrains one trans-
lational motion. The third design type is based on the traditional (rig-
id-body) spherical linkage in which the axes of three revolute joints
intersect in a single point. The revolute joints have been replaced by a
flexure-based counterpart for which there are various possibilities, for
example as illustrated in Fig. 1c [5,6]. The fourth type shown in Fig. 1d
can be regarded as the design of Fig. 1b with the wire flexures replaced
with ‘folded leaf springs’ [1,3,7], which each also constrains one
translational motion [3].

The second, third and fourth design types have special configurations
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where they degenerate to planar joints which allow two in-plane
translations and one rotation. For example in design type two in
Fig. 1b, where the length axes of the wire flexures intersect in the
rotation point P. If point P is shifted to infinity in the vertical direction,
the wire flexures become parallel and a planar joint results. In a similar
way, design type four shown in Fig. 1d degenerates into a planar joint
when the fold lines of the folded leaf springs become parallel. The third
design type shown in Fig. 1c also has a planar version which consists of
two links and three revolute flexure joints with parallel rotation axes.

In this paper, we present a new type of spherical flexure joint which
is formed by a serial connection of tetrahedron-shaped elements. We
present two design variations named the Tetra I and Tetra II, and also
present their planar derivatives in which the tetrahedron elements
degenerate into triangular prisms. We have published one of these
planar versions in earlier work [8] where the triangular prism was
inspired by the ‘infinity hinge’ from Refs. [9,10]. In this paper we show
that the tetrahedron element is a generalized version of the triangular
prism.

In section 2 we present the joint designs and explain how they
function. The tetrahedron element is studied in detail in section 3 by
means of an equivalent representation. Equations for the stiffness terms
are derived and compared to finite-element simulations. In section 4 we
discuss the results and in section 5 we summarize the contributions of
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this work.

Throughout the article, we refer to motions of a body as being free
when a significantly low stiffness is being experienced in that direction,
and as constrained in the case of a significantly high stiffness. A flexure
typically adds constraints to a body, meaning that it stiffens certain
motion directions of the body [11].

2. Designs of the two new spherical flexure joints and their
planar derivatives

In this section we first present the designs of two new spherical
flexure joints and subsequently we present their planar derivatives. The
designs consist of tetrahedron elements connected in series. In the first
design, the elements are connected along two arms as illustrated in
Fig. 2, while in the second design the elements form a nested configu-
ration as illustrated in Fig. 5.

The first design, named Tetra I, is shown in Fig. 2a. It can be
considered as consisting of two arms, each built up from four tetrahe-
dron elements and with e as the end-effector. For illustration, in e a rod is
placed which ends in point P, the remote center of rotation of the flexure
joint which floats in space. The flexures constrain the end effector e such
that solely the three rotations about point P are free. If, for example, a
horizontal force is applied at the top of the joint in e, the joint rotates
about point P as shown in the two deformed states (scaled 1:1) in Fig. 3.

The working principle of the Tetra I design is as follows. The two
arms each consist of four tetrahedron elements. A single tetrahedron
element, shown isolated in Fig. 4, consists of three blade flexures ac, ab
and bc. Edges ajas and c;c3 are the interfaces at which other tetrahedron
elements can be connected and therefore blade flexure ac is considered
as the main (connecting) blade flexure. In the isolated view, we consider
edge ajas as fixed and the rigid bar through edge c;c3 as the end effector.
The three blade flexures have a trapezoidal shape and the lines through
their edges form a tetrahedron shape, as illustrated in Fig. 4. Coordinate
system xyz is placed with its origin at point a;. Axis x is aligned with line
ajc; and axis y is in the plane formed by points a;b;c;. Coordinate system
uvw has the same orientation as system xyz, except that it is rotated
around the x-axis such that v is perpendicular to the plane of blade
flexure ac. The rigid bar is free to rotate around the axes u and w, which
lie in the plane of blade flexure ac. This is because the planes formed by
the three blade flexures intersect in point P, as will be explained in more
detail in section 3.2. In order to achieve spherical motion, rotation
around the third axis v perpendicular to the plane of blade flexure ac
should also be free. This is accomplished by connecting a second tetra-
hedron under an angle with respect to the first tetrahedron, such that the
main blade flexures of the two tetrahedron elements are not coincident.
For example, the fourth and fifth tetrahedron of the Tetra I design shown
in Fig. 2a are connected under an angle with respect to each other in
order to free the rotation around the third axis. The tetrahedron ele-
ments should be connected such that their rotation points coincide,
which means that the planes of all blade flexures in the spherical joints
intersect point P. In principle, the spherical flexure joint design needs
solely two tetrahedrons under an angle to function properly. However,

(2) (b)
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each of the tetrahedrons can also be replaced by a set of tetrahedrons in
series in order to increase the range of motion and to avoid collisions,
such as in the Tetra I design in Fig. 2a which consists of four tetrahedrons
in each arm, paired two by two on each side.

The second new design of a spherical flexure joint named Tetra II is
shown in Fig. 5a. This design also consists of tetrahedron elements,
however assembled in a nested configuration. The tetrahedron elements
are constructed in series, similar as in the Tetra I design in which the two
arms are formed by a serial connection of tetrahedron elements. Also in
the Tetra II design, point P is the remote center of rotation. If, for
example, a horizontal force is applied at point e, the joint rotates about P
as shown in the deformed state (scaled 1:1) in Fig. 5b. A movie of this
design can be found online using the DOI of this article, in which the
motions of an additively manufactured titanium version are demon-
strated. Two tetrahedron elements connected under an angle are sulffi-
cient for spherical motion, while the third element was added to
improve the range of motion. Note that the three tetrahedron elements
not only differ in size, but also in shape. This is different from the Tetra I
design, where all tetrahedron elements have the same shape and size.
Changing the shape of the tetrahedron elements does not change the
kinematics of the spherical joint, as long as the planes of all three blade
flexures forming the tetrahedron elements coincide in point P. This will
be explained in more detail in section 3.2.

Both of the spherical joint designs Tetra I and Il in Figs. 2 and 5 have
a specific case for which they become planar joints, shown in Fig. 6a and
b, respectively. Here the tetrahedron elements have become triangular
prism elements as shown in Fig. 4b. The mobility of the end effector e is
no longer spherical. In both designs the end effectors have 3-DoF planar
motion capability, with an x- and y-translation and an in-plane rotation
6,. The transformation from spherical to planar mobility can be under-
stood as follows. The end effector e of a spherical joint moves over the
surface of a sphere. If the radius of this sphere is infinitely large, the
spherical surface degenerates to a plane. This means that the motions of
the joint also become planar. A requirement for the planar joints is that
the planes of all blade flexures should be parallel to a single axis, as will
be explained in more detail in section 3.2. In Ref. [8] we have already
shown how planar joint 1 can be applied for the design of a linear guide.

The four joint designs presented in this section are based on
distributed compliance, which enables a significant range of motion.
Fig. 7 shows a finite-element simulation of planar joint 1, forced in a
straight-line motion. The flexures show a gradual curvature, which
means that the strains are well distributed over the whole joint. If the
prism elements would be solid, high peak stresses would occur in the
connection points which would significantly limit the range of motion.

3. The tetrahedron and prism elements in detail

At the core of the four presented joints lie the tetrahedron and prism
elements, of which we explain the functioning in detail in this section.
Using equivalent representations we analyze their degrees of freedom
and derive stiffness equations for their constraining directions, which we
compare to finite-element simulations. We assume that blade flexures ab

U=

(@)

Fig. 1. Overview of the current state-of-the-art spherical flexure joints from Ref. [1], where P denotes the center of rotation and e the end effector: (a) a spherical
notch joint or short wire flexure [2]; (b) three wire flexures with intersecting axes [3,4]; (c) three revolute flexure joints in series with intersecting motion axes [5,6];

(d) three folded leaf springs with intersecting fold lines [1,3,7].
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Fig. 2. The Tetra I spherical flexure joint design, shown from two sides, based on two arms under an angle consisting each of four tetrahedron elements. Point P is the
remote center of rotation, indicated by the rod eP.

Fig. 3. The Tetra I design subjected to a horizontal load at e, showing that it rotates about point P (scaled 1:1).

Fig. 4. (a) Tetrahedron element formed by three blade flexures, with its parameters; (b) Specific degenerated case when P lies at infinity, for which the form reduces
to a triangular prism.

and bc have equal lengths, and that for the tetrahedron element P, = path. It is not directly clear which stiffness blade flexure bc applies to the
Ly, /2 and P, = 0, with P, and Py the x- and y-coordinates of the remote end effector because it is connected to the fixed world via blade flexure
center of rotation as illustrated in Fig. 4a. ac. The goal of the equivalent representation is to simplify the tetrahe-

dron and prism element such that they consist of two parallel flexure
elements. This is done by replacing blade flexures ab and bc with a single
wire flexure and extending the end effector using a rigid bar, as illus-
trated in Fig. 8. Points ay, by and c3 are in the middle of the edges. Edge
cics in the equivalent mechanism is still the end effector, which is
extended such that it forms the rigid part. Two parallel paths are present:
the wire flexure and blade flexure ab. In the following, we explain why

3.1. Equivalent representations of the tetrahedron and prism elements

Analysis of the tetrahedron and prism elements is not evident
because the three blade flexures form a hybrid serial and parallel
configuration: blade flexures ab and bc form a serial path from ground to
the end effector (edge c1c3), and blade flexure ac forms a second, parallel
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(b)

Fig. 5. (a) The Tetra II spherical flexure joint design based on nested tetrahedron elements; (b) Deflected pose due to a load showing the rotational motion about P.

(a)

(®)

Fig. 6. (a) 3-DoF planar joint 1, derived as special case from the Tetra I design in Fig. 2a; (b) 3-DoF planar joint 2, derived as special case from the Tetra II design

in Fig. 5a.

Fig. 7. Illustration of the distributed compliance by a finite-element simulation
of planar joint 1 forced in a straight-line motion [8]. The distributed strains
enable a large range of motion.

these equivalent representations are valid.

We start with the equivalent representation of the special prism
element. Blade flexures ab and bc in the original prism element form a
folded leaf spring (or double blade flexure), as illustrated in Fig. 9a. An
equivalent rigid-body model of this folded leaf spring is illustrated in
Fig. 9b, in which the deformation modes with low stiffness are repre-
sented by revolute joints connected by rigid bars, as in Ref. [5]. The end
effector is extended with a rigid bar which runs to underneath point bs.
The force Fp, is constrained because it either intersects or is parallel to
each of the rotation vectors of the revolute joints [12], such that it does
not result in a moment around any of the revolute joints. This is solely
the case for forces collinear with the rotation axis of the revolute joint at
by. Moments are not counteracted by the folded leaf spring because the
rotation vectors of the revolute joints span the full space. A wire flexure
coincident with edge b1bs constrains the same motions and is therefore
kinematically equivalent to the folded leaf spring. Therefore, the rigid

133

bar and wire flexure illustrated in Fig. 9c can be used to replace blade
flexures ab and bc. The same reasoning can be used to explain why the
equivalent representation of the tetrahedron is valid. Also in this case,
the folded leaf spring formed by blade flexures ab and bc of the tetra-
hedron element solely resists forces collinear with edge bibs. A wire
flexure placed at this edge can replace blade flexures ab and bc, as
illustrated in Fig. 8a. In earlier work [8], we presented an explanation
largely similar to the one in this paragraph. A different explanation can
be found in Ref. [13] where instead of adding the free directions of the
two blade flexures ab and bc, the author analyzes the overlap of their
constraints using an ‘intermediate constraint space’.

The equivalent representations in Fig. 8 are only valid for small de-
flections from the initial shape since the wire flexure suffers from a
shortening effect at larger displacements. This shortening does not occur
in a folded leaf spring.

3.2. Degrees of freedom of the tetrahedron and prism elements

Using the equivalent representations and constraint-based design
(CBD) methods [11,12,14], the degrees of freedom of the tetrahedron
and prism elements can be understood. We start with the tetrahedron
element. Using CBD, the blade flexure ac is represented by three
‘constraint lines’ running through points a;c1, ascs and a;cs3 in Fig. 8a. A
fourth constraint line at the place of the wire flexure represents this
element. The CBD methods state that the end effector is solely free to
rotate around axes which intersect all constraint lines. This means that
the tetrahedron element is solely free to rotate around the axes which lie
in the plane of blade flexure ac and intersect point P. This results in the
two independent rotations around axes u and w illustrated in Fig. 4a.

The same method can be applied to the prism element, which is
created by shifting the rotation point P of the tetrahedron element at
infinity in the z-direction. Assume that the first of the two independent
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Fig. 8. (a) Equivalent representation of the tetrahedron element where blade flexures ab and bc are replaced with a rigid part and a wire flexure; (b) Similar

equivalent representation of the prism element.

a- ’bl 8-, i /b1 R %
v Rigid / 1
Ay~ -b a.— 1 F ~ -b a.— -b
’ : 2 Revolute 2 2 2
joint
g~ b3 ag- e S - b3 &y~ - bg
¢~ C - c -~
C C P C Extended
= 2 " Extended 2= end effector
eEfIfltiztor end effector (rigid)
Cym Cy b (rigid) Cym
(a) (b) (©)

Fig. 9. Blade flexures ab and bc of the prism element form a folded leaf spring as illustrated in a), which solely counteracts forces collinear with edge b,b3 as shown in
the equivalent rigid-body model in b). Therefore, they can be modeled with a wire flexure and rigid bar illustrated in c).

rotation axes of the tetrahedron element is collinear with edge c;cs, and
the second one is perpendicular to this edge (but in the plane of blade
flexure ac). In the prism element, the first axis still intersects all
constraint lines because the constraint line representing the wire flexure
is intersected at infinity. This means that the prism is free to rotate
around the y-axis in Fig. 8b The second rotation axis perpendicular to
edge cic3 and in the plane of blade flexure ac lies at infinity because
point P lies at infinity in the z-direction. This rotation at infinity results
in the translational degree of freedom of the prism element in the di-
rection perpendicular to blade flexure ac. In CBD, this freedom line is
represented by a ‘hoop’ in the plane of blade flexure ac.

3.3. Equivalent stiffness of the wire flexure

In order to calculate the stiffness terms of the tetrahedron and prism
elements in the next sections, we need to know the longitudinal stiffness
of the wire flexure such that it represents the stiffness due to blade
flexures ab and bc. In the prism element, blade flexures ab and bc form a
folded leaf spring with parallel edges, of which this stiffness K, is given
by Ref. [3] using linear beam theory, as:

Loy, + L,
3EI,

Ky, = 1

-1
G(Lﬂzhz + Lbzt'z)
5Gth ’

\ /Lﬁzc2 /4 + S§ is the distance between point a and bg, or

where Lg,p,
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the length of blade flexure ab. S, is the width of the total element, which
is the dimension in the y-direction in Fig. 4b. E and G are the Young’s
modulus and shear modulus, respectively. The area moment of inertia is
I, = tS2/12, where t and S, are the thickness and height of the blade
flexures as indicated in Fig. 4b. The first and second term in brackets in
equation (1) describe the displacement due to bending and shear,
respectively. Because we assume that the lengths of the blade flexures ab
and bc are equal, Lq,p, = Lp,., and equation (1) can be simplified to:

213,
Ky = |22+ ®))

3El,

-1
12L 1,
5Gth |

The equivalent stiffness of the wire flexure for the tetrahedron
element is more complex to calculate, because the blade flexures have a
trapezoidal outline and therefore linear beam theory is not directly
applicable. To approximate the lateral stiffness of blade flexure ab, we
take the average stiffness of two beams, one with length L, 5 and one
with L,,,, as indicated in Fig. 4. In this way, the equivalent stiffness for
the wire flexure K} is approximated as:

-1

4 . 24
3B, +3E1 /13, SGA/Lan +3GA L]

Ky, = 3)

where
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L, :1/Lim/4+S§ (4)
and

P.—S,
La;bg = TLalhl . (5)

The thickness in the blade flexures of the tetrahedron varies linearly
in the z-direction, indicated by tpye and tyi, in Fig. 4a. The thickness
changes proportionally with the length of the line segments of the top
triangle a;bic; and the bottom triangle agbscs. This is to make sure that
the bending stresses due to displacement in the motion direction have an
even distribution in the z-direction of the element. This means that:

P,

k:

(6)

tmax = ﬁtmirr

We approximate the height of the blade flexures by S,, which is the

height of the total tetrahedron excluding the rigid bar in Fig. 4a. The
cross-sectional area in equation (3) is then:

A= (tmin + tmax)S: / 2. (7)

Note that we approximate the shear deformation in equation (3) by
using the shear constant for a rectangular cross section. The moment of
inertia I for the trapezoidal cross-section is given by Ref. [15] as:

min + 4 tuin fmax + lzmax)
36(tmin + tmax)

_S

I \ ®

where we also approximate the height of the blade flexures by S,.

3.4. Constraint stiffness terms of the prism element

In this section we derive analytic expressions for the stiffness of the
end effector (edge cic3) in the four constraining directions of the prism
element illustrated in Fig. 4b, using its equivalent representation.
Throughout the following sections we use linear beam equations to
calculate the stiffness of the blade flexures, which can be found in for
example [15,16]. We neglect the stiffness in the free (low-stiffness) di-
rections of the blade and wire flexures.

We start with K, , which is the rotational stiffness of edge c;c3 around
the x-axis as illustrated in Fig. 8b. For this we apply a moment M,,;
around the x-axis, determine the reactions on the blade and wire flexure,
compute their corresponding displacements and from this determine the
rotation around the x-axis. Fig. 10a shows the rigid part of the equiva-
lent representation, in the yz-plane. The external moment M, is applied
at edge c;c3 and results in forces F, from the blade flexure, and F, from
the wire flexure. Note that both the blade and the wire flexure are free to
rotate around the x-axis and therefore cannot exert a moment in the yz-
plane. The displacements &y, and &, fully determine the rotation around

(a)
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the x-axis, which means that the rotational stiffness can be written as:

M(.‘Xt
Ky

== 9
’ 5bpS>' + 5CPS.V ©

What is left is to determine 6y, and &, as a result of M. We start with
Spp- Static equilibrium in the yz-plane gives:

& _ Mexf/Sy

Spp =2 = .
" Ky Ky

(10)

where Kp, is the equivalent stiffness of the wire flexure from equation
(1). Displacement &, is more complex to calculate since My, not only
results in a force F, on the blade flexure but also introduces a moment
M, as illustrated in 10b where the rigid part is showed in the xz-plane.
This moment counteracts the displacement caused by the force F.,. The
total displacement can be calculated as:

Lg” (%]
% =Fo 3+
P

where the first term is the displacement due to the force and the last term
is the displacement due to the moment. Using the free-body diagrams in
Fig. 10 it can be shown that M, = FeLg,c, /2 and Fy, = Mexy/Sy, which
gives:

LZ

ayco

- R

6L,,c,
5Gth

1D

L3

aycy

12EI,

M.y
S,

6L,
5Gth

cp —

. 12

Substituting equations (1), (10) and (12) in 9 and rearranging gives
the stiffness around the x-axis as:

L
¢y 3 3
+ Lﬂzb: + Lb:C: |

K, :SZ 4
= 3El, ‘

where Loy, = Lp,e, = \/L2,.,/4+ S5

The stiffness terms in the other constraining directions of the prism
element solely depend on blade flexure ac. This can be proven as follows,
using the equivalent representation in Fig. 8b. If the wire flexure con-
tributes to the stiffness, it causes a reaction force in the z-direction on the
rigid part in point b. Moment equilibrium in the yz-plane can then not be
satisfied, because the blade and wire flexure are free to rotate in this
plane. Solely the stiffness Kj, is dependent on the wire flexure, because
in that case the external moment M,,, in Fig. 10a makes moment equi-
librium possible. The translational stiffness in z-direction of edge cics is
therefore simply equal to the lateral stiffness of blade flexure ac as:

13)

6(Lazfz + Lazbz + Lbzfz) -
5Gth ’

(b)

Fig. 10. Model for determining the rotational stiffness K, around the x-axis of the prism of Fig. 4b by considering a moment M, at ¢, on the rigid part of the

equivalent representation, shown in the yz-plane (a) and xz-plane (b).
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—1
6L,,c,

5Gth a9

3
K. = arco
- |:3Elp +

Using the same reasoning, a moment around the y-axis is solely
counteracted by flexure ac and therefore the rotational stiffness around
the y-axis is:

El
Ko =7 (15)
and finally the translational stiffness in x-direction is:
E:S,
K, =—"= (16)
L{Z’Z(‘z

3.5. Constraint stiffness terms of the tetrahedron element

In this section, we derive equations for the stiffness in the four
constraining directions of the tetrahedron element, as illustrated in
Fig. 4a. The procedure is similar to that of the prism, except that we
approximate the stiffness of the flexures because of their trapezoidal
shape. For simplicity, we assume that P, = 0 in Fig. 4a, such that blade
flexure ac is vertical and coordinate system uvw aligns with system xyz.

We start with the translational stiffness at point P in v-direction K,, as
illustrated in Fig. 4a. Consider the equivalent representation shown in
Fig. 8a. The free-body diagram of the rigid part after application of a
force F.y at point P in the v-direction is shown in Fig. 11. The
displacement of P &p in the v-direction is fully defined by the displace-
ments 5, and &.. Because the deformations are small, we can calculate
the contributions of the two displacements &, and §, to the displacement
of P separately and then add them [16]. We start with the contribution of
8p. Static equilibrium gives:

Fe,\t _

Fy

Sy
\/Si+ P2

The displacements are related by the reciprocal of this transmission
ratio [3] as:

2 2
Srp _ /S P

5 S,

a7

18

where 8py, is the displacement of P in v-direction due to the displacement
8. The displacement of P in the v-direction as a result of displacement &,

S,

(a)

Precision Engineering 71 (2021) 130-140

can be derived in the same way as:

5}’.0 _ P:

s 8,

19

The stiffness K, is the external force divided by the total displacement
in v-direction of point P:
_ Fe
T Opet0py

F ext

N 20)
S, b

v

P.
;55 +

What remains is to find the displacements 6, and 5. due to force Fy;.
The displacement &, is simply the force Fp, divided by the stiffness of the
wire flexure:

5 :Q _ 5‘7”’. (21)
K, K, :

where K} is the equivalent stiffness of the wire flexure from equation (3).
The displacement & is computed in a similar way as for the prism
element. The free-body diagram in Fig. 11b shows that, similar to the
computation for the prism, a moment counteracts the displacement due
to the force F.. Note that F;, ;, the component of F; in z-direction, is equal
to F,. This force acts on an arm which is half the length of blade flexure
ac, and therefore the term between the brackets in equation (12) for the
prism element can be used to compute the displacement §.. However,
because the blade flexures have a trapezoidal shape, we compute their
average stiffness using the two lengths L., and Lg,,, similar to the
procedure for the equivalent wire flexure for the tetrahedron element in
section 3.3. Noting that F. = FexP,/Sy, the displacement &, is approxi-
mated as:

S.=F, P 2 f 12 (22)
e = Lext o ! ’
S e [, + 26 [, 95A B+ 56A L,
where
P, -,
L113¢'3 :TLalcl . (23)

Substituting equations (3), (21) and (22) in 20 yields the stiffness K,
in v-direction at point P:

(b)

Fig. 11. Model for determining the translation stiffness K, in point P of the tetrahedron element in Fig. 4a by considering a force F,,, on the rigid part of the

equivalent representation, shown in the vw-plane (a) and uw-plane (b).
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2P 12P?
12151/ + 12151/L3 " 5GA Ly, +5GA/ L,
4 24
4(s2+77) 24(s2+P2)
N ;
3E1/Lum + 3E1/L23h] 5GA/Lup, + 5SGA /Ly,

The stiffness in the other three constraining directions of the tetra-
hedron element solely depend on blade flexure ac. This is because a
reaction force in the wire flexure has a component in the v-direction,
which is not counteracted by the blade flexure because it is free in that
direction. Therefore, the wire flexure is only active in the case of a force
at P with a component in the v-direction, which means that solely
constraint stiffness K, depends on the wire flexure.

To compute the translation stiffness in the w-direction K,,,, consider a
force at P in the w-direction on the equivalent representation in Fig. 11b.
This force will induce a force and a moment at edge c;c3 on blade flexure
ac, which counteracts its displacement in the same way as when
computing equation (22). Because again the moment arm of the force is
half of the length of blade flexure ac, we can simply use the terms in
brackets in equation (22):

12
5GA/LI,1L.1 +5GA /Ly,

(25)

K |:12El/a + 126113,

To compute the stiffness in the u-direction K, consider the uw-view
of the equivalent representation in Fig. 11b. The stiffness K, is depen-
dent on the axial deformation of blade flexure ac and the torsional
stiffness around its v-axis with moment arm P,—S,/2 as:

) -
K = |:L“zﬁz + (PZ Ld21'2:|

where we approximate the length of blade flexure ab using Lq,., =
(Laye; + Laye;)/2. Similarly, the rotational stiffness Kj, is:

- Sz/z)

EI (26)

Ky, =EI/L,,, 27)

3.6. Comparison of the equations to finite-element simulations

In this section we compare the stiffness equations to simulations with
the finite-element modeling (FEM) software package Comsol. For this
we define a ‘standard design’ for both the tetrahedron and prism
element. As a second test, we vary the design parameters one-by-one
from this standard design and compare the effect on the stiffness
change using graphs and an error metric.

The dimensions and material parameters chosen for the standard
design of the tetrahedron and prism element are listed in Table 1. The
dimensions are chosen such that the standard design is roughly similar
to the elements used in the four joint designs in section 2. The tetrahe-
dron and prism elements as shown in Fig. 4 were modeled in Comsol
using shell elements. Edge ajas is fixed and the end effector (edge c;ic3) is
defined as rigid using the ‘rigid connector’ option. In the tetrahedron
element, this rigid edge is extended to reach point P. The results for the
prism and tetrahedron element are listed in Tables 2 and 3 respectively,
together with their relative error.

As a second test, the parameters from the standard design are varied
one-by-one and the stiffness terms Ky, (for the prism) and K, (for the
tetrahedron) are compared to finite-element simulations. These two
particular stiffness terms are chosen because they are dependent on all
three blade flexures. The results for the prism are shown in Fig. 12. The
design parameters range from a fifth of their standard value to five times
their standard value. This is expected to be large enough to cover most
practical uses. The results for the tetrahedron element are listed in
Fig. 13. The parameters are again changed to one-fifth and five times the
standard value, with two exceptions. The height S, has a maximum value
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Table 1

Parameters of the chosen standard designs of the tetrahedron and prism element.
Variable Tetrahedron Prism
Layc, 50 [mm] 50 [mm]
Sy 50 [mm] 50 [mm]
Sz 25 [mm)] 25 [mm]
tmin 0.5 [mm] -
t - 0.5 [mm]
P, 25 [mm] 25 [mm]
P, 0 [mm] 0 [mm]
p, 50 [mm] infinite
E 210 [GPa] 210 [GPa]
G 80 [GPa] 80 [GPa]

Table 2

Outcomes of the comparison for the prism, showing a small error between the
equations and the finite-element model, for the standard design defined in
Table 1.

Stiffness term FEM Equations Error
Ky [N/m] 5.32¢7 5.25e7 1.36%
Ky [N/m] 3.14e3 free -

K, [N/m] 2.78e6 2.74e6 1.36%
Ky, [Nm/rad] 2.27e3 2.23e3 1.75%
Kp, [Nm/rad] 2.81e3 2.73e3 2.52%
Ky, [Nm/rad] 3.19e0 free -

Table 3
Outcomes of the comparison for the tetrahedron, showing a larger error between
the equations and the finite-element model, for the standard design defined in
Table 1.

Stiffness term FEM Equations Error
K, [N/m] 4.06e6 3.62e6 11.0%
K, [N/m] 2.87e6 2.38e6 16.9%
K, [N/m] 2.37¢7 2.61e7 10.1%
Ky, [Nm/rad] 1.18e2 free -

Ky, [Nm/rad] 5.90e3 5.27e3 10.7%
Ky, [Nm/rad] 1.98el free -

of 40 mm, because larger values will (almost) close off the bottom of the
element. For the same reason, the minimum value of P, is chosen as 35
mm. The plots in Fig. 13e and f contain the same information but the
latter has a log-scale for the y-axis.

To quantify the errors, a normalized mean absolute error (NMAE) is
computed. The NMAE is a regular MAE normalized by the maximum
value in the displacement range as:

yn|

n=1 |yn . (28)

NMAE = DA

maxly|
in which N is the amount of measured data points (10 per design
parameter), y is the value from the equations and y is the data from the
finite-element model.

The stiffness equations for the prism show a good correspondence
with the finite-element simulations, with a maximum NMAE of 1.9%.
The equations for the tetrahedron do capture the qualitative behavior
but show significantly larger errors with a maximum NMAE of 34.9% in
the case where the width Sy is varied. This is expected to be caused by
the approximation of the trapezoidal blade flexures. Also, to compute
the equivalent stiffness of blade flexures ab and bc in equation (3), the
lateral stiffness of the blade flexures is used. This is correct in the case of
the prism element because the force Fy, in Fig. 9 is perpendicular to the
two blade flexures. For the tetrahedron element this is not the case. A
continuum mechanics approach is expected to give better results in this
situation.
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Fig. 12. Outcomes of the comparison of the analytic equation for stiffness Ky, with finite-element simulations for the prism in Fig. 4b, showing a good corre-
spondence with a NMAE of 1.9%. The design parameters are varied one-by-one from the standard design defined in Table 1.

The stiffness in the directions denoted as ‘free’ in Tables 3 and 2 are
significantly lower than the stiffness in the other directions. This vali-
dates that these are the degrees of freedom of the elements, as was
derived in section 3.2.

4. Discussion

The prism element has an optimal width S, for which the rotational
stiffness Ky, is highest. For the standard design this is the optimum in the
graph in Fig. 12b. A larger width S, results in a larger moment arm of the
equivalent wire flexure (representing blade flexures ab and bc) which
increases stiffness Kj,, but it also results in longer blade flexures ab and
bc which decreases stiffness K,. The optimal width S,,, can be calcu-

lated by first setting the derivative of Ky, with respect to S, to zero as:

0Ky, (Sy
. s( ), (29)
)
Solving for S, gives the optimal width S, as:
4812 S (v+1
Sv, —— \/4L4 arcy A( )
Yo = 5 we T 5
(30)
1
T 128 (v+ 1)}2
aycy 5 I

where vis Poisson’s ratio v = 2G/E — 1. The graph in Fig. 12b shows that
the width Sy, of 50 mm of the standard design is close to its optimal value.
Table 2 shows that for the standard design, stiffness terms Ky, and K,
are of comparable magnitude.

The insights from the analysis of the isolated tetrahedron and prism
elements can be used when designing complete joints consisting of
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multiple elements in series. For example, it is useful to know that the
rotational stiffness terms Ky, and Ky, are of comparable magnitude for
the standard prism design. If one of these stiffness terms would be much
lower, the joint should be designed such that a large moment arm be-
tween the end effector and such a low-stiffness rotation axis are avoided.
Note that equations for coupling terms are not derived, which are
needed for a full analysis of the stiffness at the end effector of a serial
chain of elements. These could be derived using the procedure in this
paper, but will result in lengthy equations. In this case, a numerical
optimization is expected to be more useful.

Because of the specific shape of the tetrahedron element it can be
connected in series without intermediate bodies, which is new with
respect to the designs currently found in literature. Edges ajas and cjc3
of the tetrahedron in Fig. 4a form the interfaces at which other elements
can be connected. If two tetrahedron elements are connected such that
their connecting edges and corresponding vertices coincide (as in the
two presented spherical joint designs), no intermediate bodies are
needed. Connecting elements in series helps to increase the range of
motion, because the strains due to displacement in the motion direction
of the joint are distributed over the elements [17,18]. The
state-of-the-art designs two, three and four shown in Fig. 1 could also be
connected in series to increase their range of motion, if the joints are
redesigned such that their rotation points coincide. However, this results
in intermediate bodies which increase build volume, weight and mate-
rial usage, and often deteriorate dynamic performance due to uncon-
trolled vibrations [1,13].

In [18], a distinction is made between flexure systems and flexure
elements, of which the first type possesses rigid bodies and the latter
does not. In this perspective, the designs presented in this paper are
considered as a flexure element rather than a flexure system.

The Tetra II design shown in Fig. 5 could be fabricated using Wire
Electrical Discharge Machining (WEDM), instead of using additive
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Fig. 13. Outcomes of the comparison of the analytic equation for stiffness K, with finite-element simulations for the tetrahedron in Fig. 4a, showing that only the
qualitative behavior is captured with a NMAE of 34.9%. Graph f) shows the same data as graph e) but uses a log scale for the y-axis.

manufacturing of titanium as in the demonstration movie that can be
found online using the DOI of this article. WEDM is a proven technique
for the fabrication of flexure mechanisms and angles of 45° are feasible.

5. Conclusion

In this paper we have presented designs of two spherical flexure
joints named Tetra I and Tetra II, together with their derived planar
versions. The designs are formed by tetrahedron-shaped elements, each
composed of three blade flexures with a trapezoidal shape, that are
connected in series without intermediate bodies. This is new with
respect to the designs currently found in literature and helps to increase
the range of motion. The Tetra I design consists of two arms, each built
up from four tetrahedron elements in series. The Tetra II design consists
of three tetrahedron elements which are also connected in series, but
form a nested configuration.

We showed that the tetrahedron element is a generalized version of
the triangular prism from earlier work. The tetrahedron changes into a
triangular prism in the special case where the rotation point of the
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spherical joints is chosen at infinity.

We developed equivalent representations of the tetrahedron and
prism elements consisting of a blade flexure and a wire flexure con-
nected by a rigid part. Using these representations we have proven that
three of the four constraint stiffness terms solely depend on the prop-
erties of the main blade flexure.

From the equivalent representations we derived equations for the
constraint stiffness terms for both the prism and the tetrahedron,
resulting also in an equation for the optimal width for which the prism
has the highest rotational stiffness along the torsion axis of the main
blade flexure.

By comparing the analytic equations to finite-element simulations, a
good correspondence for the prism was found with a normalized mean
squared error (NMAE) of 1.9%. For the tetrahedron element, the equa-
tions showed to only capture the qualitative behaviour with a NMAE of
34.9%, which is expected to be caused by the approximation of the
trapezoidal blade flexures.
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