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A new type of spherical flexure joint based on tetrahedron elements 

Jelle Rommers *, Volkert van der Wijk, Just L. Herder 
Department of Precision and Microsystems Engineering, Faculty of 3mE, Delft University of Technology, Delft, the Netherlands   

A R T I C L E  I N F O   
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A B S T R A C T   

In this paper we present two new designs of spherical flexure joints, which are the compliant equivalent of a 
traditional ball-and-socket joint. The designs are formed by tetrahedron-shaped elements, each composed of 
three blade flexures with a trapezoidal shape, that are connected in series without intermediate bodies. This is 
new with respect to the designs currently found in literature and helps to increase the range of motion. We also 
present two planar (x-y-θz) flexure joint designs which were derived as special versions of the spherical designs. 
In these designs the tetrahedron elements have degenerated to a triangular prisms. For detailed investigation we 
developed equivalent representations of the tetrahedron and triangular prism elements and proved that three of 
the four constraint stiffness terms depend solely on the properties of the main blade flexure. Furthermore, we 
derived equations for these stiffness terms which are compared to finite-element simulations, showing a good 
correspondence for the prism element with a Normalized Mean Absolute Error (NMAE) of 1.9%. For the tetra
hedron element, the equations showed to only capture the qualitative behaviour with a NMAE of 34.9%. Also, we 
derived an equation for the optimal width of the prism element regarding rotational stiffness.   

1. Introduction 

Spherical flexure joints can provide a high-precision alternative for 
traditional ball-and-socket joints. This is because they gain their motion 
due to the deflection of slender segments such as thin spring steel plates, 
which eliminates friction and backlash in the rolling and sliding surfaces 
in these traditional joints. Four types of spherical flexure joint designs 
can currently be distinguished in literature [1], all allowing solely three 
rotations in a single point. 

The first type consists of a rod with a thinner part or short wire as 
illustrated in Fig. 1a [2], which allows solely three rotations because all 
strains are concentrated in the thinner part. The second type consists of 
three wire flexures or slender rods which intersect in a common point as 
shown in Fig. 1b [3,4], where each wire flexure constrains one trans
lational motion. The third design type is based on the traditional (rig
id-body) spherical linkage in which the axes of three revolute joints 
intersect in a single point. The revolute joints have been replaced by a 
flexure-based counterpart for which there are various possibilities, for 
example as illustrated in Fig. 1c [5,6]. The fourth type shown in Fig. 1d 
can be regarded as the design of Fig. 1b with the wire flexures replaced 
with ‘folded leaf springs’ [1,3,7], which each also constrains one 
translational motion [3]. 

The second, third and fourth design types have special configurations 

where they degenerate to planar joints which allow two in-plane 
translations and one rotation. For example in design type two in 
Fig. 1b, where the length axes of the wire flexures intersect in the 
rotation point P. If point P is shifted to infinity in the vertical direction, 
the wire flexures become parallel and a planar joint results. In a similar 
way, design type four shown in Fig. 1d degenerates into a planar joint 
when the fold lines of the folded leaf springs become parallel. The third 
design type shown in Fig. 1c also has a planar version which consists of 
two links and three revolute flexure joints with parallel rotation axes. 

In this paper, we present a new type of spherical flexure joint which 
is formed by a serial connection of tetrahedron-shaped elements. We 
present two design variations named the Tetra I and Tetra II, and also 
present their planar derivatives in which the tetrahedron elements 
degenerate into triangular prisms. We have published one of these 
planar versions in earlier work [8] where the triangular prism was 
inspired by the ‘infinity hinge’ from Refs. [9,10]. In this paper we show 
that the tetrahedron element is a generalized version of the triangular 
prism. 

In section 2 we present the joint designs and explain how they 
function. The tetrahedron element is studied in detail in section 3 by 
means of an equivalent representation. Equations for the stiffness terms 
are derived and compared to finite-element simulations. In section 4 we 
discuss the results and in section 5 we summarize the contributions of 
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this work. 
Throughout the article, we refer to motions of a body as being free 

when a significantly low stiffness is being experienced in that direction, 
and as constrained in the case of a significantly high stiffness. A flexure 
typically adds constraints to a body, meaning that it stiffens certain 
motion directions of the body [11]. 

2. Designs of the two new spherical flexure joints and their 
planar derivatives 

In this section we first present the designs of two new spherical 
flexure joints and subsequently we present their planar derivatives. The 
designs consist of tetrahedron elements connected in series. In the first 
design, the elements are connected along two arms as illustrated in 
Fig. 2, while in the second design the elements form a nested configu
ration as illustrated in Fig. 5. 

The first design, named Tetra I, is shown in Fig. 2a. It can be 
considered as consisting of two arms, each built up from four tetrahe
dron elements and with e as the end-effector. For illustration, in e a rod is 
placed which ends in point P, the remote center of rotation of the flexure 
joint which floats in space. The flexures constrain the end effector e such 
that solely the three rotations about point P are free. If, for example, a 
horizontal force is applied at the top of the joint in e, the joint rotates 
about point P as shown in the two deformed states (scaled 1:1) in Fig. 3. 

The working principle of the Tetra I design is as follows. The two 
arms each consist of four tetrahedron elements. A single tetrahedron 
element, shown isolated in Fig. 4, consists of three blade flexures ac, ab 
and bc. Edges a1a3 and c1c3 are the interfaces at which other tetrahedron 
elements can be connected and therefore blade flexure ac is considered 
as the main (connecting) blade flexure. In the isolated view, we consider 
edge a1a3 as fixed and the rigid bar through edge c1c3 as the end effector. 
The three blade flexures have a trapezoidal shape and the lines through 
their edges form a tetrahedron shape, as illustrated in Fig. 4. Coordinate 
system xyz is placed with its origin at point a1. Axis x is aligned with line 
a1c1 and axis y is in the plane formed by points a1b1c1. Coordinate system 
uvw has the same orientation as system xyz, except that it is rotated 
around the x-axis such that v is perpendicular to the plane of blade 
flexure ac. The rigid bar is free to rotate around the axes u and w, which 
lie in the plane of blade flexure ac. This is because the planes formed by 
the three blade flexures intersect in point P, as will be explained in more 
detail in section 3.2. In order to achieve spherical motion, rotation 
around the third axis v perpendicular to the plane of blade flexure ac 
should also be free. This is accomplished by connecting a second tetra
hedron under an angle with respect to the first tetrahedron, such that the 
main blade flexures of the two tetrahedron elements are not coincident. 
For example, the fourth and fifth tetrahedron of the Tetra I design shown 
in Fig. 2a are connected under an angle with respect to each other in 
order to free the rotation around the third axis. The tetrahedron ele
ments should be connected such that their rotation points coincide, 
which means that the planes of all blade flexures in the spherical joints 
intersect point P. In principle, the spherical flexure joint design needs 
solely two tetrahedrons under an angle to function properly. However, 

each of the tetrahedrons can also be replaced by a set of tetrahedrons in 
series in order to increase the range of motion and to avoid collisions, 
such as in the Tetra I design in Fig. 2a which consists of four tetrahedrons 
in each arm, paired two by two on each side. 

The second new design of a spherical flexure joint named Tetra II is 
shown in Fig. 5a. This design also consists of tetrahedron elements, 
however assembled in a nested configuration. The tetrahedron elements 
are constructed in series, similar as in the Tetra I design in which the two 
arms are formed by a serial connection of tetrahedron elements. Also in 
the Tetra II design, point P is the remote center of rotation. If, for 
example, a horizontal force is applied at point e, the joint rotates about P 
as shown in the deformed state (scaled 1:1) in Fig. 5b. A movie of this 
design can be found online using the DOI of this article, in which the 
motions of an additively manufactured titanium version are demon
strated. Two tetrahedron elements connected under an angle are suffi
cient for spherical motion, while the third element was added to 
improve the range of motion. Note that the three tetrahedron elements 
not only differ in size, but also in shape. This is different from the Tetra I 
design, where all tetrahedron elements have the same shape and size. 
Changing the shape of the tetrahedron elements does not change the 
kinematics of the spherical joint, as long as the planes of all three blade 
flexures forming the tetrahedron elements coincide in point P. This will 
be explained in more detail in section 3.2. 

Both of the spherical joint designs Tetra I and II in Figs. 2 and 5 have 
a specific case for which they become planar joints, shown in Fig. 6a and 
b, respectively. Here the tetrahedron elements have become triangular 
prism elements as shown in Fig. 4b. The mobility of the end effector e is 
no longer spherical. In both designs the end effectors have 3-DoF planar 
motion capability, with an x- and y-translation and an in-plane rotation 
θz. The transformation from spherical to planar mobility can be under
stood as follows. The end effector e of a spherical joint moves over the 
surface of a sphere. If the radius of this sphere is infinitely large, the 
spherical surface degenerates to a plane. This means that the motions of 
the joint also become planar. A requirement for the planar joints is that 
the planes of all blade flexures should be parallel to a single axis, as will 
be explained in more detail in section 3.2. In Ref. [8] we have already 
shown how planar joint 1 can be applied for the design of a linear guide. 

The four joint designs presented in this section are based on 
distributed compliance, which enables a significant range of motion. 
Fig. 7 shows a finite-element simulation of planar joint 1, forced in a 
straight-line motion. The flexures show a gradual curvature, which 
means that the strains are well distributed over the whole joint. If the 
prism elements would be solid, high peak stresses would occur in the 
connection points which would significantly limit the range of motion. 

3. The tetrahedron and prism elements in detail 

At the core of the four presented joints lie the tetrahedron and prism 
elements, of which we explain the functioning in detail in this section. 
Using equivalent representations we analyze their degrees of freedom 
and derive stiffness equations for their constraining directions, which we 
compare to finite-element simulations. We assume that blade flexures ab 

Fig. 1. Overview of the current state-of-the-art spherical flexure joints from Ref. [1], where P denotes the center of rotation and e the end effector: (a) a spherical 
notch joint or short wire flexure [2]; (b) three wire flexures with intersecting axes [3,4]; (c) three revolute flexure joints in series with intersecting motion axes [5,6]; 
(d) three folded leaf springs with intersecting fold lines [1,3,7]. 
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and bc have equal lengths, and that for the tetrahedron element Px =

La1c1/2 and Py = 0, with Px and Py the x- and y-coordinates of the remote 
center of rotation as illustrated in Fig. 4a. 

3.1. Equivalent representations of the tetrahedron and prism elements 

Analysis of the tetrahedron and prism elements is not evident 
because the three blade flexures form a hybrid serial and parallel 
configuration: blade flexures ab and bc form a serial path from ground to 
the end effector (edge c1c3), and blade flexure ac forms a second, parallel 

path. It is not directly clear which stiffness blade flexure bc applies to the 
end effector because it is connected to the fixed world via blade flexure 
ac. The goal of the equivalent representation is to simplify the tetrahe
dron and prism element such that they consist of two parallel flexure 
elements. This is done by replacing blade flexures ab and bc with a single 
wire flexure and extending the end effector using a rigid bar, as illus
trated in Fig. 8. Points a2, b2 and c2 are in the middle of the edges. Edge 
c1c3 in the equivalent mechanism is still the end effector, which is 
extended such that it forms the rigid part. Two parallel paths are present: 
the wire flexure and blade flexure ab. In the following, we explain why 

Fig. 2. The Tetra I spherical flexure joint design, shown from two sides, based on two arms under an angle consisting each of four tetrahedron elements. Point P is the 
remote center of rotation, indicated by the rod eP. 

Fig. 3. The Tetra I design subjected to a horizontal load at e, showing that it rotates about point P (scaled 1:1).  

Fig. 4. (a) Tetrahedron element formed by three blade flexures, with its parameters; (b) Specific degenerated case when P lies at infinity, for which the form reduces 
to a triangular prism. 
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these equivalent representations are valid. 
We start with the equivalent representation of the special prism 

element. Blade flexures ab and bc in the original prism element form a 
folded leaf spring (or double blade flexure), as illustrated in Fig. 9a. An 
equivalent rigid-body model of this folded leaf spring is illustrated in 
Fig. 9b, in which the deformation modes with low stiffness are repre
sented by revolute joints connected by rigid bars, as in Ref. [5]. The end 
effector is extended with a rigid bar which runs to underneath point b2. 
The force Fbp is constrained because it either intersects or is parallel to 
each of the rotation vectors of the revolute joints [12], such that it does 
not result in a moment around any of the revolute joints. This is solely 
the case for forces collinear with the rotation axis of the revolute joint at 
b2. Moments are not counteracted by the folded leaf spring because the 
rotation vectors of the revolute joints span the full space. A wire flexure 
coincident with edge b1b3 constrains the same motions and is therefore 
kinematically equivalent to the folded leaf spring. Therefore, the rigid 

bar and wire flexure illustrated in Fig. 9c can be used to replace blade 
flexures ab and bc. The same reasoning can be used to explain why the 
equivalent representation of the tetrahedron is valid. Also in this case, 
the folded leaf spring formed by blade flexures ab and bc of the tetra
hedron element solely resists forces collinear with edge b1b3. A wire 
flexure placed at this edge can replace blade flexures ab and bc, as 
illustrated in Fig. 8a. In earlier work [8], we presented an explanation 
largely similar to the one in this paragraph. A different explanation can 
be found in Ref. [13] where instead of adding the free directions of the 
two blade flexures ab and bc, the author analyzes the overlap of their 
constraints using an ‘intermediate constraint space’. 

The equivalent representations in Fig. 8 are only valid for small de
flections from the initial shape since the wire flexure suffers from a 
shortening effect at larger displacements. This shortening does not occur 
in a folded leaf spring. 

3.2. Degrees of freedom of the tetrahedron and prism elements 

Using the equivalent representations and constraint-based design 
(CBD) methods [11,12,14], the degrees of freedom of the tetrahedron 
and prism elements can be understood. We start with the tetrahedron 
element. Using CBD, the blade flexure ac is represented by three 
‘constraint lines’ running through points a1c1, a3c3 and a1c3 in Fig. 8a. A 
fourth constraint line at the place of the wire flexure represents this 
element. The CBD methods state that the end effector is solely free to 
rotate around axes which intersect all constraint lines. This means that 
the tetrahedron element is solely free to rotate around the axes which lie 
in the plane of blade flexure ac and intersect point P. This results in the 
two independent rotations around axes u and w illustrated in Fig. 4a. 

The same method can be applied to the prism element, which is 
created by shifting the rotation point P of the tetrahedron element at 
infinity in the z-direction. Assume that the first of the two independent 

Fig. 5. (a) The Tetra II spherical flexure joint design based on nested tetrahedron elements; (b) Deflected pose due to a load showing the rotational motion about P.  

Fig. 6. (a) 3-DoF planar joint 1, derived as special case from the Tetra I design in Fig. 2a; (b) 3-DoF planar joint 2, derived as special case from the Tetra II design 
in Fig. 5a. 

Fig. 7. Illustration of the distributed compliance by a finite-element simulation 
of planar joint 1 forced in a straight-line motion [8]. The distributed strains 
enable a large range of motion. 
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rotation axes of the tetrahedron element is collinear with edge c1c3, and 
the second one is perpendicular to this edge (but in the plane of blade 
flexure ac). In the prism element, the first axis still intersects all 
constraint lines because the constraint line representing the wire flexure 
is intersected at infinity. This means that the prism is free to rotate 
around the y-axis in Fig. 8b The second rotation axis perpendicular to 
edge c1c3 and in the plane of blade flexure ac lies at infinity because 
point P lies at infinity in the z-direction. This rotation at infinity results 
in the translational degree of freedom of the prism element in the di
rection perpendicular to blade flexure ac. In CBD, this freedom line is 
represented by a ‘hoop’ in the plane of blade flexure ac. 

3.3. Equivalent stiffness of the wire flexure 

In order to calculate the stiffness terms of the tetrahedron and prism 
elements in the next sections, we need to know the longitudinal stiffness 
of the wire flexure such that it represents the stiffness due to blade 
flexures ab and bc. In the prism element, blade flexures ab and bc form a 
folded leaf spring with parallel edges, of which this stiffness Kbp is given 
by Ref. [3] using linear beam theory, as: 

Kbp =

[
L3

a2b2
+ L3

b2c2

3EIp
+

6(La2b2 + Lb2c2 )

5Gth

]− 1

, (1)  

where La2b2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

L2
a2c2

/4 + S2
y

√

is the distance between point a2 and b2, or 

the length of blade flexure ab. Sy is the width of the total element, which 
is the dimension in the y-direction in Fig. 4b. E and G are the Young’s 
modulus and shear modulus, respectively. The area moment of inertia is 
Ip = tS3

z/12, where t and Sz are the thickness and height of the blade 
flexures as indicated in Fig. 4b. The first and second term in brackets in 
equation (1) describe the displacement due to bending and shear, 
respectively. Because we assume that the lengths of the blade flexures ab 
and bc are equal, La2b2 = Lb2c2 and equation (1) can be simplified to: 

Kbp =

[
2L3

a2b2

3EIp
+

12La2b2

5Gth

]− 1

. (2) 

The equivalent stiffness of the wire flexure for the tetrahedron 
element is more complex to calculate, because the blade flexures have a 
trapezoidal outline and therefore linear beam theory is not directly 
applicable. To approximate the lateral stiffness of blade flexure ab, we 
take the average stiffness of two beams, one with length La1b1 and one 
with La3b3 , as indicated in Fig. 4. In this way, the equivalent stiffness for 
the wire flexure Kb is approximated as: 

Kb =

[
4

3EI
/

L3
a1b1

+ 3EI
/

L3
a3b3

+
24

5GA
/

La1b1 + 5GA
/

La3b3

]− 1

, (3)  

where 

Fig. 8. (a) Equivalent representation of the tetrahedron element where blade flexures ab and bc are replaced with a rigid part and a wire flexure; (b) Similar 
equivalent representation of the prism element. 

Fig. 9. Blade flexures ab and bc of the prism element form a folded leaf spring as illustrated in a), which solely counteracts forces collinear with edge b1b3 as shown in 
the equivalent rigid-body model in b). Therefore, they can be modeled with a wire flexure and rigid bar illustrated in c). 
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La1b1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

L2
a1c1

/
4 + S2

y

√

(4)  

and 

La3b3 =
Pz − Sz

Pz
La1b1 . (5) 

The thickness in the blade flexures of the tetrahedron varies linearly 
in the z-direction, indicated by tmax and tmin in Fig. 4a. The thickness 
changes proportionally with the length of the line segments of the top 
triangle a1b1c1 and the bottom triangle a3b3c3. This is to make sure that 
the bending stresses due to displacement in the motion direction have an 
even distribution in the z-direction of the element. This means that: 

tmax =
Pz

Pz − Sz
tmin. (6) 

We approximate the height of the blade flexures by Sz, which is the 
height of the total tetrahedron excluding the rigid bar in Fig. 4a. The 
cross-sectional area in equation (3) is then: 

A=(tmin + tmax)Sz / 2. (7) 

Note that we approximate the shear deformation in equation (3) by 
using the shear constant for a rectangular cross section. The moment of 
inertia I for the trapezoidal cross-section is given by Ref. [15] as: 

I =
S3

z

(
t2
min + 4 tmin tmax + t2

max

)

36(tmin + tmax)
, (8)  

where we also approximate the height of the blade flexures by Sz. 

3.4. Constraint stiffness terms of the prism element 

In this section we derive analytic expressions for the stiffness of the 
end effector (edge c1c3) in the four constraining directions of the prism 
element illustrated in Fig. 4b, using its equivalent representation. 
Throughout the following sections we use linear beam equations to 
calculate the stiffness of the blade flexures, which can be found in for 
example [15,16]. We neglect the stiffness in the free (low-stiffness) di
rections of the blade and wire flexures. 

We start with Kθx , which is the rotational stiffness of edge c1c3 around 
the x-axis as illustrated in Fig. 8b. For this we apply a moment Mext 
around the x-axis, determine the reactions on the blade and wire flexure, 
compute their corresponding displacements and from this determine the 
rotation around the x-axis. Fig. 10a shows the rigid part of the equiva
lent representation, in the yz-plane. The external moment Mext is applied 
at edge c1c3 and results in forces Fcp from the blade flexure, and Fbp from 
the wire flexure. Note that both the blade and the wire flexure are free to 
rotate around the x-axis and therefore cannot exert a moment in the yz- 
plane. The displacements δbp and δcp fully determine the rotation around 

the x-axis, which means that the rotational stiffness can be written as: 

Kθx =
Mext

δbpSy + δcpSy
. (9) 

What is left is to determine δbp and δcp as a result of Mext. We start with 
δbp. Static equilibrium in the yz-plane gives: 

δbp =
Fbp

Kbp
=

Mext
/

Sy

Kbp
, (10)  

where Kbp is the equivalent stiffness of the wire flexure from equation 
(1). Displacement δcp is more complex to calculate since Mext not only 
results in a force Fcp on the blade flexure but also introduces a moment 
Mcp, as illustrated in 10b where the rigid part is showed in the xz-plane. 
This moment counteracts the displacement caused by the force Fcp. The 
total displacement can be calculated as: 

δcp =Fcp

[
L3

a2c2

3EIp
+

6La2c2

5Gth

]

− Mcp
L2

a2c2

2EIp
, (11)  

where the first term is the displacement due to the force and the last term 
is the displacement due to the moment. Using the free-body diagrams in 
Fig. 10 it can be shown that Mcp = FcpLa2c2/2 and Fcp = Mext/Sy, which 
gives: 

δcp =
Mext

Sy

[
L3

a2c2

12EIp
+

6La2c2

5Gth

]

. (12) 

Substituting equations (1), (10) and (12) in 9 and rearranging gives 
the stiffness around the x-axis as: 

Kθx = S2
y

⎡

⎢
⎢
⎣

L3
a2 c2
4 + L3

a2b2
+ L3

b2c2

3EIp
+

6(La2c2 + La2b2 + Lb2c2 )

5Gth

]− 1

, (13)  

where La2b2 = Lb2c2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

L2
a2c2

/4 + S2
y

√

. 

The stiffness terms in the other constraining directions of the prism 
element solely depend on blade flexure ac. This can be proven as follows, 
using the equivalent representation in Fig. 8b. If the wire flexure con
tributes to the stiffness, it causes a reaction force in the z-direction on the 
rigid part in point b. Moment equilibrium in the yz-plane can then not be 
satisfied, because the blade and wire flexure are free to rotate in this 
plane. Solely the stiffness Kθx is dependent on the wire flexure, because 
in that case the external moment Mext in Fig. 10a makes moment equi
librium possible. The translational stiffness in z-direction of edge c1c3 is 
therefore simply equal to the lateral stiffness of blade flexure ac as: 

Fig. 10. Model for determining the rotational stiffness Kθx around the x-axis of the prism of Fig. 4b by considering a moment Mext at c2 on the rigid part of the 
equivalent representation, shown in the yz-plane (a) and xz-plane (b). 
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Kz =

[
L3

a2c2

3EIp
+

6La2c2

5Gth

]− 1

. (14) 

Using the same reasoning, a moment around the y-axis is solely 
counteracted by flexure ac and therefore the rotational stiffness around 
the y-axis is: 

Kθy =
EIp

La2c2

, (15)  

and finally the translational stiffness in x-direction is: 

Kx =
EtSz

La2c2

. (16)  

3.5. Constraint stiffness terms of the tetrahedron element 

In this section, we derive equations for the stiffness in the four 
constraining directions of the tetrahedron element, as illustrated in 
Fig. 4a. The procedure is similar to that of the prism, except that we 
approximate the stiffness of the flexures because of their trapezoidal 
shape. For simplicity, we assume that Py = 0 in Fig. 4a, such that blade 
flexure ac is vertical and coordinate system uvw aligns with system xyz. 

We start with the translational stiffness at point P in v-direction Kv, as 
illustrated in Fig. 4a. Consider the equivalent representation shown in 
Fig. 8a. The free-body diagram of the rigid part after application of a 
force Fext at point P in the v-direction is shown in Fig. 11. The 
displacement of P δP in the v-direction is fully defined by the displace
ments δb and δc. Because the deformations are small, we can calculate 
the contributions of the two displacements δb and δc to the displacement 
of P separately and then add them [16]. We start with the contribution of 
δb. Static equilibrium gives: 

Fext

Fb
=

Sy
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
S2

y + P2
z

√ . (17) 

The displacements are related by the reciprocal of this transmission 
ratio [3] as: 

δP,b

δb
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
S2

y + P2
z

√

Sy
, (18)  

where δP,b is the displacement of P in v-direction due to the displacement 
δb. The displacement of P in the v-direction as a result of displacement δc 

can be derived in the same way as: 

δP,c

δc
=

Pz

Sy
. (19) 

The stiffness Kv is the external force divided by the total displacement 
in v-direction of point P: 

Kv =
Fext

δP,c + δP,b
=

Fext

Pz
Sy

δc +

̅̅̅̅̅̅̅̅̅
S2

y+P2
z

√

Sy
δb

. (20) 

What remains is to find the displacements δb and δc due to force Fext. 
The displacement δb is simply the force Fb divided by the stiffness of the 
wire flexure: 

δb =
Fb

Kb
=

̅̅̅̅̅̅̅̅̅
S2

y+P2
z

√

Sy
Fext

Kb
, (21)  

where Kb is the equivalent stiffness of the wire flexure from equation (3). 
The displacement δc is computed in a similar way as for the prism 
element. The free-body diagram in Fig. 11b shows that, similar to the 
computation for the prism, a moment counteracts the displacement due 
to the force Fc. Note that Fb,z, the component of Fb in z-direction, is equal 
to Fc. This force acts on an arm which is half the length of blade flexure 
ac, and therefore the term between the brackets in equation (12) for the 
prism element can be used to compute the displacement δc. However, 
because the blade flexures have a trapezoidal shape, we compute their 
average stiffness using the two lengths La1c1 and La3c3 , similar to the 
procedure for the equivalent wire flexure for the tetrahedron element in 
section 3.3. Noting that Fc = FextPz/Sy, the displacement δc is approxi
mated as: 

δc =Fext
Pz

Sy

[
2

12EI
/

L3
a1c1

+ 12EI
/

L3
a3c3

+
12

5GA
/

La1c1 + 5GA
/

La3c3

]

, (22)  

where 

La3c3 =
Pz − Sz

Pz
La1c1 . (23) 

Substituting equations (3), (21) and (22) in 20 yields the stiffness Kv 
in v-direction at point P: 

Fig. 11. Model for determining the translation stiffness Kv in point P of the tetrahedron element in Fig. 4a by considering a force Fext on the rigid part of the 
equivalent representation, shown in the vw-plane (a) and uw-plane (b). 
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Kv = S2
y

[
2P2

z

12EI
/

L3
a1c1

+ 12EI
/

L3
a3c3

+
12P2

z

5GA
/

La1c1 + 5GA
/

La3c3

+
4
(

S2
y + P2

z

)

3EI
/

L3
a1b1

+ 3EI
/

L3
a3b3

+
24

(
S2

y + P2
z

)

5GA
/

La1b1 + 5GA
/

La3b3

]− 1 (24) 

The stiffness in the other three constraining directions of the tetra
hedron element solely depend on blade flexure ac. This is because a 
reaction force in the wire flexure has a component in the v-direction, 
which is not counteracted by the blade flexure because it is free in that 
direction. Therefore, the wire flexure is only active in the case of a force 
at P with a component in the v-direction, which means that solely 
constraint stiffness Kv depends on the wire flexure. 

To compute the translation stiffness in the w-direction Kw, consider a 
force at P in the w-direction on the equivalent representation in Fig. 11b. 
This force will induce a force and a moment at edge c1c3 on blade flexure 
ac, which counteracts its displacement in the same way as when 
computing equation (22). Because again the moment arm of the force is 
half of the length of blade flexure ac, we can simply use the terms in 
brackets in equation (22): 

Kw =

[
2

12EI
/

L3
a1c1

+ 12EI
/

L3
a3c3

+
12

5GA
/

La1c1 + 5GA
/

La3c3

]− 1

. (25) 

To compute the stiffness in the u-direction Ku, consider the uw-view 
of the equivalent representation in Fig. 11b. The stiffness Ku is depen
dent on the axial deformation of blade flexure ac and the torsional 
stiffness around its v-axis with moment arm Pz− Sz/2 as: 

Ku =

[
La2c2

EA
+
(Pz − Sz/2)2La2c2

EI

]− 1

, (26)  

where we approximate the length of blade flexure ab using La2c2 =

(La1c1 + La3c3 )/2. Similarly, the rotational stiffness Kθv is: 

Kθv =EI/La2c2 (27)  

3.6. Comparison of the equations to finite-element simulations 

In this section we compare the stiffness equations to simulations with 
the finite-element modeling (FEM) software package Comsol. For this 
we define a ‘standard design’ for both the tetrahedron and prism 
element. As a second test, we vary the design parameters one-by-one 
from this standard design and compare the effect on the stiffness 
change using graphs and an error metric. 

The dimensions and material parameters chosen for the standard 
design of the tetrahedron and prism element are listed in Table 1. The 
dimensions are chosen such that the standard design is roughly similar 
to the elements used in the four joint designs in section 2. The tetrahe
dron and prism elements as shown in Fig. 4 were modeled in Comsol 
using shell elements. Edge a1a3 is fixed and the end effector (edge c1c3) is 
defined as rigid using the ‘rigid connector’ option. In the tetrahedron 
element, this rigid edge is extended to reach point P. The results for the 
prism and tetrahedron element are listed in Tables 2 and 3 respectively, 
together with their relative error. 

As a second test, the parameters from the standard design are varied 
one-by-one and the stiffness terms Kθx (for the prism) and Kv (for the 
tetrahedron) are compared to finite-element simulations. These two 
particular stiffness terms are chosen because they are dependent on all 
three blade flexures. The results for the prism are shown in Fig. 12. The 
design parameters range from a fifth of their standard value to five times 
their standard value. This is expected to be large enough to cover most 
practical uses. The results for the tetrahedron element are listed in 
Fig. 13. The parameters are again changed to one-fifth and five times the 
standard value, with two exceptions. The height Sz has a maximum value 

of 40 mm, because larger values will (almost) close off the bottom of the 
element. For the same reason, the minimum value of Pz is chosen as 35 
mm. The plots in Fig. 13e and f contain the same information but the 
latter has a log-scale for the y-axis. 

To quantify the errors, a normalized mean absolute error (NMAE) is 
computed. The NMAE is a regular MAE normalized by the maximum 
value in the displacement range as: 

NMAE=
1
N

∑N
n=1|ŷn − yn|

max|y|
, (28)  

in which N is the amount of measured data points (10 per design 
parameter), ŷ is the value from the equations and y is the data from the 
finite-element model. 

The stiffness equations for the prism show a good correspondence 
with the finite-element simulations, with a maximum NMAE of 1.9%. 
The equations for the tetrahedron do capture the qualitative behavior 
but show significantly larger errors with a maximum NMAE of 34.9% in 
the case where the width Sy is varied. This is expected to be caused by 
the approximation of the trapezoidal blade flexures. Also, to compute 
the equivalent stiffness of blade flexures ab and bc in equation (3), the 
lateral stiffness of the blade flexures is used. This is correct in the case of 
the prism element because the force Fbp in Fig. 9 is perpendicular to the 
two blade flexures. For the tetrahedron element this is not the case. A 
continuum mechanics approach is expected to give better results in this 
situation. 

Table 1 
Parameters of the chosen standard designs of the tetrahedron and prism element.  

Variable Tetrahedron Prism 

La1c1  50 [mm] 50 [mm] 
Sy 50 [mm] 50 [mm] 
Sz 25 [mm] 25 [mm] 
tmin 0.5 [mm] – 
t – 0.5 [mm] 
Px 25 [mm] 25 [mm] 
Py 0 [mm] 0 [mm] 
Pz 50 [mm] infinite 
E 210 [GPa] 210 [GPa] 
G 80 [GPa] 80 [GPa]  

Table 2 
Outcomes of the comparison for the prism, showing a small error between the 
equations and the finite-element model, for the standard design defined in 
Table 1.  

Stiffness term FEM Equations Error 

Kx [N/m] 5.32e7 5.25e7 1.36% 
Ky [N/m] 3.14e3 free – 
Kz [N/m] 2.78e6 2.74e6 1.36% 
Kθx [Nm/rad]  2.27e3 2.23e3 1.75% 
Kθy [Nm/rad]  2.81e3 2.73e3 2.52% 
Kθz [Nm/rad]  3.19e0 free –  

Table 3 
Outcomes of the comparison for the tetrahedron, showing a larger error between 
the equations and the finite-element model, for the standard design defined in 
Table 1.  

Stiffness term FEM Equations Error 

Ku [N/m] 4.06e6 3.62e6 11.0% 
Kv [N/m] 2.87e6 2.38e6 16.9% 
Kw [N/m] 2.37e7 2.61e7 10.1% 
Kθu [Nm/rad]  1.18e2 free – 
Kθv [Nm/rad]  5.90e3 5.27e3 10.7% 
Kθw [Nm/rad]  1.98e1 free –  
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The stiffness in the directions denoted as ‘free’ in Tables 3 and 2 are 
significantly lower than the stiffness in the other directions. This vali
dates that these are the degrees of freedom of the elements, as was 
derived in section 3.2. 

4. Discussion 

The prism element has an optimal width Sy for which the rotational 
stiffness Kθx is highest. For the standard design this is the optimum in the 
graph in Fig. 12b. A larger width Sy results in a larger moment arm of the 
equivalent wire flexure (representing blade flexures ab and bc) which 
increases stiffness Kθx , but it also results in longer blade flexures ab and 
bc which decreases stiffness Kθx . The optimal width Syopt. can be calcu
lated by first setting the derivative of Kθx with respect to Sy to zero as: 

∂Kθx

(
Sy
)

∂Sy
= 0. (29) 

Solving for Sy gives the optimal width Syopt. as: 

Syopt. =
1
2

⎡

⎣

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4 L4
a2c2

+
48 L2

a2c2
S2

z (ν + 1)
5

√

+L2
a2c2

+
12 S2

z (ν + 1)
5

]1
2

,

(30)  

where ν is Poisson’s ratio ν = 2G/E − 1. The graph in Fig. 12b shows that 
the width Sy of 50 mm of the standard design is close to its optimal value. 
Table 2 shows that for the standard design, stiffness terms Kθx and Kθy 

are of comparable magnitude. 
The insights from the analysis of the isolated tetrahedron and prism 

elements can be used when designing complete joints consisting of 

multiple elements in series. For example, it is useful to know that the 
rotational stiffness terms Kθx and Kθy are of comparable magnitude for 
the standard prism design. If one of these stiffness terms would be much 
lower, the joint should be designed such that a large moment arm be
tween the end effector and such a low-stiffness rotation axis are avoided. 
Note that equations for coupling terms are not derived, which are 
needed for a full analysis of the stiffness at the end effector of a serial 
chain of elements. These could be derived using the procedure in this 
paper, but will result in lengthy equations. In this case, a numerical 
optimization is expected to be more useful. 

Because of the specific shape of the tetrahedron element it can be 
connected in series without intermediate bodies, which is new with 
respect to the designs currently found in literature. Edges a1a3 and c1c3 
of the tetrahedron in Fig. 4a form the interfaces at which other elements 
can be connected. If two tetrahedron elements are connected such that 
their connecting edges and corresponding vertices coincide (as in the 
two presented spherical joint designs), no intermediate bodies are 
needed. Connecting elements in series helps to increase the range of 
motion, because the strains due to displacement in the motion direction 
of the joint are distributed over the elements [17,18]. The 
state-of-the-art designs two, three and four shown in Fig. 1 could also be 
connected in series to increase their range of motion, if the joints are 
redesigned such that their rotation points coincide. However, this results 
in intermediate bodies which increase build volume, weight and mate
rial usage, and often deteriorate dynamic performance due to uncon
trolled vibrations [1,13]. 

In [18], a distinction is made between flexure systems and flexure 
elements, of which the first type possesses rigid bodies and the latter 
does not. In this perspective, the designs presented in this paper are 
considered as a flexure element rather than a flexure system. 

The Tetra II design shown in Fig. 5 could be fabricated using Wire 
Electrical Discharge Machining (WEDM), instead of using additive 

Fig. 12. Outcomes of the comparison of the analytic equation for stiffness Kθx with finite-element simulations for the prism in Fig. 4b, showing a good corre
spondence with a NMAE of 1.9%. The design parameters are varied one-by-one from the standard design defined in Table 1. 
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manufacturing of titanium as in the demonstration movie that can be 
found online using the DOI of this article. WEDM is a proven technique 
for the fabrication of flexure mechanisms and angles of 45◦ are feasible. 

5. Conclusion 

In this paper we have presented designs of two spherical flexure 
joints named Tetra I and Tetra II, together with their derived planar 
versions. The designs are formed by tetrahedron-shaped elements, each 
composed of three blade flexures with a trapezoidal shape, that are 
connected in series without intermediate bodies. This is new with 
respect to the designs currently found in literature and helps to increase 
the range of motion. The Tetra I design consists of two arms, each built 
up from four tetrahedron elements in series. The Tetra II design consists 
of three tetrahedron elements which are also connected in series, but 
form a nested configuration. 

We showed that the tetrahedron element is a generalized version of 
the triangular prism from earlier work. The tetrahedron changes into a 
triangular prism in the special case where the rotation point of the 

spherical joints is chosen at infinity. 
We developed equivalent representations of the tetrahedron and 

prism elements consisting of a blade flexure and a wire flexure con
nected by a rigid part. Using these representations we have proven that 
three of the four constraint stiffness terms solely depend on the prop
erties of the main blade flexure. 

From the equivalent representations we derived equations for the 
constraint stiffness terms for both the prism and the tetrahedron, 
resulting also in an equation for the optimal width for which the prism 
has the highest rotational stiffness along the torsion axis of the main 
blade flexure. 

By comparing the analytic equations to finite-element simulations, a 
good correspondence for the prism was found with a normalized mean 
squared error (NMAE) of 1.9%. For the tetrahedron element, the equa
tions showed to only capture the qualitative behaviour with a NMAE of 
34.9%, which is expected to be caused by the approximation of the 
trapezoidal blade flexures. 

Fig. 13. Outcomes of the comparison of the analytic equation for stiffness Kv with finite-element simulations for the tetrahedron in Fig. 4a, showing that only the 
qualitative behavior is captured with a NMAE of 34.9%. Graph f) shows the same data as graph e) but uses a log scale for the y-axis. 
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