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Abstract

Megaprojects frequently face cost overruns and schedule delays, a pattern known as
the iron law of megaprojects, which persists partly because traditional determinis-
tic or probabilistic planning methods are inadequate for managing deep uncertainty.
This form of uncertainty arises when the probability, timing, or impact of key events
cannot be reliably estimated, often leading to unrealistic schedules and ineffective
risk responses. This study investigates the question: How can Fxploratory Modelling
and Analysis and Dynamic Adaptive Policy Pathways be applied to improve sched-
ule robustness in infrastructure construction projects? The research focuses on the
Schiphol bridge reconstruction, which is part of the Veenix A9 BaHo project and
is conducted in collaboration with Count & Cooper. A [Discrete Event Simulation]
(DES) model is built in SimPy and structured using a task dependency graph de-
rived from the project’s original schedule via NetworkX. The model is sampled 10,000
times under baseline conditions using |[Latin Hypercube Samplingl In scenario dis-
covery, [Patient Rule Induction Method| (PRIM) is used in combination with a scaling
function identifying six high-impact scenarios, which serve both as inputs for robust
policy search and as [Adaptation Tipping Points| (ATP) for the [Dynamic Adaptive|
IPolicy Pathways| (DAPP) schedule. Robust mitigation strategies are derived using
a [Multi-Objective Evolutionary Algorithm|under the [Multi-Objective Robust Deci-|
framework, with a second PRIM experiment selecting four final robust
policies. These policies correspond to at least one of the high-impact scenarios and
form the backbone of a conditional DAPP schedule. The DAPP schedule is evalu-
ated against a static baseline using 5,000 DES simulations with identical uncertainty
sampling. In 20 comparative runs, it reduced project duration by an average of 67
days and cost by approximately € 97.5 million on the entire project schedule. All
three robust policies include the measures new design, overtime labour, and electric
machinery, suggesting that a focused subset of actions can improve resilience even
when the future is highly uncertain. Unlike prior|Decision Making under Deep Uncer-|
(DMDU) applications, which often focus on long-term or high-level strategic
planning, this study embeds adaptive logic within a highly granular, task-level con-
struction schedule based on real project data. This approach raises methodological
challenges in how adaptation tipping points are defined, triggered, and monitored
within network-based simulation. The findings demonstrate not only the feasibility
of combining |[Exploratory Modelling and Analysis| (EMA) and DAPP in operational
construction settings but also the need for further research into real-time scenario
recognition and policy switching mechanisms under uncertainty.
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Glossary of Terms

Adaptation Tipping Point A condition under which a predefined pathway no
longer meets its objectives, triggering a switch to an alternative policy. In this
study, one ATP refers to the set of risk and uncertainty values connected to
one high-impact scenario.

Decision Making under Deep Uncertainty Decision making under deep uncer-
tainty is a decision science practice and analytical framework that evaluates
potential solutions across multiple plausible future scenarios rather than at-
tempting to predict a single future outcome.

Discrete Event Simulation A simulation technique where the operation of a sys-
tem is represented as a chronological sequence of events.

Dynamic Adaptive Policy Pathways A planning approach that sequences pol-
icy actions over time and incorporates switching logic based on adaptation

tipping points.

Exploratory Modelling and Analysis A modelling approach that explores a wide
range of plausible futures to support decision-making under deep uncertainty.

il

high-impact scenario A subset of simulated futures in which the project expe-

riences severe outcomes on cost and duration. These are used as adaptation
tipping points in the DAPP schedule. [31}

Latin Hypercube Sampling A statistical method used to efficiently sample mul-
tidimensional spaces for simulation experiments.

measure An individual intervention or modification to mitigate the consequences

of risk and uncertainty. 23] [45] [70]

Multi-Objective Evolutionary Algorithm An optimisation algorithm that evolves
a population of solutions toward a Pareto front under multiple objectives.
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Multi-Objective Robust Decision Making An extension of EMA that uses multi-
objective evolutionary algorithms to identify robust policies across many sce-
narios. [l

Patient Rule Induction Method A greedy algorithm that finds a minimum span-
ning tree for a weighted undirected graph. In this study, PRIM identifies
regions of the uncertainty space associated with poor performance or policy
failure. [i

policy A policy is a predefined combination of measures intended to mitigate the
impact of evolving scenarios under uncertainty. [9]

risk A discrete event that may or may not occur, often deeply uncertain due to
unknown or contested odds of occurrence. 43

robust policy A set of measures with Pareto-optimal performance across all iden-
tified high-impact scenarios. [32]

scenario A coherent representation of a possible future state of the world, used to
explore the effects of uncertainty.

uncertainty A continuous variable with unknown or contested distribution that
influences project outcomes over time.
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1 Introduction

1.1 Problem Statement

Over budget, over time, over and over again is the iron law of megaprojects (Flyvb-
jerg, 2014)). Revealing more than 70 years of persistent budget and schedule overruns
across different sectors and regions (Flyvbjerg et al., 2002, [2005). Infrastructure is
one of the key domains in which these large-scale, complex undertakings are espe-
cially common (Chen et al. 2022). Within this sector, Larsson et al.| (2016 and
Ahmad et al.| (2020) identify a variety of factors that influence cost, schedule, and
quality in construction projects. Among these, Flyvbjerg (2014]) argues that de-
lays are particularly consequential, as they tend to escalate costs and reduce overall
project benefits. As infrastructure projects become more complex and interdepen-
dent, schedules are exposed to increasingly dynamic risk interactions (Wang and
Yuan), [2017)), making timely project delivery a growing concern—not only for project
teams, but also for the public systems, services, and economic activities that depend
on them.

One key reason for persistent overruns is the way uncertainty is understood and
managed (Aven, 2016]). A risk can be distinguished from an uncertainty. Accord-
ing to Knight| (1921)), risk can be quantified while uncertainty arises from a lack
of knowledge. This distinction explains why conventional risk management often
fails in large construction projects, where uncertainty is highly nuanced (Aven) 2012,
2016)). Aleatoric uncertainty is consistent with Knightian risk because it assumes
that probabilities can be assigned, whereas Knightian uncertainty is consistent with
epistemic uncertainty, where probabilities are unknown or cannot be defined (Aven,
2013)). Traditional risk management typically focuses on aleatoric uncertainty and
overlooks the epistemic type that is common in megaprojects (Fang et al., 2013]).
Furthermore, unpredictable events can appear more predictable in hindsight (Talebl
2020). This can lead project planners to treat genuine uncertainty as if it were man-
ageable risk, especially in megaprojects with unique features (Sadeghi et al., [2015)).
Relying on rare past events to guide forecasts can lead to unjustified confidence in
predictive models, resulting in further schedule and cost overruns.



Maier et al.| (2016)) describe three ways of modelling the future, highlighting how
the aforementioned misconceptions about risk and uncertainty are embedded. The
first approach treats the future as deterministic, refining models only as new data
emerge (Bankes, 1993). [Flyvbjerg (2014) shows that such static forecasting often
leads to overruns because it focuses on a single most likely [scenario] The second
approach accepts that the future is quantitatively uncertain and uses probability
distributions to model unknowns . However, deep uncertainty arises
when these probabilities themselves are unclear or impossible to define (Lempert
, . Popular techniques such as Monte Carlo simulation address aleatoric
uncertainty, but fail when key probabilities cannot be fixed (Tegeltija et al., 2016;
Feng et al}2022). The third approach explores multiple possible futures, recognising
that epistemic uncertainty can become so severe that it becomes deep uncertainty
. Under these conditions, standard risk management falls short, high-
lighting the need for methods designed to deal with unpredictable and unquantifiable
outcomes.

Deep uncertainty is especially relevant in the early stages of construction projects,
where decisions made with incomplete knowledge have long-term consequences.
et al.| (2018) observe that uncertainty is most prominent during planning.
and Samset| (2010) and Mohd Nasir et al| (2016]) build on this by emphasising the
outsized impact of early decisions on final outcomes. Stanton and Roelich| (2021)
argue for flexibility and adaptability as key responses to this challenge. Despite
these calls, current scheduling practices often fail to incorporate deep uncertainty in
a meaningful way, increasing the risk of disruptions to infrastructure delivery with
implications for both usage and public expenditure.

This gap highlights the need for new planning methods capable of supporting deci-
sions under conditions of uncertainty that cannot be quantified. Under the umbrella
of [Decision Making under Deep Uncertainty (DMDU), [Exploratory Modelling and|
[Analysis (EMA)| and [Dynamic Adaptive Policy Pathways (DAPP)| have emerged as
promising alternatives. EMA enables the exploration of diverse futures by testing
a large ensemble of models and conditions rather than relying on a single validated
forecast (Bankes et al., 2001} 2013)). DAPP offers a structured way to embed flexi-
bility into plans, using empirically defined tipping points to guide policy adaptation
(Marchau et al., 2019al).

These methods have shown success in long-term strategic water management
moot et al., [2013). Michas et al. (2020 used DAPP for solar photovoltaic planning,




suggesting broader relevance. Feng et al. (2022) propose a data-driven approach
for construction projects under deep uncertainty, acknowledging the relevance in the
construction domain, but emphasise the need for more tailored methods. While such
studies mark an important shift in recognising the limitations of probabilistic fore-
casting, the application of decision-making frameworks like EMA and DAPP remains
largely unexplored in this context.

This study investigates whether EMA and DAPP can improve schedule robustness
in infrastructure construction projects facing deep uncertainty. While the relevance
of deep uncertainty in construction has been increasingly acknowledged, the appli-
cation of structured DMDU methods such as EMA and DAPP remains limited. By
integrating scenario discovery, robust policy evaluation, and adaptive scheduling into
a single modelling framework, this research provides a structured alternative to static
risk-based planning. In doing so, it contributes to both the theoretical understanding
of deep uncertainty in project management and the practical development of more
resilient infrastructure scheduling tools under deep uncertainty, ultimately taking on
the long-standing iron law of megaprojects.

This study aims to contribute by:

- Creating a clear argument based on scientific literature as to why construction
schedulers should consider deep uncertainty in the planning phase of large infras-
tructure projects.

- Introducing the Exploratory Modelling and Analysis framework to the infrastruc-
ture construction sector.

- Providing a novel approach to exploring high-impact scenarios under deep uncer-
tainty in construction scheduling that goes beyond traditional risk analysis.

- Demonstrating how robust mitigation strategies can be identified and, when com-
bined with the identified scenarios, serve as the foundation for a DAPP-based infras-
tructure construction schedule.

- Providing a quantitative method to compare a DAPP-based construction schedule
to a traditional deterministic construction schedule on multiple project objectives.



1.2 Research Questions

As the literature reveals, infrastructure construction projects face significant chal-
lenges when confronted with deep uncertainty. Conventional planning methods fre-
quently depend on fixed assumptions and probabilistic risk modelling, which may
prove inadequate when future conditions cannot be reliably predicted or agreed upon.
In response, a new generation of methods has emerged. These include EMA and
DAPP, which aim to better account for a wide range of plausible futures and pre-
serve flexibility over time. While these methodologies have been successfully applied
in fields such as climate policy and water management, their integration into infras-
tructure construction scheduling remains limited. This gap is particularly relevant
given the scale, complexity, and public importance of infrastructure delivery. This
study explores the potential of EMA and DAPP to enhance schedule robustness in in-
frastructure construction, providing guidance on decision-making under uncertainty
and informing adaptive strategies.

1.2.1 Main Research Question

How can Exploratory Modelling and Analysis and Dynamic Adaptive Policy
Pathways be applied to improve schedule robustness in infrastructure construction
projects under deep uncertainty?

1.2.2 Sub-Questions

The four sub-questions establish the theoretical and methodological foundation needed
to answer the primary research question and bridge existing knowledge gaps.

sub-question 1: Deep Uncertainty

While the concept of deep uncertainty is discussed extensively in the literature, there
remains debate about which forms are most prevalent in infrastructure construction.
Projects are exposed to both discrete risk events and continuous stressors, but their
manifestation and impact on scheduling differ significantly. This raises the question:

Which deep uncertainties commonly appear in infrastructure construction?



Sub-Question 2: Scenario Discovery

Given the range of risks and uncertainties that can affect construction schedules,
identifying which combinations lead to failure is critical. Scenario discovery tech-
niques are designed to uncover these high-impact conditions, but their application
in construction planning remains limited. This prompts the question:

How can scenario discovery be used to find high-impact scenarios and adaptation
tipping points in construction scheduling under deep uncertainty?

Sub-Question 3: Directed Search

Once high-impact scenarios are identified, the next challenge is to design mitigation
strategies that remain effective across these deeply uncertain futures. Traditional
optimisation approaches focus on finding the best solution for a specific future, but
in uncertain environments, robust strategies are preferred because they perform re-
liably across a range of multiple futures. This leads to the question:

Which robust mitigation strategies can be identified that address high-impact
scenarios affecting cost and duration?

Sub-Question 4: Pathway Development

Even when robust strategies are available, their effectiveness depends on the ability
to switch between them as project conditions evolve. DAPP addressed this, however,
it remains unclear how such pathways can be practically constructed in the context
of infrastructure scheduling. This introduces sub-question 4:

How can dynamic adaptive policy pathways be constructed using adaptation tipping
points and mitigation strategies for infrastructure construction scheduling?



2 Related work

2.1 Definition of Deep Uncertainty

The concept of deep uncertainty is increasingly recognised in fields where decision-
making must occur under conditions of limited knowledge. In project management,
the classical definition of risk, which describes it as “an uncertain event or condi-
tion whose occurrence affects at least one of the project objectives, such as scope,
schedule, cost, or quality” (Project Management Institute, 2021)), fails to clearly
distinguish between quantifiable risks and broader categories of uncertainty. This in-
terchanged use has long been criticised, dating back to Knight| (1921)), and is partic-
ularly problematic in complex domains such as infrastructure planning. Uncertainty
can take different forms: Aleatoric uncertainty arises from natural variability—such
as minor differences in task durations—and is typically captured using probabilistic
techniques such as Monte Carlo simulation (Fox and Ulkiimen, 2011). In contrast,
epistemic uncertainty reflects a lack of knowledge—such as unknown subsurface con-
ditions—and aligns more closely with Bayesian reasoning. While aleatoric uncer-
tainty remains, even when a system is well understood, epistemic uncertainty may
be reduced through further investigation (McCann, 2020; |(Chung et al.| [2004). In re-
ality, both types of uncertainty often coexist, and researchers have proposed hybrid
models to accommodate both perspectives (Ahmadu et al., 2020; (Okmen and Oztas,
2014} Sadeghi et al., 2010; [Zamani et al., [2024)). Yet even such models often assume
an underlying probabilistic structure. When the future cannot be meaningfully rep-
resented with probabilities, or when stakeholders cannot agree on models or value
judgments, the situation is said to involve deep uncertainty (Lempert et al., 2003}
Aven, [2013). |Lempert et al.| (2003)) defines deep uncertainty as:

the condition in which analysts do not know or the parties to a decision
cannot agree upon (1) the appropriate models to describe interactions
among a system’s variables, (2) the probability distributions to represent
uncertainty about key parameters in the models, and /or (3) how to value
the desirability of alternative outcomes.

Building on this, Walker et al. (2013) proposed five levels of uncertainty to distinguish
ordinary uncertainty from deep uncertainty. Levels 1 to 3 describe situations where
models, probabilities, or rankings are still applicable. Levels 4 and 5 describe cases



where futures are either unranked or entirely unknown, thus exceeding the capacity

of conventional probabilistic tools.

Table 2.1: Five levels of uncertainty

Level Description

Classification

A clear future with sensitivity: a single system model

having point estimation and sensitivity outcomes

9 Alternate futures with probabilities: a single system
model having a probabilistic parametrisation

3 Alternate futures with rankings: several system models
having point estimates ranked by perceived likelihood

4 Multiple of plausible futures without rankings: several
system models without ranking outcomes

5 Unknown future: unknown system and unknown out-

comes

Ordinary uncertainty

Ordinary uncertainty

Ordinary uncertainty

Deep uncertainty

Deep uncertainty

Source: Data from [Walker et al.| (2013))

This study adopts the classification of uncertainty as a foundation for distinguishing

between ordinary and deep uncertainty in construction projects.

By focusing on

conditions where model structures or probability distributions cannot be reliably
defined, it positions deep uncertainty as a central consideration in schedule design
and evaluation. One example in this study is the inclusion of near-critical tasks with
a small slack margin from the critical path, to reflect how future uncertainties may

shift project bottlenecks in unforeseen ways.



2.2 Risk and Uncertainty in Relation to Current
Modelling Solutions

Traditional stochastic methods such as Monte Carlo simulation remain widely used
in construction scheduling under uncertainty. While useful for capturing natural
variability, these methods often assume fixed distributions and do not reflect how
disruptions evolve during project execution. Moret and Einstein| (2016) designed a
model that quantified risk events into one simulation framework but did not account
for deep uncertainty in its uncertainty model. Furthermore, [Event Chain Methodol-
provides another realistic alternative by explicitly modelling the timing
and impact of discrete risk events on continuous project parameters (Virine and
Trumper}, 2013). In ECM, tasks can transition into ezcited states when triggered by
events, temporarily altering their duration, cost, or resource demands. This tempo-
ral sensitivity improves the simulation of knock-on effects, but ECM still operates
within a probabilistic framework and does not fully capture the structural ambiguity
associated with deep uncertainty:.

Feng et al.| (2022)) presented a data-driven approach to support decision making in
construction planning under deep uncertainty. Their method modified existing prob-
ability distributions using a scaling coefficient to generate a set of plausible outcomes.
This technique mirrors the use of fuzzy logic to introduce epistemic uncertainty into
a frequentist modelling context. By combining [Discrete Event Simulation (DES)|
with Percent Deviation Index (PDI), they constructed robust construction schedules
capable of performing across a range of uncertain futures. To further strengthen their
approach, Feng et al.| (2022) incorporated [Patient Rule Induction Method (PRIM)|
to identify conditions under which even robust strategies would fail. These zones
of fragility provided project planners with actionable early warning signs, enabling
them to anticipate and mitigate failures before they occur. Their findings demon-
strate that while deep uncertainty makes precise prediction impossible, identifying
vulnerable system states can still inform meaningful planning decisions. The struc-
ture of the research by Feng et al.| (2022) is similar to that of this study, particularly
in its integration of simulation, robustness analysis and scenario discovery.

Within the broader [EMA] framework, two main stages are commonly distinguished:
an initial open exploration of the uncertainty space, and a subsequent directed search
for optimised strategies. These stages are typically connected through the use of sce-
nario discovery and multi-objective optimisation. However, the precise sequence



in which these steps are applied is not fixed. Some studies prioritise the selection
of robust policies first, and then apply scenario discovery to uncover the specific
conditions under which these strategies fail. This sequencing ensures that scenario
discovery remains directly relevant to the solutions being considered, which can save
time and enhance communication with decision makers (Feng et al., 2022; |Giudici
et al., 2020). Alternatively, Lempert et al| (2003) and [Kwakkel and Pruyt (2013)
have demonstrated the benefits of performing scenario discovery at the outset, using
a baseline to identify the most critical uncertainties that threaten project suc-
cess. This ordering helps clarify which vulnerabilities matter most before resources
are allocated to strategy development, and places greater emphasis on understanding
the structure of uncertainty itself.

Various techniques are available for the directed search phase, depending on the struc-
ture of the policy space. [Multi-Objective Robust Decision Making (MORDM)| and
its recent extension, [Multi-Scenario Multi-Objective Problem (MSMOP)| are com-
monly used to search for policies that balance performance and robustness across
many futures (Shavazipour et al.| [2021; Kasprzyk et al., [2013). While MORDM can
accommodate mixed-variable decision spaces, the MSMOP extension is particularly
effective in continuous domains. In scenarios involving both binary and continu-
ous decision levers—such as those found in infrastructure planning—Ilighter tools
like PRIM can be used to uncover structural patterns in robust policy performance
(Bryant and Lempert} 2010). While PRIM is often associated with scenario dis-
covery, its logic can also be repurposed to support policy evaluation by identifying
consistent input—output relationships within specific scenario clusters. This study
opts to use PRIM in the solution space, following an experimental setup for the con-
straints on project outcomes.

While prior studies have developed various methods to incorporate uncertainty into
construction scheduling—such as stochastic simulation, fuzzy logic, or event-based
models—many continue to rely on fixed probabilistic assumptions. This study takes
a different approach by using the EMA framework to explore structural scenario
diversity rather than estimating predefined distributions. PRIM is applied not only
for scenario discovery but also to inform the design of policies that perform well
across a wide range of conditions. This helps clarify how deep uncertainty can be
addressed in infrastructure scheduling beyond traditional modelling techniques, by
integrating EMA, MORDM, and DAPP into a single simulation framework. The
combined approach offers a novel contribution by enabling dynamic adaptation and
robust policy design under uncertainty in infrastructure construction.



2.3 Exploratory Modelling and Analysis in Rela-
tion to Dynamic Adaptive Policy Pathways

To navigate deep uncertainty, EMA offers a fundamentally different perspective.
EMA is based on the principle that a single computational experiment or model
cannot capture all possible futures; instead, it samples across many a priori mod-
els, each representing a conditional future state (Bankes et al., 2001, 2013). EMA
is particularly effective in exploring a wide range of plausible scenarios and model
structures, making it particularly suited for situations involving deep uncertainty.
By not committing to a single predictive model, EMA allows for the integration of
various analytical approaches, including Bayesian methods that incorporate prior
knowledge and Frequentist methods that rely on observed data frequencies. This
exploratory approach differs from point-estimate approaches by focusing on multiple
plausible trajectories rather than relying on one overarching model. As [Kwakkel
and Pruyt| (2013) emphasise, EMA’s strength lies in enabling decision makers to de-
velop adaptive plans rather than seeking to optimise a single outcome—an especially
useful approach in construction, where project conditions can shift dramatically over
time. While uncertainty can influence every stage of a construction project, the early
planning phase is particularly critical, as choices made here significantly affect final
performance outcomes (Lau et al., [2018; Williams and Samset, 2010; Mohd Nasir
et al., 2016).

DAPP combines Dynamic Adaptation Planning (DAP) with Adaptation Pathways
(AP) to account for evolving conditions and irresolvable uncertainties during a project’s
life cycle (Marchau et al., 2019a). Although this approach might seem to conflict
with the need for a thorough front-end plan, as noted by Williams and Samset| (2010)),
it actually complements it by preventing lock-in to any single best solution and keep-
ing the schedule flexible. This is achieved through ongoing monitoring of
ITipping Points (ATPs)| —key indicators that trigger a shift to alternate pathways
when thresholds are exceeded (Kwadijk et al., 2010). |Haasnoot et al.| (2013]) applied
DAPP to the long-term water management of the Rhine Delta in the Netherlands.
More recently, Michas et al. (2020) developed a DAPP-based modelling toolbox for
solar photovoltaic construction planning, demonstrating that the approach is also
applicable to shorter-term infrastructure projects. This suggests that DAPP is also
a suitable framework for the context of this research. Haasnoot et al.|(2013) acknowl-
edge the DAPP methodology can be extended with embedding it into a simulation
framework. Michas et al| (2020) introduced three quantitative modelling tools, in-

10



cluding scenario discovery in combination with PRIM, to find stressing scenarios.
Like this study, Michas et al. (2020) also incorporate a mechanism for monitoring
ATPs during simulation. Their approach however goes a step further by dynamically
updating the ATP conditions by periodically reapplying PRIM within the simula-
tion, allowing for adaptive thresholds as system states evolve.

Whereas Michas et al.| (2020) embed PRIM directly within the simulation loop to
adapt ATP values dynamically, other approaches—including the one explored in this
study—position PRIM outside the simulation environment. In this structure, a set
of ATPs is defined prior to simulation using an iterative scenario discovery process
inspired by |Guivarch et al. (2016). Rather than relying on a single PRIM run, this
method builds a sequence of scenario families, each representing distinct high-impact
conditions. These ATPs then serve as fixed monitoring thresholds that trigger pre-
defined robust policies during the simulation. In contrast, the dynamic mechanism
developed by Michas et al.| (2020) recalculates ATPs during execution: whenever the
success rate of the currently active policy falls below a critical level, the simulation
is paused and PRIM is re-applied to identify the conditions associated with past
success. These new clusters of input variables are used to redefine ATP triggers on
the fly. In doing so, PRIM is no longer just a scenario discovery tool but becomes
an embedded monitoring function, allowing the DAPP framework to adapt in real
time to unfolding uncertainty and shifting policy effectiveness.

Once high-impact scenarios have been identified through scenario discovery, the next
step is to design policies that remain effective across these divergent futures. To
achieve this, this study adopts MORDM] a method that extends EMA by incorporat-
ing multi-objective evolutionary algorithms into the policy design process (Kasprzyk
et al., 2013). MORDM enables the exploration of trade-offs between conflicting
objectives—in this case, project duration and cost—across a wide range of deeply
uncertain scenarios. Rather than converging on a single optimal strategy, MORDM
searches for Pareto-efficient solutions that remain robust across the sampled high-
impact scenarios. This makes the method particularly suited to dynamic infrastruc-
ture projects where planners must balance performance criteria under conditions of
uncertainty. The robust policies generated by MORDM then serve as the candidate
pathways within the DAPP framework, ready to be activated when a corresponding
ATP is triggered.
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While (Michas et al., [2020) present a robust example of dynamic ATP monitoring,
their model input consists of high-level investment decisions in solar PV capacity over
multi-year time steps. In contrast, this study applies DAPP logic to an operational
infrastructure schedule with over 300 discrete activities, each defined by task-specific
durations, dependencies, and sequencing constraints. The ATPs developed here are
not only condition-based but also anchored to specific tasks within this networked
schedule, making them time-sensitive by design. This added granularity increases
the realism of adaptive logic but also introduces significant challenges for real-time
monitoring. To the best of the author’s knowledge, ATPs have not previously been
constructed at such a detailed operational level. By embedding DAPP, EMA, and
MORDM into a full construction simulation with granular schedule inputs, this study
extends the methodological scope of adaptive planning to the level of operational in-
frastructure delivery.
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3 Research design

3.1 Introduction

Sub-question 1 is addressed through a literature review. Sub-questions 2 through 4
will be answered by the methods outlined in this research design. This study uses a
real-world deterministic project schedule from the Schiphol bridge as modelling input
with the objective to create a DAPP}based conceptual schedule. The design of this
research integrates multiple methodologies drawn from the framework of In
the introduction, the structure of the study and its alignment with these methodolo-
gies are first clarified. secondly the case description is given. In Section a flow
chart of the research design is presented, after which the methods are discussed in
the last Section of the research design.

3.1.1 Integration of Methodological Frameworks

This chapter presents the methodological design of this study by showing how the
different frameworks introduced in the previous chapters are combined into a single
modelling process. While [EMA] Multi-Objective Robust Decision MORDM] and
have each been discussed in terms of their theoretical foundations and appli-
cation in past studies, this section clarifies how they interact within the structure of
this specific research. The conceptual model in Figure illustrates this integration.

At the highest level, EMA is a research approach for analysing complex and un-
certain systems through computational experimentation (Bankes, |1993). Originally
introduced as a stand-alone method, EMA has since become a foundational element
within the broader framework of DMDU]| which encompasses several techniques for
supporting decision-making under deep uncertainty (Marchau et al.| [2019b)). Two
of these techniques structure the modelling process of this study in two key phases:
open exploration and directed search.

Open exploration begins with sampling a wide range of plausible future states of the
world, followed by scenario discovery to identify key vulnerabilities in the project
schedule. These steps define the uncertainty space and reveal conditions under which
the schedule may fail. The results are then used in the directed search that builds on
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the MORDM framework, which identifies robust strategies by balancing trade-offs
between competing project objectives.

The robust policies emerging from MORDM are subsequently integrated into DAPP.
While EMA and MORDM support the exploration and evaluation of strategies under
uncertainty, DAPP provides a decision structure for implementing these strategies
over time. In this study, DAPP is used to map out adaptive schedules, where policy
switches are triggered by predefined [ATPs| These tipping points are derived from the
scenario discovery phase and embedded into the simulation as monitoring conditions.

Decision Making under Deep Uncertainty Framework

Construction Sampling future Scenario Directed search
schedule states of the for robust

Discover :
model world y solutions

Figure 3.1: Conceptual model of used frameworks in relation to the structure of this
study
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3.1.2 Case Description and Data

For this research, the studied case is the Schiphol bridge in the Netherlands. The
reconstruction of the bridge is part of the Veenix A9 BaHo project which is the re-
construction of the A9 highway between Badhoevedorp and Amsterdam-Holendrecht.
Data is provided in cooperation with project management company Count & Cooper.
Veenix is currently the largest project undertaken by Count & Cooper and forms
part of the Schiphol-Amsterdam—Almere (SAA) program, the most extensive road
expansion initiative in the Netherlands to date. The project is executed by Count &
Cooper, FCC Construction, Macquarie, and Rijkswaterstaat.

The Schiphol Bridge is one of seventeen civil structures scheduled for construction
or renovation within the project and is the first to be completed. It will be widened
through reconstruction, Figure|3.2|shows a digitally constructed image of the appear-
ance of the to be finished structure. Selecting the Schiphol Bridge as the focus of
this research aims to generate insights that can support the company throughout the
remainder of the project, which will continue until 2027. Moreover, the construction
process did not proceed as originally planned, making it a relevant and compelling
case for testing a novel scheduling approach.

The reconstruction of the Schiphol Bridge is divided into three distinct phases. All
scheduling activities examined in this research can be traced back to work carried
out within one of these phases. The schedule is designed to maintain optimal flow
of traffic during construction as the A9 is an important connection in the ring of
Amsterdam. Figure shows the traffic flow on the Schiphol bridge during each of
the building phases.

e Phase 1: Expansion Southern deck
— Traffic can continue on both ends of the highway.
e Phase 2: Replacing northern flap

— Redirecting traffic to southern deck expansion. No traffic on northern
deck during construction.

e Phase 3: Civil works and replacing southern flap.

— Traffic is temporarily redirected to the newly installed northern deck. The
southern deck remains unused until the project is completed, at which
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point it will support increased traffic flow resulting from the lane expan-
sion.

Figure 3.2: Aerial view of the the finished Schiphol bridge. This is a computer
adjusted image. Reproduced with permission from |Count & Cooper| (2023).

The traffic phasing concept contains 4 steps:

2) Adjusting northside

1) Realising bypass to the south 3) Adjusting southside 4) Final situation (2x4)

Figure 3.3: The impact of the construction phasing on the traffic on the Schiphol
bridge. Reproduced with permission from Count & Cooper (2023)
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3.2 Flow Chart of Research Design

The flowchart in Figure [3.4] outlines the ten main steps undertaken in this research.
The first three steps, shown in grey, represent the construction of the model and are
discussed in section Steps 4 through 10 correspond to the analytical methods
used to derive the results. Each rectangle is colour-coded according to the section
of the research design it belongs to. All steps produce outputs that serve as inputs
for subsequent techniques. A more detailed version of this flow chart is presented in

Appendix Section [A.1]
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Legend

baseline model
open exploration
directed search
DAPP

outcome evaluation

optimised measures per high-impact
scenario
1 6
v ] v

Primavera P6 project schedule

Pareto optimal policies robust for all

NetworkX model L .
high-impact scenarios

2 7
v v
EMA model Solution preference
3 8
v v

sampling scenarios under deep
uncertainty 4
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Dynamic Adaptive Policy Pathways
9

Scenario discovery Quantitative assesment of outcomes
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Figure 3.4: 10 steps are executed to go from a deterministic project schedule to a
DAPP-based schedule concept. Each step can be seen as an intermediary product
that is input for the next step. The colour coded rectangles each belong to a specific
section of the research design which is provided in the legend.
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3.3 Methods

3.3.1 Model Description

3.3.1.1 NetworkX Model

The project schedule for the construction of the Schiphol bridge was created in Pri-
mavera P6 planning software by a project team at Veenix. In Primavera, a schedule
follows the structure of a Gantt chart. Figure shows a representation of the
scheduled activities in Primavera. Construction activities have relationships and
dependencies and start either at a planned time or when the preceding activity is
completed.

E= |nistalling shest piling + connection seepage screer: Pillar asis basement Morth

Executing Pillar axiz Bazement Morth [L3)
B Placing temporary collizion protection high pazzage MWest]: Pillar axiz Bazement Morth
D' Muck Excavation: Fillar awis basement Morth
B Pile installation: Fillar axis basement North
0 Relacation of slackening structure lighting Fram current location to temparary location: Pilar axis basement Morth
E= |ristall sheetpiling, backfilling, underflow outigger frame & dewatering: Pillar axis basement Marth
EE Realise concrete warks + expanzion joint: Fillar axiz bazement Morth
E— = up of gervice building from the north zide, [nstallation sestems

B Pile inztallation: Pillar Az 3 Marth
E Place pile cap: Pillar Axiz 3 Maorth
I Demdlish exizting collition protection: Pillar &xiz 3 North
I Placing tempoatary slackening stucture at high passage dpening [E ast]: Pillar Axis 3 Morth
= Executing Pillar &z 3 Marth [L3)

Figure 3.5: Gantt chart from Primavera that shows a small part of the pillar instal-
lation of the north side of the Schiphol bridge. Each green bar represents an activity
as currently scheduled whereas a blue line represents a baseline. Because this is a
zoomed-in image the axis are lost. On the X-axis the time should be displayed while
on the Y-axis the tasks are presented.

The schedule in Primavera P6 is already a model, but its functionality is largely
limited to deterministic planning and static visualisation. To enable more advanced
analysis of uncertainty, adaptation, and system behaviour, the schedule must be con-
verted into a format suitable for computational experimentation. This is done by
translating the schedule into a NetworkX graph. NetworkX is a Python library used
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for the creation, manipulation, and study of complex networks and graphs (Hagberg
et al., 2008).

At this stage, the graph model stores the information as presented in Table
Whereas the duration of tasks is based on the schedule, the costs are added. Although
Primavera supports the inclusion of cost data, the baseline schedule used in this study
does not contain cost estimates. However, cost is a crucial outcome in the analysis.
To address this, daily rates were derived from project risk reports. All costs are
scaled to a consistent order of magnitude, ensuring comparability across tasks. To
approximate task-specific costs, six categories of activities were identified based on
keyword matching in the activity names. Each category was assigned a daily rate
derived from project risk reports. The following daily rates were applied:

e pile installation — € 150,000 per day
e place pile cap — €80,000 per day

e wall — €200,000 per day

e pour strip decks — €60,000 per day

e applying basement — € 250,000 per day

e sheet piles — €170,000 per day
For all other tasks that did not fall into one of these categories, a default daily rate

of €50,000 was used. The final cost is calculated as the daily rate times the duration
of the task in days.
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Table 3.1: Variable descriptions for activity data. The table describes each column
used in the project schedule.

Variable Explanation Example
Name_activity Name of the activity Pillar installation
Activity_ID Unique activity ID assigned by Primavera NM. 23890
StartDate Planned start date of the activity 20-02-2022
FinishDate Planned end date of the activity 27-02-2022
ObjectId_activity ID linking multiple similar activities to one working package 46174246
WBSObjectId ID of the Work Breakdown Structure (WBS) element that groups 1296928
related activities
Name_wbs Name of the working package the activity belongs to WP-005.2.3.1 Installing
Pillars
Predecessors List of activity IDs that must be completed before this activity = [4617306, 4617254]
starts
Successors List of activity IDs that follow this activity [4617304, 4617253]
Duration Total duration of the activity in days 7
DailyRate Estimated daily cost of performing the activity 1000
Cost Total cost calculated as DailyRate x Duration 7000

3.3.1.2 Critical Path and Slack Time

The project schedule consists of 614 tasks, of which 25 form the critical path. The
critical path is the sequence of tasks that cannot be delayed without delaying the
overall project. Its total duration, scheduled for 1290 days, represents the shortest
possible time in which the project can be completed. In this study, all task durations
and project timelines are measured in working days, excluding weekends and holi-
days, unless scheduled otherwise. This reflects standard industry scheduling practice
and ensures that the modelled durations align with how construction time is man-
aged in reality.

Slack time (or float) is the amount of time a task can be delayed without affecting
the project’s end date. Tasks on the critical path have zero slack, meaning any de-
lay directly impacts the entire schedule. Under conditions of deep uncertainty, task
durations can vary significantly between scenarios due to unpredictable or poorly
understood risks. As these durations change, the critical path can shift — tasks that
were previously non-critical may become critical, and vice versa. Acknowledging
that the critical path can shift under deep uncertainty, this research focuses not only
on the original critical path, but also on tasks with a limited amount of slack time.
Tasks with low slack are those most likely to become critical in alternative scenarios.
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To determine an acceptable slack threshold, this study performs a sensitivity analysis.
For slack levels ranging from 1% to 20%, the number of additional activities included
beyond the critical path is calculated. This is done by applying the Critical Path
Method (CPM) to the NetworkX graph. For each task, the slack is calculated as the
difference between its latest and earliest start times, using a forward and backward
pass through the schedule.

Slack = Latest activity start — Earliest activity start

The activities on the critical path plus the activities falling within the amount of
slack time will be used as the baseline model. The non critical tasks are filtered out
of the analysis as they have less impact on the schedule.
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3.3.1.3 EMA Workbench Model

This study uses the EMA Workbench, an open-source Python library designed to
support the full range of EMA methods. Developed by [Kwakkel (2017)), the work-
bench enables users to design experiments and analyse results through integrated
tools for sampling, simulation, scenario discovery, and robust decision-making under
deep uncertainty.

While the NetworkX graph defines the system structure by capturing project activi-
ties and dependencies, it lacks the explicit definition of uncertainty and decision space
required for exploratory modelling. Therefore, the schedule needs to be transformed
into an EMA workbench model object with uncertainties, levers and outcomes. The
model is conceptualised in Figure [3.6, The new model acts as a container that can
tell the EMA workbench how the system works, what uncertainties affect it, what
decision levers are available, and what outcomes are important.

Policy Levers (L)

External Relationships in System Performance
Factors (X) -. (R) Metrics (M)

Figure 3.6: The XLRM-Framework conceptualises the relationships (R) between the
modelled system, the affecting uncertainties (X), the levers (L), and its outcomes
(M). Source: Data from Kwakkel (2017)

The external factors i.e. uncertainties and risk events influence the system beyond
the control of the decision maker. The levers can be seen as solutions to mitigate the
influence of said uncertainties. In this study, levers are referred to as to
align with infrastructure industry standard. The outcomes are the metrics for per-
formance of the system. The uncertainties, measures and outcomes that are added
to the model are presented in Table
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While the EMA Workbench model is structured around uncertainties, levers, and out-
comes, its internal execution in this study follows the principles of [DES] The model
is implemented in SimPy, a discrete-event simulation library in Python (Meurer
et al., 2017). The Simpy model uses the task dependency graph from the NetworkX-
schedule to structure event-based execution. Each activity is simulated as a discrete
process that begins once its predecessors are completed, and time advances based on
task durations influenced by uncertainty. This design qualifies the EMA model not
only as a scenario-exploration framework, but also as a fully operational DES-engine,
allowing for time-dependent modelling of cascading effects under deep uncertainty.

Table 3.2: Overview of uncertainties, measures, and outcomes used in the model.
The type, name, description, and value range are shown.

Type Name Description Value Range

Uncertainty p-hard_layer_found Probability of encountering a hard layer during muck ex-  0.10 to 0.25
cavation

Uncertainty p-size_foundation_pillars Probability that foundation pillar sizing is incorrect 0.05 to 0.10

Uncertainty p-heavy_wind Probability of heavy wind disrupting a critical lift 0.10 to 0.25

Uncertainty p-uxo_found Probability of discovering unexploded ordnance (UXO) 0.00 to 0.05

Uncertainty p-critical_material_failure Probability of a critical equipment or material failure 0.00 to 0.05

Uncertainty p-influenza_wave Probability of labour capacity drop due to an influenza RAI becomes 0.6
wave

Uncertainty fuel_multiplier fuel cost sampling value (triangular distribution) min: 0.9 mode: 1.0

max: 1.5
Uncertainty RAI resource availability index (triangular distribution) min: 0.7 mode: 0.9
max: 1.0

Uncertainty delay_factor General task delay factor (aleatoric uncertainty) 0.9 to 1.25

Lever predrilling Use predrilling to mitigate hard layer delay (adds time and  True or False
cost)

Lever extra_careful_installation Mitigate pillar issues by stricter installation (partial suc- True or False
cess)

Lever new_design Redesign to address known risks (higher cost/time, full True or False
mitigation)

Lever extended_search Search for UXO early (lower consequences if found) True or False

Lever option_spare_part Have option on backup parts to mitigate equipment failure ~ True or False
(lower consequence but higher price)

Lever electric_.machinery Invest in electric equipment to reduce fuel uncertainty True or False
(adds base cost)

Lever overtime_labor Use overtime to reduce delay (adds cost) True or False

Lever schedule_padding Add time buffer to all task durations 1.0 to 1.2

Lever budget_buffer Add cost buffer to absorb risk-driven cost increases 1.0to 1.1

Lever num_backup_weekends Pre-authorised backup weekends for critical lifts 0to 4

Outcome project_duration Total time of the project ScalarOutcome

Outcome total_cost Total cost of the project ScalarOutcome
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3.3.1.4 Risks, Uncertainties, and Measures

The discrete risks in this study are selected from a risk register used for the construc-
tion of the Schiphol bridge. Each risk has a given range of probability of occurrence
which was established in risk management sessions over the course of the project. The
risks were defined using uniform distributions, reflecting a lack of precise knowledge
about their true shape and ensuring equal plausibility across the specified ranges.

The continuous uncertainties used in this research differ from the discrete risks found
in the project’s risk register. Three novel uncertainties—fuel multiplier, delay factor,
and the proxy [Resource Availability Index (RAI)l—were validated by professionals at
Count & Cooper as useful and plausible representations of systemic project variabil-
ity. The delay factor accounts for aleatoric uncertainty inherent in project execution:
even when activities are repeated under similar conditions, slight variations in du-
ration can occur. Since the distribution of such randomness is task-specific and not
empirically known, a general uniform distribution was chosen to reflect a transpar-
ent, non-assumptive approach within bounded ranges—aligned with the treatment
of discrete risks.

Fuel multiplier represents global fuel price uncertainty and is modelled using a trian-
gular distribution. The mode is set to 1.0, reflecting current fuel prices as the most
likely condition during project execution. The maximum value of 1.5 accounts for
historically observed spikes in fuel costs over the past 50 years, while the minimum of
0.9 captures the possibility of modest, bounded price drops. This distribution cap-
tures asymmetrical uncertainty, where extreme increases are more impactful than
small decreases.

The RAI serves as a proxy for resource constraints and it is also modelled using a
triangular distribution with a minimum of 0.7, a mode of 0.9, and a maximum of 1.0,
where 1 indicates full availability of labour, equipment, and materials. In the absence
of real-time resource data, the RAI offers a simplified yet effective way to reflect vary-
ing levels of resource pressure. The RAI acknowledges the importance of resource
availability in scheduling while remaining minimal in implementation. The values
of its distribution reflect the expectation that most construction phases only oper-
ate under light constraints due to professional planning, while still allowing for the
possibility of severe shortages. This approach aligns with the resource-constrained
scheduling challenges discussed by (Gomez Sanchez et al., |2023)).
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As for the measures, a consistent approach was applied. The risk register typically
provided one or two predefined measures per risk with a cost and likelihood of reoc-
currence. The measures associated with the continuous uncertainties were discussed
and validated through professional judgment.

3.3.1.5 Model Logic

Each task in the schedule follows a set of conditional rules that determine how
its duration and cost are affected by the presence of risk events and continuous
uncertainties. While the effects of the risk events are defined at the task level, the
continuous uncertainties are sampled at the start of each simulation and applied
globally as fixed scenario parameters. This simplification was introduced to prevent
short-lived fluctuations—such as a brief spike in fuel prices—from disproportionately
influencing long-term planning decisions. By stabilising continuous inputs at the
scenario level, the model remains focused on structural performance under broader
uncertainty patterns rather than reactive shifts to transient conditions. The following
examples illustrate how task behaviour changes in relation to the application of
connecting measures.

For muck excavation tasks, if a hard layer is encountered and the predrilling mitiga-
tion is not applied, a delay of 60 to 120 days is introduced, along with an additional
cost between € 200,000 and € 500,000. If predrilling is used, both task duration and
cost increase by 20%, but the risk is avoided.

For foundation pillar installation tasks, if incorrectly sized pillars are discovered,
a new design may be applied (adding 20% to duration), or the project may rely
on extra careful installation. This latter option adds 5% to the duration and only
succeeds with a 60% probability. If it fails, the task is penalised with a 30-60 day
delay and up to € 500,000 in additional cost.

For tasks depending on traffic diversion, such as flap or pillar installation, backup
weekends may be scheduled in advance. Each additional weekend adds 7 days (a
work week of delay plus the additional weekend of work) and incurs a planning cost
between € 100,000 and € 300,000. If heavy wind occurs, each weekend has a 10-25%
chance of being unusable. If no weekend is usable, a 6-8 month delay and a penalty
cost between € 2-10 million are applied. If a backup weekend is usable, the delay is
avoided but a smaller cost penalty (up to €800,000) is still applied.
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After the task-level logic, the simulation evaluates project-wide risks. If unexploded
ordnance (UXO) is found, the outcome depends on whether extended search was
applied. With extended search, the delay is 3-4 months and cost increases by
€ 100,000-250,000. Without the measure, delay extends to 6-8 months and costs
range from € 200,000-500,000.

If the spare part policy is selected, a fixed cost of €400,000 is added. If a critical
material failure occurs, the delay and cost depend on whether the spare part was
available. With the option, the penalty is reduced to 36 days and € 1.2-6 million.
Without it, the project is delayed by 6 months and penalised by € 2-10 million.

Electric machinery reduces fuel cost volatility. If applied, the fuel cost multiplier
is reduced by 20%, but a fixed investment of €2 million is added. This adjusted
multiplier is applied to all project cost at the end of the simulation.

In the event that an influenza wave occurs during the project timeline, the RAT is
reduced to 0.6, simulating a 40% reduction in the availability of labour, equipment,
and materials. This simplification applies the core logic of [ECM] where a discrete
disruption triggers a temporary shift in continuous project parameters. In this im-
plementation, the RAI is adjusted globally across the schedule to reflect a systemic
drop in capacity following a triggering event. While this uniform application sim-
plifies the localised dynamics typically modelled in ECM, it preserves the method’s
essential mechanism for capturing cascading disruption.

If the overtime labour policy is applied, all task durations are reduced by 10% to
reflect increased work capacity, while project costs are increased by 20% to account
for the added expense of extended labour hours.
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3.3.2 Open Exploration

This chapter is split into two parts and provides an answer to sub-question 2: “How
can scenario discovery be used to find high-impact scenarios and adaptation tipping
points in construction scheduling under deep uncertainty?”

Firstly, the process of generating samples of plausible future states of the world is
explained, followed by the discovery of high-impact scenarios. A high-impact sce-
nario represents a plausible combination of uncertainties that, if left unaddressed,
leads to significant schedule and cost overruns. The sequence in which scenario dis-
covery is performed in combination with the optimisation of robust policies is not
definitive. This study adopts the scenario discovery-first approach in order to under-
stand which uncertainties are most critical before mitigation strategies are explored
(Lempert et al., 2003; Kwakkel and Pruyt} 2013]).

3.3.2.1 Sampling

The EMA Workbench uses [Latin Hypercube Sampling (LHS)| by default. LHS di-
vides the range of each uncertainty variable into intervals based on the number of
experiments, ensuring that the entire uncertainty space is systematically explored
(Saltelli et al., [2000). This sampling method is well suited for open exploration,
as it stratifies uniform distributions to minimise variance and reduce sampling bias,
thereby lowering the risk of overlooking critical combinations of uncertainties (Dutta
and Gandomi, 2020).

After manually testing how many samples would provide a varied enough uncer-
tainty space, this study opted for a simulation of 10,000 samples against a baseline
policy. This phase examines which combinations of uncertainties could compromise
the achievement of the scheduled project duration and cost objectives. At this stage,
the measures presented in Table are fixed at their base value and therefore have
no effect on the outcomes. The measure values for the baseline policy are displayed

in Table 3.3t
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Table 3.3: Measure settings of the baseline policy.

Lever Value
predrilling 0.0
extra careful installation 0.0
new_design 0.0
extended_search 0.0
electric_machinery 0.0
overtime_labour 0.0
budget_buffer 1.0
schedule_padding 1.0
num_backup_weekends 0.0

3.3.2.2 Scenario Discovery

Once scenarios have been generated, scenario discovery methods are used to isolate
a smaller, more impactful subset. Traditional model-based analyses often overlook
abrupt changes or surprising outcomes. In contrast, scenario discovery explicitly
examines how input parameters interact and identifies threshold combinations that
strongly predict policy-relevant outcomes (Lempert et al., 2003} Bryant and Lem-
pert}, 2010; Saltelli et al [2000). By actively searching for disruptive scenarios, this
approach ensures that unexpected but plausible outcomes are systematically consid-
ered in quantitative analysis. In the context of construction scheduling, this allows
for the identification of uncertainty conditions that lead to significant project delays
or cost overruns, enabling the development of more resilient planning strategies.

The [PRIM] algorithm identifies combinations of uncertain conditions that lead to ex-
treme outcomes, making it well-suited for scenario discovery under deep uncertainty
(Friedman and Fisher, 1999). In this study, PRIM is used to filter down high-impact
scenarios from the 10,000 sampled futures. PRIM leverages predefined thresholds
to identify which sampled conditions are most likely to exceed acceptable limits,
thereby providing valuable interpretability to facilitate understanding of why certain
parameter combinations might derail the plan (Bryant and Lempert, 2010). These
extracted conditions effectively become In a dynamic schedule, once an ATP
is reached, a modification to the planning strategy may be necessary to ensure the
project remains on schedule.
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3.3.2.3 Iterative PRIM Cycles

This study adopts the modified PRIM procedure proposed by |Guivarch et al.| (2016)
for iterative scenario discovery. Unlike the standard PRIM algorithm, which discards
previously covered regions, the proposed approach retains these scenarios but reclas-
sifies them as not of interest. This enables multiple iterations on the same dataset,
allowing the discovery of distinct scenario families rather than converging prema-
turely on a single dominant box. A peeling threshold of 0.5 was selected to balance
generality and explanatory power. Each PRIM box must therefore contain at least
half of the remaining bad cases, consistent with the minimum density recommended
by Bryant and Lempert| (2010)), which helps avoid overfitting to highly specific sce-
narios. After each iteration, the highest-density box is flagged as not interesting,
and the process continues with the remaining cases until no box exceeds the 50%
density threshold. Each box is constructed based on the predefined thresholds for
cost or duration and is intended to isolate combinations of uncertainty values and
risk events that are systematically associated with unfavourable outcomes. PRIM
uses two key metrics to guide box selection: coverage, which indicates the share of
all bad cases that the box captures, and density, which measures the proportion of
cases inside the box that are truly bad. Each resulting box reflects a unique set of
conditions within the uncertainty space that systematically leads to poor outcomes.

A combined threshold at the 60" percentile for both project duration and total
cost is selected, targeting the worst-performing 40% of scenarios with respect to
both objectives. This means that PRIM only looks at scenarios that exceed 1553
days in duration and € 154,574,107 in cost simultaneously. This decision aims at
finding scenarios where cost and time risks reinforce stress on the project schedule.
This emphasises trade-off navigation between the project objectives in the search
for solutions later on. The result of this iterative procedure is a subset of scenario
families, where each family groups together scenarios with similar uncertainty values
that lead to poor project outcomes. To assess whether these scenario families are also
structurally distinct in terms of their underlying uncertainty configurations,
|Component Analysis (PCA)| is applied in the results section. This dimensionality
reduction technique allows visual confirmation that the PRIM boxes are located in
separate regions of the input space, as intended by the iterative approach.
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3.3.2.4 High-Impact Scenarios

The scenario families present subsets of the initial 10,000 samples, offering a more
targeted view of high-impact cases. However, further filtering is required to isolate
a final set of representative scenarios. To find the fhigh-impact scenarios| a scaling
function is applied on the normalised project outcomes. Within each scenario family
the following scaling function is applied:

ScalarScore; = 0.5 - Cost; porm + 0.5 - Duration; norm

A fixed 50/50 scalar score is used to rank scenarios by joint outcome severity. This
approach supports an objective assessment of system stress by treating cost and du-
ration equally, without embedding normative assumptions. Variable weightings are
avoided to preserve the descriptive nature of scenario discovery, which aims to isolate
structurally disruptive conditions rather than reflect stakeholder preferences.

From each scenario family, the scenario with the highest scalar score is selected as
the most severe case. A second scenario is then identified from within the top 15
highest-scoring cases in that family, based on the maximum Euclidean distance in
the uncertainty and risk event space. This method ensures that each pair includes
one scenario that is both extreme and another that is maximally distinct, while still
representative of high-impact conditions. The result of this final step is a set of
high-impact scenarios that will be used in the directed search phase.
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3.3.3 Directed search

In this section, sub-question 3: “Which robust mitigation strategies can be identi-
fied that address high-impact scenarios affecting cost and duration?” - is addressed.
This section aims to identify measures that minimise project duration and total cost
across the high-impact scenarios found through scenario discovery. Following the
MORDM framework, a|Multi-Objective Evolutionary Algorithm (MOEA )|is used to
search for robust, Pareto-efficient solutions. Specifically, the [Nondominated Sorted|
|Genetic Algorithm-I1I (NSGA-II)|is applied, a MOEA known for effectively approxi-
mating the Pareto front in complex optimisation landscapes.

The optimisation is executed with 8,000 evaluations per run, a number determined
through convergence metrics. As shown in Figure in Appendix [A.2.4] these
metrics demonstrate that the samples stabilises well before the 8000 evaluation,
confirming this threshold as sufficient for convergence. To account for the stochastic
nature of evolutionary algorithms, five random seeds are used per scenario. The
results are then aggregated by reporting the mean and standard deviation across the
five seeds.

3.3.3.1 Selection of Robust Policies

INSGA-TI| produces solutions tailored to each individual high-impact scenario. While
effective within their specific context, these scenario-specific solutions are not in-
herently robust, as they are not optimised to perform well under alternative future
conditions. A solution that performs well in one scenario may fail completely in
another, highlighting the need for a robustness-based evaluation across scenarios. In
this study, a policy is considered robust if it demonstrates Pareto optimal perfor-
mance when evaluated across all identified high-impact scenarios. This means that
no other policy outperforms it on both cost and duration simultaneously across the
same scenario set. Such robustness ensures that the selected strategies remain effec-
tive even under deep uncertainty This form of robustness is essential in real-world
infrastructure planning, where the future is unpredictable and decisions must hold
up under a variety of stress conditions.

This study initially explored the use of the approach to identify
across high-impact scenarios (Shavazipour et al., 2021). However, because
MSMOP is designed for continuous decision variables, it cannot contain the boolean
measures present in this study without significant adaptation. While MSMOP would
have been the preferred approach for integrated robustness, these structural limita-
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tions call for an alternative. The analysis therefore applies PRIM to identify robust
policy configurations in a post-optimisation step. In Appendix an extended
discussion on the consideration is written.

Although PRIM is most commonly applied in the uncertainty space for scenario dis-
covery, its algorithm is equally applicable to the solution space for policy evaluation.
While the underlying mechanism remains unchanged, the focus of analysis differs: in
the earlier stage, PRIM was used to isolate combinations of uncertainties associated
with adverse outcomes. Here, it is repurposed to explore the policy space, with the
goal of identifying combinations of measures that consistently produce favourable
results across all high-impact scenarios. This approach builds on precedents in the
EMA and Robust Decision Making literature, where PRIM has been applied to
characterise decision spaces and robust design configurations (Hamarat et al., |2013;
Kwakkel and Pruyt|, 2013]).

To assess the sensitivity of the robustness classification, PRIM is executed at three
threshold levels: the 70", 80", and 90" percentiles of the observed cost and duration
distributions. Since PRIM is sensitive to threshold selection, and because applying
it to the solution space is less common, this sensitivity analysis adds transparency
and exploratory power. It ensures that the identification of robust combinations
of measures is not overly dependent on arbitrary percentile cut-offs, and that the
discovered patterns are stable under varying definitions of outcome acceptability.

The input for PRIM consists of a full factorial design of scenario—policy experiments.
These combinations are created by evaluating all optimised policies across the iden-
tified high-impact scenarios. This setup allows for a post-optimisation assessment of
robustness: instead of selecting policies purely based on their performance under the
scenario they were optimised for, PRIM is used to identify configurations of measures
that perform well across the entire scenario set.

To explore how robust policies can be best identified using PRIM, two alternative ap-
proaches are compared. The distinction lies in the structure of the conditional input:
one approach uses a joint threshold for cost and duration, while the other applies
separate thresholds for each objective. Given the uncertain correlation between cost
and duration, treating the outcomes independently may provide more flexibility and
granularity in characterising conditionally robust solutions. These are policies that
meet the robustness criterion in either cost or duration, but not necessarily both.
However, a joint threshold offers a better combined perspective on overall policy
performance, ensuring that selected solutions perform acceptably on both objectives
simultaneously. Figure illustrates both approaches.
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Figure 3.7: Proposed design experiment for PRIM in the directed search stage.
Policies are found through a combined condition threshold on cost and outcome as
well as a separated threshold. For the final reduction the Pareto front is calculated.
For the separated thresholds the non-dominated policies are merged. The policies
from the joint threshold are deliberately named robust as they are selected on both
cost and duration conditions. The combined policies from the separated thresholds
are merely conditionally robust for their respective single objective.

Contrary to scenario discovery, a peeling threshold of 0.8 was used for PRIM. This
ensured that only high-density boxes were accepted, exposing structural differences
across the robustness thresholds and making it easier to identify whether robust
policies clustered differently under looser or stricter performance criteria. The use
of percentile thresholds for outcome-based classification—such as the 70", 80, or
90*™ percentiles—serves not to exclude deep uncertainty, but to distinguish between
degrees of robustness within it. The full design space already represents deeply un-
certain conditions, as all sampled scenarios are drawn from wide distributions that
capture plausible but highly variable futures.
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The duration outcome exhibits strong nonlinearity: while the difference in project
duration between the 70" and 80" percentiles is 61 days, the jump from the 80" to
the 90" percentile exceeds 216 days. This indicates a heavy-tailed distribution, where
the most extreme cases may dominate statistical patterns despite being rare. In this
context, the 80" percentile highlights strong-performing policies under deep uncer-
tainty without overemphasising rare tail cases that could dominate pattern discovery.

Because of this non-linear behaviour and the way the peeling trajectory developed
the 80' percentile was selected for the joint threshold. The separated thresholds
provide more flexibility, making it possible to select the 90" percentile for duration
and the 70" percentile for cost. This distinction is justified by the fact that cost and
duration have different distributional characteristics and decision relevance; applying
outcome-specific thresholds allows PRIM to identify robust regions more fairly and
precisely within each outcome space.

The approach by (Guivarch et al. (2016) used in the scenario discovery allows for
high coverage of the uncertainty space (as explained in section . Because
PRIM is used again in the directed search phase, it could be argued that the same
method would ensure varied coverage of the solution space as well. For both the
joint threshold as the separated thresholds it is not possible to perform more than
one PRIM iteration suggesting that the solution space is structurally narrow. The
robust policies appear to be concentrated within a single region of the solution space.
Instead, the Pareto front is calculated on the three final PRIM boxes: one box
from the joint threshold experiments as well as two for the separated experiment.
Following the experiment, two sets of robust policies remain, one found by each
threshold.
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3.3.3.2 Solution Preference per High-Impact Scenario

With the high-impact scenarios defined and both sets of robust policies identi-
fied—one from the joint threshold and one from the separated thresholds—one final
step remains to complete the modelling setup. While both policy sets are deemed
robust across the high-impact scenarios, the relative appeal of a given policy may
depend on which scenario ultimately unfolds.

In practice, decision makers may prioritise certain outcomes over others for various
strategic or contextual reasons. However, this study limits the preference ranking to
the two key outcomes in this study: total cost and project duration. The measures
associated with each policy are presented in the results section and may be consid-
ered in future applications for broader decision support.

To rank near-equally robust policies within each high-impact scenario, a scalar scor-
ing function is applied that combines project duration and total cost. Since the
correlation between cost and duration cannot be directly validated in the current
modelling setup, a sensitivity analysis is performed to assess how different weightings
influence policy selection. Because of their varying values both cost and duration are
normalised using MinMazScaler from the SKlearn Python library (Pedregosa et al.|
2011]).

To evaluate the sensitivity of policy selection to scalarised weightings, a range of
duration-to-cost ratios was tested. The following combinations were tested:

Duration Cost

0.2 0.8
0.3 0.7
0.4 0.6
0.5 0.5
0.6 0.4
0.7 0.3
0.8 0.2

Table 3.4: Tested weight ratios for duration and cost in the scalar function.
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Each combination was applied to assess how the scalar score influences policy selec-
tion across high-impact scenarios. The lowest scalar score for each policy is selected
per high impact scenario. The applied scalar score is:

ScalarScore; ; = Weost + ACT ; + Wauration * AD] (3.1)

ScalarScore; j: Combined score of policy ¢ in scenario j

Weost: Weight assigned to cost

Wquration: Weight assigned to duration

ACY .. Normalised cost improvement of policy ¢ in scenario j
27‘7

e AD!.: Normalised duration improvement of policy 7 in scenario j
irj P policy

While all solutions could perform under all high-impact scenarios, the scalar func-
tion enables a structured selection of the most preferable subset of strategies to be
integrated into DAPP. The application of this will be discussed in the next Section.
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3.3.4 Dynamic Adaptive Policy Pathways

This section provides the design to answer the fourth and final sub-question : “How
can dynamic adaptive policy pathways be constructed using adaptation tipping points
and mitigation strategies for infrastructure construction planning?”. To answer this
question, the approach introduced by |[Haasnoot et al.| (2013)) is followed to con-
struct the DAPP. In the previous two chapters, two fundamental attributes are found
through scenario discovery and directed search.

Scenario discovery provides scenarios based on specific values for uncertainties and
risk events. Each combination of values becomes an ATP. ATPs represent the con-
ditions under which the construction schedule would result in cost and schedule
overruns. The robust mitigation strategies founded through MORDM can act as
contingency plans to avoid reaching the ATPs. Following the idea of dynamic plan-
ning, each high-impact scenario represents a pathway. Each pathway has its own set
of resilient mitigation strategies. Due to the high level of uncertainty, it is not feasi-
ble to determine in advance which pathway will unfold, making baseline planning a
necessary starting point. Each pathway allows for dynamic contingency planning, as
the ATP values will determine whether or not a high-impact scenario develops that
threatens the achievement of the project objectives.

Multiple pathways are often illustrated as a metro map or a decision tree, where time
or changing conditions form one axis of the diagram (Marchau et al.,|2019a)). This is
similar to the initial planning pulled from Primavera P6. Figure [3.8 shows one way
to illustrate the pathways.
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Figure 3.8: An adaptation pathways map for flood management reproduced from

(Marchau et al.,|2019a): Four pathways are displayed over time. Each dot represents
an Adaptation Tipping Point.
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To translate this conceptual framework into a working simulation model, the adaptive
EMA structure is extended with pathway-specific logic. Each high-impact scenario
identified during scenario discovery corresponds to a unique DAPP pathway, with
its own robust mitigation strategy derived from directed search. These solutions are
embedded in the model and conditionally activated through ATP detection: when
a scenario’s characteristic uncertainty pattern is observed, the model dynamically
switches to the corresponding robust policy. This results in a DAPP-enabled sim-
ulation where adaptation occurs in real time based on how uncertainty unfolds. A
baseline DES model was constructed in parallel using the same schedule and sampling
structure but without any adaptive switching logic. Together, these two models form
the foundation of a quantitative analysis, enabling a controlled comparison between
adaptive and static scheduling. This setup isolates the effect of dynamic adaptation
under deep uncertainty.

3.3.4.1 Quantitative Assessment of Outcomes

The quantitative analysis compares two DES models built on the exact same schedule
structure, event logic, and uncertainty inputs. Both models use SimPy to simulate
the project as a directed task network, structured to prevent loops, where each ac-
tivity is executed as a discrete-time process under uncertainty in duration and cost.
The baseline DES applies a static configuration in which all measures remain neu-
tral, representing a fixed schedule that cannot respond to evolving conditions. In
contrast, the adaptive DES, based on DAPP principles, extends this structure by
incorporating a real-time adaptation mechanism. It continuously monitors the un-
folding uncertainty state and, upon detection of a matching high-impact scenario
profile, activates a predefined robust policy associated with that scenario. Figure
presents a conceptualisation of the design, illustrating how the effect of adap-
tive planning is isolated. All other elements—such as the schedule, task logic, and
uncertainty sampling—are held constant, allowing any differences in outcomes to be
attributed solely to the presence or absence of dynamic adaptation.
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Figure 3.9: conceptualisation of the quantitative analysis. Two discrete event sim-
ulations are run. One representing the original baseline schedule and the other
representing the DAPP-based schedule. For both simulation total project cost and
project duration are monitored for comparison.

To evaluate both models under uncertainty, the shared DES-engine was executed
5,000 times across five seeds using across the defined uncertainty space. Each
simulation run begins with the baseline plan and tracks the unfolding values of key
uncertainties at each timestamp. If the realised values fall within 20% of the ATPs,
the corresponding robust policy is initiated. This buffer was introduced to reflect
the anticipatory nature of adaptive planning—it ensures that policy switches occur
early enough to be effective, rather than reacting too late when the tipping point has
already been crossed. This logic aligns with the concept of a sell-by date proposed
by [Haasnoot et al.| (2013), which recognises that some adaptive actions must be
taken before the ATP is reached in order to remain feasible and effective. In this
model, ATPs are identified based on specific scenario patterns rather than on a
single measurable threshold within the system. As such, triggering a policy slightly
before the full pattern is realised improves detection reliability in a discrete-event
simulation context. Finally, the model assumes that only one pathway switch can
occur per run, simplifying the complexity of real-world dynamics while retaining the
core DAPP principle: structured flexibility in response to evolving conditions.
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Although mitigation measures are often applied reactively in practice, their context-
specific nature makes them unsuitable for generalisation within a simulation frame-
work. Designing a baseline model that fully captures real-world scheduling behaviour
would exceed the scope of this study. Instead, the focus is on demonstrating the value
of incorporating deep uncertainty into planning from the outset. In this sense, the
comparison functions as a structured proof of value for the DAPP approach.

The DES experiment is performed on the full project schedule, rather than the
T6-activity graph discussed in Section [3.3.1.2. This approach reflects a deliberate
modelling choice: while robust policies are optimised using a reduced graph focused
on critical and near-critical activities, their effectiveness is evaluated on the com-
plete schedule to ensure external validity. By applying adaptive logic across the
entire network, the analysis captures not only local improvements but also broader
systemic effects. This separation ensures that the robustness of the adaptive strate-
gies is not evaluated on the same reduced model used for optimisation, but instead
tested on the full schedule to assess generalisability under realistic project conditions.

Both policy sets from the joint PRIM threshold as well as the separated PRIM thresh-
olds are quantitatively assessed following the DAPP-switching logic. Each schedule
follows the same uncertainty logic in the DES framework and is identically sampled
using [LHS| By evaluating their performance against the deterministic baseline, the
analysis aims to determine which approach yields more effective policies in terms of
project duration and total cost. The DAPP schedule that outperforms in terms of
cost and duration is selected as the final candidate and further conceptualised as an
example of adaptive construction scheduling under deep uncertainty.
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4 Results

Section [4.1| addresses sub-question 1 and provides the theoretical foundation for the
modelling work. The modelling results start in Section [4.2] and answer sub-questions
2 through 4.

4.1 Deep Uncertainty in Infrastructure Construc-
tion

The infrastructure construction sector has long acknowledged the importance of risk
management, but wuncertainty often remains misunderstood or misapplied (Fang
et al 2013). This confusion can lead to overconfidence in cost and schedule es-
timates, especially when rare or unexpected events are incorrectly formalised into
conventional risk categories (Taleb, |2020; [Sadeghi et al., [2015). In practice, the dis-
tinction between risk and uncertainty is frequently overlooked, with consequences
for how project planning and mitigation strategies are designed. As discussed by
Wied et al.| (2021), unexpected events are especially disruptive to project outcomes
and while practitioners often understand the variability in task durations (aleatoric
uncertainty), they may not fully account for deeper structural uncertainties that
arise during early planning stages. [Kim and Reinschmidt| (2009) note that epistemic
uncertainty plays a dominant role at this stage, when little observational data is
available. Although Bayesian methods can reduce some of this uncertainty, their
effectiveness is constrained when sufficient knowledge cannot be gathered before de-
cisions must be made.

Infrastructure construction planning is therefore especially vulnerable to deep un-
certainty. Project risk registers, for example, often rely on expert judgments and
fixed assumptions to define risk events. While such methods can identify plausible
disruptions—Ilike wind delaying a bridge lift—they often lack clarity about when a
disruption becomes critical, how long it will last, and what trade-offs are associ-
ated with mitigation. These challenges reflect deeper issues: how to model event
impacts, how to estimate likelihoods, and how to evaluate consequences. [lTegeltija
et al. (2016) argue that traditional probabilistic methods work well for uncertain-
ties within levels 1 to 3 (see Table , but break down under deep uncertainty.
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This has led to calls for new approaches that go beyond conventional risk manage-
ment frameworks (Ruckert et al., 2019; Stanton and Roelich, 2021; Feng et al., |2022).

Deep uncertainty is particularly important to address in the early phases of infras-
tructure projects, when decisions shape long-term performance but knowledge is
most limited (Lau et al., 2018; Williams and Samset, 2010; |Mohd Nasir et al., |2016)).
Although a growing body of empirical work confirms that deep uncertainty signifi-
cantly affects construction schedules (Luo et al.; 2017; |Qiao et al. |2019; Wang et al.,
2023)), methodological responses remain underdeveloped (Feng et al., [2022). This
study contributes to that gap by explicitly operationalising the distinction between
risk and uncertainty in construction scheduling.

In this research, are represented as discrete events that either occur or do not,
often based on probability thresholds. Even these can be classified as deeply un-
certain if their underlying assumptions are disputed. By contrast, are
modelled as continuous variables. For example, heavy wind during a critical lift is
modelled as a boolean risk, while fuel prices are modelled as a continuous stressor.
Following [ECM] this study acknowledges that continuous uncertainties only become
critical when enforced by a connected risk event. This event-driven structure closely
aligns with the definition of deep uncertainty, particularly in cases where the likeli-
hood, timing, or system impact of the triggering risk events is poorly understood or
fundamentally disputed. In such cases, it is not only the continuous variable that
becomes uncertain, but the very conditions under which it becomes disruptive. This
blurs the line between risk and uncertainty and reinforces the need for planning ap-
proaches that explicitly acknowledge deep uncertainty.

To put this into perspective, an example specifically tied to the delivery of the
Schiphol Bridge is given. Hoisting the flaps of the bridge involves activities that
lie on the critical path of the schedule. The highway must be closed during the
weekend to allow these operations to proceed, making such lift operations tightly
scheduled and highly sensitive to external conditions, such as the risk for heavy
wind. From a traditional risk perspective, planners may assign a wind speed thresh-
old and a fixed probability of delay based on historical weather data. However, under
deep uncertainty, it is not just the severity of the wind that is in question — but the
ability to forecast such conditions with sufficient lead time, the reliability of long-
range predictions, and the interaction with other project constraints such as resource
availability or permitting. The structural uncertainty lies not in whether heavy wind
can occur, but in whether it can be anticipated early enough to reschedule the lift
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safely and cost-effectively, while also balancing potential penalties for changes to
the schedule. In this sense, the project is not only exposed to variability in wind
conditions (aleatoric uncertainty), but also to fundamental ambiguity regarding the
timing, detectability, and operational consequences of weather-related disruptions.
This illustrates why conventional risk methods may fall short and reinforces the need
for planning approaches that explicitly account for deep uncertainty.
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4.2 Modelling and Simulation Results

4.2.1 Slack Time and Critical Path

The slack sensitivity analysis reveals that in the first 5% of slack, the number of
activities increases by a factor of 3 relative to the critical path. In contrast, ex-
panding the threshold from 5% to 20% adds only an additional factor 1.5. This
indicates that the lower slack range (0-5%) is significantly more sensitive, capturing
a concentrated set of near-critical tasks. Beyond 5%, the curve flattens, suggesting
diminishing marginal insight from including additional tasks. The critical path plus
5% slack totals 76 tasks that are passed along into the next stage of analysis. The
graph with the sensitivity results is presented in Figure in Appendix Section

[A2.1]

The final NetworkX graph of the critical path plus slack is portrait in Figured.1l Each
circle represents a task and each line represents the relationship between the tasks.
The Figure shows similarities to the classic Gantt waterfall structure as modelled in
Primavera P6. Uncertainty and risk events, [measures| and outcomes are added to
the NetworkX model to make it a compatible EMA-workbench model that can be
used for the further stages of analysis.
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Figure 4.1: NetworkX model that shows the critical path in red and the extra slack in
orange. The circles represent activities and the lines the relationships between them.
On the X-axis the project duration is plotted while on the Y-axis the Work Break-
down Structure (WBS) vertically groups tasks based on their hierarchical project
phase or functional component.
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4.2.2 Scenario Discovery

The [EMA] model is sampled 10,000 times. Following the iterative [PRIM] procedure
introduced by |Guivarch et al.| (2016), three scenario families are identified. Fig-
ure in Appendix presents the results of these three iterations.

Figure [4.2| shows how the scenarios captured in the three PRIM boxes—each rep-
resenting a scenario family defined by distinct uncertainty drivers—are positioned
within the outcome space of all 10,000 samples, plotted in terms of total cost and
project duration. Box 1 results from the first iteration and captures the most se-
vere scenarios in terms of duration. Box 2 spans a broader region, capturing both
high-cost and high-duration scenarios as well as some of the shortest severe scenarios
in the outcome space. Box 3 covers a structurally narrower region and appears to
define the lower boundary of severe scenarios in terms of cost.
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1e8 Scenario Diversity with Highlighted PRIM Boxes

All Scenarios
o PRIMBox 1
e PRIMBox2
e PRIMBox3

22

20

Total Cost [€]

1000 1250 1500 1750 2000 2250 2500 2750
Project Duration [days]

Figure 4.2: The three PRIM boxes plotted against all 10,000 sampled scenarios
in outcome space. All boxes capture scenarios with severe values in both cost and
duration. The severity of outcomes decreases with each iteration, as the most extreme
cases are filtered out in earlier steps.

While the PRIM boxes are defined by poor performance in outcome space, it is
also relevant to assess whether they are distinguishable in terms of their underlying
uncertainty configurations. To this end, a[PCA]is applied to the full set of uncertainty
variables. Figure presents the resulting 2D projection of all PRIM box members.
A clear visual separation is observed between the three boxes, particularly along
Principal Component 1 (PC1). The PCA loadings in Table |4.1| indicate that PC1 is
primarily driven by [RAI and delay factor. Box 3 scenarios cluster toward the higher
end of PC1, suggesting that these uncertainties are dominant in that group. Box 1
and Box 2 are also clearly separated, with Box 1 tending toward the positive side
of PC1 and Box 2 positioned more toward the negative side. In contrast, Principal
Component 2 (PC2) is almost entirely dominated by the fuel cost multiplier, which
has a loading of 0.998 (highlighted in bold in Table [£.1)). This indicates that PC2
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effectively only captures variation in fuel cost assumptions across scenario families.
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Figure 4.3: Principal Component Analysis (PCA) projection of the three scenario
families discovered through iterative PRIM. Each dot represents a scenario, colored
by its corresponding PRIM box.
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Table 4.1: PCA loadings for Principal Components 1 and 2. The dominant variables
in each component reflect the primary directions of variation in the uncertainty space.

Uncertainty Variable PC1 PC2
RAI 0.844 0.034
Delay factor 0.526  0.051
Heavy wind (probability) 0.017 -0.003
Oversized foundation pillars (prob.)  0.003  0.009
UXO found (probability) -0.001  0.004
Material failure (probability) -0.006  0.009
Hard layer found (probability) -0.007  0.029
Fuel cost multiplier -0.055 0.998
Influenza wave (probability) -0.081  0.003

The structural separation between the scenario families supports the conclusion that
the iterative PRIM procedure identifies distinct regions of the uncertainty space
associated with poor outcomes. However, visual distinction alone does not imply
that all included scenarios are equally impactful. To focus the subsequent analysis
on the most stressing cases, the final filtering step is applied based on the scalar score

discussed in 3.3.2.4]

4.2.2.1 High-Impact Scenarios

The three distinct scenario families filtered out 1,504 scenarios of the initial sampled
10,000. The scaling function is applied to score the scenarios in terms of severity on
project objectives cost and duration. The highest scoring scenario is selected for each
family, as well as the scenario with the greatest Euclidean distance from the severest
scenario in the top 15 highest scalar scores. The six final |high-impact scenarios| are
presented in Table [4.2]
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Table 4.2: Values of the risks, uncertainties, and outcomes for the high-impact sce-
narios. The outcomes and scores are separated from the risks and uncertainties in

the lower part of the Table.

Variable Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6
Fuel Cost Multiplier 1.405 1.444 1.186 1.398 1.253 1.189
Resource Availability Index 0.600 0.600 0.600 0.857 0.828 0.600
(RAI)

Task Duration Variability 1.226 1.109 1.127 1.165 1.142 1.113
Critical Material Failure 0 0 1 0 1 0
Hard Soil Layer 0 0 0 0 0 0
Heavy Wind 1 1 1 1 1 1
UXO Found 0 0 0 0 0 0
Foundation Size Issue 0 0 1 0 0 1
Influenza Wave 1 1 1 0 0 1
Project Duration (days) 2472.9 2222.7 2564.0 1734.6 1918.4 2331.5
Total Project Cost (€) 204,111,200 209,587,300 186,380,100 206,022,100 183,979,000 179,712,900
Scenario Family 1 2 1 3 3 2
Normalised Cost 0.880 0.971 0.587 0.912 0.548 0.477
Normalised Duration 0.897 0.701 0.968 0.319 0.463 0.786
Scalar Score 0.888 0.836 0.778 0.615 0.505 0.632

The continuous uncertainty values listed in this table are sampled at the start of
each simulation and remain fixed throughout the project duration. Consequently,
the values shown for these variables represent their initial state rather than a time-
dependent trigger. In this implementation, the recorded for continuous un-
certainties reflect these static inputs, rather than the moment at which the system
transitions into a stressed condition during execution. Figure [4.4] shows the 6 high-
impact scenarios plotted as a Parallel coordinates plot.
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Figure 4.4: Parallel coordinates plot of the six high-impact scenarios. Each coloured
line represents one scenario. On the X-axis the uncertainties and outcomes are
displayed. Each scenario has its unique set of uncertainty values that influence
the outcomes. Under the high-impact scenarios the project outcomes duration and
cost vary between 17352564 days and € 179,712,943—€ 209,587,290. The final axis
Scenario Family refers to the PRIM cycle in which the scenario was discovered.

For reference, compared to the project outcomes under the high-impact scenarios,
the length of the critical path is 1290 days against a cost of € 56,460,000. The tasks
included under the extra 5% slack time do not extend the overall project duration,
as all additional activities fall within the time window already defined by the critical
path. However, the associated cost increases to € 74,820,000.

e Scenario 1 — Most severe overall (Blue): This scenario has the second
longest project duration at 2,473 days and the third highest total costs at
€204,111,200. All three continuous uncertainties are high, meaning they form
stressors on the schedule: with high task duration variability (1.226), the lowest
possible RAI value (0.600) triggered by the Influenza Wave, and elevated fuel
costs (1.405). Additionally, a Heavy Wind event is triggered, compounding
the pressure on project execution. The combination of high project outcomes
establishes the highest scalar score for Scenario 1.

e Scenario 2 — Most costly (Orange): Scenario 2 results in the highest to-
tal project cost at € 209,587,300, with a moderately long project duration of
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2,223 days. This scenario has the highest value for fuel cost multiplier (1.444).
Its task duration variability (1.109) is lowest while RAI is (0.600) due to an
Influenza Wave. This scenario also includes a Heavy Wind event, further bur-
dening the project.

e Scenario 3 — Longest project duration (Green): With a duration of
2,564.0 days and a moderate cost of € 186,380,100, this scenario presents the
longest timeline. It features the lowest fuel cost multiplier (1.186) among high-
impact cases, but this is offset by the activation of three discrete events: Critical
Material Failure, Foundation Size Issue, and Heavy Wind. The RAI is again
reduced to 0.600 due to an Influenza Wave, increasing schedule strain.

e Scenario 4 — Most efficient under stress (Red): This scenario yields the
shortest project duration among the group at 1,734.6 days. This is traded
against the second highest cost of €206,022,100. The RAI is 0.857, which is
the highest value amongst the high-impact scenarios.

e Scenario 5 — Cost-efficient but risk-exposed (Purple): Scenario 5 yields
a relatively low total cost of € 183,979,000 and a moderate duration of 1,918.4
days. It includes a Critical Material Failure and a Heavy Wind risk. The RAI
remains stable at 0.828 due to the absence of an Influenza Wave. This scenario
scores the lowest overall scalar score.

e Scenario 6 — Cost effective (Brown): With a duration of 2,331.5 days
and the lowest total cost at €179,712,900, this scenario is structurally less
extreme. However, it still involves multiple interacting stressors, including low
RAI (0.600) from an Influenza Wave, a Foundation Size Issue, and a Heavy
Wind event.

Across the six high-impact scenarios, a number of patterns emerge. Scenarios with
high values for the continuous uncertainties consistently score higher on the scalar
function. This is not unexpected, as these variables are modelled globally and influ-
ence the project from the outset of each simulation. Their role as persistent stressors
highlight the effects of discrete risk events, increasing overall scenario severity. While
each scenario includes at least one triggering risk, the underlying pressure from con-
tinuous conditions often drives the most substantial outcome differences. This rein-
forces the theoretical distinction between risk and uncertainty explored earlier and
confirms that robust planning under deep uncertainty must consider their interaction
explicitly. In this way, the scenario outcomes align with insights from the literature
review in Section [4.1 which emphasise that severe disruptions often arise from the
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interaction between persistent uncertainties and discrete events, rather than from
either source alone.

As discussed in Section [3.3.4] the values of the risk events and uncertainties serve
as ATPs in the creation of the schedule. The combination of the values in
Table [4.2] and the visual display of the scenarios in Figure £.4] concludes how different
pathways can be created as the foundation of a DAPP-based schedule.
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4.2.3 Directed Search

For the directed search phase, the results of the PRIM experiment are presented. At
each step leading up to the final DAPP-based schedule, two variants are examined.
For the outcomes of cost and duration, both a joint PRIM threshold and separated
PRIM thresholds are applied, with the aim of determining which approach yields
the most effective frobust policies] In Appendix the results of the PRIM ex-
periment are discussed. In this section, the Pareto front is presented followed up by
the parallel coordinates plot of the robust policies. At last, the solution preference
is presented, which provides the final step for the design of the DAPP.

4.2.3.1 Pareto Front

Figure presents all the policies found in the selected PRIM box of the 80" per-
centile. The box consists of 492 policies of which two are non-dominated. The two
final policies are shown as red dots.
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Joint threshold: Pareto front policies in solution space
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Figure 4.5: Scatter plot of all policies in the selected seventh PRIM box under
the 80' percentile threshold, evaluated in the solution space. The box contains
492 scenario—policy combinations, shown as blue dots. Among these, the two non-
dominated Pareto-optimal policies are highlighted in red. The distribution suggests
that the Pareto front is more tightly bounded in terms of cost (approximately €175
million), while allowing greater variation in project duration. This indicates that
cost plays a more constraining role in defining Pareto-optimality within this region.

The PRIM boxes resulting from the separated thresholds are combined and presented
in Figure 1.6 The combined boxes carry 521 policies. The sum of the two boxes
is 678 policies, indicating some overlap in the found solutions despite the different
thresholds. In the combined solution space there are in total five Pareto optimal
policies. Four come from the duration threshold and one is added from the cost
threshold. The five remaining policies are robust following the definition used in this
study: Pareto optimal performance when evaluated across all identified high-impact
scenarios.
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Separated thresholds: Pareto front policies in solution space
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Figure 4.6: Scatter plot of all policies selected through the separated threshold ap-
proach, evaluated in the solution space. The blue dots represent 521 scenario—policy
combinations resulting from the union of the cost-based and duration-based PRIM
boxes. The red dots represent the five non-dominated Pareto-optimal policies within
this combined set. Compared to the joint threshold plot, the Pareto front here spans
a broader range in both cost (approximately € 193—€ 215 million) and project du-
ration (1,555-2,286 days). This wider spread reflects the more relaxed robustness
conditions applied in the separate threshold approach, allowing policies that are ro-
bust with respect to only one objective to enter the final evaluation.

4.2.3.2 Final Robust Policies

In this section, the robust policies identified from both the joint and separated PRIM
threshold approaches are presented. These policies are optimised to remain viable
under the high-impact scenarios described in the previous section. From the joint
threshold analysis, two robust policies were identified, while the separated threshold
approach yielded five. The selected policies are visualised in Figures and 4.8
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Figure 4.7: Parallel coordinates plot of the joint threshold robust policies. Both
policies rely on electric machinery as well as predrilling. Policy 2 (orange) applies
a new design whereas Policy 1 builds on Eztra careful installation and an extended
search

e Policy 1 - Safety First (Blue): This policy incorporates predrilling as a
measure against a hard soil layer while also opting to take extra time for a
careful installation of the foundation pillars. An extended search is performed
to not find an UXO by surprise while already building. This Policy build on the
use of electric machinery to be less vulnerable to sudden spikes in fuel prices.

e Policy 5 - Think first (Orange): This Policy incorporates a new design into
its set of measures. It takes a hit in extra time upfront but prevents problems
later on in execution. Predrilling and electric machinery are also included.

Although both Policies are based on similar drivers, including the use of electric
machinery and predrilling, their project durations differ by more than 800 days. In
contrast, their total costs are relatively close, with a difference of approximately € 1
million.

It is further observed that the duration of Policy 1 - Safety First, which yields the
shortest completion time among the two, exceeds that of the cost-efficient but risk-
exposed high-impact scenario. No policy intervention was applied in this stage of
the study. Both policies, when applied are cheaper than the outcomes of any of the
high-impact scenarios.
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Figure 4.8: Parallel coordinates plot of the separated threshold robust policies. All
five rely on the use of electric machinery , overtime labour, and new design as mea-
sures. predrilling is used in Policies 1,3, and 5. FExtra careful installation is used in
Policy 2. Only Policy 1 makes use of and extended search

e Policy 1 - UXO emphasis (Blue): Besides the measures that all five policies
share, Policy 1 puts extra emphasis on an extended search plan for unexploded
ordnances.

e Policy 2 - Care first (Orange): Policy 2 distinguishes by the use of an
extra careful installation of the foundation pillars of Schiphol bridge. It shares
the measures for electric machinery, new design, and overtime labour with the
other Policies.

e Policy 3 & 4 - the Median Policies (Green, Red): Policies 3 and 4 are
characterised by the exact same set of measures: New design to prevent un-
pleasant surprises later on, electric machinery to decrease vulnerability against
fuel price fluctuations, and overtime labour to catch up on delayed work.

e Policy 5 - No Excavation Trouble (Purple) Policy 5 is the only policy
that takes on predrilling as a measure besides the measures shared by all other
policies.

Compared to the joint threshold, the policies identified under the separated PRIM
threshold are consistently more expensive by at least €20 million. However, they
result in notably shorter project durations, with improvements ranging from 200
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days for the shortest policy to nearly 400 days for the longest. Regardless of the
underlying threshold for PRIM, the three measures that are not modelled as boolean
variables are all all show values at or near their lower bounds. The highest percentage
for schedule padding does not exceed 3% while budget buffer and back-up weekends
are not used at all.

The consistent exclusion of certain levers, such as backup weekends and budget buffers,
highlights a structural feature of the model: anticipatory measures that impose up-
front cost or delay without directly improving measurable outcomes are systemat-
ically penalised. This reflects how the input parametrisation and scalar weighting
shape optimisation behaviour, favouring reactive over preventive strategies. These
findings underscore the sensitivity of policy selection to cost assumptions and rein-
force the importance of aligning model incentives with practical project priorities.

4.2.3.3 Solution Preference per High-Impact Scenario

Formula[3.3.3.2]is used on the different cost:duration ratios to analyse which policies
score best for each scenario. For both policies from the joint and separated PRIM
thresholds, a heatmap is presented to show potential sensitivity between the different
ratios

Figure [4.9] of the Joint threshold policies shows that Safety first is the preferred
Policy (1) for the longest project duration Scenario (3). It furthermore highlights
that Scenarios Most efficient under stress (4) and Cost effective (6) are sensitive to
a change in cost and duration weighting. From an even split upwards to a duration
heavy preference, Safety first (1) is the preferred policy. When cost weighs more,
Policy Think first (2) is preferred.
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Best Policy per Scenario under Different Cost:Duration Ratios
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Figure 4.9: Heatmap of the joint threshold policies. Scenario 4 and 6 show sensitivity
to cost and duration weighting. Policy 2 is the preferred solution set for Scenarios
1, 2, and 5. Policy 1 is preferred for Scenario 3.

The heatmap for the five policies identified through the separated PRIM thresholds
is presented in Figure Since the Median Policies were based on an identical
set of measures, the scalar function filtered out Policy 3 due to redundancy. The
UXO Emphasis Policy (1) emerges as the preferred option for Scenarios Most Severe
Overall (1) and Cost-Efficient but Risk-Ezposed (5). The Care First Policy (2) is
selected for the Cost Effective Scenario (6), while the Longest Project Duration Sce-
nario (3) is best mitigated by the Median Policy (4). Scenario Most Efficient Under
Stress (4) aligns most effectively with the No Ezcavation Trouble Policy (5). Sce-
nario Most Costly (2) is sensitive to the selected weighting scheme: if cost is weighted
more heavily, the Care First Policy (2) is preferred; if duration dominates, the Me-
dian Policy (4) performs best. Under more balanced trade-offs, the No Ezcavation
Trouble Policy (5) proves most effective.
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Best Policy per Scenario under Different Cost:Duration Ratios
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Figure 4.10: Best-performing policy per scenario across different cost:duration
weighting ratios for the policies found under the separated PRIM thresholds. The
heatmap highlights how policy preference shifts depending on the trade-off between
cost and duration. Stable horizontal bands indicate insensitive policies, while tran-
sitions reflect sensitivity to weighting schemes.

To proceed with the DAPP-based schedule, a policy configuration must be selected
for Scenario Most Costly (2)—the only scenario-policy combination that shows sen-
sitivity. A 50/50 weighting between cost and duration is applied, leading to the
selection of No Ezcavation Trouble Policy (5) as the designated policy.
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4.2.4 Dynamic Adaptive Policy Pathways

4.2.4.1 Quantitative Assessment of Project Outcomes

Figure4.11|{shows that all six high-impact scenarios were sampled at least once across
the five experimental seeds. While Scenario 5 and Scenario 6 are sampled most
frequently, the full set of high-impact scenarios is represented. This distribution
indicates that the experimental setup was capable of generating a diverse range of
severe futures. Although ATPs were only triggered in approximately 5% of the runs,
the fact that each high-impact scenario appeared as a trigger suggests that any of
them could develop under the given uncertainty space. This supports the relevance
of exploring adaptive measures throughout the schedule.

Scenario Trigger Distribution Across Seeds

ATP Scenario |D
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D o oW N
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MNumber of Triggers

]

1 2 3 4 5
Seed

Figure 4.11: Distribution of high-impact scenarios sampled in the DES environment.
Each seed is sampled 5,000 times. The bars represent the runs for which the ATPs
are triggered.

To continue the analysis, the mean amount of samples per scenario across the seeds
is taken, after which a sample of twenty triggered runs is selected for the comparison
of the two DAPP-based schedules against the baseline. Twenty is selected because it
is a large enough sample to have each scenario represented while being small enough
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for practical visualisation.

For the joint PRIM threshold of cost and duration, there were two final policies used
in the DAPP-based on the scalar score. The baseline resulted in a shorter duration
in 55% of the 20 runs. This can be seen in the upper graph of Figure [4.12] as the red
dots appear on the left of the blue dots several times. In terms of cost, the DAPP-
based schedule outperforms the baseline by approximately € 100 million across the
20 samples.
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Figure 4.12: Project outcomes comparison between the DAPP schedule based on the
joint PRIM threshold and the baseline schedule. On the axis duration and cost are
set out against 20 DES runs for both schedules, The red dots represent the baseline
schedule and the blue dots represent the DAPP schedule. DAPP is consistently
cheaper while the baseline is shorter 55% of the runs.

The comparison for the DAPP schedule created with the policies found through the
separated PRIM thresholds shows that the DAPP-based schedule outperforms the
baseline schedule on both project objectives. Figure shows consequently for all
20 samples that the DAPP schedule has a shorter duration and a cheaper cost.
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Project Duration Comparison (DAPP vs Baseline)
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Figure 4.13: Comparison between the baseline schedule and the separate PRIM
thresholds DAPP schedule in project outcomes. The DAPP-based schedule is both
cheaper and quicker than the baseline schedule for the 20 simulated runs.

In the isolated experimental setup, the policies derived from the separated PRIM
thresholds reduced project duration by an average of 67 days and cost by approxi-
mately €975 million across the 20 simulation runs. While the joint threshold runs
reduced the cost on average by approximately € 139 million, the reduction in dura-
tion was only 6 days.

while cost was added to the analysis to force a trade-off, the duration is based on a
professionally created and used project planning for Schiphol bridge. Therefore, the
final policy selection puts more emphasis on duration than on cost. This results in
the policies from the separated PRIM thresholds to be selected for the final DAPP-
based schedule.
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4.2.4.2 Conceptual DAPP-Schedule

Figure [4.14] presents a conceptualisation of the final DAPP schedule, constructed
around the six high-impact scenarios and their associated robust policies. The project
starts at day 0, corresponding to August 30", 2021. Each pathway in the figure rep-
resents a distinct high-impact scenario identified in the open exploration. The values
of the risk events and uncertainties — as defined in Table [£.2] — serve as ATPs.
While the switching logic is condition-based, the occurrence of certain events is tied
to specific activities in the schedule, making the triggering mechanism effectively
time-dependent in some cases.

For each high-impact scenario, the associated risk events and uncertainties collec-
tively function as a single ATP. In practice, these events are unlikely to occur simul-
taneously. Events such as Critical Material Failure, Hard Soil Layer, Heavy Wind,
UXO Found, and Foundation Size Issue are modelled as task-specific risks, meaning
they can only occur at particular points in the schedule.

In the conceptual DAPP schedule shown in Figure an ATP is considered trig-
gered when the final relevant task-specific risk within a scenario occurs. Each path-
way formally begins with the deterministic Primavera baseline schedule and only
diverges once a policy is activated to prevent the ATP from being triggered. Be-
cause timing is only defined by task-specific risks, the global risks and uncertain-
ties—influenza wave, RAI, task variability, and fuel cost multiplier—do not influ-
ence the timing or structure of the pathways in this conceptual representation, even
though they have real-world consequences. To enhance visual clarity, Figure [4.14] as-
signs each pathway a distinct colour and name from the initial white dot at Time 0,
even though, in practice, the baseline Primavera schedule is shared across all path-
ways until the moment of divergence. Each dot along the timeline represents a risk
realisation, but only the final task-specific risk triggers the ATP and thus deter-
mines the moment of adaptation. From that point onward, the baseline pathway
and the policy pathway diverge, allowing for a direct comparison of the duration
saved through the application of DAPP. In alignment with the simulation logic, the
switch illustrated in the conceptual figure also occurs slightly before the ATP is
reached—reflecting the 20% proximity threshold used to anticipate tipping points
and initiate policies pre-emptively.

The final project durations shown in the Metro map are based on the results of

the 20 comparative DES| runs. Due to the mix of stochastic risks and continuous
uncertainties, project outcomes vary slightly — even under identical Scenario-Policy
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combinations. To capture this variation while maintaining clarity, the final end dates
for each DAPP pathway are based on the mean outcomes observed across these runs.
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Figure 4.14: The DAPP starts with the baseline deterministic schedule as this is the
desired project course. The ATPs equal the risk and uncertainty values specifically
tied to each high-impact scenario. Over time an ATP can be triggered, recognising
the developing high-impact scenario and its corresponding mitigation policy, initiat-
ing a pathway switch.

Table summarises the benefits of adaptive scheduling by comparing project du-
ration and cost under baseline and DAPP conditions for each high-impact scenario.
Across all six scenarios, the application of robust policies consistently reduced both
total project time and cost. These reductions demonstrate the practical value of in-
corporating scenario-specific adaptation strategies into the planning process. While
variability remains due to stochastic risk dynamics, the average savings observed
across the 20 DES runs highlight the potential of DAPP to enhance schedule robust-
ness under deep uncertainty.

66



Table 4.3: Average Duration and Cost per High-Impact Scenario for the baseline
and DAPP schedule on the entire project. The duration is in days. The cost is in
euros.

Baseline Baseline DAPP DAPP A A
Scenario Duration Cost € (Billion) Duration Cost € (Billion) Duration (days) Cost (€ Million)
1 2224 1.68 2105 1.57 119 101.89
2 1672 1.69 1648 1.59 25 102.75
3 1835 1.73 1784 1.62 51 105.04
4 1670 1.68 1641 1.58 29 101.69
5 1977 1.57 1948 1.48 30 93.88
6 1888 1.65 1847 1.55 42 100.50
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4.3 Validation

For validation, the results of this study were presented to two Senior Project Leads
at Count & Cooper who are actively involved in the Schiphol Bridge project. The
objective was to evaluate whether the proposed methods could meaningfully improve
schedule robustness under deep uncertainty, based on their professional judgement
and experience.

During the discussion, two different strategies for applying the study’s findings in
practice were explored. The first focused on the use of the identified high-impact
scenarios and their corresponding robust policies as a supporting tool within the
project’s risk management process. Currently, schedulers and project managers use
stochastic risk analysis — typically in the form of Monte Carlo simulations — to
calculate P-85 values, which estimate the level of buffer needed to ensure, with 85%
probability, that the project will meet a given delivery date under modelled risks.
While the quantitative DES assessment in this study could potentially offer similar
insights, its objective was different.

Whereas Monte Carlo methods primarily confirm risks already identified during ex-
pert sessions, the exploratory modelling approach in this study was designed to
discover high-impact scenarios that may not have been initially foreseen. Further-
more, the directed search phase enabled the identification of robust policies tailored
to these scenarios. The Senior Project Leads recognised value in this exploratory ca-
pability, especially as a complement to existing workflows. In their view, integrating
EMA alongside current risk management practices could provide deeper insight into
the effects of deep uncertainty on project schedules and serve as a valuable extension
of the tools already in use.

The second implementation strategy that was discussed involved using DAPP as a
truly dynamic scheduling tool during project execution. This idea raised important
questions from the Senior Project Leads, particularly regarding the practical feasi-
bility of detecting and acting on ATPs in real time. Even if ATPs could be defined
hypothetically, there remains considerable ambiguity around how such triggers would
be operationalised to enable dynamic re-scheduling.

To illustrate this point, the Heavy Wind risk was used as a hypothetical example.

In the current modelling setup, each ATP is defined by a combination of risks and
uncertainties, with the latest occurring risk in the sequence serving as the actual
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trigger. In this example, Heavy Wind is assumed to be the final condition that must
materialise for the ATP to be activated. Project leads raised a crucial concern: the
challenge is not in measuring wind conditions themselves, which is technically feasi-
ble, but rather in forecasting such conditions early enough to allow for operational
changes to the schedule.

In dynamic project environments, rescheduling takes time — work must be resched-
uled, resources reassigned, and coordination adjusted. Therefore, for DAPP to be
effective in practice, ATP detection must offer sufficient lead time, not just real-time
confirmation. If a risk like Heavy Wind is only identifiable shortly before it occurs,
it may be too late to adapt the schedule meaningfully, undermining the intended
benefits of a DAPP-based approach.

Even under the assumption that ATPs can be monitored, applying a DAPP sched-
ule at the entire project level may be too abstract to support meaningful, real-time
decision-making. Greater potential may lie in applying DAPP to more localised, tac-
tical detailed schedules — parts of the project that are still exposed to uncertainty
but allow for more direct monitoring and intervention. In their professional opinion,
however, DAPP in its current form is not yet ready to function as a dynamic control
tool in operational construction scheduling.

Given the scope and level of abstraction of the simulation model, direct validation
against the actual course of the Schiphol Bridge project was not pursued. The
modelling framework used in this study is intentionally simplified to facilitate broad
exploratory analysis under deep uncertainty. As such, it does not capture the full
complexity of real-world project dynamics. Any resemblance between simulated sce-
narios and the realised project trajectory would therefore be coincidental rather than
indicative of model accuracy. In light of this, validation through expert judgement
was considered more appropriate and informative, aligning with the study’s objective
to assess methodological potential rather than reproduce historical outcomes.
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5 Discussion

5.1 Model Limitations

This section examines how structural assumptions and simplifications in the model
influence both the simulation outcomes and their interpretation. These limitations
result from deliberate simplifications to manage model complexity, assumptions made
in cost modelling, and the decision to represent certain risk events globally. Together,
these factors affect the robustness and realism of the results produced by the simu-
lation framework.

Although this study explicitly incorporates deep uncertainty into the modelling
framework, the underlying logic that defines how uncertainties interact with
and outcomes remains relatively underdeveloped. The design of the uncertainty
space was based primarily on risk register inputs from the Schiphol bridge project,
which included estimated cost impacts and odds of occurrence for various risks.
While these ranges were informed by expert judgment, they reflect subjective assess-
ments rather than empirical frequencies. As such, the precise likelihood of each risk
occurring remains fundamentally uncertain.

To create a workable cost outcome within the simulation, daily rates had to be
manually adjusted to fall within a comparable order of magnitude. This calibration
step was necessary to ensure that cost and duration outcomes could be meaningfully
compared within the model. As a result, the cost outputs used in this study should
not be interpreted as realistic estimates of actual project expense. Instead, they
function as a relative trade-off dimension within the framework. Their
primary purpose is to demonstrate how robust policy search can be used to address
deep uncertainty, rather than to provide precise financial forecasting.

Including slack time in this study follows industry standards and allows for critical
path switches under deep uncertainty. However, this decision introduces an asym-
metry in the modelling process: while project duration is only penalised after the 5%
slack buffer is exceeded, cost begins to accumulate from the start of any disruption.
This makes cost a more sensitive metric in marginal cases. While duration remains
masked until critical delays occur, cost reflects incremental impacts immediately.
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As a consequence, cost tends to weigh more heavily in both the scenario discovery
and the directed search phases, influencing the peeling behaviour of [PRIM| and the
dominance of cost in scalar scoring. This effect is a structural consequence of incor-
porating slack and should be taken into account when interpreting results.

In the scenario discovery phase, four out of the six high-impact scenarios included
an influenza wave. The scope of the model is deliberately simplified, meaning that
fewer variables are analysed than would be relevant in actual construction projects.
Within this limited scope, the dynamics of the real system are further simplified
to enhance the transparency and interpretability of the model logic. One example
of this is the treatment of the influenza wave variable. Following the principles of
[ECM] the influenza wave is modelled as an event that reduces the RAI to 0.6 — a
value that lies outside the regular bounds of its distribution (see Table [3.2)). In the
current implementation, this value is applied at the beginning of each simulation run,
resulting in a constant 40% reduction in available resources throughout the entire
project. This static treatment does not reflect the temporary and often uncertain
nature of such disruptions in practice.

The use of the iterative PRIM cycle proposed by (Guivarch et al. (2016)) helped to
counterbalance this modelling bias by identifying a third scenario family in which
the influenza wave did not occur. Nevertheless, the first four high impact scenarios
were discovered under a simplification that does not realistically reflect how such
events unfold in practice. As a result, the influence of the influenza variable may be
overstated, introducing a skew in how scenarios are classified as high-impact.

Three measures are modelled as non-boolean variables in the EMA workbench model.
budget buffer and schedule padding are continuous whereas back-up weekends is cat-
egorical. As intended in the directed search, the MOEA] searches for policies that
are minimised on cost and duration. In this study, this resulted in the consistent
exclusion of budget buffer and schedule padding from the resulting robust policies.
This outcome can be explained by the inherent bias introduced through the min-
imisation objective. Both measures are anticipatory in nature, designed to provide
resilience against unforeseen disruptions by allocating additional resources before-
hand. However, when these measures are explicitly modelled as increasing baseline
cost or project duration, without a mechanism to capture their conditional bene-
fits, they are systematically penalised by the optimisation algorithm. In effect, they
introduce guaranteed costs or delays in exchange for uncertain future gains. As a
result, the evolutionary algorithm excludes them from the solution space under min-
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imisation objectives.

As discussed in the validation chapter, the current workflow still relies on Monte
Carlo simulations for risk management. Such techniques specifically calculate suc-
cess rates depending on the aforementioned buffers, separating the two techniques in
use. This contrast helps explain why budget buffer and schedule padding are consis-
tently absent from the robust policies found in this study. Their exclusion does not
imply irrelevance, but rather reflects how they were modelled: as cost and duration
inflators without corresponding benefits. Because the optimisation seeks to minimise
these objectives, and no compensating value is assigned to buffers within the model,
they are systematically filtered out. This creates a gap between the theoretical results
of this study and the practical preferences observed in real-world project manage-
ment, where such buffers are considered crucial for absorbing unforeseen disruptions.

The exclusion of back-up weekends reflects different dynamics within the model. All
six high-impact scenarios include the occurrence of a heavy wind risk event. Although
back-up weekends were specifically introduced to mitigate this type of disruption,
none of the robust policies included the measure. A plausible explanation is that
the input cost assigned to back-up weekends was disproportionately high relative
to the expected cost of wind-related delays. As a result, the optimiser consistently
avoids selecting it. This outcome underscores the sensitivity of policy selection to
cost assumptions and reveals a potential disconnect between model logic and prac-
tical judgement. In reality, a back-up weekend was used during the execution of
the project, suggesting that practitioners viewed the measure as both viable and
necessary. This discrepancy reinforces the idea that the model’s cost assumptions
may have biased the optimisation procedure against a mitigation strategy that holds
practical value.

A further consequence of the model simplifications is that knock-on effects within
the schedule are not explicitly represented. The SimPy-based simulation environ-
ment captures primary effects by applying both global and task-specific uncertain-
ties directly onto the project schedule. These uncertainties influence task durations,
resource availability, and weather-related disruptions, but their effects are confined
to the immediate tasks they impact. In reality, however, delays often propagate
through indirect channels—for example, through rescheduled subcontractors, delayed
permits, or misaligned equipment logistics—causing broader disruptions across the
project. The current model structure does not simulate such systemic or cascading
effects, which means the true scale of disruption in high-impact scenarios may be
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under-represented, particularly in terms of cumulative cost and duration impacts.

5.2 Methodological Challenges

Beyond the model design, this section reflects on the practical and conceptual chal-
lenges in operationalising adaptive strategies. These challenges include ATP monitor-
ing, the mismatch between conceptual and executable pathways, and the feasibility
of implementing DAPP logic in real-world infrastructure settings.

The representation of ATPs differs in subtle but important ways between the con-
ceptual DAPP schedule and the operational DES engine. In the metro map in
Figure [4.14], policy switches are shown to occur only after the final task-specific risk
materialises. This visualisation assumes that adaptation is triggered only once all
the discrete risk conditions of a high-impact scenario are realised, effectively ignor-
ing the influence of continuous uncertainties. In contrast, the DES engine evaluates
both continuous uncertainties, which are modelled as fixed values at the start of each
run, and discrete risks, which materialise dynamically during execution. An ATP is
triggered when 80% of the defining conditions of a high-impact scenario are met. As
a result within the simulation, continuous uncertainties can push the system toward
an ATP earlier than the conceptual map suggests.

However, even when this threshold is met, switching can only occur at predefined
task-linked nodes. Given that this study models a limited number of task-specific
risk events, the set of possible ATP trigger points is relatively sparse. As a result,
the discrepancy between the conceptual and operational ATP timing in this current
setting is small in terms of the number of tasks. Still, the difference in actual timing
in days may be more pronounced, since some risk-related tasks span longer durations
than others. This relationship is further influenced by how the critical path is struc-
tured. A richer set of task-dependent risk events would allow for more granular ATP
triggering and a closer alignment between conceptual design and implementation.

The limited number of task-specific risks in this study simplifies ATP switching logic
but also highlights a deeper implementation issue: the practical difficulty of detect-
ing ATP conditions in real time. While the simulation framework defines adaptation
points based on scenario proximity and task triggers, applying this approach in actual
projects would require the ability to monitor evolving conditions across a granular,
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network-wide schedule. This level of detail, while valuable for analysis, exposes the
challenge of project-wide ATP recognition—especially when uncertainties span both
continuous variables and discrete events.

Another challenge concerns the feasibility of monitoring ATP conditions during
project execution. While the analysis identifies which measures are effective under
severe scenarios, it remains unclear how these conditions could be reliably recognised
in real time. In the absence of a mechanism for scenario detection or ATP evaluation
during execution, dynamic adaptation may fail to respond proactively and instead
default to reactive behaviour. As a result, although this study advances the con-
ceptual understanding of adaptive planning, it offers only a partial foundation for
operationalising DAPP in real-world infrastructure delivery.

The results of the quantitative assessment show that the DAPP-based schedule con-
sistently outperforms the baseline in terms of both cost and duration. However, this
finding must be interpreted in light of how the baseline was constructed. It includes
no mitigation measures and represents a purely reactive planning approach under
deep uncertainty. Because the baseline simulation lacks a mechanism for monitor-
ing the evolution of scenarios, generic contingency planning is infeasible; responses
must be tailored to specific unfolding events. While it would have been possible to
model multiple static baseline strategies, doing so would merely replicate conven-
tional practice. The aim of this study was not to compare static alternatives, but
to demonstrate how EMA can identify critical scenarios and support the design of
robust adaptive strategies capable of responding to them.

This study offers a novel methodological contribution by applying EMA and DAPP
to a highly granular, task-based infrastructure schedule. Prior applications of these
frameworks—such as those by Haasnoot et al. (2013) and Michas et al.| (2020)—have
focused on long-term or conceptual planning contexts. In contrast, the current study
embeds adaptive pathways within a detailed discrete event simulation model based
on an operational infrastructure construction schedule. As noted by |Stanton and
Roelich| (2021)), most documented applications are found in high-level plan-
ning domains such as water and energy systems, with little to no prior work at the
level of detailed project scheduling. A recent exception is the study by [Feng et al.
(2023), which demonstrates the feasibility of combining discrete event simulation
and scenario discovery in a construction context. Their work highlights the concep-
tual potential of DMDU methods for project scheduling, using a stylised model and
binary disruption outcomes to explore scenario sensitivity. Building on this foun-
dation, the current study extends the approach to an operational project schedule,
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introducing continuous stressors and embedding adaptive logic within a granular
EMA pipeline. By structuring adaptation around task-specific risk events and sim-
ulating their effects across a full project network, this study reveals new challenges
in both modelling and implementation. These findings suggest that while EMA and
DAPP hold significant promise for infrastructure planning, their operationalisation
at the task level demands new methods for monitoring, triggering, and real-time
policy adjustment.
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6 Conclusion

Deep uncertainty in infrastructure construction scheduling arises when planners can-
not confidently describe system behaviour, assign probabilities to outcomes, or agree
on how those outcomes should be evaluated. While traditional risk management
addresses discrete, probabilistic events, deep uncertainty emerges in early planning
stages where knowledge is limited or contested. This study distinguishes between
aleatoric uncertainty, reflecting natural variability, and epistemic uncertainty, aris-
ing from incomplete knowledge. When epistemic uncertainty exceeds the scope of
existing planning tools, deep uncertainty emerges. This is particularly relevant for
early-stage decisions that influence long-term project outcomes, which is why this
study focuses on infrastructure construction scheduling.

To address deep uncertainty, this study applies [EMA] a framework designed to ex-
plore a wide range of plausible futures without relying on fixed models or known
probability distributions. Instead of optimising for a single expected outcome, EMA
supports the development of strategies that remain effective across many possible
conditions. Scenario discovery is used to identify combinations of uncertainties con-
sistently associated with poor project outcomes in terms of both cost and duration.
By applying Latin hypercube sampling to a highly granular, task-level construction
schedule—focusing specifically on tasks along the critical path and within a 5% slack
threshold—10,000 scenario runs were generated with embedded risks and uncertain-
ties derived from the project’s risk register. This process led to the identification
of six high-impact scenarios. Each high-impact scenario comprises a distinct combi-
nation of risk events and uncertainty values, which together define an ATP. These
ATPs form the basis for constructing a DAPP schedule.

In the directed search phase, predefined are optimised separately for each
high-impact scenario, resulting in six tailored policies, each of which performs well
under its corresponding scenario but tends to fail when applied to others. Given
that deep uncertainty makes it impossible to reliably predict how the future will
unfold, this reinforces the impracticality of relying on scenario-specific strategies.
Instead, robust policies are designed to perform reasonably well across a wide range
of conditions, offering greater resilience against the unknown. Using  MORDM] this
study evaluates cost—duration trade-offs to identify policies that perform acceptably
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across all six high-impact scenarios. A scalar function was applied to normalised
cost and duration outcomes to help decision-makers prioritise policies based on their
implicit preferences between the two objectives. Based on this process, four robust
policies were retained. Notably, three measures—new Design, overtime labour, and
electric machinery—appear consistently across the retained policies, suggesting that
a focused subset of actions can meaningfully improve schedule robustness.

These robust policies were then embedded into a environment, enabling the
construction of a DAPP schedule capable of adapting to unfolding uncertainty. To
enable adaptation, a simplified switching logic was implemented, activating a policy
when a scenario’s conditions were matched within 20% of the defined ATP thresh-
old. While this does not fully solve the challenge of ATP detection, it allows for
anticipatory switching before a tipping point is crossed. This operationalisation
demonstrates how DAPP can function within a simulated environment, providing
not only performance metrics but also insights into how often specific scenarios are
triggered. Although these frequencies are not real-world probabilities, they serve as
proxies for prioritising mitigation strategies during early planning—adding a supple-
mentary decision variable alongside robustness and cost-duration preferences.

This study demonstrates that the EMA and DAPP frameworks can be used to im-
prove schedule robustness in infrastructure construction projects. When used along-
side existing risk management practices, EMA and DAPP can enhance schedule
robustness by uncovering high-impact scenarios that are structurally distinct from
traditional risk events. This insight is supported by principal component analysis
on the LHS-generated uncertainty space. Through the PRIM experiments and ro-
bust policy evaluation in the directed search, a consistent set of adaptive measures
concerning both cost and duration was identified and structured into a conceptual
DAPP schedule. This offers decision-makers a method for treating deep uncertainty
not as background noise, but as a central component of early-stage risk analysis. At
the same time, the study highlights the current limitations of dynamic scheduling.
While ATPs offer a promising way to structure pathway switching, the actual use of
scenario-based triggers remains far from operational. To implement DAPP dynami-
cally, planners would require mechanisms for initiating policies from the first relevant
signal and continuously monitoring the unfolding uncertainty space—capabilities
that are not yet embedded in current project delivery systems. As such, the re-
sults provide a functional modelling framework and decision support tool, while also
clarifying what gaps must be addressed to move from conceptual insight to practical
implementation.
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6.1 Recommended Work

6.1.1 Selecting Robust Policies in Discrete Solution Spaces

This study explored the use of the MSMOP)] approach for identifying robust policies
across a set of high-impact scenarios. While the method is conceptually well-aligned
with the goal of cross-scenario robustness, its practical implementation was limited
by the structure of the policy space. Many of the available measures in construction
planning are discrete or binary, which MSMOP is not inherently equipped to han-
dle. As a result, the technique proved difficult to apply directly in a solution space
composed of boolean decision variables.

By contrast, the scenario discovery phase performed well. Out of 10,000 Latin hy-
percube samples, the iterative approach based on |Guivarch et al.| (2016)) successfully
revealed distinct families of high-impact scenarios, as confirmed through principal
component analysis. These scenarios were then used to generate six optimised poli-
cies, each tailored to one scenario. To assess their robustness, these policies were
evaluated in a full factorial design across all six scenarios. This generated a much
smaller solution space than the original 10,000-sample uncertainty space and allowed
for systematic performance comparison.

However, the policy evaluation phase lacked a robust selection method for boolean
policy spaces. The iterative PRIM method could not be repeated effectively in the
solution space, and as such, only conventional PRIM analysis was applied using cost
and duration as outcome variables. This process involved manual experimentation
with different thresholds and aggregation techniques, which limited its scalability
and interpretability.

Future research could explore how robust policy selection can be better structured
in small, discrete solution spaces. One direction would be to adapt the MSMOP
method to support boolean or categorical decision variables, making it more suitable
for real-world construction planning. Alternatively, new methods could be developed
or repurposed that explicitly target robustness in binary measure configurations. Ei-
ther pathway would advance the applicability of scenario-informed robust planning
in domains where decision levers are limited and non-continuous.
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6.1.2 Iron Triangle of Infrastructure Project Management

Incorporating scope as a third objective would complete the ron triangle of project
management (Egboga and Daniel, [2022). This classic framework describes the three
fundamental and interrelated constraints in project delivery: time, cost, and scope.
In construction, it reflects the reality that gains in one area often require compromises
in the others—for example, expanding the project scope may increase both duration
and cost. Including scope would significantly improve the model’s resemblance to
real-world decision-making, where such trade-offs are central during early planning
and tendering. In this study, duration was the primary metric, directly derived from
the project schedule. Cost, by contrast, was introduced mainly to enable trade-off
analysis, but was not firmly based on real project budgets. If cost can be more closely
tied to actual financial structures, just as duration was based on task logic, and then
meaningfully connected to scope or quality, the model would offer even greater value
for strategic planning and schedule development under deep uncertainty.

6.1.3 Knock-on Effects

While this study focused on primary scheduling effects using a DES structure, it did
not fully capture the broader impact of resource constraints and knock-on effects. In
real-world projects, such constraints often trigger secondary and tertiary effects, such
as delays in parallel activities or disruptions in subcontractor coordination. These
effects go beyond direct task logic and require more dynamic modelling. Future
research could integrate Agent-Based Modelling (ABM) into the EMA pipeline of this
study to simulate interactions between agents like workers, equipment, and planners.
ABM would allow for a more realistic representation of cascading delays and adaptive
behaviours, extending the current framework to reflect the operational complexity
of construction projects.
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A Appendix

A.1 Research design

A.1.1 Extended flow chart of research design

This flow chart represents the entire research design. The rectangles represent inter-
mediary products in the sequential process and the diamonds represent techniques
applied to go from one product to the next. The green boxes are the products of the
open exploration and the directed search and are the two main inputs for creating
the DAPP. At step 3 and step 4 information is added to the model
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Figure A.1: Flow chart of the full research design. Each rectangle box represents
one of the sequential steps in this project pipeline. Each rectangle box produces an
intermediary product that is the input for the following step. The diamonds represent
the used technique between the steps. In step 3 and 4, information is added to the

model.
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A.2 Results

A.2.1 Ciritical path and slack time

Slack Threshold Sensitivity (Activities vs Critical Path Size)
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Figure A.2: Sensitivity analysis of added slack time. The X-axis shows the slack
percentage, and the Y-axis presents the multiplier of activities relative to the critical
path. After 5% slack, the curve flattens, indicating that the number of near-critical
tasks increases only marginally. A threshold of 5% is selected as the best trade-off
between scope and marginal insight.
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A.2.2 Scenario discovery

A.2.2.1 PRIM iterations

PRIM iteration 1
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Figure A.3: The three iterations of PRIM to find scenario families that stress the
schedule on cost and duration. Each iteration follows up the other. Each time the
scenario family that makes the most impact is filtered out to force PRIM to find a
new set of rules for the following iteration.
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A.2.3 Directed search

A.2.4 Convergence metrics
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Figure [A.4 Hypervolume, Generational distance, Epsilon indicator, Inverted gen-
erational distance, spacing, and Epsilon progress are measured during optimisation.
Once all metrics stabilise, the algorithm can stop running evaluations. 8,000 nfe is
chosen for the optimisation. These metrics are from scenario 1 across all five seeds.

A.2.4.1 Directed Search and the role of PRIM in policy space

integrates robustness directly into the optimisation process by simultane-

ously evaluating multiple objectives across multiple plausible futures (Shavazipour

et al,2021). Unlike post-sampling approaches, which evaluate solutions after scenario-
specific optimisation, MSMOP searches directly for policies that are consistently

effective—if not dominant—in all scenarios.

MSMOP is designed for continuous decision spaces and does not support discrete
or mixed-variable optimisation without significant adaptation. In this study, several
strategic decisions—such as predrilling, redesign, and spare part options—are mod-
elled as boolean measures. Applying MSMOP would require fixing these discrete
variables in advance, thereby restricting the search space and limiting the ability to
explore trade-offs among key decisions.

As an alternative to MSMOP, this study applies PRIM in the directed search phase
to identify input conditions consistently associated with robust policy performance.
Although PRIM is more commonly used for scenario discovery, this study applies
it twice: first, to identify high-impact regions of the uncertainty space; and later,
within the directed search phase, to explain why certain robust policies perform well
within those same scenario-defined conditions. As discussed earlier, the sequence of
scenario discovery and policy search in EMA is flexible; this study adopts a scenario-
first strategy throughout, with scenario discovery guiding both policy design and its
post-hoc explanation. A related but inverted approach is found in Hamarat et al.
(2013), where a policy-first strategy is followed: candidate policies are evaluated
first, and PRIM is then used to uncover the scenario conditions under which they fail.
While their use of PRIM helps map vulnerabilities after policy design, this study uses
PRIM to reveal which policies of measures consistently yield robust outcomes across
all high-impact scenarios. By treating the policy measures explanatory variables,
PRIM helps expose generalisable design patterns—Ilinking policy structure to multi-
scenario performance. This demonstrates that, within this context, PRIM offers
a feasible alternative to MSMOP for exploring robust policy designs when mixed-
variable constraints exclude more complex optimisation techniques.
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A.2.4.2 Selection of robust policies

The selection of the percentiles in this PRIM sensitivity experiment is discussed in
Section In this Section in the Appendix the reasoning for the selection of the
final PRIM box is discussed. The analysis of policies from the Pareto front onwards
is presented in Section in the main body.

For the joint PRIM threshold the three different runs at the different percentile
all show a peeling trajectory. From the 80"percentile Box 7 is selected due to its
combination of coverage, density, and number of restricted dimensions. This PRIM
box counted 492 solutions with a density of 0.76 and a coverage of 0.42. The 4
measures in this box are: schedule padding, budget buffer, a spare part option, and
overtime labour.
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Figure A.5: The figure shows the PRIM of the 70%", 80", and 90" percentiles for
the joint threshold.
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For the separated conditions the 90" percentile is selected for duration. Box 6 is
chosen for its density of 0.97 and coverage of 0.23. The 5 measures in this box are:
schedule padding, budget buffer, a spare part option, overtime labour, and new design.
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Figure A.6: PRIM outcomes of the 70", 80", and 90" percentiles for the duration
condition.
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For the cost threshold, the 3™ box was selected from the 70" percentile. This box
has a coverage of 0.32 and a density of 0.87 with 372 policies. The driving measures
are: budget buffer, overtime labour, and extended search.
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Figure A.7: PRIM outcomes of the 70", 80", and 90" percentiles for the cost
condition.
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A.2.4.3 Robust policies
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Figure A.8: Parallel coordinates plot of the joint threshold robust policies.
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Figure A.9: Parallel coordinates plot of the separated threshold robust policies.
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A.2.5 DAPP

A.2.5.1 Distribution of Sampled Scenarios

Figure shows the amount of triggered DES runs distributed over the high-
impact scenarios. The bar plots show that for each seed, approximately 5% of the
5,000 runs the ATP trigger measured a high-impact scenario. Each of the six high-
impact scenarios is triggered, meaning that subsequently each policy is allowed to
be applied.

While the parallel coordinates plot in Figure provides an overview of the high-
impact scenarios, the accompanying bar plot offers additional insights to how they
are sampled.

Scenario 5 Cost-efficient but risk-exposed accounts for more than 50% of the triggers
for each seed. This Scenario is one of only two where no influenza wave has occurred.
The lowest overall scalar score from the Scalar function in Section [3.3.2.4lis connected
to this scenario.
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Figure A.10: Distribution of high-impact scenarios sampled in the DES environment.
Each seed is sampled 5,000 times. The bars represent the runs for which the ATPs
were triggered.
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This distribution gives additional insight into the likeliness of pathway development.
High-impact Scenarios 5 and 6 account for an average of 79% of all sampled scenarios
over the seeds. As Scenario 5 has the lowest scalar score, and Scenario 6 the third
lowest, it could be argued that the scalar score in Section [3.3.3.2] is correlated with
the occurrence in the quantitative analysis. When adding the third most sampled
scenario, high-impact Scenario 1, it shows that this suggested correlation is untrue.
Scenario 1 is sampled 12% of the time but has the highest scalar score. This infor-
mation confirms that it is good practice to prepare for even the most severe scenarios
even they appear very infrequently.
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