
Semi auto-taggers for music
Combining audio content and human annotations

for tag prediction
by

A.J.C. Lugtenburg
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Tuesday December 13, 2022 at 09:30 AM.

Student number: 4370805
Project duration: Jan 1, 2019 – Dec 13, 2022
Thesis committee: Dr. C. C. S. Liem MMus, TU Delft, supervisor

Dr. J. H. Kim, TU Delft, daily supervisor
Dr. J. C. van Gemert TU Delft

This thesis is confidential and cannot be made public until December 13, 2022.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
Auto-tagging systems can enrich music audio by providing contextual information in the form of tag
predictions. Such context is valuable to solve problems within the MIR field. The majority of re-
cent auto-tagging research, however, only considers a fraction of tags from the full set of available
annotations in the original datasets. Because of this restriction, potential relationships between tags
remain unconsidered and tagging may be less rich. These relationships suggest alternative ways to
establish an auto-tagging system. For instance, a few accurate annotations from experts can improve
the richness and quality of the auto-tagging system by providing explicit context in addition to audio
content features. In this work, we propose an adaptation to the auto-tagging task, semi auto-tagging,
to demonstrate such potential. In our framework, tags are allowed as contextual input to the tag pre-
diction system in addition to audio content information. The system then suggests additional relevant
tags. We implement two models that fit within the framework: content-aware matrix factorization
and graph convolutional networks. To see whether we can improve upon a traditional auto-tagger, we
compare these models with a multilayer perceptron as a baseline. Experimental results show that semi
auto-tagger models can predict relevant tags both in the absence and presence of an audio content
feature, and can predict tags for previously unseen songs similarly to an audio content auto-tagger.
Based on a tag embedding comparison, we find that semi auto-tagger models can better learn implicit
relationships between tags with a similar text string representation when compared to the baseline.

iii

Preface
Before you lies my master thesis, written to fulfill the requirements of the degree of Master of Science
(MSc) in Computer Science. For the duration of this project, I have been given many opportunities to
develop myself and learn and I am incredibly grateful for that.

I would like to dedicate this section to thanking a number of people as without them I would not
have gotten this far. First, I would like to express my gratitude to Cynthia Liem and Jaehun Kim (my
daily supervisor). During the many meetings I have had with Jaehun I’ve learned many new things
and I would not be the engineer I am today without this knowledge. I would also like to thank Jaehun
for the many fun discussions we had about technology and wish him all the best for his future career
abroad. Second, I would like to thank my parents, family, and friends. Without their support I would
not have been able to become who I am today.

It has not been an easy road for me to conclude this work, but I am proud of the result. To whoever
is reading this, I hope you enjoy reading this work.

Jochem Lugtenburg

Delft, December 2022

v

Contents

1 Introduction 1
1.1 Research Questions . 4
1.2 Scientific Contribution . 5
1.3 Thesis Structure . 5

2 Background and Related Work 7
2.1 Music Tags . 7

2.1.1 What defines a vocabulary of tags? . 7
2.1.2 Obtaining tags . 8
2.1.3 Issues with tag vocabularies . 9

2.2 Music Auto-Tagging . 11
2.2.1 Defining Music Auto-Tagging . 11
2.2.2 Audio input representations . 11
2.2.3 Traditional Auto-Tagging systems . 11
2.2.4 Deep Learning Based Approaches . 13

2.3 Models. 16
2.3.1 Deep Neural Networks . 16
2.3.2 Matrix Factorization . 17
2.3.3 Graph Representation Learning . 18

3 Methodology 21
3.1 Limitations of auto-tagging . 21

3.1.1 Formalization: Semi Auto-Tagging . 22
3.2 Models. 24

3.2.1 Content-Aware Matrix Factorization . 24
3.2.2 Graph Convolutional Network . 25

4 Experimental Setup 27
4.1 Datasets . 27

4.1.1 Features . 27
4.1.2 Million Song Dataset (Last.fm) . 28
4.1.3 MagnaTagATune . 29

4.2 Experimental Design . 32
4.2.1 Model and Hyperparameter selection . 32
4.2.2 Loss function . 32
4.2.3 Evaluation. 33

4.3 Implementation Details. 34
4.3.1 Hardware . 34

4.4 Research Questions . 35
4.4.1 RQ1: Effectiveness of a Semi Auto-tagging system 35
4.4.2 RQ2: Effective use of the vocabulary . 36

5 Results 37
5.1 Classification Accuracy . 37

5.1.1 AUC-micro . 37
5.1.2 AUC-macro . 37
5.1.3 AUC-samples . 39

5.2 Ranking Accuracy . 40
5.2.1 NDCG (full) . 40
5.2.2 NDCG (50% tail). 40

vii

viii Contents

5.3 Embedding Similarity . 42
5.4 Discussion and limitations . 44

5.4.1 Discussion . 44
5.4.2 Limitations . 44

6 Conclusion 47
6.1 Contribution . 47
6.2 Future Work . 49

A Experimental Design 51

B Classification Accuracy Results 59

C Ranking Accuracy Results 65

D Embedding Similarity Results 73

E Song predictions 75
E.1 MSD 128 5 seeds . 76
E.2 MTAT 128 5 seeds . 79

F Supporting figures 81

Bibliography 89

1
Introduction

The field of Music Information Retrieval (MIR) obtains and uses information about music to solve
a range of problems related to music. These problems can be solved by making use of information
extracted from the audio content, such as audio waveforms, or by making use of contextual informa-
tion that helps in the understanding of music. Audio content can only provide a limited amount of
information, which means that common MIR tasks such as recommendation cannot always be solved
using audio-only. Contextual information on the other hand provides information that audio content
does not provide, for example in the form of metadata. This information can then be used to group
songs, artists, or albums, for example using their genre. Context often comes in the form of a set of
tags that compose a description of the music [53]. Music tags are descriptive words or phrases that
can provide (high-level) information for entities related to music such as songs, albums, or artists [53].
Figure 1.1 shows an example of songs that are labeled using a range of different tags. Multiple tags
can be assigned to a single song and tags can be of different categories such as genre (pop, classic rock

or pop-rock), instruments (guitar), opinion (Favourite Songs, Favorite) and many others. Such a rich
description of music is valuable as contextual input to MIR systems. For example, tags can be used
to reduce the impact of the cold-start problem in music recommendation [29], where recommendations
cannot be made for new songs that have not been listened to by users and therefore have not been
seen by the system before [51]. The context provided by tags can alleviate this problem by grouping
similar songs together, which allows for recommendations to be made for those songs. Additionally, a
similar cold-start problem can be solved when recommending songs to users. If new users do not have
a listening history, tags of interest supplied by the user, or tags obtained from the first songs consumed
by a user can be used as input to a recommender system. Tags can also be used to learn representations
directly from the audio to learn a model [18, 26, 35, 37, 45]. Such representations can then be reused
as input to other tasks, such as finding similar songs. Another use case of tags can be found in search
engines where users can query for music by looking for specific concepts or keywords [53]

Two possible sources for obtaining tags are humans and machines. Humans can tag in several
ways [74]: trough social tagging (crowd-sourced) [53], expert annotation [74] or tagging games [54, 55].
Social-tagging is a crowd-sourced approach [53] where large groups of people tag a collection of songs
to obtain a so-called folksonomy [2] of social tags. An example of this can be found at Last.fm 1 where
users have provided tags for songs they listened to. Last.fm is a community of music listeners where
users can track their listening behavior and taste to obtain new music recommendations. The benefit of
using a service with a large user base is that a varied set of tags can be obtained in very large quantities.
A downside of this is, however, that tags can be "noisy" in many ways, as users are unrestricted in the
tags they apply. Examples of such noise are that tags can be ambiguous, contain (spelling) errors, or
do not have any relationship with the song. Also, social tags applied by humans can be sparse since
unpopular or new songs often are untagged, which makes it difficult to make recommendations for these
songs using their annotations [28].

Expert annotation is performed by knowledgeable taggers that tag from a relatively small, but
accurate vocabulary [74]. An example of expert taggers can be found at music streaming services
1https://www.last.fm/about, Last.fm about page

1

https://www.last.fm/about

2 1. Introduction

rock n roll

oldies
nostalgia

memories

lovesongs

Disco

pop rock

adult contemporary

fav

anthem

poprock

title is a full sentence

fast

easy listening

1980s catchy

Uplifting

Mellow

pop 80's

easy

Favorite favs

ballads

favorites
americanhappy

arena rock

beautiful

male vocalistsclassic rock

new waveGuilty Pleasures

slgdm

Soundtrack

soft rock

80s Pop

great song

Favourites

eighties

favouritestreamable

Power ballad
downtempo

party80s

Favourite Songs

Love
rock

classic

romantic

Pop-Rock

love songs

synth

Soundtracks

song noirguitar

my favorite

major key tonality
billboard number ones

loved

Radiotsar approved

Retro
classics

san francisco

upbeat

childhood
top artists

Driving

road trip

female vocalists

dance
fun

summer5

guilty pleasure

feel good

old school
cool

yes

electronic

funk

female vocalist

Brems Tagg radio

rnb

best songs of the 80s

funky

soul

my soundtrack

Deniece Williams
Let's Hear It For The Boy

Starship
We Built This City

Starship
Nothing's Gonna Stop Us Now

Song - Tag network of similar songs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ta
g

de
gr

ee

Figure 1.1: Song-tag relationships for 3 similar songs from the top-1000 most frequent tags in the Last.fm subset of the
Million Song Dataset. Grey nodes represent songs, listing the artist and title. Colored nodes represent tags. Tag degree
shows the number of songs that are connected to each tag node.

such as Pandora. Pandora’s2 Music Genome Project aims to gather music knowledge using trained
musicologists [1]. Since these experts are trained specifically for the tagging task this approach suffers
less from noise, however, the vocabulary is restricted which leads to less rich tagging. Additionally,
experts are an expensive resource both in terms of money and scalability since tags can only be applied
at a limited rate which makes it difficult to tag at scale. Tagging games such as TagATune [54, 55]
balance crowd-sourcing with a fixed vocabulary where tag collection is gamified to encourage players
to tag more accurately.

Machine tagging, on the other hand, is typically referred to as auto-tagging [10]. The goal of an
auto-tagger is to predict tags directly from song audio, without human interference to resolve the issue
of tag sparsity. A benefit of this approach is that it is scalable because songs can be tagged at a much
higher rate compared to human annotators, and computing resources are generally cheap. However,
achieving high accuracy is complicated with these models because the quality of tagging datasets used
to train them varies. Datasets vary in vocabulary size, richness, and noise, and often follow a long-tail
distribution. Primarily, two datasets are used. The first [5, 11], Million Song Dataset (MSD) is a
folksonomy collected from Last.fm. The second, MagnaTagATune (MTAT) [6, 55] is collected using a
more controlled environment in the form of a game. From these datasets often only a subset of the
most frequent tags in the available dataset is used. A limitation in the size of the used subset causes
the vast majority of the available song-tag mapping to remain unconsidered, thus limiting the richness
an auto-tagger can achieve. In the case of MSD often only 50 out of 500K tags are considered. Some
reasons for this are that smaller subsets are easier to analyze [28], some tags being sparse [29], dataset
imbalance [16] or size of the output space [19]. Recent work [16, 25] shows that high classification
accuracy can be achieved on these subsets, but using these subsets may hinder real-world use cases for
these models as many less frequent but useful tags are ignored. Additionally, other fields have already
been able to achieve annotation using very large vocabularies, for example, in the field of computer
vision. In image classification, [52] models can successfully classify images from 1000 unique labels
with a relatively low rate of error.

So far we have discussed humans and machines and their (dis)advantages. Humans can provide larger
vocabularies, and more accurate tagging (experts). Auto-tagging algorithms can provide scalability.

2https://www.pandora.com/about, Pandora about page

https://www.pandora.com/about

3

nostalgia

memories

pop rock

fav
favs

beautiful

classic rock

great song

Favourites

favouritestreamableromantic

synthSoundtracks

song noir

easy listening

Retro

upbeat

childhood

favorites

arena rock

male vocalists

dance

Guilty Pleasures

summer

eighties

5

Love

yes

Disco

funky

Favorite

Soundtrack

Deniece Williams
Let's Hear It For The Boy

Starship
We Built This City

Starship
Nothing's Gonna Stop Us Now

Figure 1.2: Graph of songs and tags based on three songs from the Million Song Dataset. Node color indicates tag degree.
Dashed edges indicate a previously unseen song for which context has been provided by a human expert, unlocking access
to more context already available in the dataset.

Current solutions to the auto-tagging problem are often only audio content-based. In addition to this
content, it may however be beneficial to also consider context as an important factor when predicting
tags, as is currently present in human tagging. Humans are likely to select semantically similar tags.
Popular datasets such as the Last.fm dataset contained within MSD can be interpreted as a network
of songs and tags in which tags that have a similar semantic meaning are closer within the graph. The
bigger or richer the vocabulary, the more of these relationships become available. For example, a song
that is tagged rock is likely to include guitar, the instrument around which the genre is centered. There
are ways in which we can make use of this context within auto-tagging systems. For example, we can
benefit from (hidden) implicit relationships that exist between tags within an auto-tagging dataset by
explicitly learning from them. Likewise, for new songs, we can make use of external tag annotations
as input to the model. Similar to how audio features currently provide content information, external
(expert or system user) seed information can provide context for those unseens songs that are not yet
connected to the song-tag graph contained in the dataset by default. By doing so we can suggest
several relevant tags based on expert input. Additionally, an expert-machine hybrid system can be
an alternative form of tagging that may be both more efficient and effective for the human tagger.
Figure 1.2 shows how this could look on a subset of the data shown in Figure 1.1. A previously unseen
song from Deniece Williams is connected to the existing dataset via external (tagger) seed input. After
it is connected to the graph, a tagging system can benefit from the context of the known songs in
the network to suggest additional tags. Similar completion problems exist in MIR, for example the
2018 ACM RecSys challenge [15, 86] in which participants were asked to solve automatic music playlist
continuation. Models were given incomplete playlists and were asked to recommend songs from a big
vocabulary of 2 million songs based on the songs that were already given. It was shown that systems
were able to come up with more relevant playlist continuations as the number of given songs increased.

In this work, we propose an adaptation of the auto-tagging problem which we name semi auto-

tagging. In our framework tags are allowed as contextual input to the model in addition to an audio
content feature. By combining these two inputs, we can suggest relevant tags based on both the
audible (content) properties of the song and tags (context) that have been provided by an external
tagger. We hypothesize that there is merit in such an approach and that we can achieve comparable or
better performance compared to a content-based auto-tagging baseline. Our hypothesis is validated by
implementing two model candidates that fit in our framework: a deep-learning-based graph approach
[69] and a matrix factorization [58] model. We compare their tagging performance with a simple content-
based auto-tagging baseline by looking at ranking accuracy and classification accuracy. We investigate
the effect of a content-driven feature by comparison with a random feature to test whether semi auto-

4 1. Introduction

tagging models can make use of the content feature in addition to contextual input. Additionally, we
compare learned embeddings to see if models can learn the similarity between tags effectively. Since
vocabulary size is important for the amount of context that is provided, we evaluate the models using
varying sizes of vocabulary, from multiple datasets.

1.1. Research Questions
We hypothesize that exploiting the context contained within music tagging datasets combined with
audio content in the form of a semi auto-tagger is beneficial for the music auto-tagging problem as a
whole. Therefore we formulate two main research questions, driven by our interests in extending the
auto-tagging problem.

Research Question 1

RQ1 - How can we build a system that suggests additional tags using contextual input?

We aim to answer this question by looking at three important aspects mentioned in the previous section
while taking into account different vocabulary sizes for each subquestion.

SQ1.1 - Given contextual input combined with audio features, can a semi auto-tagger predict more

relevant tags compared to a content-only auto-tagger?

Our first sub-question follows from current auto-tagging systems which are heavily based on audio
content input and have been successfully able to predict tags in a traditional auto-tagging setting.
Therefore a model that is capable of combining content with context should be able to use audio in the
form of features extracted from the audio as well. We hypothesize that if we combine contextual input
with meaningful audio features we can obtain more relevant tag predictions compared to a baseline
model that can only predict based on audio content.

SQ1.2 - For previously unseen songs, can a semi auto-tagging model predict relevant tags?

Second, the system must be able to work for unseen songs. Since human taggers often have to deal
with songs that are not yet tagged where only input audio is available and the model can not yet rely
on context. By answering this question we verify that a semi auto-tagger has an important property of
a traditional auto-tagger: it alleviates the cold-start problem by being able to predict tags for unseen
songs directly from the audio content.

Research Question 2

RQ2 - Does a noisy tag vocabulary contain useful information for (auto-)tagging?

This question is motivated by current approaches which are often using only a subset of available
auto-tagging datasets, while there is significant unexploited potential. We aim to answer this question
by showing two properties. First, we consider a bigger vocabulary than most auto-tagging to show
that (semi) auto-taggers can make use of these larger vocabularies. Second, we look at the contextual
song-tag relationships learned by our system. Given some strong implicit relationships that are present
in the datasets such as between rock and electric guitar it is expected that a model that considers
explicit relationships as input can better grasp implicit relationships compared to a model that does
not consider explicit relationships as input. Therefore we look at the tag representations learned by our
models to see whether they can be used to find similar concepts within the vocabulary.

1.2. Scientific Contribution 5

1.2. Scientific Contribution
In this work, we provide two contributions to the field. First, we look at the auto-tagging problem
from a new angle. By considering human input, we propose a hybrid between human tagging and
machine tagging in the form of semi auto-tagging. This opens up new opportunities for researchers to
design systems that can better help expert taggers. We provide examples of systems that adhere to
the definition of such a system. Second, we give insight into how these systems can be evaluated and
provide evidence that they indeed contribute to solving the semi auto-tagging problem.

1.3. Thesis Structure
The thesis is structured as follows. First, we provide the necessary background to understand the auto-
tagging problem and the current direction of research in Chapter 2. In this chapter, we also lay out
the necessary theory for the models that we use in our experiments. Second, Chapter 3 contains our
approach and contains an overview of our model selection. Then, Chapter 4 outlines our experimental
setup, implementation details, and evaluation procedure. Finally, we show and discuss the results and
limitations of our work in Chapter 5 and conclude with our findings and future work in Chapter 6.

2
Background and Related Work

In this chapter, we discuss the necessary background which forms the basis for our methodology. First,
we discuss what music tags are and the different forms in which they exist. Second, we discuss the auto-
tagging problem and various solutions that have been proposed over the past twenty years. Finally, we
discuss three types of models that form the basis of the models we use in our experiments.

2.1. Music Tags
An important task in the field of Music Information Retrieval (MIR) is obtaining and using information
about music to solve a range of music-related problems. Expanding the available contextual knowledge
about music is one way to better solve these problems [53]. By making use of this knowledge, systems
can be built that have a better understanding of music audio. As problems grow more complex, more
and more contextual information about music is required. One way to obtain this context is by labeling
music using music tags. Applications that make use of tags can be found in search and discovery,
directed search, tag similarity and clustering, item similarity [53] and (supervised) embedding learning
[18, 26, 35, 37, 45]. Importantly, they can be used as an alternative to collaborative-filtering based
recommendation approaches that suffer from the cold-start problem where songs that have not been
encountered before cannot be recommended easily [9, 29].

2.1.1. What defines a vocabulary of tags?
A music tag is a textual description that can be used to annotate entities related to music resources such
as artists, albums, or songs [53, 74]. A tag can be a word (rock, favourite, piano) or a phrase (chamber

music, alternative rock, I like this song) describing the resource. Differing from a genre commonly found
in music libraries such as iTunes, multiple tags can be assigned to a single entity and the number of
tags assigned to a resource is unlimited. This freedom allows for rich descriptions to be composed of
tags which makes tags a highly valued resource in the field. A collection of tags is often referred to as
a vocabulary of tags. One way to obtain a vocabulary is via so-called social-tagging [53]. In his work
on social tagging, Lamere distinguishes between keywords and social tags. A keyword is a single label
assigned to a resource from a fixed vocabulary. A social tag is typically provided by non-expert users of
a social platform. On platforms such as Last.fm, users are free to assign tags to music resources without
restrictions. A collection of social tags is often referred to as a folksonomy: a vocabulary composed of
tags provided by a large group of taggers in a social environment [2]. A (social) tag can be from a wide
range of categories and is not necessarily related to audio content, which is a result of the freedom given
to users. Examples of tag categories are genre, locale, mood, opinion, instrumentation, style, personal,

organisational and many more. Table 2.1 shows examples of categories and tags for frequently applied
tags at Last.fm as categorized by Lamere [53]. The majority of these social tags are related to audio.
A major benefit of social tags is that they can be obtained at scale due to the way they are collected.
Turnbull et al. further describe tag vocabularies, differentiating between fixed or extensible along with
structured or unstructured tag vocabularies [74]. A vocabulary is fixed and structured if the set of tags
is predetermined and grouped into consistent semantic categories. On the other hand, a vocabulary is
extensible and unstructured if tags can be added freely and there is no restriction on the contents of the

7

8 2. Background and Related Work

Tag Category Frequency Examples
Genre 68% heavy metal, punk
Locale 12% French, Seattle, NYC
Mood 5% chill, party
Opinion 4% love, favorite
Instrumentation 4% piano, female vocal
Style 3% political, humor
Misc 2% Coldplay, composers
Personal 1% seen live, I own it
Organisational 1% check out

Table 2.1: Example tag categories, frequency and tags as given in Table 1 of [53]. Frequency is based on the 500 most
frequent tags collected from Last.fm at time of writing. Note that the majority of tags describe audible contents. Table
taken from [53]

tag. Social tags can be seen as unstructured and extensible and provide one of the largest vocabularies
available [5].

2.1.2. Obtaining tags
Three human-driven ways to obtain a vocabulary of tags are expert surveys, social tagging, and tagging
games. Each way has its strengths and shortcomings which impact their usefulness as a source of tags
[74].

Music annotation surveys use experts that annotate music by hand. An example of this is the Music
Genome Project (MGP) of Pandora. Pandora is a music and podcast delivery platform and therefore
has an interest in understanding music for purposes such as recommendation. The MGP [1] has been
gathering music knowledge for over a decade and does so using a team of experts in the form of trained
musicologists. A strength of this approach is that it provides high-quality annotations, but on the
other hand, it is also a time-consuming process [74]. According to Pandora, it takes about 20 minutes
to annotate a single song and between 2000 and 2009 about 700,000 songs have been annotated for
80,000 artists [3, 4]. Their experts discuss audio content and tag from a fixed, structured vocabulary
which is beneficial to the quality of the tags obtained. However, given the number of resources allocated
by a company such as Pandora, they are unlikely to share this data with the MIR community [74].

Social (non-expert) tags are tags that are contributed by users of music services such as Last.fm
[53, 74]. The unlimited vocabulary users provide can be obtained at scale, depending on the number
of users that make use of a social platform. As a result, the datasets obtained from social tagging
may be weakly labeled [74], meaning that the absence of a tag does not necessarily mean that the tag
does not apply to the resource. Additionally, it may come with noise and the number of tags assigned
to a resource may suffer from popularity bias because more popular items are annotated more often
[74]. Lamere claims that for their dataset obtained from Last.fm a big majority of artists were not
assigned tags [53]. This is even worse when songs are considered. Because of this, social tags may not
be suitable for the exploration and recommendation of new or unpopular items. As shown in Table 2.1,
a vocabulary obtained from Last.fm the majority of tags however seems to describe the audio [53].

Tagging games such as TagATune [54, 55] attempt to obtain tags for music in a more controlled
way, while still making use of a larger group of non-expert taggers. In TagATune, two players are
given a fragment of a song and are then asked to describe it. Based on their descriptions they have
to decide whether they are listening to the same song or not. This way of tag collection encourages
players to describe resources accurately. Figure 2.1 shows example tagging interfaces. There are some
risks when collecting data using tagging games. Players can game the system and it may be difficult to
create a successful gaming experience [74]. Other examples of tagging games are MajorMiner [59] and
ListenGame [73].

Besides human annotation, there are also more machine-driven ways of obtaining tags, such as
auto-tagging and web scraping [74]. Auto-tagging is proposed as a solution to a problem similar to
the cold-start problem in collaborative filtering-based recommendation [74]. Social-tagged songs often
come without tags or are sparsely tagged which makes tags unsuitable for the recommendation of new
items [53]. Auto-tagging models attempt to predict tags based on the audio content of the song to

2.1. Music Tags 9

(a) User interface of ListenGame. Players are asked to
listen to music and select best and worst tags that describe
a song. Figure taken from [73]

(b) User interface of TagATune. Two players are asked to
describe a song and are then asked if they listen to the
same song. They only score points if they correctly guess
if they are listening to the same song. Figure taken from
[54]

Figure 2.1: Examples of two tagging games.

Dataset Reference # Tags # Songs Source
AudioSet [31] 6321 20843203 Human Annotators
Ballroom [33] 8 6982 Web Scraping
CAL500 [75] 174 502 Human Annotators
CAL10K [72] 628 10870 Human Annotators (Pandora)
Free Music Archive (full) [23] 161 106574 Users (FMA)
Homburg [43] 8 18863 Users (Garageband.com)4

GTZAN Genre Collection [77] 10 1000 Author
MagnaTagATune [6, 55] 188 258632 Tagging game
Million Song Dataset (Last.fm) [5, 11] 522366 5052165 Users (Last.fm)
MTG-Jamendo [13] 195 55609 Users (Jamendo)
Additional datasets6 - - - -

Table 2.2: List of commonly used datasets in MIR literature. Note that many come with only a low number of tags,
especially compared to MSD.

alleviate this problem. It has been shown that there is merit in improving auto-tagging models [70], as
qualitatively higher tagging models are beneficial to the performance of content-based music similarity
systems. We will dive deeper into auto-tagging models in Section 2.2.

There exists many different datasets that are obtained via the aforementioned approaches [11, 13,
23, 31, 33, 43, 55, 72, 75, 77]. An overview of the available tag vocabularies that are commonly used
in MIR literature and their source is given in Table 2.2.

2.1.3. Issues with tag vocabularies
Several issues arise when dealing with tag vocabularies. The ideal vocabulary is large and contains a
diverse set of accurate tags. As discussed in the previous section, collecting tagging datasets is a labor-
intensive process, hence it is difficult to obtain such a vocabulary. Popular, relatively clean datasets
such as MagnaTagATune [6] come with a small vocabulary and are less diverse than more noisy datasets
such as the Last.fm subset of Million Song Dataset (MSD) [5]. Despite being noisy, the vocabulary
provided by MSD does however provide the diversity we seek as the dataset contains tags covering a
wide range of musical topics such as genre, instrumentation, mood, and more. Being a dataset composed
of social tags, it comes with a wide range of issues as described in [53]. Since the users of Last.fm are

1Majority is not music related.
230 second clips or song excerpts.
310 second song excerpts
4Former online community, domain now owned by Apple inc.
5Songs that have at least one tag.
6Additional MIR datasets can be found at ISMIR: https://ismir.net/resources/datasets/

https://ismir.net/resources/datasets/

10 2. Background and Related Work

unrestricted in their tagging behavior. Two tags can have the same meaning such as r&b and r and b.
Tags can be ambiguous such as Love. Does the tagger love the song, or is the song romantic? We can
also find tags that are likely to be noisy such as single-character tags like a. Some taggers are malicious
in their tagging intents. For example, people can apply false tags to artists they don’t like, tagging a
pop song as Brutal death metal. These issues can make it difficult to work with these vocabularies often
leading to only using a small, more clean subset of these vocabularies [16, 25, 28, 29]. Recent work by
Choi et al. however suggests that using bigger subsets of a dataset such as MSD can still be reliable
[19].

2.2. Music Auto-Tagging 11

2.2. Music Auto-Tagging
The music classification task has been part of MIR for more than 20 years. Initial research focused
primarily on automatically classifying music genres. Over time research moved from genre classification
to music auto-tagging: no longer restricted to genres alone. In this section we will first define the
auto-tagging problem, then briefly discuss some common audio input representations. We will then
discuss a range of auto-tagging algorithms available.

2.2.1. Defining Music Auto-Tagging
The auto-tagging problem is not clearly defined, most authors have a slightly different view of the
problem. Bertin-Mahieux et al. decompose auto-tagging systems into four parts: audio features, tags,
a machine learning algorithm, and an evaluation procedure [10]. They define a tag as "a user-generated
keyword associated with song resource". Law et al. take a more mathematical approach to the definition,
where the music annotation problem is defined starting from the training data, where the goal is to
learn a mapping function that maps an audio feature to a set of tag relevance scores [56]. Similarly,
Turnbull et al. define the annotation problem as finding a set of semantically meaningful words that
describe a query audio track [75]. In this work, we define the auto-tagging problem based on these
approaches as follows:

Given a set ofN training songs S = {s1, s2, · · · , sN}, annotated using tags from a vocabulary
T = {t1, t2, · · · , tV } of length V . Each song is annotated from the set of tags by humans using
one of the ways described in section 2.1.2 and is represented by two vectors si = (ai,xi).
ai ∈ {0, 1}V is the list of ground truth tag annotations, where a tag is marked 1 if it is
assigned to song si and 0 otherwise. Additionally each song comes with a feature vector
of size M , X = {x1,x2, · · · ,xN} where xi ∈ RM . The feature is either computed or
learned from the audio itself. Finally, the goal of an auto-tagging task is to learn a mapping
f̂ = X × T → R where each feature is mapped to a score per tag indicating its relevance to
the audio, a multi-label classification problem.

2.2.2. Audio input representations
Traditionally features in MIR that are used for auto-tagging depend on domain-specific knowledge
rooted in music theory and signal processing [45]. An audio file is processed using an algorithm and
converted into a set of features. One of the most common representations is the Mel-Frequency Cepstral
Coefficients (MFCC) [21, 46], originally developed for speech recognition. They have been shown to
work on other audio inputs such as music as well [29, 75, 76].

MFCCs can be further aggregated to summarize a song or song excerpt. An example of this is the
MFCC-Delta feature. First, a set of MFCCs is computed by sliding a short-time window over the song
audio. Then, the obtained vectors are concatenated. This set of features can then be extended by the
first and second derivatives of the MFCC to capture temporal dependencies between features [75]

More recent auto-tagging works attempt to reduce the amount of manual signal-processing-based
feature engineering by learning features directly on the mel-spectrogram or Short-Time Fourier Trans-
form (STFT)[16]. Humphrey et al. argue that the set of hand-crafted features traditionally used by
MIR is limited and that the field can benefit from using deep learning-based architectures and auto-
matic feature learning to learn robust audio representations [45]. These learned features can then be
used as input to further improve tasks such as auto-tagging. Often, a task such as the auto-tagging
task is used to learn these features in a supervised fashion. We dive deeper into these works in ??.

2.2.3. Traditional Auto-Tagging systems
There are many variations of auto-tagging systems that apply a wide range of algorithms. Early
attempts at automatic classification of music mostly focused on genre recognition. Tzanetakis et al.
explored genre classification using a collection of features based on music characteristics such as texture,
timbre, instrumentation, and rhythm [76]. Additionally, they make use of MFCCs. A gaussian classifier
is then learned, which represents each class with a Gaussian distribution estimated from the training
data. This classifier shows that genre classification is possible using the selected set of features [76].
Building upon this, a Gaussian Mixture Model (GMM) and a K-Nearest Neighbour (KNN) based
approach was tried on a similar set of features [77]. These approaches showed performance similar to

12 2. Background and Related Work

human genre classification but were limited by having only 10 genres available in the dataset7.
One of the first models to extend beyond genres is a model by Turnbull et al [75]. Their model

can both annotate and retrieve songs or sound effects from a database of unlabeled audio. A GMM is
learned for each tag using MFCC-Delta features obtained by concatenating the MFCC and its first and
second derivatives. Additionally, they contribute the Computer Audition Lab 500 (CAL500) dataset
which consists of 500 songs for 500 distinct artists over 50 years. The vocabulary contains 174 tags,
and each song contains at least 3 annotations. The songs were annotated by students which were paid
to annotate in a similar setting as expert tagging. The authors acknowledge that their data quality may
not be optimal, but is still useful for content-based music annotation and retrieval research. Results
show that the model is capable of tagging from the entire vocabulary and that it is beneficial to use a
relatively clean dataset such as CAL500.

Eck et al. [29] propose a model which learns a model that predicts social tags using AdaBoost [30],
also making use of MFCC features. They make use of a subset of the 60 most popular tags obtained
by crawling data from the Last.fm Audioscrobbler. Each label is treated as a separate classification
problem, where the goal is to predict if an artist has none, some, or a lot of a particular tag. Figure 2.2
shows the architecture of the model. Their approach gives further evidence that auto-tagging music is
possible and has merit.

Figure 2.2: The AdaBoost model as used in [29]. Audio features are extracted from songs and then used to learn a
booster per tag. Tags can be predicted for new songs using these boosters.

Improving upon this approach, Bertin-Mahieux et al. [9] replace AdaBoost with FilterBoost [14].
Instead of predicting none, some, or a lot they use binary classification per tag. Notably, the authors
recognize that there may be correlations between tags. They propose two methods that can incorporate
these correlations into the model. First, a second learning stage trains additional classifiers based on
the output of the original tagger. Second, a reweighting based on the correlations computed between
tags. Their results give evidence that automatically generated tags are of value in a music similarity
task. However, they do not outperform the social tags on which they were trained. Additionally, there
is some evidence that incorporating relationships between tags can improve model performance.

Hoffman et al. use the CAL500 dataset to train a model called Codeword Bernouilli Average (CBA)
which improves upon the results by Turnbull and Bertin-Mahieux [42] by predicting the probability
that a tag applies to a song based on a vector quantized representation of the song audio. Wang et al.
propose a model that learns a Support Vector Machine (SVM) based model on a hypergraph, taking
into account both music style and music tag correlations [82]. Similar to Eck et al. they find that
incorporating tag information is beneficial for improving auto-tagging performance.

Law et al. note that most previous work has been using small, fixed, and clean vocabularies and
argue that these vocabularies simplify the auto-tagging task and that bigger vocabulary obtained from
social-tags or tagging games should be used instead [56]. They list three challenges when doing so: noise
(synonymy, misspellings, semantic equivalence), sparsity (long-tail distributed tags), and scalability. To
overcome these challenges, a new technique is introduced that can tag at a bigger scale. A Latent
7http://marsyas.info/downloads/datasets.html, GTZAN Genre Collection

http://marsyas.info/downloads/datasets.html

2.2. Music Auto-Tagging 13

Dirichlet Allocation (LDA) [12] model is used to group tags in more structured semantic topics. These
topics are then used as training labels to predict topics from audio features. The method is efficient
and achieves comparable performance to previous methods such as [9, 42, 75].

Weston et al. propose a model that jointly optimizes a set of tasks to map audio, artist names, and
tags into a single low-dimensional representation [84]. They find that by optimizing their model using
a ranking-based loss, performance improvements in ranked precision can be obtained for example in
a tag prediction task. Similarly, Hamel et al. learn a latent representation using genre classification,
music similarity, and music auto-tagging tasks.

2.2.4. Deep Learning Based Approaches

Figure 2.3: Example of a Deep Belief Network. DFT values are computed from the input audio and used as input for
unsupervised training. Afterwards, the model is fine-tuned in a supervised way using the 10 classes from GTZAN. After
model training, the activations of the hidden layers are extracted as an audio feature which can be used as input for other
classifiers. Figure taken from [35]

Implementations of this idea showed promising results. Hamel and Eck. perform feature learning
using Deep Belief Networks (DBN) [35]. Using the 10 genres in GTZAN [76] and 25 most popular tags
collected from the MajorMiner game [59] as training data. The DBN is first trained on Discrete Fourier
Transform (DFT) input features in an unsupervised manner. Then, the model was fine-tuned and
supervised using the GTZAN genre labels from the same training set. After training, the activations
of hidden units in the network can be extracted and used as audio feature input for other classifiers.
The robustness of these learned features is then evaluated by training an SVM based auto-tagger on
the MajorMiner dataset, using the DBN as a feature extractor. An example of a DBN model is given
in Figure 2.3. Results show that for most tags, the learned features outperform signal-processing-based
features such as the MFCC-based ones. Similarly, Li et al. [57] use a Convolutional Neural Network
(CNN) to learn features based on MFCC features for multiple adjacent frames of input audio from the
GTZAN genre dataset. Henaff et al. use the GTZAN dataset to learn audio features via an unsupervised
predictive sparse decomposition algorithm [40]. Using these features as input to an SVM, they find that
their learned features perform as well as features that are manually computed in a genre classification
task.

Dieleman et al. [26] propose a convolutional DBN learned to perform genre, artist, and music key
detection using data from MSD. First, a DBN is learned, which is then converted into an MLP to
learn the target task. The authors find that the convolutional nature of the network allows features
to be summarized over time, improving task accuracy. Similarly, Hamel et al. [36] combine feature
learning, time summarization, and tagging into a single model to obtain competitive results on MTAT.
First, a set of discrete Fourier transforms (DFT) is preprocessed before the features are summarized
over time by a pooling layer. These pooled features are then used as input to an MLP that is used
for auto-tagging. They further improve performance by adding an MLP between the features and the
pooling. The hidden layers of this MLP serve as feature learners. Further work by Dieleman et al.
shows that features can be learned based on multiple timescales [24]. They find that different tags rely
on different time scales.

14 2. Background and Related Work

Van den Oord et al. [79] attempt to predict latent factors from music audio. Using Weighted Matrix
Factorization (WMF) [44] they first compute latent factors which are then used as training input to
deep learning-based models that can predict these latent factors from the music audio. In an auto-
tagging task, they find that the learned features outperform the more traditional features. Similarly, in
later work [80] a feature extractor is learned using MSD. The feature extractor is then used to obtain
features to train an SVM. The features are then shown to work well for other datasets as well in a tag
prediction task. In a related approach, Liang et al. [58] use a neural network as a feature extractor,
but use this as an addition to the matrix factorization model instead of learning the feature from the
matrix factorization model. The feature extractor is learned using an auto-tagging model.

(a) Example of the 1D CNN based architecture proposed
by Dieleman and Schrauwen. Two different inputs are con-
sidered: a spectrogram and raw audio waveforms. For raw
audio both a strided convolution and a strided convolution
with feature pooling are considered. Figure taken from
[25]

(b) Subset of filters learned in the lowest layers of the on
CNN based on raw audio signals. Note that the model can
learn frequencies. Figure taken from [25]

(c) Example of the 2D CNN based architecture proposed
by Choi et al. Numbers represent the number of feature
maps (depth) in each layer. Subsampling is used to de-
crease the size of the feature maps to 1 by 1 resulting in
a feature of size 2048. Output is a prediction probability
for each tag (top 50). Figure taken from [16]

Figure 2.4: Architecture and example filter output for CNN-based representation learning models.

Further work on CNN based feature extractors were performed by Dieleman and Schrauwen [25].
They investigate the possibility of learning features directly from audio signals in the form of waveforms
and Mel spectrograms. A range of models based on a 1D CNN architecture is learned after which the
authors find that these types of architectures can learn useful features from the input. They average
predictions of multiple consecutive 3-second audio windows. Notably, the filters within the models can
pick up frequencies. If a feature pooling layer is used the learned features are phase and translation
invariant as well. The architecture and example filter output is given in Figure 2.4. Later work by Choi
et al. further improves upon this idea, but uses 2D convolutions instead and considers a bigger 29.1-
second audio signal at once [16]. An example of their architecture is shown in Figure 2.4c. Their model
is competitive in auto-tagging and music classification for both MagnaTagATune and MSD and shows
that deep neural networks can benefit from large amounts of training data, however, their research is
limited by only using the top 50 most frequent tags. Further work by Choi et al. combines Recurrent
Neural Network (RNN) with CNN to create a Convolutional Recurrent Neural Network (CRNN). RNN
are commonly used to model sequential data [17]. The CRNN model is shown to outperform 1D and 2D
CNN based models with the same number of parameters, however, research was again limited by only
using 50 tags. Pons et al. look into how CNN based model can be learned while taking into account
the different properties of musical aspects [65]. They find that by carefully choosing the dimensions
of the CNN filter shapes, they can learn temporal features, frequency features, and both at the same

2.2. Music Auto-Tagging 15

time. By carefully designing an architecture, they achieve results that are competitive on the Ballroom
dataset [33]. Later work by Pons et al. dives deeper into deep music auto-tagging architectures [66]
arguing that when a small amount of training data is available, models can be constrained. They use
the top 50 tags of both MagnaTagATune and MSD, and a proprietary dataset consisting of 1.2 million
songs, annotated using 139 human-expert tags. They find that if a large dataset is available, models
that rely directly on waveform input can outperform models that operate on a computed spectrogram,
indicating that applying signal processing before learning the model may constrain some models.

16 2. Background and Related Work

2.3. Models
Work on auto-tagging has been influenced by various types of models. In this section, we discuss two of
them, Deep Neural Networks (DNN) and Matrix Factorization (MF). Additionally, we discuss a recently
introduced class of DNN that can operate on graphs. These models are the basis of our methodology,
which will be discussed in the next chapter.

2.3.1. Deep Neural Networks
Deep Learning is a branch of machine learning that focuses on neural network-based models. The
majority of deep learning algorithms can be described as a combination of input data, a loss function,
an optimization procedure, and a neural network architecture [32].

x0

x1

x2

y0

y1

Hidden
Layers

Input
Layer

Output
Layer

Feed Forward Information

Figure 2.5: Example MLP architecture of a function y = f∗(x; Θ). Features are fed into the input layer and are then fed
through the network. Each layer contains a variable number of nodes (width) and the number of hidden layers (depth)
can vary. Θ are the learned weights that determine the output of each node.

The most simple form of a deep learning model is a Feed Forward Neural Network (FFNN), or
Multi-Layer Perceptron (MLP). The goal of the algorithm is to learn a set of parameters Θ such that
the network approximates a function y = f∗(x; Θ) that maps some input x to an output y. These
functions can be composed as a chain such that they form a network of layers. For example, we can
chain three functions f (1), f (2) and f (3) to form f(x) = f (3)(f (2)(f (1)(x)))8. Usually, this function
applies a nonlinear transformation to the input x, commonly in the form g(xWT + b) where W is a
matrix of learnable weights, b is a learnable bias term and g is a nonlinear activation function.

The first function is typically referred to as the input layer, which accepts the input data. The final
layer is referred to as the output layer. All layers that do not have an output as dictated by the training
data are referred to as the hidden layers because their output is not directly observed. The functions
usually take vector data in the form of features as input. The dimensionality of this input determines
the number of units and the width of the layer. The optimization procedure should then optimize the
weight matrices in the network such that they minimize a loss function. An example of an MLP model
can be found in Figure 2.5.

Various deep learning-based architectures exist and have found their way into the MIR field such as
the CNN and DBN used in the feature learning algorithms described in Section 2.2.4.

8Each function has learnable parameters Θ, but we omitted them for clarity.

2.3. Models 17

2.3.2. Matrix Factorization
Recommender systems can traditionally be divided into two categories: content-based and collaborative
filtering [51]. An example of a content-based recommendation can be found in the MGP which was
discussed earlier in Section 2.1.2. The tags assigned to songs can be used to build user profiles that
can then be used for recommendation. Alternatively, collaborative filtering attempts to model the
relationships between users and entities to predict new user-item relationships. Two common methods
of collaborative filtering are neighborhood and latent factor models. The former attempts to recommend
based on scores for similar (neighboring) items. Alternatively, latent factor models attempt to model
relationships by taking both users and items into account by predicting factors that explain the user-
entity relationships. An example of a latent factor model is Matrix Factorization (MF), which attempts
to learn factors that can be used to reconstruct the input matrix. There are two types of input data
that we can consider for MF based recommender systems. The first is explicit feedback where the user
has explicitly made clear their preference for the item. An example of this is rating a movie or pressing
a like button. The second is implicit feedback, which indirectly reflects user preference for an item. For
example, the number of listens to a song or the purchase history in a webshop.

As shown during the famous Netflix Prize9 competition, latent factor models based on MF have
shown to be very successful [51]. During the Netflix Prize participants were asked to improve upon the
recommender system used by the movie streaming service Netflix. The goal of an MF model is to map
a set of users and items to a joint latent factor space that has dimensionality d. Item i is mapped to
a vector qi ∈ Rd and user u is mapped to a vector pu ∈ Rd such that the inner product r̂ui = qT

i pu
between the user and item vectors models the relationship between those entities. The output r̂ui can
then be used to serve recommendations to the user. One way to learn latent vectors is by minimizing
a loss function such as the regularized squared error:

min
q∗,p∗

∑
(u,i)∈κ

(rui − qT
i pu)2 + λ(‖qi‖2 + ‖pu‖2) (2.1)

Where κ refers to the set of pairs (u,i) for which we have explicit input data rui in the training
dataset, and λ is the hyperparameter controlling the amount of regularization.

Typically, MF models perform well on "in-matrix" predictions, meaning that they can only recom-
mend items that were present in the training set. This means that recommending new "out-of-matrix"
items is not possible for these kinds of models [58].

Within the MIR literature there are applications related to music that make use of matrix factor-
ization algorithms. An example is a model discussed earlier in Section 2.2.4, by van den Oord et al.
which attempts to predict latent factors based on music audio [79]. They first use Weighted Matrix
Factorization (WMF) [44] to obtain latent factors and then use these factors as input to deep learn-
ing models to be able to predict them directly from the song audio without requiring access to a full
user-item matrix, thus solving the out-of-matrix prediction problem. WMF is designed to take implicit
input into account. It minimizes a similar equation as Equation (2.1): Typically, MF models perform
well on in-matrix predictions, meaning that they can only recommend items that were present in the
training set. This means that recommending new items out-of-matrix is not possible for these kinds of
models.

min
q∗,p∗

∑
(u,i)∈κ

cui(aui − qT
i pu)2 + λ(‖qi‖2 + ‖pu‖2) (2.2)

Where aui is a binarized value of rui where rui is one if the item has been consumed by the user,
and 0 otherwise. cui is a confidence vector that measures the confidence of observing aui. An example
is cui = 1 + αrui, which increases the confidence if rui becomes larger (if a user has listened more to
a song for example). α is a constant that controls the rate of confidence increase. Building upon the
approach by van den Oord, Liang et al. propose a "content-aware" collaborative music recommendation
algorithm [58]. It differs from the model by van den Oord et al. in that it obtains item (song) latent
factors by using a feature extractor that is trained on a tagging task, instead of a model that predicts
latent factors based on the audio, hence the term "content-aware". Liang et al. argue that learning the
latent factors directly from WMF constrains the recommendation model to the performance of WMF
and that it is therefore better to use a representation of the audio itself as input to the MF model. The
model by Liang et al. is a probabilistic MF model [68] based on the Collaborative Topic Regression
9The Netflix Prize, https://www.netflixprize.com

https://www.netflixprize.com

18 2. Background and Related Work

(CTR) model by Wang and Blei [81]. Their model consists of two components: a probabilistic matrix
factorization model and Latent Dirichlet Allocation (LDA) [12] for topic modeling. The topics are used
as input to the collaborative filtering model. The approach by Liang et al. has a two-stage approach
similar to Wang and Blei but differs primarily in how the latent factors for the items are obtained.

We will describe the model by Liang et al. in more detail in Chapter 3. Both the approaches
by van den Oord and Liang are not restricted by the cold-start problem in item recommendation
because they can use the item content to either approximate a latent factor, or replace the latent
factor making them useful for music recommendation. Other models also make use of latent factors to
obtain recommendations similar to traditional MF models. The model by Weston et al. discussed in
Section 2.2.3 attempts to learn embeddings by training a semantic embedding model on multiple tasks,
and uses the learned shared parameters to obtain a ranked list of recommendations [84].

2.3.3. Graph Representation Learning
Graphs are an important data structure in computer science used to model relationships between
entities. Naturally, machine learning can be applied to graphs, for example, to perform edge prediction
or to classify individual nodes. Similar to auto-tagging literature, researchers have found that manually
computed node or edge features such as graph statistics are limited. This has led to modern approaches
that attempt to learn representations of graphs directly. Hamilton et al. define these approaches as an
encoder-decoder framework sharing similarity with Matrix Factorization models [38]. Their framework
consists of the encoder function, decoder function, loss function, and a pairwise node similarity function.

Figure 2.6: Schematic of the encoder-decoder framework described by Hamel et al. The encoder maps each node to an
embedding which is then decoded into a similarity metric. By optimizing this system, the encoder learns to compress
graph structure into an embedding that can be used as input to other systems. Figure taken from [38]

Input to the framework is an undirected graph G = (V, E) with binary adjacency matrix A and
feature matrix X ∈ Rm×|V| where m is the dimensionality of a feature associated with each node. The
encoder is a (learnable) function that maps each node vi ∈ V to an embedding zi ∈ Rd

encoder : V → Rd (2.3)

The decoder function then takes as input these node embeddings and decodes them into a similarity
measure that estimates the relationship between two nodes. The type of decoder can vary, but it is
often a pairwise decoder similar to the one discussed in Section 2.3.2:

decoder : Rd × Rd → R+ (2.4)

Then, similar to Matrix Factorization a loss function is minimized for a set of training node pairs D
such that the pairwise decoder reconstructs the similarity metric sG . An example of such a similarity
metric is the graph adjacency matrix A.

L =
∑

(vi,vj)∈D

l(decoder(zi, zj), sG(vi, vj)) (2.5)

where l : R×R→ R, a loss function that measures the error between the output of the decoder and the
similarity metric. This function is then optimized, and the learned encoder can be used to obtain node

2.3. Models 19

embeddings that can be used as input to further machine-learning tasks such as node classification or
edge prediction. A visualization of the framework can be found in Figure 2.6.

Random walk-based approaches such as DeepWalk [63] and node2vec [34] fit into this framework.
These approaches traditionally have been able to obtain competitive results on graph datasets. However,
they are unable to use node features as information during the encoding process. Additionally, they
are transductive: they can only generate embeddings for nodes that have been observed during the
training phase. Recently a new class of models was proposed that employ deep learning on graphs
outperforming many existing methods on popular graph datasets [48, 49, 69, 78]. These so-called
convolutional encoders do not rely on the entire graph but on the node’s local neighborhood. They
generate node embeddings for each node by summarizing the information from the neighboring nodes.
This information can be basic graph statistics such as degrees, or dedicated features that describe the
entity. This operation can be seen as a differentiable form of a message-passing framework with a
forward pass of the following form:

h(l+1)
i = σ

(∑
m∈Mi

gm(h(l)
i ,h(l)

j)
)

(2.6)

Where σ is a (nonlinear) activation function, h(l)
i ∈ Rd(l) is the hidden representation of node vi in

the input graph and gm is an accumulator for incoming messages m ∈ Mi for node i. gm can be a
(basic) neural network such as Whj

Since these models rely only on the local node neighborhood, they extend beyond the original
training graph and can be used to generate embeddings for previously unseen nodes. Examples of
successful models are (Variational) Graph Auto-Encoders [48] and GraphSAGE [39].

3
Methodology

In this chapter, we discuss the limitations of auto-tagging and our methodology for contributing to a
solution. We start by listing the current limitations that exist in the field of auto-tagging and how we
contribute to solving them. We formalize the problem and introduce the semi auto-tagger framework as
a possible solution. Finally, we discuss our approach by suggesting models that fit into this framework.

3.1. Limitations of auto-tagging
The cold-start problem in music recommendation [29] is a problem where songs that have not pre-
viously been seen by a recommendation system are difficult to recommend. For songs that have not
been listened to by system users, only audio content information such as waveforms can be considered
for recommendation, limiting how recommendations can be made. Additional (meta) data such as
descriptive tags can be used to expand the solution space by putting songs into the right context to
similar songs, for example, based on genre. If a song is tagged with tags that describe its content,
these tags can be used to connect it to similar songs that the recommender system has seen before such
that recommendations can be made. To make good recommendations, we require a rich and detailed
description of a song. At the song level, however, we encounter a similar cold-start problem. New
songs may not be tagged, or sparsely tagged. Auto-tagging algorithms seek to mitigate this problem
by automatically assigning tags to songs based on their audio contents.

Current solutions to the auto-tagging problem in the MIR field can be seen as limited in several
ways, primarily from a tag vocabulary perspective. As one of the goals of an auto-tagging algorithm is to
alleviate the cold-start problem, one can argue that being able to tag from a large and varied vocabulary
makes auto-tagging more useful in a recommendation setting. However, it is difficult to obtain a large
and varied vocabulary to learn from which undermines the usefulness of such a system. As noted
in Section 2.1.3 the ideal vocabulary is big and contains a diverse set of tags. Current vocabularies,
however, are either large and noisy or small. Commonly used datasets such as those listed in Table 2.2
lack the diversity needed to come up with rich descriptions. One big exception to the lack of richness
and diversity can be found in the Million Song Dataset (MSD). MSD contains a very big vocabulary of
tags compared to the other datasets. The two most common datasets used in auto-tagging literature
are MSD and MagnaTagATune (MTAT). While MSD is large and diverse, it is also noisy due to the
way it was collected (Last.fm users). MTAT is cleaner as a result of it being obtained via a tagging
game, but its vocabulary is much less rich and detailed compared to MSD. It has been shown that there
is merit in using big subsets of these datasets [19], nevertheless the majority of current auto-tagging
research limits itself to relatively small subsets [16, 25, 28, 29]. Reasons given for limiting the dataset
sizes vary: smaller subsets are easier to analyze [28], tag sparsity [29], dataset imbalance [16] or size of
the output space [19].

21

22 3. Methodology

We observe three topics that we think should be improved upon:

• Clean datasets are scarce: Annotations provided by domain experts are cleaner as discussed
in Section 2.1.2 because the tagging process relies on the musical knowledge and expertise of
experts. An issue with experts is that they are an expensive human resource, and they can only
tag at a limited rate. Using experts also limits the vocabulary that can be used. Ideally, we have
a clean dataset that is obtained by skilled experts such as is attempted at Pandora’s MGP [1, 66].
However, such datasets are a valuable resource which makes them often proprietary or not readily
available at a scale optimal for MIR research.

• The size of the vocabularies used: The majority of works limit their use of the vocabulary.
Especially in the case of MSD, more than 99% of the five hundred thousand available tags in the
vocabulary are ignored in the majority of works. By doing so, one can ask if such systems can
be used in a real-world production environment where a much larger and more diverse set of tags
exists. Bigger vocabularies are common in other fields such as image classification [52], which is
similar to auto-tagging.

• Context provided by tags is not considered: Auto-tagging algorithms traditionally operate
on audio content only. However, auto-tagging datasets can be interpreted as a large network of
songs and tags in which songs are grouped using the context provided by tags. Such a network
contains potentially useful implicit relationships between tags that can then be used to predict
additional tags that are close within the graph. Naturally, if the size of the vocabulary is limited,
the number of relationships that can be exploited becomes smaller.

We aim to contribute to reducing the impact of these limitations by extending the auto-tagging
problem to a graph prediction problem. By modifying the auto-tagging problem to allow external
(expert) input in the form of seed tags, we allow the relationships between tags to be considered. By
using the network of songs and tags we may be able to use less clean datasets such as MSD to predict
tags, as noisy tags are expected to have less importance in the graph. Additionally, such a system can
be used to allow experts to tag at a higher rate while still maintaining their tagging accuracy. They
can suggest input tags to the system and will be provided with recommendations. If the expert does
not agree with the input, they are free to further complement the output with their expertise. By
modeling the task as a completion task, it shares similarities to a recommender system. Recommender
systems naturally allow for a higher number of tags to be considered because they have traditionally
been able to recommend from large pools of items. Additionally, traditional recommender algorithms
such as matrix factorization, model the relationships between items and are therefore able to exploit the
relationships that exist between tags. While addressing these limitations we specifically aim to produce
solutions that are feasible to be deployed in a production scenario, hence we should make sure proposed
models can work for previously unseen songs and do not require a long period of retraining after they
have been deployed.

3.1.1. Formalization: Semi Auto-Tagging
We define the semi auto-tagger as an extension of the auto-tagging problem we defined in Section 2.2.1.
We extend it to become a semi auto-tagger which takes a bipartite graph of song and tag nodes as
input. For a previously unseen song, the goal of a semi auto-tagger is to complement the list of input
edges (tag assignments) by making use of both context and content.

Given a set of N training songs, nodes {s1, . . . , si, . . . , sN} ∈ S which are annotated using a
vocabulary of V tags {t1, . . . , tv, . . . , tV } ∈ T . Each song is associated with a content feature
vector xi ∈ Rf where f is the dimension of the feature. Tag annotations are represented by
a set of edges (sn, tm) ∈ E . Together they define a bipartite training graph G = (S, E , T).
A semi auto-tagging task then becomes an edge prediction task within this graph. For
prediction, U previously unseen songs are added to form S ′ = {s1, . . . , sj , . . . , sU} ∪ S, in
addition to contextual expert input as E ′ = {(su, tv), . . . , (sU , tv)}∪E edges. Tag prediction
then becomes an edge prediction task for songs in S ′ in the extended graph G′ = (S ′, E ′, T).

Naturally, expert input can be provided by adding new song nodes and constructing edges between
these song nodes and the existing tags (the expert input). The goal of the semi auto-tagger is then to

3.1. Limitations of auto-tagging 23

Song Audio

Feature Extractor Tagging

Algorithm

Tag Predictions

(a) Schematic overview of an auto-tagging algorithm.
First, features are extracted from the song audio (con-
tent), after which a tagging algorithm uses this to predict
tags.

Song Audio

Feature Extractor

Tagging

Algorithm

Tag Predictions

Tags

Graph

(b) Schematic overview of a semi auto-tagging algorithm.
The system has two inputs: features extracted from the
song audio (content) and a set of tags connected to the
song-tag graph of the dataset (context). The tagging al-
gorithm makes use of both inputs via the graph to come
with a set of tag predictions.

Figure 3.1: Comparison between a traditional auto-tagging algorithm and the proposed semi auto-tagging framework.

complement the list of edges starting at the new song node with additional relevant song-tag edges. A
schematic overview of an auto-tagger and a semi auto-tagger is shown in Figure 3.1.

24 3. Methodology

3.2. Models
We propose two models that fit into the semi auto-tagger framework. The first model is the "Content-
Aware" Matrix Factorization model by Liang et al [58]. This model combines MF with a content-based
feature extractor to recommend songs to users. Since it has been used successfully for a music-related
task before, we think it is a good candidate to implement as a semi auto-tagger. A similar model by
van den Oord et al. has been used to predict song latent factors successfully in the MIR field before
[79]. Our second model is based on recent advancements in the graph representation learning field,
the Graph Convolutional Network (GCN). It shares similarities with MF but is closer to deep-learning-
based approaches. Additionally, it has shown competitive results on datasets in the graph learning field
[48, 49, 69, 78].

Both models can combine audio content with context provided via tags by modeling similarities
between songs in the form of latent factors. We will now discuss the two candidates in the next
subsections.

3.2.1. Content-Aware Matrix Factorization
The content-aware recommendation model by Liang et al. consists of a two-stage approach similar to
that of Wang and Blei [81] First, a content-based supervised tagging model is learned on a tagging task.
This model is then used to extract the feature from the audio (items). This replaces the topic model.
Then, this feature is used as input to the collaborative filtering model for prediction.

Supervised pre-training
The supervised model is trained on a tag prediction task. An MLP is trained using 370K tracks from
MSD, using 561 tags from the Last.fm subset. As input Echonest timbre features1 contained in the
MSD are used. These features share similarities with MFCC features. The activations of the last layer
of the MLP are used as input song latent factors to the MF model. In our implementation, however,
we opt to directly input audio features to reduce the number of models that have to be trained for
evaluation.

Content-Aware Collaborative Filtering
For clarity, we translate the notation used by Liang et al. to the location we used in Section 2.3.2. The
process for training the model is then:

• For each user u, draw a user latent factor:

pu ∼ N (0,λ−1
p IK) (3.1)

• For each song i, draw a song latent factor:

qi ∼ N (Wxi,λ
−1
q IK) (3.2)

• For each user-song pair (u, i) draw implicit feedback:

rui ∼ N (pT
u qi,c

−1
ui) (3.3)

Where xi is the input content feature vector (song latent factor), N is the normal distribution, K
is the latent space dimension, W ∈ RK×Fh is a learnable weight matrix which is used to transform the
feature representation of the audio into the collaborative filtering latent space, and λq defines how much
the song latent factor deviates from the content feature. cui = 1 + αrui is a confidence factor which is
similar to the heuristic used by Hu et al. [44]. α can be optimized using an optimization procedure
(hyperparameter tuning). After optimization three matrices are obtained:

• The concatenated user latent factor matrix

P
∆= [p1| · · · |pU] ∈ RK×U

1http://millionsongdataset.com/pages/field-list, description of features available in MSD. Note: the original website de-
scribing the features from Echonest is no longer available.

http://millionsongdataset.com/pages/field-list

3.2. Models 25

• The concatenated song latent factor matrix

Q
∆= [q1| · · · |qI] ∈ RK×I

• The learned weight matrix
W ∈ RK×Fh

For specific optimization details on how to learn these matrices, we kindly refer to [58]. Since the
learned song latent factors are dependent on the contents of the audio, we can now easily make both
in-matrix and out-of-matrix predictions after training the model. We can make in-matrix predictions
by multiplying the user and item factors r̂ui = pT

u qi. Since qi is derived from the content vector using
the learned weight matrix, we can make out-of-matrix predictions for new items as r̂ui = pT

u (Wxi).

Adaptation for semi auto-tagging
Two adaptations to the model have to be made to make the model feasible for semi auto-tagging. First,
by replacing the user-song matrix with a tag-song matrix, we recommend tags to songs, instead of
songs to users. Second, when contextual expert input is given, we adapt the model by rerunning the
optimization step for Q, the song latent factors based on the new song-tag matrix with expert input
without updating P and W . The updated song latent factors can then be used to make predictions for
the new song.

3.2.2. Graph Convolutional Network
The class of graph-based deep learning models introduced in Section 2.3.3 has shown competitive
results in node classification and link prediction tasks. It is however not suited for graphs with multiple
types of nodes and edges. The Relational Graph Convolutional Network (R-GCN) model proposed by
Schlichtkrull et al. [69] proposes a variant of these models that can deal with these graphs. Similarly,
Berg et al. propose a bipartite variant that can be used for matrix rating completion [78]. Our
approach makes use of the R-GCN model and fits into the encoder-decoder framework we discussed in
Section 2.3.3.

Relational Graph Convolutional Networks
The R-GCN model by Schlichtkrull et al. [69] is an extension of the GCN model by Kipf and Welling [49]
that enables this model to use large scale multi-partite relational data, such as knowledge graphs. The
model operates on a directed multi-graph G = (V,E ,R) where vi ∈ V are graph nodes, (vi, r, vj) ∈ E are
relationships between nodes and r ∈ R contains bi-directional relationship types. The model operates
by aggregating messages passed between neighboring nodes for each relationship type and applying a
non-linearity. An encoder-decoder framework is used to learn a link prediction task. The encoder step
of an R-GCN model consists of a forward-pass update of the following form, which can be chained:

h(l+1)
i = σ

∑
r∈R

∑
j∈N r

i

1
ni,r

W (l)
r h(l)

j +W
(l)
0 h(l)

i

 (3.4)

Where σ is a (nonlinear) activation function, h(l)
i ∈ Rd(l) is the hidden representation of node vi in layer

l of the neural network, with dimensionality d(l), N r
i is the set of neighbor node indices for node i for

relationship r, ni,r is a normalization constant that can be learned or pre-computed, W (l)
r is a weight

matrix for relationship r and W (l)
0 is a weight matrix for a self-loop to the source node. The input to

the first layer is a feature vector h0 = x per node. The model can then be optimized by running the
update (in parallel) for each node in the graph. The output of the encoder step is for each node vi ∈ V,
a node embedding ei ∈ Rd. The decoder can now predict a score per edge similar to MF based models
by scoring (subj, rel, obj) triples using a function f : Rd×R×Rd → R+. An example of such a function
is DistMult [85], where each relation r has a learnable diagonal matrix Rr ∈ Rd×d. A prediction for
relationship triple (subj, rel, obj) can then be made as f(subj,rel,obj) = eT

subjRreleobj.

26 3. Methodology

Adaptation for semi auto-tagging
We adapt the R-GCN in two ways for semi auto-tagging. First, our song-tag graph is bipartite and
only a single bidirectional relationship type exists: (song, tagged, tag). Therefore the decoder can be
simplified by simply computing the dot product in the same way as MF by omitting Rr. Second, the
R-GCN can operate on input content features per node. However, we do not have input content features
for tags. Since in our framework the number of tags is fixed, we replace the tag features with a learnable
weight matrix.

4
Experimental Setup

In this chapter, the experimental setup is discussed. We explore the feasibility of the semi auto-tagging
framework that was introduced in Section 3.1.1 by implementing the models discussed in Section 3.2
for various hyperparameter configurations and tag vocabulary sizes. We compare these models against
a content-based auto-tagging baseline, an MLP. We start by giving an overview of the datasets we use
in our experiments. Second, we discuss our experimental design and address the research questions.
Third, we give implementation details for the models discussed in Chapter 3. Finally, we revisit the
research questions and address how our experiments aim to contribute to solving them.

4.1. Datasets
In this work we make use of two datasets that are frequently used in auto-tagging literature: the
Last.fm subset contained within Million Song Dataset (MSD) [5, 11], and MagnaTagATune (MTAT)
MTAT [6, 55]. Both datasets are composed of a set of tags, and multiple audio tracks (hereafter
referred to as songs). The datasets differ in both vocabulary size and the variation of tags available
in the vocabulary. In the next subsections, we will discuss feature selection and the properties of both
MSD and MTAT. We also discuss dataset-specific pre-processing and limitations.

4.1.1. Features
To see if the selection of semi auto-tagging models can efficiently make use of content feature information,
we compare an audio content feature against a random feature. If the random feature is given to the
model, its performance is expected to be lower compared to a feature that is based on the meaningful
audio content information. For our audio content feature, we compute delta-MFCCs by extracting
20 MFCC [21, 46] coefficients1 for which we compute the first and second derivatives. We then take
the average and standard deviation over the time dimension and concatenate them to obtain a 120-
dimensional feature. For our random feature, we sample a 120-dimensional vector from a uniform
distribution in the range [0, 1). Both feature sets were standardized.

1MFCC coefficients were computed using Librosa[60]

27

28 4. Experimental Setup

4.1.2. Million Song Dataset (Last.fm)
The Last.fm subset contained within MSD consists of 943,347 songs matched between MSD and the
Last.fm API. From this set of tags, 505,216 tracks have at least one tag assigned from a set of 522,366
unique tags. The dataset contains 8,598,630 relationships between tracks and tags [5] which were
obtained from real users of Last.fm. Track audio files are not readily available and need to be obtained
separately from the dataset. We have been able to obtain a subset of 370,710 song preview MP3 files
with a maximum length of 30 seconds from 7Digital2 using the identifiers available in MSD. The large
vocabulary of available tags, combined with the fact that they are crowdsourced from real users, make
that tags are distributed in a long-tail fashion. Due to this method of obtaining, the data is also
relatively noisy as tags are based on unrestricted text input from Last.fm users. Figure 4.1a shows the
distribution of the 1024 most frequent tags in MSD. Note that more than half of the tags are in the
top list of 50% least frequent tags, but still have a relatively high frequency. The availability of many
song(track)-tag relationships makes the dataset a good candidate for training a semi auto-tagger due
to the context that is provided via relationships in this network. A subgraph of the dataset, showing
the network for 4 songs from a similar genre, can be found in Figure 4.2a. We applied the following
dataset-specific preprocessing steps:

• Tracks for which we were unable to obtain an audio sample were excluded.

• Tracks shorter than 10 seconds, or with corrupted audio files that could not be read were excluded.

• 7 subsets were created based on the number of top n most frequent tags. For each n, we select
the set of top n tags from the vocabulary and the songs that have been assigned a tag from this
set. We then include the tags, songs, and relationships between them into our subset. We used
the following values for n: n ∈ {16, 32, 62, 128, 256, 512, 1024}.

• Tracks that do not have tags assigned, or that do not have tags assigned after creating a subset
were excluded.

The number of songs, tags, and unique relationships contained in our subsets are given in Table 4.1.
Note that even though the subset sizes are limited, the number of relationships increases rapidly as the
subset size increases. Due to the limited subset size and the exclusion of tracks, not all song previews
we obtained can be used in experiments.

dataset # unique tags # songs # relationships
msd16 16 199,219 529,758
msd32 32 229,580 821,239
msd64 64 261,534 1,193,315
msd128 128 286,911 1,639,166
msd256 256 303,817 2,072,286
msd512 512 318,526 2,498,481
msd1024 1,024 327,831 2,924,849

Table 4.1: Properties of the Million Song Dataset subsets.

27Digital, http://www.7digital.com

http://www.7digital.com

4.1. Datasets 29

4.1.3. MagnaTagATune
The MagnaTagATune (MTAT) dataset [6, 55], contains 188 tags collected using the TagATune tagging
game for a collection of 25,863 clips from 5,404 mp3 files. The dataset contains 89,395 relationships
between songs (clips) and tags. 4,221 of the clips contained in the dataset do not have tags assigned,
and can therefore not be used in our semi auto-tagging task. Figure 4.1b shows the distribution of all
tags in MTAT. Note that the distribution of tags follows a similar long-tail (power-law) like distribution
as is found in MSD. Figure 4.2b shows how relationships between songs and tags within MTAT can be
used to find tags that can be shared among songs. The following dataset-specific pre-processing steps
were applied:

• Clips that do not have tags assigned were excluded.

• 5 subsets were created based on the number of top n most frequent tags. For each n, we select
the set of top n tags from the vocabulary, and the clips that have been assigned a tag from this
set. We then include the tags, clips, and relationships between them in our subset. We used the
following values for n: n ∈ {16, 32, 62, 128, 188}.

The number of clips, tags, and unique relationships are given in Table 4.2. Note that clips that do not
have tags assigned were omitted.

dataset # tags # clips # relationships
mtat16 16 18,585 40,812
mtat32 32 20,639 58,513
mtat64 64 21,257 75,069
mtat128 128 21,546 85,774
mtat188 188 21,642 89,395

Table 4.2: Properties of the MagnaTagATune subsets.

30 4. Experimental Setup

0 200 400 600 800 1000
Tag index

0

10000

20000

30000

40000

50000

60000

70000

80000

Ta
g

fre
qu

en
cy

summer
50% 6653 tags

msd_subset_top1024 - Tag Frequencies

(a) Tag frequencies for the top 1024 tags contained within MSD. Note that more than 50% of tags can be found in the long tail.
Here, we define the long tail as all tags that have a frequency lower than 6,653.

0 25 50 75 100 125 150 175
Tag index

0

1000

2000

3000

4000

5000

Ta
g

fre
qu

en
cy

opera
50% 1296 tags

magnatag_subset_top188 - Tag Frequencies

(b) Tag frequencies for the top 188 (all) tags contained within MTAT. Note that similar to MSD, the majority of tags can be
found in the long tail. Here, we define the long tail as all tags that have a frequency lower than 1,296.

Figure 4.1: Tag frequencies for both MSD and MTAT. Note that for both datasets the majority of distinct tags can be
found in the long tail.

4.1. Datasets 31

love songs
Disco

adult contemporary

classic rock

easy listening

Guilty Pleasures favorites

Love

favs
poprock

Power ballad

catchy

eighties

pop

easy

pop rock

Soundtracks

soft rock
lovesongs

anthem

happy

rock n roll

downtempo

title is a full sentence

slgdm

funk

rnb

funky

rock

best songs of the 80s

Brems Tagg radio

fun

female vocalist

1984
70s

1980s

female vocalists

RB

oldies

Soundtrack

motown

USA

nostalgia

special

Energeticfavouritestreamable

american

80s Pop

feel good

male vocalists

old school

party

cool

fav

san francisco

guitar

Retro

Driving

synth

road trip

new wave

loved

summer
song noir

guilty pleasure

top 40

energy

favourite

good mood

inspirational

Awesome

Uplifting

Pop-Rockspotify

Workout

80s rock

male vocalsarena rock

male vocalist
memories

popular

Deniece Williams
Let's Hear It For The Boy

Starship
We Built This City

Starship
Nothing's Gonna Stop Us Now

The Pointer Sisters
I'm So Excited

Survivor
Eye Of The Tiger

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ta
g

de
gr

ee

(a) Subgraph of MSD showing the relationship between 5 songs using tags from the top 1024 subset. Only 50% of the assigned
tags are shown for clarity. Node color indicates tag degree. Note that these similar songs share some of their tags.

beats

new age

synth drums

electronic
techno

beat

not rock

electro

percussion

upbeat

fast

no voice

fast beat

house

voice

trance

dance

space electronica
disco

quiet

no vocal

happy

quick

Belief Systems
Electro Jive

The Bots
Electronic Paradise

Belief Systems
Electro Kinetic

Mijo
Electronic

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ta
g

de
gr

ee

(b) Subgraph of MTAT showing the relationship between 4 songs using all (top 188) tags. Node color indicates tag degree. Note
that similar to MSD, these similar songs share many of their tags.

Figure 4.2: Graph representation of MSD and MTAT. Note how for both datasets tags can be shared between similar
songs.

32 4. Experimental Setup

4.2. Experimental Design
In this section, we discuss the experimental design. We begin by briefly discussing the model selection
and their respective hyperparameters. Then, we discuss how these hyperparameters are selected. Third,
we discuss the metrics used to evaluate the performance of the models from various angles. An overview
of the full experimental design, including selected hyperparameters, can be found in Appendix A.

4.2.1. Model and Hyperparameter selection
For our experiments we use the two models that implement the semi auto-tagging framework as outlined
in Section 3.2: the content-aware matrix factorization model by Liang et al. and the Relational Graph
Convolutional Network (R-GCN) model by Schlichtkrull et al. Additionally, we implement a simple
Multi-Layer Perceptron (MLP) baseline which represents a simple auto-tagger without contextual in-
put. We will now briefly discuss parameter selection for each model. We select hyperparameters using
scikit-optimize3, a Gaussian process-based optimization framework. To simplify the search of hyperpa-
rameters, for all models, we run hyperparameter optimization on the first cross-validation fold only to
maximize the validation performance based on ranking accuracy. We then re-use these parameters for
the remaining folds. The hyperparameter search ranges can be found in Table 4.3.

Model # Hidden Dhidden Learning rate* L2 coefficient*
MLP 1, 2, 3 32, 64, 128 [1E-6, 1.0] [1E-8, 1.0]
MF - 32, 64, 128 - [1E-7, 1E7]

RGCN 1, 2, 3 32, 64, 128 [1E-7, 1.0] [1E-7, 1.0]

pdropout λ* α* # Iterations
MLP [0.0, 0.5] - - -
MF - [1E-7, 1E7] [1E-7, 1E7] [5, 20]

RGCN [0.0, 0.5] - - -

Table 4.3: Hyperparameter optimization ranges for the model selection. Brackets indicate a continuous range of values is
considered. *The hyperparameter search grid is sampled from a log-uniform grid within the specified range.

Baseline
The baseline is a simple MLP with as input one of the content features mentioned in the previous section.
We use ReLU as the activation function and use L2 and dropout [71] regularization with probability
pdropout. We use a fixed mini-batch size of 256. Additionally we use early stopping if the validation
performance does not improve by 10−6 within 50 iterations, a threshold that we found empirically.
Additionally, we run two baseline "dummy" classifiers from sklearn4 to predict based on dataset prior
(empirical class distribution) and uniform (uniformly random prediction) to assess if models learn.

Matrix Factorization
For the content-aware matrix factorization model, we use an Alternating Least Squares (ALS) optimizer
to solve the equations listed in Section 3.2. We treat the number of solving iterations and the λ and α
parameters as part of the hyperparameter optimization procedure.

RGCN
For the R-GCN we use ReLU as the activation function of the convolutional layers. Similar to the MLP,
we make use of L2 and dropout regularization with probability pdropout. We do not use mini-batches
but update using full-batch gradient descent. We stop training if the validation performance does not
improve by 10−6 within 25 iterations, which we found empirically.

4.2.2. Loss function
Due to the importance of ranking in our evaluation scheme, we opt to use Bayesian Personalized Ranking
(BPR)[67] as our loss function for the deep-learning based models, the MLP and R-GCN. The objective
3scikit-optimize,
https://scikit-optimize.github.io/stable/

4sklearn.dummy.DummyClassifier,
https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html

https://scikit-optimize.github.io/stable/
https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html

4.2. Experimental Design 33

of BPR is scoring pair of items (tags) i, j where i is preferred over j. For each tag i in the ground truth,
we use negative sampling to obtain a tag j that does not appear in the ground truth, effectively training
the model to rank the ground truth above the untagged entries. BPR for song u between positive tag
i and negative tag j is defined as:

Lbpr = −σ(x̂uij) (4.1)

Where σ is the logistic sigmoid function

σ(x) = 1
1 + e−x

(4.2)

and x̂uij is a function specifying the relationship between tag i and j which we define as

x̂uij = xi − xj (4.3)

Implying that tag i being higher ranked than tag j contributes to minimizing the loss.

4.2.3. Evaluation
We evaluate the models on each dataset subset using 10-fold cross-validation. For each subset, we
consider different amounts of contextual input seed tags ntag = {0, 1, 2, 5}. First, we split the pool of
songs in the subset into approximately equally sized subsets for each value of ntag. For each song within
this subset, we hold out a corresponding number of tags as seeds and use the remainder as test entries.
If the total number of tags in a set is smaller than the number of seeds, we filter those entries5. The
distributions of the resulting datasets for the first fold can be found in respectively Figure 5.2a and
Figure 5.2a of Appendix F.

For each fold, we make use of three metrics to gain insight into the behavior of the different model
configurations. They are used to measure three different properties: classification accuracy, ranking
accuracy, and embedding similarity to highlight different aspects of the model configurations.

Classification Accuracy
To measure the classification accuracy of the models, we consider the Receiver Operating Characteristic
Area Under Curve (ROC-AUC). Due to the definition of the metrics, we only consider the ROC-AUC
in a scenario where no seed input tags are given. The ROC plots the True Positive Rate (TPR) versus
the False Positive Rate (FPR) at various classification thresholds. TPR and FPR are defined as:

True Positive Rate (TPR) = True Positives
True Positives + False Negatives (4.4)

False Positive Rate (FPR) = False Positives
False Positives + True Negatives (4.5)

The area under this curve is the AUC, a metric for prediction accuracy independent of the chosen
classification threshold. It is typically used for link prediction tasks and is used frequently in auto-
tagging literature. The AUC has a value of 0.5 if models recommend randomly, e.g. they are unable to
discriminate between classes. The closer the value is to 1, the better the model performs. To highlight
classification performance at different levels, we distinguish between AUC-micro (element-wise), AUC-
macro (average per tag, column-level) and AUC-samples (average per song, row-level) as implemented6

in Scikit-learn[62].

Ranking Accuracy
To examine how well models perform in terms of prediction relevance we consider the Normalized
Discounted Cumulative Gain (NDCG) [47]. Which is defined as:

NDCGp = DCGp
IDCGp

(4.6)

5https://github.com/jochem725/semi-auto-tagging/blob/master/autotag_graph/data/seed_split.py
6sklearn.metrics.roc_auc_score,
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html

https://github.com/jochem725/semi-auto-tagging/blob/master/autotag_graph/data/seed_split.py
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html

34 4. Experimental Setup

Where

DCGp =
p∑
i=1

2reli − 1
log2 (i+ 1) (4.7)

IDCGp =
|RELp|∑
i=1

2reli − 1
log2 (i+ 1) (4.8)

Where |RELp| is the list of tags ordered by relevance. It expresses how accurate the predicted ranking
of tags is per song based on the order of prediction. In our experiments, we use cutoff p = 10, which
we think is a realistic amount of tags to be recommended to a user of a tag recommender as it is
representative of a real-world graphical user interface. Additionally, the cutoff is smaller than our
smallest dataset subset, if we take a maximum number of 5 seed tags into account. This metric gives
insight into whether giving contextual input tags is beneficial to predicting more relevant tags when
considering the final list of predictions as output to humans. We used the same cutoff as part of the
validation metric in the model training loop.

Embedding Similarity
To gain an understanding of how well models can learn which tags have a similar context, we use a
heuristic to compare the learned embeddings with the textual representation of the tag. This heuristic
is based on the Levenshtein distance, which measures the difference in characters between two strings.
Under the assumption that syntactically similar tags can have a similar meaning, first, we compute a
similarity matrix of Levenshtein distances between tags using the TheFuzz7 library. By doing so we
obtain a matrix of scores in [0, 1] that indicate the similarity of tags based on text. Second, we compute
a cosine-similarity matrix of the embedding distances. Using the cosine-similarity matrix as input and
the Levenshtein matrix as ground truth, we then compute the NDCG with cutoff p = 10. By doing
so we get an indication of how well the model performs in embedding similar textural descriptions.
We do note that this heuristic is suboptimal in several ways. Primarily, while tags may appear to be
similar textually, they may not be similar by meaning. For example, female voice and male voice differ
substantially in meaning when tagging is considered (different kinds of voice). However, we do believe
that in many cases it is still useful as a proxy given that there exist many tags that are similar in both
text and meaning.

4.3. Implementation Details
The code that was used to run the experiments can be found on Github8 and was written using Python
3.7. We used Deep Graph Library (DGL)[83]9 to implement the model based on the GCN. Both the
GCN and MLP were implemented using Pytorch [61]. Part of the code for the MF model was obtained
from the Attribute-Aware Recommender ModelS (AARMS) library by Jaehun Kim 10. A full list of
dependencies and their versions can be found on GitHub.

4.3.1. Hardware
Experiments were performed on the TUDelft Intelligent Systems HPC cluster. The HPC consists of
multiple nodes with a varying range of CPU and GPU configurations. For fairness, the experiments for
the MLP and MF models were executed on the same GPU series, an NVIDIA Tesla P100 with 16GB
of memory.

7TheFuzz,
https://github.com/seatgeek/thefuzz

8https://github.com/jochem725/semi-auto-tagging
9DGL, https://github.com/dmlc/dgl
10AARMS, https://github.com/eldrin/aarms

https://github.com/seatgeek/thefuzz
https://github.com/jochem725/semi-auto-tagging
https://github.com/dmlc/dgl
https://github.com/eldrin/aarms

4.4. Research Questions 35

4.4. Research Questions
In this section, we discuss how our experimental design aims to answer the research questions listed in
Chapter 1.

4.4.1. RQ1: Effectiveness of a Semi Auto-tagging system
Our first research question - How can we build a system that suggests additional tags based on expert

input? - is addressed by the introduction of the semi auto-tagger and the two models that we propose
to implement it. However, the quality of the system defines its usefulness in the context of auto-tagging.

Subquestion 1.1
The first subquestion for RQ 1 is - Given song-tag relationships combined with audio features, can a semi

auto-tagger predict more relevant tags compared to a feature-only auto-tagger?. As shown in Section 2.2,
auto-tagging is based primarily on audio feature input. Models that consider relationships, such as MF
models typically operate on just relationships between entities. For a semi auto-tagging system to work
well for audio tag prediction, audio must be incorporated into the model in a way that allows the model
to benefit from both relationships and the audio feature. To address this question two properties are
important:

• Can the semi auto-tagging model make use of the input feature information?

• Does the addition of contextual information result in more relevant tag predictions?

We address the first property by evaluating our models using two sets of input features: one meaningful
feature derived from the audio, and one meaningless random noise feature. To address the second
property, we compare the semi auto-tagging models with a baseline, the MLP-based auto-tagger which
can only make use of input features. A comparison using an evaluation metric that measures relevance
then shows if a semi auto-tagger with feature input can indeed predict more relevant tags. As mentioned
in Chapter 1, we hypothesize that combining song-tag relationships with meaningful audio features
allows us to obtain more relevant tag predictions compared to the baseline.

Subquestion 1.2
The second subquestion for RQ 1 is - For previously unseen songs, can a semi auto-tagging model predict

relevant tags?. Since the goal of auto-tagging is alleviating the cold-start problem for unseen songs, it
is vital that the semi auto-tagger also works for new songs. This question is partially addressed by the
model selection and partially by the evaluation metrics. Our selection of models was chosen carefully,
to allow previously unseen input. The model by Liang et al. addresses this by allowing out-of-matrix
prediction. The model by Schlichtkrull et al. can operate on arbitrary graphs. The evaluation subsets
of our datasets were prepared such that they only contain previously unseen songs. We hypothesize
that a semi auto-tagging model can successfully predict tags for previously unseen songs, as is shown
by the models on which our implementation is based.

36 4. Experimental Setup

4.4.2. RQ2: Effective use of the vocabulary
To answer the second research question - Does a noisy tag vocabulary contain useful information for

(auto-)tagging? - We make use of larger vocabulary sizes than are traditionally used by auto-tagging
works. By using bigger vocabularies, we make it possible to learn more possible relationships between
tags. We then look at two properties of models. First, we look at ranking accuracy in the long tail of
each dataset subset. We define the long-tail as the 50% least frequent tags in the set. By measuring this
we hope to show that our choice of models can recommend from the long tail better when compared to
the baseline MLP auto-tagger. We hypothesize that for the semi auto-tagging models, the classification
accuracy will be higher for tags in the long tail of our vocabulary as compared to the MLP baseline.
Second, we compare tag latent factors and embeddings learned by the models to see if they can capture
similar concepts. We do this by comparing the embeddings for tags with distance-based metrics that
define their similarity in the graph. If similar topics have similar embeddings, the model has successfully
identified similar topics and has therefore learned implicit relationships between tags. We compare latent
factors for the MF model and learned embeddings for the graph and baseline models. Due to the nature
of the model selection, we hypothesize that the semi auto-tagging models can capture similar tag string
representations better than the baseline, especially if the size of the input dataset grows.

5
Results

In this chapter, we discuss the results obtained by running the experiments outlined in the experimental
design. We look at the results from three perspectives. First, we discuss the classification accuracy by
focusing on the ROC-AUC. Second, we discuss the ranking accuracy by looking at the NDCG. Finally,
we look at the quality of the learned embeddings. We conclude with a brief discussion to show how the
experiment results contribute to answering the research questions.

5.1. Classification Accuracy
The results from a classification accuracy perspective can be found in Figure 5.1. We split out classi-
fication accuracy1 (ROC-AUC) in three different levels (AUC-micro, AUC-macro, and AUC-samples).
Each level highlights a different aspect of the models, respectively considering individual tag assignments
(element-wise), the average AUC per tag (column-level), and the average AUC per song (row-level).
Note that the accuracy metrics are only computed for cases where no seed tags are supplied to the
models which means they simulate the scenario where the models run in the absence of contextual
information in the form of tags.

5.1.1. AUC-micro
Looking at the element-wise classification metric in Figure 5.1a we see that the MLP baseline outper-
forms the other models for all variations of the experiments when a meaningful input feature (MFCC)
is given. Notably, for both datasets, if the number of tags in the subset increases, the classification
score increases as well even when a random feature is used. We believe this can be explained by the dis-
tribution of the dataset. As the size of the vocabulary grows, tags are generally assigned more sparsely
if they are infrequent. This means there are more zeros in the ground truth and prediction, leading to
a higher AUC score as the number of true negatives goes up lowering the false positive rate. Note that
with a random feature, none of the models can improve upon the prior baseline because with a random
feature the prediction is effectively random. The MF model, however, does not perform with a random
feature. The random feature in combination with no seeds given results in numerical instability which
causes predictions to be random. Learned embeddings are close to zero and as a result, the output
prediction scores (logits) are zero as well. Supplying a random feature, therefore, leads to uniformly
random scores, which equals an AUC value of 0.5. For MTAT, supplying a random feature to the
R-GCN consistently performs worse than the baseline while it does seem to give a more reasonable
prediction than MF with the random feature. We were unable to identify the root cause of this, and
do not observe this behavior when considering AUC-samples.

5.1.2. AUC-macro
If we consider the AUC by averaging at a tag level as shown in Figure 5.1b we find that once again the
MLP baseline outperforms the other models. By averaging at the tag level, the effect of tag imbalance
in the dataset is not considered. Each tag is treated equally important by the metric. We observe
1The raw numerical values behind the accuracy figures can be found in Appendix B.

37

38 5. Results

16 32 64 128 256 512 1024
dataset_subset

0.5

0.6

0.7

0.8

0.9

A
U

C

avg = micro | data = msd

16 32 64 128 188
dataset_subset

0.5

0.6

0.7

0.8

0.9

avg = micro | data = mtat

model
rgcn
mlp
mf
prior
feature
mfcc
rand

(a) AUC Micro level

16 32 64 128 256 512 1024
dataset_subset

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
U

C

avg = macro | data = msd

16 32 64 128 188
dataset_subset

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90
avg = macro | data = mtat

model
rgcn
mlp
mf
prior
feature
mfcc
rand

(b) AUC Macro (tag level)

16 32 64 128 256 512 1024
dataset_subset

0.5

0.6

0.7

0.8

0.9

A
U

C

avg = samples | data = msd

16 32 64 128 188
dataset_subset

0.5

0.6

0.7

0.8

0.9

avg = samples | data = mtat

model
rgcn
mlp
mf
prior
feature
mfcc
rand

(c) AUC Samples (song level)

Figure 5.1: ROC-AUC metrics on various levels. On the horizontal axis, the size of the respective dataset subset is given,
incrementally. The vertical axis shows the output score. Metrics are computed for the case where no contextual input
(seeds) is given to the model. Note: all models consistently reach a higher accuracy when a meaningful feature (MFCC)
is given as compared to a random feature. Models can make use of the content feature if there is no access to contextual
input (via an input seed tag). In general, there is a clear distinction between samples (aggregated at the song level) and
macro (aggregated at the tag level).

5.1. Classification Accuracy 39

that if the vocabulary size increases, for MSD we see a small, upward trend in performance. For MF
we observe a small downward trend. These trends are however small; indicating that using a larger
vocabulary does not impact the performance of the models in this case. If we consider the models we
do however see a large impact. Notably, the R-GCN performs substantially worse than other models.
As expected, supplying a random feature leads to an AUC-macro of 0.5 for all models, as a random
feature will lead to uniformly random tag assignments because of how the metric is averaged.

5.1.3. AUC-samples
Looking at song level performance in Figure 5.1c, we observe roughly the same behavior as the micro
level. Notably, for the MTAT dataset, a random feature given to the R-GCN does not lead to degraded
performance when compared to the prior baseline. Figure 5.2 shows the tag distribution of the first fold
of each dataset subset, for the case where zero seed tags are given. The horizontal axis shows the index
of each tag ordered by frequency, where the tag with index 0 is the most frequent. On the vertical
axis, we find the count and fraction of tag occurrence. For subset sizes 512 and 128 of respectively
MSD and MTAT we see data points that do not follow the general trend observed when increasing
the dataset subset size. The dataset distribution for these subset sizes however does not seem to be
irregular compared to the other subset sizes. In the case of MTAT we see that there are fewer tags in
the dataset with subset size 188, this can be attributed to the procedure that was used to create the
dataset splits as described in the experimental setup.

0 200 400 600 800 1000
tag_idx

0

2000

4000

6000

8000

Co
un

t

0 200 400 600 800 1000
tag_idx

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

subset_size
16
32
64
128
256
512
1024

(a) MSD

0 50 100 150
tag_idx

0

500

1000

1500

2000

Co
un

t

0 50 100 150
tag_idx

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

subset_size
16
32
64
128
188

(b) MTAT

Figure 5.2: Distribution of tag assignments for the first fold of each dataset subset when 0 seeds are given. Other folds
are distributed similarly. Count refers to the cumulative number of tags with the given tag_idx. Similarly, Proportion
refers to the cumulative percentage.

40 5. Results

5.2. Ranking Accuracy
The results2 from a ranking accuracy perspective can be found in Figure 5.33. We will now discuss
the results from a ranking perspective by first discussing observations when ranking the full (subset)
vocabulary. Second, we will discuss observations by looking only at recommendation performance using
tags from the long-tail (last 50%) of each subset vocabulary.

5.2.1. NDCG (full)
Ranking accuracy for each subset, varying the number of seed tags given can be found in Figure 5.3a.
When focusing on the scenario where zero seeds are given, we observe similar performance compared
to the accuracy results for both MSD and MTAT. Specifically, when providing a meaningful feature
(the MFCC) to the model, we see an improved ranking score for all subsets. However, if a random
feature is given, two things can be observed. First, all models have similar performance compared to
the prior baseline, giving evidence that the model simply learns to assign tags in a way that matches
the distribution of the dataset. Second, when comparing the prior and uniform baselines, there is an
effect of the tag distribution on the results.

When seeds are given we see a clear change in ranking score. Both semi auto-tagger models, MF
and the R-GCN greatly benefit from the addition of a single seed tag, even when a random feature
is given. Their ranking score is now far above that of the prior, indicating the models are no longer
outputting scores based on the distribution of the dataset and that they can predict relevant tags, even
in the absence of the MFCC. We observe this effect for both MSD and MTAT. As more seeds are given
to models with a random feature as input, the score gap compared to models that have been given
the MFCC becomes smaller. For MTAT in the case where 5 seeds are given as input we observe high
variance in the score. This can be attributed to a decrease in the nubmre of songs per fold if more seed
tags are held out, leading to high variance in the results. A similar phenomenon occurs in MSD, but
since there are many more songs available in this dataset, there is no visible effect in variance.

5.2.2. NDCG (50% tail)
To dive deeper into the behavior of models when only tail tags are considered, ranking metrics have
been computed excluding the 50% most frequently occurring tags (the head). These scores can be found
in Figure 5.3b. Note that models have not been retrained and given the same seeds considered in the
full dataset ranking scores. Firstly, we still observe that giving a single seed improves the ranking score
for semi autotagger models when only a random feature is considered. This provides evidence that it is
beneficial for long-tail tag prediction to supply a seed tag to models. Note that due to the distribution
of the tags in both MSD and MTAT, it is likely that a seed tag is a popular tag. As hypothesized in
Figure 1.1 such a tag can indicate the model to consider less popular seed tags, which we observe by
the increase in ranking score.

We see that in the tail the scores for models are much closer to the MLP baseline for both the MFCC
and random feature. But when more seeds are given, the semi auto-tagger models start outperforming
the MLP indicating that they have a better performance on the tail overall. Notably, this might indicate
that when a larger vocabulary with more seeds is used, these models may outperform the MLP even
more.

2The numerical data behind the ranking accuracy figures can be found in Appendix C.
3Larger versions of these figures can be found in Appendix F

5.2. Ranking Accuracy 41

128 10242563216 51264

0.0

0.2

0.4

0.6

0.8

N
D

C
G

@
10

data = msd | n_seed = 0

128 10242563216 51264

data = msd | n_seed = 1

128 10242563216 51264

data = msd | n_seed = 2

128 10242563216 51264

data = msd | n_seed = 5

6432 18812816
dataset_subset

0.0

0.2

0.4

0.6

0.8

N
D

C
G

@
10

data = mtat | n_seed = 0

6432 18812816
dataset_subset

data = mtat | n_seed = 1

6432 18812816
dataset_subset

data = mtat | n_seed = 2

6432 18812816
dataset_subset

data = mtat | n_seed = 5

model rgcn mlp mf prior uniform feature mfcc rand

(a) NDCG score, including all tags in the subset vocabulary.

128 10242563216 51264

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
D

C
G

@
10

data = msd | n_seed = 0

128 10242563216 51264

data = msd | n_seed = 1

128 10242563216 51264

data = msd | n_seed = 2

128 10242563216 51264

data = msd | n_seed = 5

6432 18812816
dataset_subset

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
D

C
G

@
10

data = mtat | n_seed = 0

6432 18812816
dataset_subset

data = mtat | n_seed = 1

6432 18812816
dataset_subset

data = mtat | n_seed = 2

6432 18812816
dataset_subset

data = mtat | n_seed = 5

model rgcn mlp mf prior uniform feature mfcc rand

(b) NDCG score, top 50% of the most frequent tags are omitted, leaving only tags from the long-tail.

Figure 5.3: NDCG scores for both the full vocabulary and the long-tail.

42 5. Results

5.3. Embedding Similarity
Figure 5.4a shows the output4 of the Levenshtein similarity metric5. Note that the Levenshtein distance
is used as the heuristic ground truth here.

First looking at the case where a meaningful input feature, the MFCC, is given we observe that the
embeddings of semi auto-tagger models, on average, have a higher score. This means that tags that
are similar considering their text, also learn similar embeddings in the network models. This indicates
that the network models are better able to group tags that may have a similar meaning based on their
string representation, something we can observe when we visualize in Figure 5.5. The figure shows how
similar embeddings are compared to the reference tag female vocalists when considering the Levenshtein
distance (horizontal axis) and the cosine similarity of the embeddings (vertical axis). Note that for text
with a similar string representation such as female vocals, the cosine similarity between the embeddings
for female vocalists and female vocals is also high for semi auto-tagging models, whereas for the MLP
this is not the case.

Second, if we consider only the random feature we see that the score of the MLP is much lower
compared to the semi auto-tagging models as it starts learning random embeddings to approximate the
distribution of the dataset. Looking at the network models, we see that even with a random feature the
score remains high, meaning that the models benefit from the given seeds and can capture tags that
have a similar string representation.

128 10242563216 51264

0.3

0.4

0.5

0.6

0.7

N
D

C
G

@
10

data = msd | feature = mfcc

128 10242563216 51264

data = msd | feature = rand

6432 18812816

0.3

0.4

0.5

0.6

0.7

N
D

C
G

@
10

data = mtat | feature = mfcc

6432 18812816

data = mtat | feature = rand

model
rgcn
mlp
mf
feature
mfcc
rand

(a) NDCG score using a tag-tag similarity matrix as ground truth input (Levenshtein distances) and the cosine similarity between
tag embeddings from the model as prediction input. The output is a heuristic that approximates how well a model can distinguish
tags. The score is shown for models that have been given 5 seed tags as input.

Figure 5.4: Embeding similarity

4The numerical data composing the figures can be found in Appendix D.
5Metrics have been computed for the case where 5 seeds are given to the model.

5.3. Embedding Similarity 43

0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
os

in
e

si
m

ila
rit

y
n_seeds = 0 | model = mf

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

n_seeds = 0 | model = graph

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

n_seeds = 0 | model = mlp

0.0 0.2 0.4 0.6 0.8 1.0
Levenshtein distance

0.0

0.2

0.4

0.6

0.8

1.0

C
os

in
e

si
m

ila
rit

y

n_seeds = 5 | model = mf

0.0 0.2 0.4 0.6 0.8 1.0
Levenshtein distance

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

n_seeds = 5 | model = graph

0.0 0.2 0.4 0.6 0.8 1.0
Levenshtein distance

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

n_seeds = 5 | model = mlp

(a) Embedding comparison when an MFCC feature is given. Note that the network-based models are better at grouping tags
that are similar by string representation.

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
os

in
e

si
m

ila
rit

y

n_seeds = 0 | model = mf

0.0

0.2

0.4

0.6

0.8

1.0

n_seeds = 0 | model = graph

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

n_seeds = 0 | model = mlp

0.0 0.2 0.4 0.6 0.8 1.0
Levenshtein distance

0.0

0.2

0.4

0.6

0.8

1.0

C
os

in
e

si
m

ila
rit

y

n_seeds = 5 | model = mf

0.0 0.2 0.4 0.6 0.8 1.0
Levenshtein distance

0.70

0.75

0.80

0.85

0.90

0.95

1.00

n_seeds = 5 | model = graph

0.0 0.2 0.4 0.6 0.8 1.0
Levenshtein distance

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

n_seeds = 5 | model = mlp

(b) Embedding comparison when a random feature is given. Note that even in the absence of a meaningful input feature the
network-based models can still separate tags based on similar string representation, while the MLP fails to do so.

Figure 5.5: Scatterplot of embedding cosine similarity versus Levenshtein similarity for the tag female vocalists of the
MSD dataset with subset size 128. We compare the case where 0 and 5 tags are given as input to the model. Note: the
metric was computed with a cutoff of 10 tags, meaning that only the 10 tags with the highest cosine similarity between
embeddings are considered in the score.

44 5. Results

5.4. Discussion and limitations
In this section, we discuss high-over findings and follow by discussing the limitations of our work.

5.4.1. Discussion
Results from a model accuracy perspective (ROC-AUC) show that when a meaningful input feature is
given all models consistently reach a higher classification accuracy when compared to a random feature.
This shows that the MF and R-GCN can learn from a meaningful feature in the absence of contextual
input data (a network of songs and tags). This indicates that models can provide a reasonable prediction
if no context is available for a particular song. The MF and R-GCN are however not able to reach the
same performance as the MLP. Notably, if the dataset subset size increases the accuracy score does as
well for the micro and macro levels due to the effect the tag sparseness has on the evaluation metric.

Considering results from a ranking perspective (NDCG), similarly, as for the accuracy results we
observe there is merit in providing a meaningful input feature. If meaningful content information in
the form of input seed tags is given, we see that the gap between the MFCC and the random feature
becomes smaller while the ranking score increases. A similar effect can still be observed when looking
at the results calculated on the long-tail (50% least frequent tags) indicating that models can predict
from the long-tail. Note that for MTAT the variance between folds appears to increase as more seed
tags are given. This can again be attributed to the way the dataset was split. Holding out seed tags
causes fewer tags to be available for the ground truth, especially on small subset sizes, eliminating a
large number of songs from the set (because no ground truth remains for those songs). Distributions
shown in Figure F.2 show that when 2 and 5 seeds are given, the number of tags available in the ground
truth is substantially lower than when 0 and 1 seeds are given leading to high variance in the results.
Calculating metrics on the tail amplifies this even further because even fewer tags from the ground
truth can effectively be used to calculate the metric.

Looking at the embedding similarities, we find that semi auto-tagging models are better able to learn
similar embeddings for tags that have a similar text string representation. Notably, this effect also occurs
when a random feature is given to the model indicating that the addition of context information is very
beneficial to learning these relationships.

5.4.2. Limitations
It is however important to note that our work is limited in several ways. Firstly, the input datasets,
being noisy, contain many incorrect tag assignments. By listening to the songs we hear that in many
cases the ground truth is either lacking or wrong. If we take as an example Table 5.1, The R&B/Soul

song Rosie by Joan Armatrading of models trained with dataset subset size 128, the tags selected in
the ground truth contain rock and soft-rock, but when listening to the song there are no rock elements
present in the song. Additionally, this song can be seen as a pop song, but it is not part of the ground
truth. Semi auto-tagger models seem to suggest better tags subjectively in ranking, but they are not
present in the ground truth. If the rnb, female vocalist, and pop tags would have been present in the
ground truth the NDCG score of the MF model would have exceeded the MLP.

ground truth input seed mf (0.458) graph (0.410) mlp (0.411)
rock
female vocalists
singer-songwriter
soul
oldies
happy
latin
smooth
soft rock

Love
80s
70s
female
reggae

pop
female vocalists
soul
oldies
rock
classic rock
favorites
female vocalist
rnb
dance

soul
rnb
spanish

oldies
pop
classic rock
60s

latin

country
male vocalists

pop
female vocalists
rock
dance
00s
spanish

female vocalist
latin

singer-
songwriter
favorites

Table 5.1: Rosie - Joan Armatrading For each model the NDCG score with cutoff 10 is given.
Spotify: https://open.spotify.com/track/4yMdCBVURkXYYNtY53H1FY.

https://open.spotify.com/track/4yMdCBVURkXYYNtY53H1FY

5.4. Discussion and limitations 45

Additional spot-check examples can be found in Appendix E which show that the semi auto-taggers
are often not wrong, but ground truth is lacking. The quality of the ground truth is as expected and is a
side effect of the way the dataset tags are collected (either via crowdsourcing or a tagging game). A less
noisy ground truth will not only enable models to learn better but will also enable evaluation metrics
to judge models more fairly. Alternatively, the ground truth of existing datasets could be filtered or
validated before using them to train models; but this may be a resource-intensive task given the scale of
both datasets. Second, as mentioned by Law et al. human evaluation is essential for measuring the true
performance of music taggers[56]. An evaluation performed by skilled human experts, or a validation of
the ground truth by experts can be used to better assess the usefulness and accuracy of the system in a
real-world scenario. Additionally, since the output subsets are large there can be many tags that have
a similar meaning, but simply don’t appear in the ground truth which skews the evaluation metrics.
Merging or expanding the ground truth based on similar tags might further improve the fairness of
evaluation metrics.

Our selection of models made it challenging to consider a larger variation in vocabulary size and
number of seeds assigned due to computational resource constraints such as (GPU) memory, but the
analysis of the long-tail ranking metrics gives evidence that a larger vocabulary combined with more
input seed tags may be crucial to achieving better tagging results. Adapting other matrix factorization
or deep learning models to fit in the semi auto-tagger framework might unlock the usage of even bigger
vocabularies further increasing the tagging diversity. Additionally, our choice of input feature, the
MFCC may have been limiting as previous work as discussed in Section 2.2.4 as shown there is merit
in using features obtained from deep-learning models. We chose not to make use of those features to
not complicate the research any further as we would have had to train these models ourselves using our
dataset for fairness.

6
Conclusion

In this chapter, we briefly summarize the motivation and hypothesis for our research and answer the
research questions. We finish with a short conclusion and discuss future work.

Contextual information can be obtained from various sources, both human- and machine-driven.
Human expert tagging is accurate but time-consuming. Crowd-sourced social tagging allows collecting
tags at scale, but the tags are noisy, so they may not be correct. Automatic tagging (auto-tagging)
is a way of obtaining tags using a machine. The goal of such an algorithm is to predict tags directly
from song audio, without human interference at scale, to solve the problem of sparsely tagged songs in
a dataset. Building an auto-tagger is however difficult because the size of the vocabulary of popular
tagging datasets such as MagnaTagATune (MTAT) or Million Song Dataset (MSD) varies and often
has a long-tail distribution.

In this work, we proposed an adaptation to the classic auto-tagging problem, called semi auto-

tagging. In this framework, we allow tags as contextual input to the auto-tagger, in addition to an
audio content feature. This combination allows for stags to be predicted based on audio (content) and
the position of the song in the vocabulary of tags (context). Such context could be provided by a human
expert, which could potentially improve their tagging efficiency, therefore reducing their cost.

We hypothesize that using this approach, comparable or better performance can be achieved when
compared to a traditional content-based auto-tagging baseline. To validate this hypothesis, we imple-
mented two candidate models. The Relational Graph Convolutional Network (R-GCN), a deep-learning
based graph model [69] and a content-aware matrix factorization model[81]. Both models allow com-
bining an input feature, with contextual information in the form of external input tags. We compared
the performance of both models by looking at both ranking accuracy and classification accuracy for
varying vocabulary sizes of MTAT and MSD.

6.1. Contribution
We find that it is possible to build a system that can suggest additional tags based on expert input
in the form of seed tags given to a model as contextual information combined with an audio content
feature. Our selection of models however does not exceed a simple MLP baseline. Models can predict
tags for previously unseen songs, allowing them to alleviate the cold-start problem. Models created
within the semi auto-tagger framework seem to be able to better learn relationships between tags that
have a similar text string representation. Based on our results we believe there is evidence that a noisy
tag vocabulary contains useful information for tagging, however, the ground truth for models needs to
be improved to better assess this. We will now proceed by answering the research questions stated in
chapter 1 in more detail.

47

48 6. Conclusion

Research Question 1

RQ1 - How can we build a system that suggests additional tags using contextual input?

SQ1.1 - Given contextual input combined with audio features, can a semi auto-tagger predict more

relevant tags compared to a content-only auto-tagger?

To answer this question two properties are important, as outlined in Section 4.4. First, we address the
possibility of semi auto-tagging models to make use of input content feature information. We find that
for our selection of models, it is possible to make use of input feature information. By comparison with
a random feature, we find that if a meaningful input feature (the MFCC) is given, the model score
improves substantially as can be found in both accuracy and ranking metrics in respectively Figure 5.1
and Figure 5.3. Where a random feature results in models predicting randomly from the dataset, not
exceeding a prior classifier supplying a meaningful feature results in an improved score. This indicates
models can make use of the input feature for learning.

Second, we look at the addition of contextual information by supplying seed tags to the model and
assess if they result in more relevant tag predictions. By comparison with an MLP that is unable to
make use of contextual information, we find that if more contextual information is given to the semi
auto-tagging models, model scores improve towards the baseline. Our results give evidence that if more
seed tags are supplied, models may start to exceed the MLP baseline, something which occurs in the
long-tail as seen in Figure 5.3b.

Additionally, a comparison of the embeddings in Figure 5.4 using a heuristic based on the Levenshtein
distance show that the semi auto-tagging models are better able to cluster together tags with a similar
string text representation as compared to the baseline.

SQ1.2 - For previously unseen songs, can a semi auto-tagging model predict relevant tags?

To be able to alleviate the cold start problem for unseen songs, a semi auto-tagger should work for
previously unseen songs. Our selection of models, the Content-Aware Matrix Factorization model by
Liang et a. [58] and the Relational Graph Convolutional Network (R-GCN) model by Schlichtkrull et
al. [69] are both capable of allowing "out-of-graph" prediction, in this case meaning they can predict for
song nodes that were not part of the training data. The R-GCN does this by extending a node to the
training graph and making a prediction for that node. Similarly, the MF model predicts by rerunning
part of the optimization step of the model during prediction time. Additionally, our evaluation subsets
only contain previously unseen songs. We find that all models can predict relevant tags for previously
unseen songs as shown in Figure 5.3 when a meaningful input feature is given. Therefore a semi-
autotagger can still alleviate the cold-start problem for new songs, which is one of the main goals of a
traditional auto-tagger.

Research Question 2

RQ2 - Does a noisy tag vocabulary contain useful information for (auto-)tagging?

By training and evaluating our models on dataset subsets that are bigger than the sizes used by tradi-
tional auto-tagging approaches we find that both the baseline and semi auto-tagging models can make
use of larger vocabularies. If we look at the performance in the long-tail, the top 50% least frequent tag
in each subset, we see that if sufficient contextual input seed tags are given, semi auto-tagger models
can exceed the performance of the MLP baseline, indicating predictions from the long tail benefit from
contextual input. By spot-checking prediction output, however, we find that our ranking metric may
not be optimal to answer this question. We find that the ground truth is often incomplete or lacking,
leading to lower scores on the semi auto-tagger models when they predict correctly (from the long tail).
As tags become less frequent, they are more likely to be unavailable in the ground truth.

By comparing embeddings in Figure 5.4 using a heuristic based on the Levenshtein distance and
cosine similarity between respectively tag string representations and tag embedding representations,

6.2. Future Work 49

we confirmed that the semi auto-tagger models can better learn implicit relationships between tags
compared to the MLP baseline. Figure 5.5 makes this visual by showing an example where tags with
a high Levenshtein distance, also have a similar cosine similarity and are therefore clustered together.
Semi auto-tagging models are better able to capture similar tags by string representation, even if the
vocabulary size grows, giving evidence that a tag vocabulary such as MSD contains useful information
for auto-tagging despite being noisy.

6.2. Future Work
The discoveries made during this research provide various points that can be used to drive future
research. We will address future work by discussing three issues that impact our work. First, the
quality of the ground truth which was shown to be lacking might have hurt the evaluation metrics. As
described in Section 2.1.2, it is known within the MIR field that input datasets are often lacking reliable
ground truth which is something that we have observed in Table 5.1 of Section 5.4.2. While we have
shown that the semi auto-tagging models can learn relationships between similar string representations
from the noisy vocabulary, it is difficult to access the quality of the recommended tags. Improving
the quality of the existing ground truth, or collecting new, more clean datasets for music auto-tagging
instead of relying on Million Song Dataset (MSD) and MagnaTagATune (MTAT) might lead to a more
fair evaluation of auto-tagging systems. Another way to better access the performance of models is by
using real human experts as part of the evaluation process. Previous research has indicated that it is
essential for humans to be involved in determining the performance of auto-tagging models [56]. While
in this work we have shown evidence that external tag input may be useful, we did not verify this with
actual human experts.

Second, our selection of evaluation metrics and dataset split was suboptimal. The answer to research
question 2 can be elaborated upon if ranking metrics were computed at a tag level, to better be able
to compare scores between the popular tags and tags from the long-tail. Alternatively, we could have
used a weighting scheme that penalizes more frequent tags to better access the performance in the tail.
Figure 5.3 shows that if the dataset subset size increases and more tags are given, the semi auto-tagging
models start to approximate the performance of the MLP baseline. Extending the study to even larger
subset sizes and tag seed assignments might show that semi auto-taggers can exceed the performance
of the baseline.

Finally, in this work, we have relied on a relatively simple MLP baseline and feature selection. A
better baseline however would be one of the deep-learning-based models discussed in Section 2.2.4,
as they have been evaluated on MSD and MTAT before. Similarly, there exist more models that fit
in the semi auto-tagging framework, specifically those that scale well to larger datasets implemented
using libraries such as DGL[83] to be more computationally efficient. Previous work as described in
Section 2.2.2 has shown that features extracted using deep-learning models often exceed the performance
of the MFCC. To make use of these features, however, the experimental design has to be adjusted to
train these models on the same subsets used for the semi auto-tagging models.

Summarizing we believe the following three topics are relevant for future study: improving the
ground truth used to evaluate models, adjusting the evaluation scheme to gain deeper insight into the
performance of tags from the long-tail, and extending the study to consider models that are better able
to process larger dataset vocabularies.

A
Experimental Design

This appendix contains the full experimental design of our study.

51

52 A. Experimental Design

Table A.1: Multilayer Perceptron - MagnaTagATune

Dataset Subset Feature Seed # Hidden Hidden Lr L2 pdropout

magnatag 16 mfcc 0 3 128 1.62e-03 1.14e-05 1.97e-01
magnatag 16 mfcc 1 2 128 6.28e-03 6.63e-08 2.78e-01
magnatag 16 mfcc 2 1 32 1.39e-02 1.73e-07 0.00e+00
magnatag 16 mfcc 5 1 128 1.00e+00 2.35e-04 0.00e+00
magnatag 32 mfcc 0 3 128 2.61e-03 2.22e-06 2.44e-01
magnatag 32 mfcc 1 3 128 2.37e-03 1.61e-04 0.00e+00
magnatag 32 mfcc 2 2 64 3.12e-03 1.31e-03 0.00e+00
magnatag 32 mfcc 5 1 128 7.69e-03 1.00e-08 2.64e-01
magnatag 64 mfcc 0 1 64 7.63e-03 2.14e-04 0.00e+00
magnatag 64 mfcc 1 1 128 9.26e-03 9.26e-08 5.00e-01
magnatag 64 mfcc 2 3 64 9.44e-03 2.63e-04 0.00e+00
magnatag 64 mfcc 5 1 64 5.66e-02 1.16e-04 0.00e+00
magnatag 128 mfcc 0 3 64 1.14e-02 3.26e-08 8.79e-02
magnatag 128 mfcc 1 1 128 6.92e-03 3.07e-06 5.00e-01
magnatag 128 mfcc 2 2 128 3.47e-03 2.26e-07 2.18e-01
magnatag 128 mfcc 5 1 32 1.65e-02 8.44e-05 0.00e+00
magnatag 188 mfcc 0 3 128 6.17e-03 5.25e-08 1.62e-01
magnatag 188 mfcc 1 2 128 4.95e-03 1.00e-08 2.38e-01
magnatag 188 mfcc 2 2 128 7.97e-03 2.85e-05 2.37e-01
magnatag 188 mfcc 5 2 128 2.44e-03 2.78e-07 3.04e-01
magnatag 16 rand 0 1 64 1.00e+00 1.00e-08 0.00e+00
magnatag 16 rand 1 3 32 1.00e+00 1.00e+00 0.00e+00
magnatag 16 rand 2 3 64 1.00e+00 1.00e+00 0.00e+00
magnatag 16 rand 5 3 128 2.30e-02 1.00e-08 9.92e-02
magnatag 32 rand 0 2 128 1.40e-01 6.00e-02 3.12e-01
magnatag 32 rand 1 2 64 9.96e-01 3.66e-05 4.33e-01
magnatag 32 rand 2 3 128 4.99e-02 1.00e+00 5.00e-01
magnatag 32 rand 5 1 32 1.00e+00 1.00e+00 0.00e+00
magnatag 64 rand 0 3 64 2.27e-04 4.88e-02 1.69e-01
magnatag 64 rand 1 1 64 1.98e-01 1.00e-08 5.00e-01
magnatag 64 rand 2 1 64 2.00e-01 1.00e-08 2.01e-01
magnatag 64 rand 5 3 32 1.00e+00 1.00e+00 0.00e+00
magnatag 128 rand 0 3 128 8.48e-04 2.16e-07 5.00e-01
magnatag 128 rand 1 2 128 1.33e-03 2.70e-03 3.60e-01
magnatag 128 rand 2 3 32 3.16e-03 1.00e-08 5.00e-01
magnatag 128 rand 5 1 128 1.00e-03 1.00e-03 2.00e-01
magnatag 188 rand 0 3 32 1.00e+00 1.00e-08 2.32e-01
magnatag 188 rand 1 1 128 2.07e-05 8.93e-02 7.06e-02
magnatag 188 rand 2 1 32 3.90e-02 1.00e+00 5.00e-01
magnatag 188 rand 5 2 128 8.30e-03 9.20e-05 5.00e-01

53

Table A.2: Multilayer Perceptron - Million Song Dataset

Dataset Subset Feature Seed # Hidden Hidden Lr L2 pdropout

msd 16 mfcc 0 3 128 2.99e-03 2.74e-08 1.88e-01
msd 16 mfcc 1 3 32 1.77e-03 1.00e-08 0.00e+00
msd 16 mfcc 2 3 64 1.03e-02 1.43e-04 0.00e+00
msd 16 mfcc 5 3 64 2.55e-03 1.93e-04 0.00e+00
msd 32 mfcc 0 2 128 2.49e-04 8.41e-06 1.92e-01
msd 32 mfcc 1 3 128 1.44e-03 1.44e-05 1.70e-01
msd 32 mfcc 2 3 64 3.48e-03 1.00e-08 4.94e-02
msd 32 mfcc 5 3 128 3.62e-03 1.33e-04 0.00e+00
msd 64 mfcc 0 3 128 4.56e-03 7.25e-08 3.48e-02
msd 64 mfcc 1 3 128 4.63e-03 6.89e-06 1.55e-01
msd 64 mfcc 2 3 128 8.02e-04 3.44e-05 1.91e-01
msd 64 mfcc 5 3 128 2.88e-03 1.03e-04 0.00e+00
msd 128 mfcc 0 3 128 1.70e-03 1.68e-05 6.68e-02
msd 128 mfcc 1 3 128 1.75e-03 1.37e-05 5.57e-02
msd 128 mfcc 2 3 128 5.93e-04 1.00e-08 4.75e-02
msd 128 mfcc 5 3 128 1.52e-03 3.43e-05 1.54e-01
msd 256 mfcc 0 3 128 2.42e-03 2.01e-05 0.00e+00
msd 256 mfcc 1 3 128 1.41e-03 2.27e-05 7.75e-02
msd 256 mfcc 2 3 128 9.44e-04 4.46e-06 1.38e-01
msd 256 mfcc 5 3 128 2.73e-03 1.49e-05 2.00e-01
msd 512 mfcc 0 3 128 2.01e-03 2.59e-05 0.00e+00
msd 512 mfcc 1 3 128 1.12e-03 6.19e-06 0.00e+00
msd 512 mfcc 2 3 128 1.92e-03 1.32e-05 0.00e+00
msd 512 mfcc 5 3 128 5.68e-04 6.70e-06 1.62e-01
msd 1024 mfcc 0 3 128 1.89e-03 1.00e-05 0.00e+00
msd 1024 mfcc 1 3 128 7.70e-04 1.00e-08 8.87e-02
msd 1024 mfcc 2 3 128 1.16e-03 3.13e-06 1.27e-01
msd 1024 mfcc 5 3 128 2.24e-04 1.64e-06 2.65e-02
msd 16 rand 0 3 32 9.41e-01 3.09e-01 1.18e-01
msd 16 rand 1 1 64 9.11e-01 5.92e-01 4.85e-01
msd 16 rand 2 1 64 9.12e-01 1.20e-08 3.40e-01
msd 16 rand 5 3 128 7.65e-02 1.00e+00 5.00e-01
msd 32 rand 0 1 32 1.00e+00 1.00e+00 3.22e-01
msd 32 rand 1 1 128 8.91e-01 1.07e-08 4.17e-01
msd 32 rand 2 3 32 8.84e-01 2.90e-08 9.06e-03
msd 32 rand 5 3 128 1.51e-02 1.00e+00 5.00e-01
msd 64 rand 0 1 128 3.70e-02 1.00e+00 5.00e-01
msd 64 rand 1 3 64 1.00e+00 1.67e-03 1.14e-02
msd 64 rand 2 1 128 4.14e-01 1.09e-05 0.00e+00
msd 64 rand 5 3 32 1.70e-02 1.00e+00 4.06e-01
msd 128 rand 0 3 128 1.00e+00 1.00e-08 0.00e+00
msd 128 rand 1 1 32 6.87e-03 1.00e+00 0.00e+00
msd 128 rand 2 3 32 4.09e-03 1.00e+00 1.84e-01
msd 128 rand 5 3 32 9.13e-02 5.50e-07 0.00e+00
msd 256 rand 0 3 128 8.34e-01 3.77e-08 4.10e-01
msd 256 rand 1 1 64 1.00e+00 1.00e+00 5.00e-01
msd 256 rand 2 1 32 7.00e-02 1.26e-01 2.65e-01
msd 256 rand 5 3 64 9.84e-04 1.00e-08 5.00e-01
msd 512 rand 0 3 64 8.28e-01 4.59e-01 4.76e-01
msd 512 rand 1 1 64 1.55e-02 4.18e-01 1.72e-02
msd 512 rand 2 1 32 1.13e-03 1.00e+00 0.00e+00
msd 512 rand 5 1 32 7.19e-02 3.93e-05 0.00e+00
msd 1024 rand 0 3 128 1.00e+00 1.00e-08 5.00e-01
msd 1024 rand 1 2 128 1.80e-03 1.00e+00 0.00e+00
msd 1024 rand 2 3 32 1.11e-02 6.70e-02 5.00e-01
msd 1024 rand 5 3 32 1.32e-01 1.56e-08 1.94e-03

54 A. Experimental Design

Table A.3: Matrix Factorization - MagnaTagATune

Dataset Subset Feature Seed # Hidden # Iter λ L2 α

magnatag 16 mfcc 0 128 20 1.00e+07 1.00e-07 2.97e-02
magnatag 16 mfcc 1 128 20 1.36e+06 5.36e+01 6.57e+02
magnatag 16 mfcc 2 32 20 1.65e-02 9.83e+02 7.04e+02
magnatag 16 mfcc 5 32 8 1.00e-07 1.00e-07 1.99e+05
magnatag 32 mfcc 0 128 15 1.21e+05 2.08e-03 1.00e-07
magnatag 32 mfcc 1 128 12 1.00e+07 1.33e+05 7.98e+04
magnatag 32 mfcc 2 64 8 1.21e+02 1.42e+01 1.00e-07
magnatag 32 mfcc 5 128 12 1.00e-07 2.75e+01 1.07e+03
magnatag 64 mfcc 0 128 20 1.00e+07 2.73e-02 6.64e+00
magnatag 64 mfcc 1 128 20 1.00e+07 2.13e-01 3.62e-04
magnatag 64 mfcc 2 128 20 1.00e+07 4.92e-07 8.07e-06
magnatag 64 mfcc 5 128 14 2.31e-06 1.10e+02 1.68e+01
magnatag 128 mfcc 0 128 5 1.00e+07 5.49e+01 1.00e-07
magnatag 128 mfcc 1 64 5 1.00e+07 1.17e-04 1.00e-07
magnatag 128 mfcc 2 128 7 1.71e+04 1.00e-07 1.69e-05
magnatag 128 mfcc 5 128 17 2.43e+06 1.00e-07 3.11e+01
magnatag 188 mfcc 0 128 20 1.00e+07 2.88e-03 4.57e-04
magnatag 188 mfcc 1 128 20 1.00e+07 5.84e-07 4.87e-04
magnatag 188 mfcc 2 32 5 1.00e+07 2.26e-02 1.59e-04
magnatag 188 mfcc 5 128 8 1.00e-07 7.43e-02 8.36e+01
magnatag 16 rand 0 32 5 1.00e+07 1.00e+07 1.00e+07
magnatag 16 rand 1 128 20 1.00e-07 5.85e+02 9.07e+01
magnatag 16 rand 2 128 20 2.11e-05 3.05e+02 1.86e+05
magnatag 16 rand 5 64 10 5.45e+02 1.00e-07 2.74e+05
magnatag 32 rand 0 64 20 2.57e+06 9.79e+06 9.37e+06
magnatag 32 rand 1 128 20 5.84e-06 7.56e+04 1.00e+07
magnatag 32 rand 2 128 20 1.00e-07 4.39e+03 1.66e+06
magnatag 32 rand 5 64 16 1.32e-07 2.40e+02 2.72e+04
magnatag 64 rand 0 32 5 2.68e+03 7.38e-06 2.73e-03
magnatag 64 rand 1 64 17 2.60e+02 2.80e+02 2.43e+01
magnatag 64 rand 2 64 11 1.08e+00 2.32e+02 4.59e+01
magnatag 64 rand 5 128 20 1.00e-07 4.76e-01 8.75e+02
magnatag 128 rand 0 128 5 1.04e-01 2.71e+01 1.00e-07
magnatag 128 rand 1 128 5 9.49e+02 7.40e+04 1.00e+07
magnatag 128 rand 2 128 5 4.23e-03 1.43e+03 8.90e+05
magnatag 128 rand 5 128 20 1.00e-07 4.69e-02 3.10e+01
magnatag 188 rand 0 32 20 1.00e-07 1.00e+07 1.00e-07
magnatag 188 rand 1 128 16 3.57e-02 6.56e+04 9.32e+05
magnatag 188 rand 2 128 14 4.47e-03 1.66e+04 1.00e+07
magnatag 188 rand 5 128 19 3.66e+02 9.05e-01 1.59e+02

55

Table A.4: Matrix Factorization - Million Song Dataset

Dataset Subset Feature Seed # Hidden # Iter λ L2 α

msd 16 mfcc 0 128 20 1.00e+07 1.29e-05 2.14e-03
msd 16 mfcc 1 128 20 4.39e+04 3.62e-01 2.62e-06
msd 16 mfcc 2 64 18 1.10e+04 2.65e+02 4.53e+01
msd 16 mfcc 5 64 5 1.00e+07 1.00e+07 4.07e+05
msd 32 mfcc 0 128 20 1.15e+06 1.09e-04 2.62e-05
msd 32 mfcc 1 64 5 4.14e+03 1.45e+00 1.00e-07
msd 32 mfcc 2 64 16 1.26e+02 1.48e+02 5.35e+00
msd 32 mfcc 5 64 19 2.71e-03 1.64e+02 1.85e+02
msd 64 mfcc 0 128 20 1.76e+06 6.33e-03 6.29e-03
msd 64 mfcc 1 128 20 1.11e+06 1.80e-05 7.48e-03
msd 64 mfcc 2 128 20 4.54e+04 1.00e-07 5.99e-07
msd 64 mfcc 5 64 12 3.91e-01 4.94e+02 8.50e+01
msd 128 mfcc 0 128 20 1.00e+07 1.00e-07 1.48e-05
msd 128 mfcc 1 128 20 1.97e+04 1.77e+00 6.00e-01
msd 128 mfcc 2 32 11 1.10e+04 1.58e-02 7.31e-01
msd 128 mfcc 5 32 20 1.00e-07 9.87e+02 2.80e+01
msd 256 mfcc 0 128 20 1.13e+06 8.37e-02 5.14e+00
msd 256 mfcc 1 128 20 1.34e+06 1.00e-07 1.00e-07
msd 256 mfcc 2 32 5 1.00e-07 1.46e+02 4.70e+00
msd 256 mfcc 5 32 20 6.71e-04 1.00e-07 5.81e+00
msd 512 mfcc 0 32 5 1.00e+07 2.48e-03 2.46e-05
msd 512 mfcc 1 32 20 1.00e-07 2.88e+03 1.70e+02
msd 512 mfcc 2 32 20 1.00e-07 7.26e-01 9.22e+00
msd 512 mfcc 5 32 20 1.00e-07 1.07e+00 1.44e+01
msd 1024 mfcc 0 128 20 1.00e+07 7.89e-05 3.71e-05
msd 1024 mfcc 1 32 20 6.94e+02 1.00e-07 1.68e+01
msd 1024 mfcc 2 32 20 2.16e+00 2.05e-01 2.22e+01
msd 1024 mfcc 5 64 19 8.45e+00 3.06e+03 2.96e+02
msd 16 rand 0 32 18 5.08e+03 1.83e-07 1.03e-07
msd 16 rand 1 128 20 1.00e-07 3.46e+03 3.35e+03
msd 16 rand 2 128 17 1.05e-02 7.90e+02 8.45e+00
msd 16 rand 5 64 5 2.89e-04 8.99e+02 8.45e+01
msd 32 rand 0 128 19 1.59e+01 1.00e+07 4.27e+04
msd 32 rand 1 128 20 5.89e-01 7.58e+02 7.66e+00
msd 32 rand 2 64 19 7.70e-01 1.24e+03 3.29e+01
msd 32 rand 5 64 20 4.20e-03 3.34e+02 7.24e+01
msd 64 rand 0 32 10 3.23e+03 3.23e+01 3.55e-03
msd 64 rand 1 64 19 1.00e-07 6.81e+02 6.43e+00
msd 64 rand 2 128 20 1.04e-01 3.60e+03 6.62e+04
msd 64 rand 5 128 20 8.22e-05 1.07e+02 2.62e-05
msd 128 rand 0 64 20 2.49e+03 3.95e-04 1.83e-05
msd 128 rand 1 32 20 1.56e-02 8.78e-06 6.20e+00
msd 128 rand 2 32 20 1.00e-07 1.00e-07 6.05e+00
msd 128 rand 5 128 20 5.78e-07 1.04e+03 3.22e+01
msd 256 rand 0 64 13 4.17e+03 3.04e-06 4.27e-01
msd 256 rand 1 32 20 1.00e-07 1.00e-07 3.98e+00
msd 256 rand 2 32 20 1.00e-07 1.44e-04 5.53e+00
msd 256 rand 5 128 20 5.16e-01 5.25e+00 1.27e+02
msd 512 rand 0 32 5 2.82e+03 7.62e-05 4.96e-05
msd 512 rand 1 32 20 1.99e-06 8.72e-01 1.02e+01
msd 512 rand 2 32 20 1.94e-06 6.16e-01 1.10e+01
msd 512 rand 5 32 20 4.39e-04 8.82e-01 1.21e+01
msd 1024 rand 0 32 19 1.03e-06 1.83e+02 1.06e-07
msd 1024 rand 1 32 20 6.06e-02 2.86e-02 9.80e+00
msd 1024 rand 2 32 20 9.39e-06 6.33e-01 1.98e+01
msd 1024 rand 5 32 20 1.21e-02 1.96e+00 1.39e+01

56 A. Experimental Design

Table A.5: Relational Graph Convolutional Network - MagnaTagATune

Dataset Subset Feature Seed # Hidden Hidden Lr L2 pdropout

magnatag 16 mfcc 0 1 128 1.22e-03 1.00e-07 5.00e-01
magnatag 16 mfcc 1 1 128 3.05e-03 5.41e-03 3.12e-01
magnatag 16 mfcc 2 1 64 6.82e-03 1.00e-07 5.00e-01
magnatag 16 mfcc 5 2 128 4.40e-04 5.65e-03 3.60e-01
magnatag 32 mfcc 0 2 128 1.16e-03 1.34e-06 3.22e-01
magnatag 32 mfcc 1 2 128 1.15e-03 5.37e-05 2.57e-01
magnatag 32 mfcc 2 1 128 1.43e-03 2.19e-04 5.00e-01
magnatag 32 mfcc 5 1 64 1.37e-02 1.00e-07 5.00e-01
magnatag 64 mfcc 0 2 128 8.86e-04 1.25e-06 3.04e-01
magnatag 64 mfcc 1 1 128 1.74e-03 6.79e-07 5.00e-01
magnatag 64 mfcc 2 1 64 1.80e-02 1.80e-03 1.63e-01
magnatag 64 mfcc 5 1 64 1.65e-03 1.00e-07 3.09e-02
magnatag 128 mfcc 0 1 128 9.91e-03 5.97e-03 0.00e+00
magnatag 128 mfcc 1 1 128 5.49e-03 2.54e-03 6.24e-03
magnatag 128 mfcc 2 1 128 3.28e-03 1.32e-03 0.00e+00
magnatag 128 mfcc 5 1 64 6.53e-03 7.87e-06 1.83e-01
magnatag 188 mfcc 0 2 64 8.34e-04 1.27e-03 1.10e-01
magnatag 188 mfcc 1 2 64 2.48e-03 2.20e-03 1.32e-01
magnatag 188 mfcc 2 1 128 1.03e-02 1.52e-03 0.00e+00
magnatag 188 mfcc 5 1 64 5.93e-03 2.75e-04 0.00e+00
magnatag 16 rand 0 3 32 4.03e-03 1.99e-02 1.84e-02
magnatag 16 rand 1 1 64 1.00e-02 3.82e-07 4.50e-01
magnatag 16 rand 2 1 64 2.65e-02 8.19e-04 0.00e+00
magnatag 16 rand 5 1 64 2.68e-02 4.52e-03 1.80e-01
magnatag 32 rand 0 2 64 2.63e-03 8.12e-07 3.33e-01
magnatag 32 rand 1 1 64 7.97e-03 4.22e-05 4.05e-01
magnatag 32 rand 2 1 32 5.17e-02 2.04e-05 5.00e-01
magnatag 32 rand 5 1 128 2.59e-02 1.82e-05 1.87e-01
magnatag 64 rand 0 3 64 2.57e-03 1.00e-07 2.08e-01
magnatag 64 rand 1 1 32 7.42e-03 2.31e-05 4.58e-01
magnatag 64 rand 2 1 128 1.72e-02 8.46e-04 0.00e+00
magnatag 64 rand 5 1 128 1.32e-02 2.01e-07 4.21e-01
magnatag 128 rand 0 2 128 7.19e-03 2.29e-02 7.02e-02
magnatag 128 rand 1 1 64 6.64e-02 1.09e-03 0.00e+00
magnatag 128 rand 2 2 32 9.85e-03 4.11e-05 1.74e-01
magnatag 128 rand 5 2 64 2.04e-02 5.51e-07 2.37e-01
magnatag 188 rand 0 3 128 1.69e-02 2.37e-02 3.24e-02
magnatag 188 rand 1 1 32 3.49e-02 1.00e-07 5.00e-01
magnatag 188 rand 2 1 32 2.82e-02 2.01e-05 5.00e-01
magnatag 188 rand 5 2 32 2.20e-02 2.21e-06 1.80e-01

57

Table A.6: Relational Graph Convolutional Network - Million Song Dataset

Dataset Subset Feature Seed # Hidden Hidden Lr L2 pdropout

msd 16 mfcc 0 2 128 1.51e-03 1.16e-03 4.29e-01
msd 16 mfcc 1 2 128 6.31e-04 5.81e-04 3.01e-01
msd 16 mfcc 2 2 128 1.07e-03 1.65e-03 4.23e-01
msd 16 mfcc 5 1 128 5.07e-03 3.95e-03 2.23e-01
msd 32 mfcc 0 2 128 7.57e-04 4.70e-03 2.09e-01
msd 32 mfcc 1 2 128 8.31e-04 1.99e-03 2.23e-01
msd 32 mfcc 2 2 128 1.89e-03 9.23e-04 2.63e-01
msd 32 mfcc 5 1 128 5.69e-04 1.00e-07 4.80e-01
msd 64 mfcc 0 1 128 7.26e-03 9.01e-03 1.92e-01
msd 64 mfcc 1 2 64 1.10e-03 1.40e-06 1.36e-01
msd 64 mfcc 2 2 128 2.80e-03 2.37e-04 3.49e-01
msd 64 mfcc 5 1 128 6.15e-04 1.14e-05 5.00e-01
msd 128 mfcc 0 2 128 2.00e-03 1.39e-03 2.87e-01
msd 128 mfcc 1 2 64 2.80e-03 3.36e-04 2.13e-01
msd 128 mfcc 2 2 128 2.29e-03 6.17e-07 2.76e-01
msd 128 mfcc 5 1 128 1.07e-03 3.37e-04 5.00e-01
msd 256 mfcc 0 1 64 2.78e-04 4.84e-03 0.00e+00
msd 256 mfcc 1 1 64 2.27e-03 3.21e-03 0.00e+00
msd 256 mfcc 2 2 128 6.38e-04 1.00e-07 2.20e-01
msd 256 mfcc 5 1 32 2.51e-02 1.00e-07 5.00e-01
msd 512 mfcc 0 1 128 7.97e-03 1.94e-03 1.68e-01
msd 512 mfcc 1 1 128 2.22e-03 1.27e-03 9.79e-02
msd 512 mfcc 2 2 128 9.18e-04 1.14e-04 1.99e-01
msd 512 mfcc 5 1 128 6.69e-03 1.16e-07 5.00e-01
msd 1024 mfcc 0 1 64 3.54e-04 1.87e-03 0.00e+00
msd 1024 mfcc 1 1 128 3.11e-03 1.52e-03 0.00e+00
msd 1024 mfcc 2 2 128 9.00e-04 2.25e-06 1.82e-01
msd 1024 mfcc 5 1 128 2.40e-03 1.00e-07 3.46e-01
msd 16 rand 0 3 64 1.31e-03 1.00e-07 4.90e-01
msd 16 rand 1 1 128 1.89e-02 1.16e-04 5.00e-01
msd 16 rand 2 1 128 3.43e-03 1.76e-04 5.00e-01
msd 16 rand 5 2 128 1.28e-02 1.04e-02 0.00e+00
msd 32 rand 0 2 64 1.44e-02 1.26e-02 3.67e-01
msd 32 rand 1 1 128 1.87e-02 4.23e-03 0.00e+00
msd 32 rand 2 1 32 1.00e+00 3.72e-04 5.00e-01
msd 32 rand 5 2 128 7.86e-03 1.70e-03 0.00e+00
msd 64 rand 0 2 64 4.07e-03 1.00e-07 5.00e-01
msd 64 rand 1 2 64 2.63e-03 3.40e-05 8.80e-02
msd 64 rand 2 2 64 4.30e-03 1.28e-04 1.01e-01
msd 64 rand 5 1 32 1.38e-02 1.02e-05 5.00e-01
msd 128 rand 0 2 32 4.52e-03 2.01e-04 5.00e-01
msd 128 rand 1 1 32 5.19e-01 3.10e-05 5.00e-01
msd 128 rand 2 2 32 3.37e-03 6.24e-06 1.98e-02
msd 128 rand 5 1 64 9.19e-02 2.66e-04 0.00e+00
msd 256 rand 0 2 64 2.04e-02 5.51e-07 2.37e-01
msd 256 rand 1 2 32 2.43e-03 1.00e-07 0.00e+00
msd 256 rand 2 2 64 6.11e-03 3.22e-06 8.86e-02
msd 256 rand 5 1 32 1.82e-02 1.00e-07 4.05e-01
msd 512 rand 0 3 64 7.65e-02 2.26e-03 1.53e-01
msd 512 rand 1 1 64 3.65e-02 4.70e-07 5.00e-01
msd 512 rand 2 2 128 1.50e-02 6.80e-05 5.46e-02
msd 512 rand 5 1 64 2.63e-02 2.22e-07 5.00e-01
msd 1024 rand 0 2 64 2.58e-03 2.52e-06 5.00e-01
msd 1024 rand 1 1 32 3.73e-02 9.06e-07 1.83e-01
msd 1024 rand 2 1 128 5.38e-02 4.11e-06 5.00e-01
msd 1024 rand 5 1 64 3.13e-02 3.86e-07 5.00e-01

B
Classification Accuracy Results

This appendix contains the classification accuracy results for both MSD and MTAT. Each table contains
per dataset subset the average and standard deviation of the 10 folds. The model with the highest score
per subset is marked in bold.

Million Song Dataset
This subsection contains the classification accuracy results for MSD.

AUC-Micro

mf mlp prior rgcn
16 0.7612 ± 0.0025 0.8278 ± 0.0029 0.6367 ± 0.0041 0.7480 ± 0.0036
32 0.7689 ± 0.0026 0.8293 ± 0.0027 0.6145 ± 0.0030 0.7559 ± 0.0050
64 0.7934 ± 0.0027 0.8466 ± 0.0019 0.6314 ± 0.0035 0.7582 ± 0.0083
128 0.8032 ± 0.0033 0.8650 ± 0.0033 0.6797 ± 0.0038 0.8005 ± 0.0163
256 0.8126 ± 0.0030 0.8757 ± 0.0021 0.7181 ± 0.0024 0.7537 ± 0.0132
512 0.7774 ± 0.0033 0.8935 ± 0.0025 0.7564 ± 0.0029 0.8377 ± 0.0055
1024 0.8240 ± 0.0021 0.9077 ± 0.0019 0.8042 ± 0.0034 0.8230 ± 0.0127

Table B.1: AUC micro (element-wise) averaged over all folds for MSD when the MFCC feature is given.

mf mlp prior rgcn
16 0.5003 ± 0.0048 0.6491 ± 0.0065 0.6367 ± 0.0041 0.5464 ± 0.0518
32 0.4995 ± 0.0004 0.6139 ± 0.0069 0.6145 ± 0.0030 0.5705 ± 0.0120
64 0.4996 ± 0.0013 0.6175 ± 0.0127 0.6314 ± 0.0035 0.5898 ± 0.0409
128 0.4988 ± 0.0038 0.6684 ± 0.0082 0.6797 ± 0.0038 0.6386 ± 0.0384
256 0.5020 ± 0.0052 0.7115 ± 0.0055 0.7181 ± 0.0024 0.6728 ± 0.0223
512 0.5014 ± 0.0051 0.7146 ± 0.0172 0.7564 ± 0.0029 0.6928 ± 0.0599
1024 0.5002 ± 0.0042 0.7907 ± 0.0045 0.8042 ± 0.0034 0.7750 ± 0.0032

Table B.2: AUC micro (element-wise) averaged over all folds for MSD when the random feature is given.

59

60 B. Classification Accuracy Results

AUC-Macro

mf mlp prior rgcn
16 0.7386 ± 0.0023 0.7795 ± 0.0037 0.5000 ± 0.0000 0.6944 ± 0.0065
32 0.7390 ± 0.0018 0.7827 ± 0.0032 0.5000 ± 0.0000 0.7055 ± 0.0054
64 0.7477 ± 0.0022 0.7815 ± 0.0028 0.5000 ± 0.0000 0.6931 ± 0.0049
128 0.7432 ± 0.0040 0.7824 ± 0.0030 0.5000 ± 0.0000 0.7094 ± 0.0043
256 0.7502 ± 0.0049 0.7857 ± 0.0054 0.5000 ± 0.0000 0.6623 ± 0.0106
512 0.7103 ± 0.0049 0.7870 ± 0.0043 0.5000 ± 0.0000 0.7156 ± 0.0061
1024 0.7524 ± 0.0041 0.7891 ± 0.0052 0.5000 ± 0.0000 0.6834 ± 0.0122

Table B.3: AUC macro (tag level) averaged over all folds for MSD when the MFCC feature is given.

mf mlp prior rgcn
16 0.5003 ± 0.0057 0.4988 ± 0.0030 0.5000 ± 0.0000 0.4997 ± 0.0018
32 0.5013 ± 0.0020 0.5000 ± 0.0000 0.5000 ± 0.0000 0.4997 ± 0.0027
64 0.5010 ± 0.0020 0.5006 ± 0.0027 0.5000 ± 0.0000 0.5009 ± 0.0030
128 0.5009 ± 0.0055 0.5000 ± 0.0000 0.5000 ± 0.0000 0.5012 ± 0.0050
256 0.5029 ± 0.0056 0.5000 ± 0.0000 0.5000 ± 0.0000 0.5013 ± 0.0063
512 0.5016 ± 0.0041 0.5001 ± 0.0006 0.5000 ± 0.0000 0.4998 ± 0.0088
1024 0.5013 ± 0.0060 0.5000 ± 0.0000 0.5000 ± 0.0000 0.4992 ± 0.0042

Table B.4: AUC macro (tag level) averaged over all folds for MSD when the random feature is given.

61

AUC-Samples

mf mlp prior rgcn
16 0.7628 ± 0.0029 0.8239 ± 0.0024 0.6367 ± 0.0041 0.7521 ± 0.0038
32 0.7720 ± 0.0028 0.8283 ± 0.0029 0.6145 ± 0.0030 0.7582 ± 0.0045
64 0.7961 ± 0.0027 0.8484 ± 0.0019 0.6314 ± 0.0035 0.7977 ± 0.0040
128 0.8051 ± 0.0031 0.8683 ± 0.0036 0.6797 ± 0.0038 0.8066 ± 0.0171
256 0.8167 ± 0.0028 0.8799 ± 0.0021 0.7181 ± 0.0024 0.8366 ± 0.0035
512 0.7782 ± 0.0038 0.8979 ± 0.0026 0.7564 ± 0.0029 0.8640 ± 0.0032
1024 0.8248 ± 0.0020 0.9125 ± 0.0019 0.8042 ± 0.0034 0.8850 ± 0.0025

Table B.5: AUC samples (song level) averaged over all folds for MSD when the MFCC feature is given.

mf mlp prior rgcn
16 0.4997 ± 0.0046 0.6491 ± 0.0064 0.6367 ± 0.0041 0.5842 ± 0.0435
32 0.4972 ± 0.0015 0.6139 ± 0.0069 0.6145 ± 0.0030 0.5925 ± 0.0223
64 0.4999 ± 0.0031 0.6175 ± 0.0126 0.6314 ± 0.0035 0.5919 ± 0.0374
128 0.4988 ± 0.0043 0.6684 ± 0.0082 0.6797 ± 0.0038 0.6433 ± 0.0354
256 0.5019 ± 0.0054 0.7115 ± 0.0055 0.7181 ± 0.0024 0.6748 ± 0.0244
512 0.5013 ± 0.0060 0.7146 ± 0.0172 0.7564 ± 0.0029 0.6979 ± 0.0524
1024 0.4998 ± 0.0050 0.7907 ± 0.0045 0.8042 ± 0.0034 0.7745 ± 0.0044

Table B.6: AUC samples (song level) averaged over all folds for MSD when the random feature is given.

62 B. Classification Accuracy Results

MagnaTagATune
This subsection contains the classification accuracy results for MTAT.

AUC-Micro

mf mlp prior rgcn
16 0.8625 ± 0.0113 0.8918 ± 0.0089 0.6115 ± 0.0114 0.8359 ± 0.0091
32 0.8504 ± 0.0052 0.8844 ± 0.0039 0.6456 ± 0.0114 0.8424 ± 0.0074
64 0.8666 ± 0.0071 0.8945 ± 0.0065 0.7088 ± 0.0068 0.8608 ± 0.0062
128 0.8086 ± 0.0102 0.9108 ± 0.0041 0.7873 ± 0.0080 0.8384 ± 0.0117
188 0.8969 ± 0.0076 0.9416 ± 0.0029 0.8665 ± 0.0095 0.9202 ± 0.0064

Table B.7: AUC micro (element-wise) averaged over all folds for MTAT when the MFCC feature is given.

mf mlp prior rgcn
16 0.5024 ± 0.0110 0.6014 ± 0.0144 0.6115 ± 0.0114 0.5761 ± 0.0182
32 0.4984 ± 0.0108 0.6414 ± 0.0120 0.6456 ± 0.0114 0.6327 ± 0.0165
64 0.5024 ± 0.0115 0.7024 ± 0.0124 0.7088 ± 0.0068 0.6248 ± 0.0856
128 0.4885 ± 0.0145 0.7870 ± 0.0078 0.7873 ± 0.0080 0.6542 ± 0.0355
188 0.5054 ± 0.0160 0.8642 ± 0.0099 0.8665 ± 0.0095 0.6513 ± 0.0244

Table B.8: AUC micro (element-wise) averaged over all folds for MTAT when the random feature is given.

63

AUC-Macro

mf mlp prior rgcn
16 0.8613 ± 0.0117 0.8774 ± 0.0103 0.5000 ± 0.0000 0.8309 ± 0.0100
32 0.8425 ± 0.0092 0.8593 ± 0.0069 0.5000 ± 0.0000 0.8107 ± 0.0114
64 0.8405 ± 0.0088 0.8520 ± 0.0071 0.5000 ± 0.0000 0.8079 ± 0.0087
128 0.7746 ± 0.0087 0.8470 ± 0.0084 0.5000 ± 0.0000 0.7610 ± 0.0088
188 0.8313 ± 0.0178 0.8487 ± 0.0070 0.5000 ± 0.0000 0.7869 ± 0.0178

Table B.9: AUC macro (tag level) averaged over all folds for MTAT when the MFCC feature is given.

mf mlp prior rgcn
16 0.5022 ± 0.0107 0.4980 ± 0.0080 0.5000 ± 0.0000 0.5027 ± 0.0092
32 0.4969 ± 0.0125 0.4983 ± 0.0052 0.5000 ± 0.0000 0.5037 ± 0.0083
64 0.5026 ± 0.0162 0.5032 ± 0.0087 0.5000 ± 0.0000 0.4952 ± 0.0078
128 0.4917 ± 0.0150 0.4990 ± 0.0098 0.5000 ± 0.0000 0.4977 ± 0.0118
188 0.5108 ± 0.0208 0.5000 ± 0.0000 0.5000 ± 0.0000 0.5042 ± 0.0146

Table B.10: AUC micro (tag level) averaged over all folds for MTAT when the random feature is given.

64 B. Classification Accuracy Results

AUC-Samples

mf mlp prior rgcn
16 0.8617 ± 0.0120 0.9035 ± 0.0092 0.6197 ± 0.0129 0.8382 ± 0.0094
32 0.8576 ± 0.0058 0.9056 ± 0.0069 0.6576 ± 0.0119 0.8553 ± 0.0091
64 0.8745 ± 0.0062 0.9136 ± 0.0042 0.7246 ± 0.0075 0.8800 ± 0.0051
128 0.8195 ± 0.0093 0.9300 ± 0.0035 0.8024 ± 0.0087 0.9131 ± 0.0060
188 0.8956 ± 0.0077 0.9539 ± 0.0029 0.8665 ± 0.0095 0.9283 ± 0.0074

Table B.11: AUC samples (song level) averaged over all folds for MTAT when the MFCC feature is given.

mf mlp prior rgcn
16 0.5014 ± 0.0128 0.6109 ± 0.0126 0.6197 ± 0.0129 0.6138 ± 0.0141
32 0.4961 ± 0.0177 0.6533 ± 0.0116 0.6576 ± 0.0119 0.6492 ± 0.0175
64 0.5014 ± 0.0117 0.7171 ± 0.0127 0.7246 ± 0.0075 0.6699 ± 0.0627
128 0.4902 ± 0.0128 0.8021 ± 0.0085 0.8024 ± 0.0087 0.8015 ± 0.0088
188 0.5055 ± 0.0164 0.8642 ± 0.0099 0.8665 ± 0.0095 0.8629 ± 0.0095

Table B.12: AUC samples (song level) averaged over all folds for MTAT when the random feature is given.

C
Ranking Accuracy Results

This appendix contains the ranking accuracy results for both MSD and MTAT. Each table contains per
dataset subset the average and standard deviation of the 10 folds. The model with the highest score
per subset is marked in bold.

Million Song Dataset
This subsection contains the ranking accuracy results for MSD.

0 Seed tags given

mf mlp prior rgcn uniform
16 0.6586 ± 0.0027 0.7295 ± 0.0032 0.5117 ± 0.0056 0.6383 ± 0.0049 0.4385 ± 0.0032
32 0.5294 ± 0.0034 0.5971 ± 0.0043 0.3353 ± 0.0044 0.4921 ± 0.0075 0.1557 ± 0.0021
64 0.4528 ± 0.0050 0.5112 ± 0.0057 0.2233 ± 0.0036 0.4199 ± 0.0090 0.0655 ± 0.0011
128 0.3811 ± 0.0046 0.4425 ± 0.0059 0.1654 ± 0.0037 0.3243 ± 0.0223 0.0435 ± 0.0014
256 0.3130 ± 0.0037 0.3674 ± 0.0032 0.1307 ± 0.0031 0.2743 ± 0.0047 0.0222 ± 0.0011
512 0.2050 ± 0.0034 0.3173 ± 0.0042 0.1108 ± 0.0024 0.2404 ± 0.0084 0.0070 ± 0.0009
1024 0.2249 ± 0.0030 0.2784 ± 0.0025 0.0975 ± 0.0018 0.2101 ± 0.0049 0.0043 ± 0.0006

Table C.1: NDCG score with cutoff 10 (top-10 tags) for MSD when no seed tags are given for the MFCC feature.

mf mlp prior rgcn uniform
16 0.3858 ± 0.0048 0.5293 ± 0.0069 0.5117 ± 0.0056 0.4587 ± 0.0497 0.4385 ± 0.0032
32 0.2622 ± 0.0038 0.3445 ± 0.0047 0.3353 ± 0.0044 0.3237 ± 0.0144 0.1557 ± 0.0021
64 0.1435 ± 0.0031 0.2385 ± 0.0040 0.2233 ± 0.0036 0.2136 ± 0.0233 0.0655 ± 0.0011
128 0.1029 ± 0.0040 0.1830 ± 0.0052 0.1654 ± 0.0037 0.1673 ± 0.0143 0.0435 ± 0.0014
256 0.0771 ± 0.0039 0.1414 ± 0.0034 0.1307 ± 0.0031 0.1087 ± 0.0139 0.0222 ± 0.0011
512 0.0665 ± 0.0018 0.1194 ± 0.0023 0.1108 ± 0.0024 0.1119 ± 0.0091 0.0070 ± 0.0009
1024 0.0579 ± 0.0028 0.1055 ± 0.0032 0.0975 ± 0.0018 0.0913 ± 0.0095 0.0043 ± 0.0006

Table C.2: NDCG score with cutoff 10 (top-10 tags) for MSD when no seed tags are given for the random feature.

65

66 C. Ranking Accuracy Results

1 Seed tag given

mf mlp prior rgcn uniform
16 0.6788 ± 0.0060 0.7214 ± 0.0044 0.5581 ± 0.0044 0.6708 ± 0.0064 0.4702 ± 0.0029
32 0.5162 ± 0.0062 0.5914 ± 0.0060 0.3577 ± 0.0052 0.5171 ± 0.0073 0.2405 ± 0.0047
64 0.4255 ± 0.0051 0.4981 ± 0.0060 0.2503 ± 0.0073 0.4087 ± 0.0071 0.0787 ± 0.0034
128 0.3912 ± 0.0046 0.4301 ± 0.0066 0.1840 ± 0.0047 0.3492 ± 0.0079 0.0397 ± 0.0013
256 0.3090 ± 0.0065 0.3766 ± 0.0036 0.1550 ± 0.0038 0.2905 ± 0.0066 0.0210 ± 0.0016
512 0.3076 ± 0.0056 0.3396 ± 0.0033 0.1509 ± 0.0034 0.2657 ± 0.0041 0.0091 ± 0.0008
1024 0.2767 ± 0.0041 0.3208 ± 0.0040 0.1462 ± 0.0032 0.2442 ± 0.0046 0.0052 ± 0.0004

Table C.3: NDCG score with cutoff 10 (top-10 tags) for MSD when 1 seed tag is given for the MFCC feature.

mf mlp prior rgcn uniform
16 0.6232 ± 0.0061 0.5548 ± 0.0055 0.5581 ± 0.0044 0.5568 ± 0.0093 0.4702 ± 0.0029
32 0.4651 ± 0.0069 0.3610 ± 0.0041 0.3577 ± 0.0052 0.4052 ± 0.0077 0.2405 ± 0.0047
64 0.3867 ± 0.0067 0.2557 ± 0.0061 0.2503 ± 0.0073 0.3345 ± 0.0098 0.0787 ± 0.0034
128 0.2783 ± 0.0042 0.1960 ± 0.0049 0.1840 ± 0.0047 0.2941 ± 0.0061 0.0397 ± 0.0013
256 0.2794 ± 0.0058 0.1594 ± 0.0046 0.1550 ± 0.0038 0.2381 ± 0.0120 0.0210 ± 0.0016
512 0.2785 ± 0.0048 0.1566 ± 0.0035 0.1509 ± 0.0034 0.2461 ± 0.0043 0.0091 ± 0.0008
1024 0.2696 ± 0.0033 0.1497 ± 0.0031 0.1462 ± 0.0032 0.2123 ± 0.0035 0.0052 ± 0.0004

Table C.4: NDCG score with cutoff 10 (top-10 tags) for MSD when 1 seed tag is given for the random feature.

67

2 Seed tags given

mf mlp prior rgcn uniform
16 0.7389 ± 0.0024 0.7772 ± 0.0032 0.6337 ± 0.0032 0.7288 ± 0.0261 0.5454 ± 0.0030
32 0.5539 ± 0.0030 0.6077 ± 0.0048 0.4033 ± 0.0042 0.5524 ± 0.0067 0.3148 ± 0.0036
64 0.4724 ± 0.0086 0.5134 ± 0.0054 0.2862 ± 0.0031 0.4490 ± 0.0085 0.0945 ± 0.0020
128 0.3401 ± 0.0060 0.4463 ± 0.0041 0.2365 ± 0.0021 0.3890 ± 0.0038 0.0513 ± 0.0017
256 0.3516 ± 0.0029 0.4097 ± 0.0036 0.2136 ± 0.0039 0.3646 ± 0.0037 0.0277 ± 0.0009
512 0.3389 ± 0.0014 0.3765 ± 0.0043 0.1977 ± 0.0032 0.3398 ± 0.0033 0.0133 ± 0.0005
1024 0.3269 ± 0.0040 0.3582 ± 0.0034 0.1890 ± 0.0029 0.3183 ± 0.0039 0.0067 ± 0.0003

Table C.5: NDCG score with cutoff 10 (top-10 tags) for MSD when 2 seed tags are given for the MFCC feature.

mf mlp prior rgcn uniform
16 0.7100 ± 0.0040 0.6448 ± 0.0036 0.6337 ± 0.0032 0.6656 ± 0.0059 0.5454 ± 0.0030
32 0.5417 ± 0.0029 0.4035 ± 0.0050 0.4033 ± 0.0042 0.3215 ± 0.0814 0.3148 ± 0.0036
64 0.4367 ± 0.0077 0.2863 ± 0.0032 0.2862 ± 0.0031 0.4075 ± 0.0083 0.0945 ± 0.0020
128 0.3292 ± 0.0050 0.2380 ± 0.0022 0.2365 ± 0.0021 0.3305 ± 0.0355 0.0513 ± 0.0017
256 0.3353 ± 0.0021 0.2145 ± 0.0036 0.2136 ± 0.0039 0.2915 ± 0.0433 0.0277 ± 0.0009
512 0.3388 ± 0.0028 0.1986 ± 0.0030 0.1977 ± 0.0032 0.2635 ± 0.0441 0.0133 ± 0.0005
1024 0.3293 ± 0.0031 0.1892 ± 0.0029 0.1890 ± 0.0029 0.3013 ± 0.0060 0.0067 ± 0.0003

Table C.6: NDCG score with cutoff 10 (top-10 tags) for MSD when 2 seed tags are given for the random feature.

68 C. Ranking Accuracy Results

5 Seed tags given

mf mlp prior rgcn uniform
16 0.8161 ± 0.0057 0.8426 ± 0.0053 0.7420 ± 0.0075 0.8185 ± 0.0034 0.6486 ± 0.0048
32 0.6346 ± 0.0060 0.6667 ± 0.0042 0.4980 ± 0.0033 0.6412 ± 0.0068 0.4320 ± 0.0034
64 0.5716 ± 0.0029 0.5537 ± 0.0038 0.3819 ± 0.0036 0.5342 ± 0.0036 0.1300 ± 0.0015
128 0.5180 ± 0.0033 0.4919 ± 0.0034 0.3222 ± 0.0032 0.4694 ± 0.0052 0.0935 ± 0.0022
256 0.4048 ± 0.0021 0.4494 ± 0.0033 0.2873 ± 0.0033 0.4454 ± 0.0089 0.0487 ± 0.0010
512 0.4107 ± 0.0033 0.4232 ± 0.0027 0.2630 ± 0.0018 0.4114 ± 0.0041 0.0208 ± 0.0006
1024 0.4533 ± 0.0028 0.3949 ± 0.0033 0.2454 ± 0.0031 0.4001 ± 0.0053 0.0092 ± 0.0005

Table C.7: NDCG score with cutoff 10 (top-10 tags) for MSD when 5 seed tags are given for the MFCC feature.

mf mlp prior rgcn uniform
16 0.8161 ± 0.0042 0.7761 ± 0.0068 0.7420 ± 0.0075 0.7798 ± 0.0112 0.6486 ± 0.0048
32 0.6683 ± 0.0031 0.5118 ± 0.0111 0.4980 ± 0.0033 0.5949 ± 0.0057 0.4320 ± 0.0034
64 0.5406 ± 0.0029 0.3840 ± 0.0038 0.3819 ± 0.0036 0.4980 ± 0.0045 0.1300 ± 0.0015
128 0.5195 ± 0.0033 0.3251 ± 0.0031 0.3222 ± 0.0032 0.4403 ± 0.0047 0.0935 ± 0.0022
256 0.4730 ± 0.0042 0.2887 ± 0.0035 0.2873 ± 0.0033 0.4278 ± 0.0069 0.0487 ± 0.0010
512 0.4122 ± 0.0026 0.2637 ± 0.0020 0.2630 ± 0.0018 0.4135 ± 0.0032 0.0208 ± 0.0006
1024 0.4083 ± 0.0031 0.2458 ± 0.0033 0.2454 ± 0.0031 0.4093 ± 0.0049 0.0092 ± 0.0005

Table C.8: NDCG score with cutoff 10 (top-10 tags) for MSD when 5 seed tags are given for the random feature.

69

MagnaTagATune
This subsection contains the ranking accuracy results for MTAT.

0 Seed tags given

mf mlp prior rgcn uniform
16 0.8070 ± 0.0167 0.8548 ± 0.0139 0.5211 ± 0.0205 0.7664 ± 0.0128 0.4524 ± 0.0159
32 0.7106 ± 0.0119 0.7751 ± 0.0157 0.3886 ± 0.0142 0.6642 ± 0.0163 0.1997 ± 0.0067
64 0.6423 ± 0.0125 0.6889 ± 0.0115 0.3238 ± 0.0163 0.5880 ± 0.0120 0.0956 ± 0.0090
128 0.4778 ± 0.0168 0.6428 ± 0.0164 0.3028 ± 0.0149 0.5673 ± 0.0171 0.0406 ± 0.0053
188 0.5810 ± 0.0172 0.6309 ± 0.0176 0.2913 ± 0.0177 0.4873 ± 0.0239 0.0102 ± 0.0031

Table C.9: NDCG score with cutoff 10 (top-10 tags) for MTAT when no seed tags are given for the MFCC feature.

mf mlp prior rgcn uniform
16 0.3945 ± 0.0157 0.5108 ± 0.0165 0.5211 ± 0.0205 0.5146 ± 0.0200 0.4524 ± 0.0159
32 0.2380 ± 0.0162 0.3874 ± 0.0123 0.3886 ± 0.0142 0.3853 ± 0.0165 0.1997 ± 0.0067
64 0.2021 ± 0.0080 0.3219 ± 0.0175 0.3238 ± 0.0163 0.2708 ± 0.0650 0.0956 ± 0.0090
128 0.1831 ± 0.0087 0.3014 ± 0.0135 0.3028 ± 0.0149 0.3008 ± 0.0141 0.0406 ± 0.0053
188 0.1270 ± 0.0136 0.2933 ± 0.0176 0.2913 ± 0.0177 0.2779 ± 0.0207 0.0102 ± 0.0031

Table C.10: NDCG score with cutoff 10 (top-10 tags) for MTAT when no seed tags are given for the random feature.

70 C. Ranking Accuracy Results

1 Seed tag given

mf mlp prior rgcn uniform
16 0.7945 ± 0.0157 0.8596 ± 0.0172 0.5036 ± 0.0231 0.8091 ± 0.0139 0.4338 ± 0.0147
32 0.6505 ± 0.0119 0.7499 ± 0.0140 0.3790 ± 0.0168 0.7025 ± 0.0118 0.2807 ± 0.0097
64 0.6095 ± 0.0244 0.6830 ± 0.0189 0.3149 ± 0.0117 0.6052 ± 0.0185 0.1083 ± 0.0136
128 0.5294 ± 0.0189 0.6196 ± 0.0126 0.2868 ± 0.0108 0.5666 ± 0.0145 0.0536 ± 0.0051
188 0.5451 ± 0.0161 0.6089 ± 0.0102 0.2710 ± 0.0148 0.5131 ± 0.0159 0.0139 ± 0.0025

Table C.11: NDCG score with cutoff 10 (top-10 tags) for MTAT when 1 seed tag is given for the MFCC feature.

mf mlp prior rgcn uniform
16 0.7459 ± 0.0188 0.5144 ± 0.0261 0.5036 ± 0.0231 0.7008 ± 0.0159 0.4338 ± 0.0147
32 0.5923 ± 0.0206 0.3812 ± 0.0208 0.3790 ± 0.0168 0.5560 ± 0.0141 0.2807 ± 0.0097
64 0.5455 ± 0.0203 0.3096 ± 0.0115 0.3149 ± 0.0117 0.4854 ± 0.0185 0.1083 ± 0.0136
128 0.4916 ± 0.0198 0.2862 ± 0.0112 0.2868 ± 0.0108 0.4363 ± 0.0201 0.0536 ± 0.0051
188 0.4523 ± 0.0127 0.2638 ± 0.0180 0.2710 ± 0.0148 0.4047 ± 0.0157 0.0139 ± 0.0025

Table C.12: NDCG score with cutoff 10 (top-10 tags) for MTAT when 1 seed tag is given for the random feature.

71

2 Seed tags given

mf mlp prior rgcn uniform
16 0.8062 ± 0.0197 0.8568 ± 0.0243 0.4999 ± 0.0385 0.8415 ± 0.0230 0.4380 ± 0.0291
32 0.6897 ± 0.0175 0.7364 ± 0.0179 0.3640 ± 0.0249 0.7061 ± 0.0237 0.2934 ± 0.0175
64 0.5949 ± 0.0222 0.6643 ± 0.0184 0.3003 ± 0.0189 0.6382 ± 0.0210 0.0999 ± 0.0063
128 0.5751 ± 0.0188 0.6327 ± 0.0136 0.2739 ± 0.0110 0.5829 ± 0.0204 0.0560 ± 0.0042
188 0.4584 ± 0.0115 0.6063 ± 0.0090 0.2653 ± 0.0133 0.5633 ± 0.0105 0.0198 ± 0.0030

Table C.13: NDCG score with cutoff 10 (top-10 tags) for MTAT when 2 seed tags are given for the MFCC feature.

mf mlp prior rgcn uniform
16 0.8143 ± 0.0265 0.4960 ± 0.0392 0.4999 ± 0.0385 0.7813 ± 0.0227 0.4380 ± 0.0291
32 0.6767 ± 0.0216 0.3563 ± 0.0232 0.3640 ± 0.0249 0.6235 ± 0.0262 0.2934 ± 0.0175
64 0.6156 ± 0.0272 0.2887 ± 0.0156 0.3003 ± 0.0189 0.5454 ± 0.0217 0.0999 ± 0.0063
128 0.5504 ± 0.0241 0.2744 ± 0.0104 0.2739 ± 0.0110 0.4718 ± 0.0224 0.0560 ± 0.0042
188 0.5322 ± 0.0103 0.2685 ± 0.0138 0.2653 ± 0.0133 0.4795 ± 0.0127 0.0198 ± 0.0030

Table C.14: NDCG score with cutoff 10 (top-10 tags) for MTAT when 2 seed tags are given for the random feature.

72 C. Ranking Accuracy Results

5 Seed tags given

mf mlp prior rgcn uniform
16 0.7885 ± 0.1547 0.7353 ± 0.1847 0.5224 ± 0.0725 0.8080 ± 0.1953 0.4974 ± 0.1374
32 0.7043 ± 0.0427 0.6553 ± 0.0579 0.3159 ± 0.0429 0.7234 ± 0.0366 0.2476 ± 0.0287
64 0.6881 ± 0.0401 0.6092 ± 0.0261 0.2707 ± 0.0381 0.6206 ± 0.0466 0.0943 ± 0.0135
128 0.5759 ± 0.0283 0.5467 ± 0.0281 0.2282 ± 0.0234 0.5836 ± 0.0271 0.0697 ± 0.0143
188 0.6056 ± 0.0168 0.5731 ± 0.0126 0.2261 ± 0.0097 0.5620 ± 0.0138 0.0251 ± 0.0047

Table C.15: NDCG score with cutoff 10 (top-10 tags) for MTAT when 5 seed tags are given for the MFCC feature.

mf mlp prior rgcn uniform
16 0.6629 ± 0.2639 0.5522 ± 0.1864 0.5224 ± 0.0725 0.6928 ± 0.2263 0.4974 ± 0.1374
32 0.6899 ± 0.0481 0.2764 ± 0.0610 0.3159 ± 0.0429 0.6588 ± 0.0545 0.2476 ± 0.0287
64 0.6757 ± 0.0406 0.2586 ± 0.0324 0.2707 ± 0.0381 0.5913 ± 0.0351 0.0943 ± 0.0135
128 0.6299 ± 0.0305 0.2221 ± 0.0278 0.2282 ± 0.0234 0.5079 ± 0.0409 0.0697 ± 0.0143
188 0.6010 ± 0.0145 0.2260 ± 0.0097 0.2261 ± 0.0097 0.5198 ± 0.0209 0.0251 ± 0.0047

Table C.16: NDCG score with cutoff 10 (top-10 tags) for MTAT when 5 seed tags are given for the random feature.

D
Embedding Similarity Results

This appendix contains the embedding similarity results for both MSD and MTAT. Each table contains
per dataset subset the average and standard deviation of the 10 folds. The model with the highest score
per subset is marked in bold.

Million Song Dataset

mf mlp rgcn
16 0.6620 ± 0.0028 0.6139 ± 0.0065 0.6143 ± 0.0198
32 0.5600 ± 0.0056 0.5340 ± 0.0148 0.5509 ± 0.0146
64 0.5385 ± 0.0029 0.5096 ± 0.0103 0.5037 ± 0.0094
128 0.5239 ± 0.0013 0.4464 ± 0.0044 0.4858 ± 0.0037
256 0.5059 ± 0.0037 0.4144 ± 0.0026 0.4644 ± 0.0069
512 0.5064 ± 0.0026 0.4023 ± 0.0034 0.4660 ± 0.0048
1024 0.4714 ± 0.0004 0.4015 ± 0.0020 0.4520 ± 0.0035

Table D.1: NDCG score with cutoff 10 for embedding similarity of models trained with the MSD dataset when an MFCC
feature is given.

mf mlp rgcn
16 0.6590 ± 0.0064 0.6259 ± 0.0148 0.6313 ± 0.0106
32 0.5751 ± 0.0023 0.4746 ± 0.0230 0.5700 ± 0.0111
64 0.5508 ± 0.0017 0.4151 ± 0.0107 0.5113 ± 0.0098
128 0.5259 ± 0.0012 0.3803 ± 0.0087 0.5263 ± 0.0045
256 0.4918 ± 0.0055 0.3314 ± 0.0077 0.4695 ± 0.0068
512 0.5088 ± 0.0015 0.3161 ± 0.0069 0.4700 ± 0.0052
1024 0.4831 ± 0.0019 0.3046 ± 0.0029 0.4526 ± 0.0027

Table D.2: NDCG score with cutoff 10 for embedding similarity of models trained with the MSD dataset when a random
feature is given.

73

74 D. Embedding Similarity Results

MagnaTagATune

mf mlp rgcn
16 0.6962 ± 0.0262 0.7052 ± 0.0258 0.7144 ± 0.0130
32 0.5567 ± 0.0079 0.5470 ± 0.0153 0.5633 ± 0.0075
64 0.5844 ± 0.0042 0.4699 ± 0.0108 0.5628 ± 0.0151
128 0.4908 ± 0.0059 0.4582 ± 0.0038 0.4968 ± 0.0048
188 0.4697 ± 0.0037 0.4318 ± 0.0061 0.4810 ± 0.0050

Table D.3: NDCG score with cutoff 10 for embedding similarity of models trained with the MTAT dataset when an
MFCC feature is given.

mf mlp rgcn
16 0.7044 ± 0.0273 0.6946 ± 0.0194 0.7114 ± 0.0080
32 0.5656 ± 0.0085 0.5212 ± 0.0293 0.5605 ± 0.0124
64 0.5801 ± 0.0030 0.4086 ± 0.0144 0.5627 ± 0.0118
128 0.5052 ± 0.0018 0.3779 ± 0.0173 0.4617 ± 0.0113
188 0.4678 ± 0.0043 0.3645 ± 0.0137 0.4462 ± 0.0074

Table D.4: NDCG score with cutoff 10 for embedding similarity of models trained with the random dataset when a
random feature is given.

E
Song predictions

This appendix contains the predicted tags for a selection of songs of dataset subset size 128 for both
MSD and MTAT. Seed tags have been excluded from the output. Tags in italic are tags from the 50%
least frequent tags in the set. Tags in bold are tags that occur in the ground truth and are therefore
correctly predicted. Behind each model, the NDCG value with cutoff 10 for that particular column is
given.

75

76 E. Song predictions

E.1. MSD 128 5 seeds
Table E.1: Stockholm Syndrome - Muse

Spotify: https://open.spotify.com/track/5VVWgWH8HFLAtM8lbttvn9

ground truth input seed mf (0.863) graph (0.931) mlp (0.936)
rock
pop
alternative
favorites
Love
00s
alternative rock
dance
beautiful
metal
Awesome
male vocalists
electronica
chill
british
hard rock
cool
Favorite
experimental
Favourites
punk rock
hardcore
psychedelic
favorite songs
male vocalist
epic
emo
2000s
Favourite Songs
Love it
nice
UK
britpop
Progressive
great
Progressive metal
FUCKING AWE-
SOME

indie
electronic
indie rock
Progressive rock
amazing

alternative
experimental
rock
alternative rock
00s
psychedelic

indie pop
Awesome
electronica
seen live

alternative
experimental
alternative rock
00s
Awesome
rock
electronica
seen live
favorites
british

rock
alternative
alternative rock
favorites
00s
Awesome
pop
hard rock
metal
american

https://open.spotify.com/track/5VVWgWH8HFLAtM8lbttvn9

E.1. MSD 128 5 seeds 77

Table E.2: Tainted Love - Soft Cell

Spotify: https://open.spotify.com/track/58E1XVmZTODC67YNjneuXM

ground truth input seed mf (0.934) graph (0.845) mlp (0.931)
rock
pop
alternative
electronic
favorites
alternative rock
dance
Awesome
male vocalists
electronica
classic rock
80s
british
cool
Favorite
Favourites
oldies
sexy
party
catchy
electro
favourite
fun
Soundtrack
loved
cover
classic
good
Favourite Songs
post-punk
UK
britpop
dark

indie
Love
new wave
techno
synthpop

electronic
electronica
dance
pop
electro
alternative
80s
british
indie rock
post-punk

dance
electronic
pop
alternative
00s
party
catchy
90s
fun
electronica

pop
dance
rock
male vocalists
party
electronic
favorites
00s
80s
catchy

Table E.3: Runnin’ From The Law - L7

Spotify: https://open.spotify.com/track/6VXBffSoy4QrgwOhINLH3A

ground truth input seed mf (0.699) graph (0.727) mlp (0.874)
rock
female vocalists
favorites
metal
indie rock
80s
punk
heavy metal

alternative
indie
alternative rock
hard rock
punk rock

rock
punk
indie rock
seen live
hardcore
emo

metal
90s
favorites
00s

rock
punk
indie rock
seen live
metal
favorites
Awesome
emo

post-punk

british

rock
punk
90s
metal
80s
heavy metal
favorites
indie rock
post-punk

seen live

https://open.spotify.com/track/58E1XVmZTODC67YNjneuXM
https://open.spotify.com/track/6VXBffSoy4QrgwOhINLH3A

78 E. Song predictions

Table E.4: Rosie - Joan Armatrading

Spotify: https://open.spotify.com/track/4yMdCBVURkXYYNtY53H1FY

ground truth input seed mf (0.458) graph (0.410) mlp (0.411)
rock
female vocalists
singer-songwriter
soul
oldies
happy
latin
smooth
soft rock

Love
80s
70s
female
reggae

pop
female vocalists
soul
oldies
rock
classic rock
favorites
female vocalist
rnb
dance

soul
rnb
spanish

oldies
pop
classic rock
60s

latin

country
male vocalists

pop
female vocalists
rock
dance
00s
spanish

female vocalist
latin

singer-
songwriter
favorites

Table E.5: How We Became - Jeremy Warmsley

Youtube: https://www.youtube.com/watch?v=rW_DbW6TD84

ground truth input seed mf (0.296) graph (0.141) mlp (0.765)
electronic
singer-songwriter
electronica

rock
pop
indie
folk
indie pop

alternative
singer-
songwriter
indie rock
female vocalists
acoustic
alternative rock
00s
seen live
Mellow
british

alternative
Love
favorites
00s
british
female vocalists
beautiful
male vocalists
singer-
songwriter
indie rock

electronic
electronica
dance
alternative
00s
electro
chillout
Love
favorites
experimental

Table E.6: Must Be Doin’ Somethin’ Right - Billy Currington

Spotify: https://open.spotify.com/track/6TefPQD0oc88BNALpu4U87

ground truth input seed mf (0.229) graph (0.107) mlp (0.252)
beautiful
sexy
country
Favourite Songs
love songs

Love
oldies
easy listening
loved
favorite songs

favorites
male vocalists
pop
american
beautiful
Favorite
favourite
60s

Mellow
country

male vocalists
pop
rock
singer-songwriter
alternative
acoustic
Mellow
beautiful
favorites
indie

rock
pop
male vocalists
favorites
beautiful
country
alternative
Ballad

00s
sad

https://open.spotify.com/track/4yMdCBVURkXYYNtY53H1FY
https://www.youtube.com/watch?v=rW_DbW6TD84
https://open.spotify.com/track/6TefPQD0oc88BNALpu4U87

E.2. MTAT 128 5 seeds 79

E.2. MTAT 128 5 seeds
Table E.7: Rattling Sabers - Rapoon

Spotify: https://open.spotify.com/track/2HLxryL3H39oDkmaFMnjn7

ground truth input seed mf (0.264) graph (0.000) mlp (0.798)
ambient
no vocal

guitar
strings
quiet
solo
foreign

slow
classical
soft
ambient
noise

opera
vocal
piano
female
dark

classical
piano
classic
slow
soft
cello
classical guitar

harp
lute

opera

ambient
slow
soft
electronic
new age
synth
dark

weird
no vocal
low

Table E.8: Goodbye Caramel - Norine Braun

Spotify: https://open.spotify.com/track/49f00WM4zWKpGnXtVoEKUi

ground truth input seed mf (0.422) graph (0.441) mlp (0.593)
guitar
pop
female vocal
country
modern

female
woman
female vocals
singer
female singer

singing
vocal
guitar
rock
female vocal
pop
vocals
folk

male
fast

female vocal
singing
female voice
vocal
vocals
woman singing

women

voice
pop
foreign

rock
pop
guitar
vocals
vocal
singing
male
country
female vocal
loud

Table E.9: Vdol Po Rechenke (Russia) - Kitka

Spotify: https://open.spotify.com/track/5kN4hfZoaNih6OQJBZDvpi

ground truth input seed mf (0.807) graph (0.807) mlp (0.807)
female
woman singing

opera
singing
woman
choir
female voice

female
female vocal
vocal
choral
female vocals
vocals
women

woman singing

chorus

singer

female
female vocals
vocal
female vocal
vocals
women

choral
woman singing

chorus

voice

female
female vocals
female vocal
vocal
women

vocals
voice
woman singing

female singer

choral

https://open.spotify.com/track/2HLxryL3H39oDkmaFMnjn7
https://open.spotify.com/track/49f00WM4zWKpGnXtVoEKUi
https://open.spotify.com/track/5kN4hfZoaNih6OQJBZDvpi

80 E. Song predictions

Table E.10: Spinning - Atomic Opera

Spotify: https://open.spotify.com/track/1SkNhPrk8NeLctN3BsDN3R

ground truth input seed mf (0.414) graph (0.264) mlp (0.501)
vocal
male

rock
male vocal
male voice
metal
hard

hard rock

loud
drums
guitar
male
male vocals
man
electric guitar

heavy

vocal

hard rock

loud
heavy metal

male
heavy

male vocals
punk

man
man singing

electric guitar

guitar
loud
drums
vocal
male
vocals
singing
fast
techno
electronic

Table E.11: Sonata 2 (Minuetto I) - Ensemble Mirable

Spotify: https://open.spotify.com/track/4iOyWIpSKUQncdVTKfRpll

ground truth input seed mf (0.832) graph (0.832) mlp (0.832)
classical
slow
violin
low

guitar
strings
soft
classic
cello

violin
classical
slow
harpsichord
violins
piano
string
no vocal
solo
instrumental

classical
violin
slow
solo
harpsichord
string
piano
violins
harp
no vocals

classical
violin
slow
piano
violins
harpsichord
string
indian
sitar
solo

Table E.12: Pauls Galiarde - Jacob Heringman

Spotify: https://open.spotify.com/album/72xGnfZFlATZLZKy3on1l8

ground truth input seed mf (0.967) graph (0.894) mlp (0.967)
guitar
classical
slow
soft
classical guitar

strings
quiet
solo
string
lute

guitar
slow
classical
harp
classical guitar

piano
soft
no vocal
classic
acoustic

classical
classical guitar

harp
piano
classic
soft
slow
guitar
acoustic

cello

guitar
slow
classical
piano
soft
harp
classical guitar

acoustic

flute
classic

https://open.spotify.com/track/1SkNhPrk8NeLctN3BsDN3R
https://open.spotify.com/track/4iOyWIpSKUQncdVTKfRpll
https://open.spotify.com/album/72xGnfZFlATZLZKy3on1l8

F
Supporting figures

81

82 F. Supporting figures

0 200 400 600 800 1000
tag_idx

0

2000

4000

6000

8000

Co
un

t

0 200 400 600 800 1000
tag_idx

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

subset_size
16
32
64
128
256
512
1024

(a) 0 seeds

0 200 400 600 800 1000
tag_idx

0

5000

10000

15000

20000

25000

Co
un

t

0 200 400 600 800 1000
tag_idx

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

subset_size
16
32
64
128
256
512
1024

(b) 1 seed

0 200 400 600 800 1000
tag_idx

0

20000

40000

60000

Co
un

t

0 200 400 600 800 1000
tag_idx

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

subset_size
16
32
64
128
256
512
1024

(c) 2 seeds

0 200 400 600 800 1000
tag_idx

0

20000

40000

60000

80000

100000

Co
un

t

0 200 400 600 800 1000
tag_idx

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

subset_size
16
32
64
128
256
512
1024

(d) 5 seeds

Figure F.1: Distribution of tag assignments for the first fold of MSD. Other folds are distributed similarly. Count refers to
the cumulative number of tags assigned at the given tag_idx. Similarly, Proportion refers to the cumulative percentage.

83

0 50 100 150
tag_idx

0

500

1000

1500

2000
Co

un
t

0 50 100 150
tag_idx

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

subset_size
16
32
64
128
188

(a) 0 seeds

0 50 100 150
tag_idx

0

250

500

750

1000

1250

Co
un

t

0 50 100 150
tag_idx

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

subset_size
16
32
64
128
188

(b) 1 seed

0 50 100 150
tag_idx

0

250

500

750

1000

1250

1500

Co
un

t

0 50 100 150
tag_idx

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

subset_size
16
32
64
128
188

(c) 2 seeds

0 50 100 150
tag_idx

0

250

500

750

1000

1250

1500

Co
un

t

0 50 100 150
tag_idx

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

subset_size
16
32
64
128
188

(d) 5 seeds

Figure F.2: Distribution of tag assignments for the first fold of MTAT. Other folds are distributed similarly. Count refers
to the cumulative number of tags assigned at the given tag_idx. Similarly, Proportion refers to the cumulative percentage.

84 F. Supporting figures

12
8

10
24

25
6

32
16

51
2

64

0.
0

0.
2

0.
4

0.
6

0.
8

NDCG@10

da
ta

 =
 m

sd
 |

n_
se

ed
 =

 0

12
8

10
24

25
6

32
16

51
2

64

da
ta

 =
 m

sd
 |

n_
se

ed
 =

 1

12
8

10
24

25
6

32
16

51
2

64

da
ta

 =
 m

sd
 |

n_
se

ed
 =

 2

12
8

10
24

25
6

32
16

51
2

64

da
ta

 =
 m

sd
 |

n_
se

ed
 =

 5

64
32

18
8

12
8

16
da

ta
se

t_
su

bs
et

0.
0

0.
2

0.
4

0.
6

0.
8

NDCG@10

da
ta

 =
 m

ta
t |

 n
_s

ee
d

=
0

64
32

18
8

12
8

16
da

ta
se

t_
su

bs
et

da
ta

 =
 m

ta
t |

 n
_s

ee
d

=
1

64
32

18
8

12
8

16
da

ta
se

t_
su

bs
et

da
ta

 =
 m

ta
t |

 n
_s

ee
d

=
2

64
32

18
8

12
8

16
da

ta
se

t_
su

bs
et

da
ta

 =
 m

ta
t |

 n
_s

ee
d

=
5

m
od

el
rg

cn
m

lp
m

f
pr

io
r

un
ifo

rm
fe

at
ur

e
m

fc
c

ra
nd

Figure F.3: NDCG score, including all tags in the subset vocabulary.

85

12
8

10
24

25
6

32
16

51
2

64

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

NDCG@10

da
ta

 =
 m

sd
 |

n_
se

ed
 =

 0

12
8

10
24

25
6

32
16

51
2

64

da
ta

 =
 m

sd
 |

n_
se

ed
 =

 1

12
8

10
24

25
6

32
16

51
2

64

da
ta

 =
 m

sd
 |

n_
se

ed
 =

 2

12
8

10
24

25
6

32
16

51
2

64

da
ta

 =
 m

sd
 |

n_
se

ed
 =

 5

64
32

18
8

12
8

16
da

ta
se

t_
su

bs
et

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

NDCG@10

da
ta

 =
 m

ta
t |

 n
_s

ee
d

=
0

64
32

18
8

12
8

16
da

ta
se

t_
su

bs
et

da
ta

 =
 m

ta
t |

 n
_s

ee
d

=
1

64
32

18
8

12
8

16
da

ta
se

t_
su

bs
et

da
ta

 =
 m

ta
t |

 n
_s

ee
d

=
2

64
32

18
8

12
8

16
da

ta
se

t_
su

bs
et

da
ta

 =
 m

ta
t |

 n
_s

ee
d

=
5

m
od

el
rg

cn
m

lp
m

f
pr

io
r

un
ifo

rm
fe

at
ur

e
m

fc
c

ra
nd

Figure F.4: NDCG score, top 50% of the most frequent tags are omitted, leaving only tags from the long-tail.

Acronyms
AARMS Attribute-Aware Recommender ModelS. 34

ALS Alternating Least Squares. 32

BPR Bayesian Personalized Ranking. 32, 33

CAL500 Computer Audition Lab 500. 12

CBA Codeword Bernouilli Average. 12

CNN Convolutional Neural Network. 13, 14, 16

CRNN Convolutional Recurrent Neural Network. 14

CTR Collaborative Topic Regression. 17, 18

DBN Deep Belief Networks. 13, 16

DFT Discrete Fourier Transform. 13

DGL Deep Graph Library. 34, 49

DNN Deep Neural Networks. 16

FFNN Feed Forward Neural Network. 16

FPR False Positive Rate. 33

GCN Graph Convolutional Network. 24, 25, 34

GMM Gaussian Mixture Model. 11, 12

KNN K-Nearest Neighbour. 11

LDA Latent Dirichlet Allocation. 12, 13, 18

MF Matrix Factorization. 16–18, 24–26, 34–37, 39, 40, 44, 48

MFCC Mel-Frequency Cepstral Coefficients. 11–13, 24, 27, 37, 38, 40, 42–45, 48, 49, 59–74

MGP Music Genome Project. 8, 17, 22

MIR Music Information Retrieval. 1, 3, 7–9, 11, 16, 17, 21, 22, 24, 49

MLP Multi-Layer Perceptron. 13, 16, 24, 27, 32, 34–37, 40, 42–44, 47–49

MSD Million Song Dataset. 2, 3, 9, 10, 13, 14, 21, 22, 24, 27–31, 39, 40, 43, 47, 49, 59–61, 65–68,
73, 75, 82

MTAT MagnaTagATune. 2, 13, 21, 27, 29–31, 37, 39, 40, 44, 47, 49, 59, 62–65, 69–75, 83

NDCG Normalized Discounted Cumulative Gain. 33, 37, 44

R-GCN Relational Graph Convolutional Network. 25, 26, 32, 37, 39, 40, 44, 47, 48

87

88 Acronyms

RNN Recurrent Neural Network. 14

ROC-AUC Receiver Operating Characteristic Area Under Curve. 33, 37, 38, 44

STFT Short-Time Fourier Transform. 11

SVM Support Vector Machine. 12–14

TPR True Positive Rate. 33

WMF Weighted Matrix Factorization. 14, 17

Bibliography
[1] About the music genome project®. URL https://www.pandora.com/about/mgp. Accessed:

2021-01-21.

[2] Folksonomy coinage and definition, February 2007. URL http://www.vanderwal.net/folksonomy.

html. Accessed: 2020-10-10.

[3] Pandora’s long strange trip, 2007. URL https://www.inc.com/magazine/20071001/

pandoras-long-strange-trip.html. Accessed: 2021-01-21.

[4] The song decoders, October 2009. URL https://www.nytimes.com/2009/10/18/magazine/

18Pandora-t.html. Accessed: 2021-01-21.

[5] Million song dataset, October 2011. URL http://millionsongdataset.com/lastfm/. Accessed:
2020-10-10.

[6] The magnatagatune dataset, June 2013. URL http://mirg.city.ac.uk/codeapps/

the-magnatagatune-dataset. Accessed: 2020-10-10.

[7] 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2017,

New Orleans, LA, USA, March 5-9, 2017, 2017. IEEE. ISBN 978-1-5090-4117-6. URL https:

//ieeexplore.ieee.org/xpl/conhome/7943262/proceeding.

[8] Juan Pablo Bello, Elaine Chew, and Douglas Turnbull, editors. ISMIR 2008, 9th International

Conference on Music Information Retrieval, Drexel University, Philadelphia, PA, USA, September

14-18, 2008, 2008. ISBN 978-0-615-24849-3.

[9] Thierry Bertin-Mahieux, Douglas Eck, François Maillet, and Paul Lamere. Autotagger: A model
for predicting social tags from acoustic features on large music databases. Journal of New Music

Research, 37(2):115–135, 2008. doi: 10.1080/09298210802479250. URL https://doi.org/10.

1080/09298210802479250.

[10] Thierry Bertin-Mahieux, Douglas Eck, and Michael Mandel. Automatic tagging of audio: The
state-of-the-art. Machine Audition: Principles, Algorithms and Systems, pages 334–352, 01 2010.
doi: 10.4018/978-1-61520-919-4.ch014.

[11] Thierry Bertin-Mahieux, Daniel P. W. Ellis, Brian Whitman, and Paul Lamere. The million
song dataset. In Klapuri and Leider [50], pages 591–596. ISBN 978-0-615-54865-4. URL http:

//ismir2011.ismir.net/papers/OS6-1.pdf.

[12] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. J. Mach. Learn.

Res., 3:993–1022, 2003. URL http://jmlr.org/papers/v3/blei03a.html.

[13] Dmitry Bogdanov, Minz Won, Philip Tovstogan, Alastair Porter, and Xavier Serra. The mtg-
jamendo dataset for automatic music tagging. InMachine Learning for Music Discovery Workshop,

International Conference on Machine Learning (ICML 2019), Long Beach, CA, United States,
2019. URL http://hdl.handle.net/10230/42015.

[14] Joseph K. Bradley and Robert E. Schapire. Filterboost: Regression and classification on large
datasets. In Platt et al. [64], pages 185–192. URL https://proceedings.neurips.cc/paper/2007/

hash/072b030ba126b2f4b2374f342be9ed44-Abstract.html.

[15] Ching-Wei Chen, Paul Lamere, Markus Schedl, and Hamed Zamani. Recsys challenge 2018:
automatic music playlist continuation. In Sole Pera, Michael D. Ekstrand, Xavier Amatriain, and
John O’Donovan, editors, Proceedings of the 12th ACM Conference on Recommender Systems,

89

https://www.pandora.com/about/mgp
http://www.vanderwal.net/folksonomy.html
http://www.vanderwal.net/folksonomy.html
https://www.inc.com/magazine/20071001/pandoras-long-strange-trip.html
https://www.inc.com/magazine/20071001/pandoras-long-strange-trip.html
https://www.nytimes.com/2009/10/18/magazine/18Pandora-t.html
https://www.nytimes.com/2009/10/18/magazine/18Pandora-t.html
http://millionsongdataset.com/lastfm/
http://mirg.city.ac.uk/codeapps/the-magnatagatune-dataset
http://mirg.city.ac.uk/codeapps/the-magnatagatune-dataset
https://ieeexplore.ieee.org/xpl/conhome/7943262/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7943262/proceeding
https://doi.org/10.1080/09298210802479250
https://doi.org/10.1080/09298210802479250
http://ismir2011.ismir.net/papers/OS6-1.pdf
http://ismir2011.ismir.net/papers/OS6-1.pdf
http://jmlr.org/papers/v3/blei03a.html
http://hdl.handle.net/10230/42015
https://proceedings.neurips.cc/paper/2007/hash/072b030ba126b2f4b2374f342be9ed44-Abstract.html
https://proceedings.neurips.cc/paper/2007/hash/072b030ba126b2f4b2374f342be9ed44-Abstract.html

90 Bibliography

RecSys 2018, Vancouver, BC, Canada, October 2-7, 2018, pages 527–528. ACM, 2018. ISBN
978-1-4503-5901-6. doi: 10.1145/3240323.3240342. URL https://doi.org/10.1145/3240323.

3240342.

[16] Keunwoo Choi, György Fazekas, and Mark B. Sandler. Automatic tagging using deep con-
volutional neural networks. In Michael I. Mandel, Johanna Devaney, Douglas Turnbull, and
George Tzanetakis, editors, Proceedings of the 17th International Society for Music Information Re-

trieval Conference, ISMIR 2016, New York City, United States, August 7-11, 2016, pages 805–811,
2016. ISBN 978-0-692-75506-8. URL https://wp.nyu.edu/ismir2016/wp-content/uploads/

sites/2294/2016/07/009_Paper.pdf.

[17] Keunwoo Choi, György Fazekas, Mark B. Sandler, and Kyunghyun Cho. Convolutional recurrent
neural networks for music classification. In 2017 IEEE International Conference on Acoustics,

Speech and Signal Processing, ICASSP 2017, New Orleans, LA, USA, March 5-9, 2017 DBL [7],
pages 2392–2396. ISBN 978-1-5090-4117-6. doi: 10.1109/ICASSP.2017.7952585. URL https:

//doi.org/10.1109/ICASSP.2017.7952585.

[18] Keunwoo Choi, György Fazekas, Mark B. Sandler, and Kyunghyun Cho. Transfer learning for
music classification and regression tasks. In Cunningham et al. [20], pages 141–149. ISBN 978-981-
11-5179-8. URL https://ismir2017.smcnus.org/wp-content/uploads/2017/10/12_Paper.pdf.

[19] Keunwoo Choi, György Fazekas, Kyunghyun Cho, and Mark B. Sandler. The effects of noisy
labels on deep convolutional neural networks for music tagging. IEEE Trans. Emerg. Top. Comput.

Intell., 2(2):139–149, 2018. doi: 10.1109/TETCI.2017.2771298. URL https://doi.org/10.1109/

TETCI.2017.2771298.

[20] Sally Jo Cunningham, Zhiyao Duan, Xiao Hu, and Douglas Turnbull, editors. Proceedings of

the 18th International Society for Music Information Retrieval Conference, ISMIR 2017, Suzhou,

China, October 23-27, 2017, 2017. ISBN 978-981-11-5179-8.

[21] S. Davis and P. Mermelstein. Comparison of parametric representations for monosyllabic word
recognition in continuously spoken sentences. IEEE Transactions on Acoustics, Speech, and Signal

Processing, 28(4):357–366, 1980. doi: 10.1109/TASSP.1980.1163420.

[22] Alceu de Souza Britto Jr., Fabien Gouyon, and Simon Dixon, editors. Proceedings of the 14th

International Society for Music Information Retrieval Conference, ISMIR 2013, Curitiba, Brazil,

November 4-8, 2013, 2013. ISBN 978-0-615-90065-0.

[23] Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, and Xavier Bresson. FMA: A dataset
for music analysis. In Cunningham et al. [20], pages 316–323. ISBN 978-981-11-5179-8. URL
https://ismir2017.smcnus.org/wp-content/uploads/2017/10/75_Paper.pdf.

[24] Sander Dieleman and Benjamin Schrauwen. Multiscale approaches to music audio feature learning.
In de Souza Britto Jr. et al. [22], pages 3–8. ISBN 978-0-615-90065-0. URL http://www.ppgia.

pucpr.br/ismir2013/wp-content/uploads/2013/09/69_Paper.pdf.

[25] Sander Dieleman and Benjamin Schrauwen. End-to-end learning for music audio. In IEEE

International Conference on Acoustics, Speech and Signal Processing, ICASSP 2014, Florence,

Italy, May 4-9, 2014, pages 6964–6968. IEEE, 2014. doi: 10.1109/ICASSP.2014.6854950. URL
https://doi.org/10.1109/ICASSP.2014.6854950.

[26] Sander Dieleman, Philemon Brakel, and Benjamin Schrauwen. Audio-based music classification
with a pretrained convolutional network. In Klapuri and Leider [50], pages 669–674. ISBN 978-
0-615-54865-4. URL http://ismir2011.ismir.net/papers/PS6-3.pdf.

[27] Simon Dixon, David Bainbridge, and Rainer Typke, editors. Proceedings of the 8th International

Conference on Music Information Retrieval, ISMIR 2007, Vienna, Austria, September 23-27,

2007, 2007. Austrian Computer Society. ISBN 978-3-85403-218-2.

[28] Douglas Eck, Thierry Bertin-Mahieux, and Paul Lamere. Autotagging music using supervised
machine learning. In Dixon et al. [27], pages 367–368. ISBN 978-3-85403-218-2. URL http:

//ismir2007.ismir.net/proceedings/ISMIR2007_p367_eck.pdf.

https://doi.org/10.1145/3240323.3240342
https://doi.org/10.1145/3240323.3240342
https://wp.nyu.edu/ismir2016/wp-content/uploads/sites/2294/2016/07/009_Paper.pdf
https://wp.nyu.edu/ismir2016/wp-content/uploads/sites/2294/2016/07/009_Paper.pdf
https://doi.org/10.1109/ICASSP.2017.7952585
https://doi.org/10.1109/ICASSP.2017.7952585
https://ismir2017.smcnus.org/wp-content/uploads/2017/10/12_Paper.pdf
https://doi.org/10.1109/TETCI.2017.2771298
https://doi.org/10.1109/TETCI.2017.2771298
https://ismir2017.smcnus.org/wp-content/uploads/2017/10/75_Paper.pdf
http://www.ppgia.pucpr.br/ismir2013/wp-content/uploads/2013/09/69_Paper.pdf
http://www.ppgia.pucpr.br/ismir2013/wp-content/uploads/2013/09/69_Paper.pdf
https://doi.org/10.1109/ICASSP.2014.6854950
http://ismir2011.ismir.net/papers/PS6-3.pdf
http://ismir2007.ismir.net/proceedings/ISMIR2007_p367_eck.pdf
http://ismir2007.ismir.net/proceedings/ISMIR2007_p367_eck.pdf

Bibliography 91

[29] Douglas Eck, Paul Lamere, Thierry Bertin-Mahieux, and Stephen Green. Automatic generation
of social tags for music recommendation. In Platt et al. [64], pages 385–392. URL http://papers.

nips.cc/paper/3370-automatic-generation-of-social-tags-for-music-recommendation.

[30] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In Lorenza
Saitta, editor, Machine Learning, Proceedings of the Thirteenth International Conference (ICML

’96), Bari, Italy, July 3-6, 1996, pages 148–156. Morgan Kaufmann, 1996. ISBN 1-55860-419-7.

[31] Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R. Channing
Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and human-labeled dataset for
audio events. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing,

ICASSP 2017, New Orleans, LA, USA, March 5-9, 2017 DBL [7], pages 776–780. ISBN 978-1-
5090-4117-6. doi: 10.1109/ICASSP.2017.7952261. URL https://doi.org/10.1109/ICASSP.2017.

7952261.

[32] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:

//www.deeplearningbook.org.

[33] Fabien Gouyon, Anssi Klapuri, Simon Dixon, M. Alonso, George Tzanetakis, C. Uhle, and Pedro
Cano. An experimental comparison of audio tempo induction algorithms. IEEE Trans. Speech

Audio Process., 14(5):1832–1844, 2006. doi: 10.1109/TSA.2005.858509. URL https://doi.org/

10.1109/TSA.2005.858509.

[34] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Balaji
Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal, Dou Shen, and Rajeev
Rastogi, editors, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pages 855–864. ACM,
2016. ISBN 978-1-4503-4232-2. doi: 10.1145/2939672.2939754. URL https://doi.org/10.1145/

2939672.2939754.

[35] Philippe Hamel and Douglas Eck. Learning features from music audio with deep belief networks.
In J. Stephen Downie and Remco C. Veltkamp, editors, Proceedings of the 11th International

Society for Music Information Retrieval Conference, ISMIR 2010, Utrecht, Netherlands, August

9-13, 2010, pages 339–344. International Society for Music Information Retrieval, 2010. ISBN
978-90-393-53813. URL http://ismir2010.ismir.net/proceedings/ismir2010-58.pdf.

[36] Philippe Hamel, Simon Lemieux, Yoshua Bengio, and Douglas Eck. Temporal pooling and multi-
scale learning for automatic annotation and ranking of music audio. In Klapuri and Leider [50],
pages 729–734. ISBN 978-0-615-54865-4. URL http://ismir2011.ismir.net/papers/PS6-13.pdf.

[37] Philippe Hamel, Matthew E. P. Davies, Kazuyoshi Yoshii, and Masataka Goto. Transfer learning
in mir: Sharing learned latent representations for music audio classification and similarity. In
de Souza Britto Jr. et al. [22], pages 9–14. ISBN 978-0-615-90065-0. URL http://www.ppgia.

pucpr.br/ismir2013/wp-content/uploads/2013/09/76_Paper.pdf.

[38] William L. Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods
and applications. IEEE Data Eng. Bull., 40(3):52–74, 2017. URL http://sites.computer.org/

debull/A17sept/p52.pdf.

[39] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus,
S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural Information Processing

Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-

9, 2017, Long Beach, CA, USA, pages 1024–1034, 2017. URL https://proceedings.neurips.cc/

paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html.

[40] Mikael Henaff, Kevin Jarrett, Koray Kavukcuoglu, and Yann LeCun. Unsupervised learning of
sparse features for scalable audio classification. In Klapuri and Leider [50], pages 681–686. ISBN
978-0-615-54865-4. URL http://ismir2011.ismir.net/papers/PS6-5.pdf.

http://papers.nips.cc/paper/3370-automatic-generation-of-social-tags-for-music-recommendation
http://papers.nips.cc/paper/3370-automatic-generation-of-social-tags-for-music-recommendation
https://doi.org/10.1109/ICASSP.2017.7952261
https://doi.org/10.1109/ICASSP.2017.7952261
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1109/TSA.2005.858509
https://doi.org/10.1109/TSA.2005.858509
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
http://ismir2010.ismir.net/proceedings/ismir2010-58.pdf
http://ismir2011.ismir.net/papers/PS6-13.pdf
http://www.ppgia.pucpr.br/ismir2013/wp-content/uploads/2013/09/76_Paper.pdf
http://www.ppgia.pucpr.br/ismir2013/wp-content/uploads/2013/09/76_Paper.pdf
http://sites.computer.org/debull/A17sept/p52.pdf
http://sites.computer.org/debull/A17sept/p52.pdf
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
http://ismir2011.ismir.net/papers/PS6-5.pdf

92 Bibliography

[41] Keiji Hirata, George Tzanetakis, and Kazuyoshi Yoshii, editors. Proceedings of the 10th Inter-

national Society for Music Information Retrieval Conference, ISMIR 2009, Kobe International

Conference Center, Kobe, Japan, October 26-30, 2009, 2009. International Society for Music In-
formation Retrieval. ISBN 978-0-9813537-0-8.

[42] Matthew D. Hoffman, David M. Blei, and Perry R. Cook. Easy as CBA: A simple probabilistic
model for tagging music. In Hirata et al. [41], pages 369–374. ISBN 978-0-9813537-0-8. URL
http://ismir2009.ismir.net/proceedings/OS5-2.pdf.

[43] Helge Homburg, Ingo Mierswa, Bülent Möller, Katharina Morik, and Michael Wurst. A benchmark
dataset for audio classification and clustering. In ISMIR 2005, 6th International Conference on

Music Information Retrieval, London, UK, 11-15 September 2005, Proceedings, pages 528–531,
2005. URL http://ismir2005.ismir.net/proceedings/2117.pdf.

[44] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit feedback datasets.
In Proceedings of the 8th IEEE International Conference on Data Mining (ICDM 2008), December

15-19, 2008, Pisa, Italy, pages 263–272. IEEE Computer Society, 2008. ISBN 978-0-7695-3502-9.
doi: 10.1109/ICDM.2008.22. URL https://doi.org/10.1109/ICDM.2008.22.

[45] Eric J. Humphrey, Juan Pablo Bello, and Yann LeCun. Moving beyond feature design: Deep
architectures and automatic feature learning in music informatics. In Fabien Gouyon, Perfecto
Herrera, Luis Gustavo Martins, and Meinard Müller, editors, Proceedings of the 13th International

Society for Music Information Retrieval Conference, ISMIR 2012, Mosteiro S.Bento Da Vitória,

Porto, Portugal, October 8-12, 2012, pages 403–408. FEUP Edições, 2012. ISBN 978-972-752-
144-9. URL http://ismir2012.ismir.net/event/papers/403-ismir-2012.pdf.

[46] Melvyn J. Hunt, Matthew Lennig, and Paul Mermelstein. Experiments in syllable-based recog-
nition of continuous speech. In IEEE International Conference on Acoustics, Speech, and Signal

Processing, ICASSP ’80, Denver, Colorado, USA, April 9-11, 1980, pages 880–883. IEEE, 1980.
doi: 10.1109/ICASSP.1980.1170934. URL https://doi.org/10.1109/ICASSP.1980.1170934.

[47] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of IR techniques. ACM
Trans. Inf. Syst., 20(4):422–446, 2002. doi: 10.1145/582415.582418. URL http://doi.acm.org/

10.1145/582415.582418.

[48] Thomas N. Kipf and Max Welling. Variational graph auto-encoders. CoRR, abs/1611.07308, 2016.
URL http://arxiv.org/abs/1611.07308.

[49] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,

France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:

//openreview.net/forum?id=SJU4ayYgl.

[50] Anssi Klapuri and Colby Leider, editors. Proceedings of the 12th International Society for Music

Information Retrieval Conference, ISMIR 2011, Miami, Florida, USA, October 24-28, 2011, 2011.
University of Miami. ISBN 978-0-615-54865-4. URL http://ismir2011.ismir.net/.

[51] Yehuda Koren, Robert M. Bell, and Chris Volinsky. Matrix factorization techniques for rec-
ommender systems. Computer, 42(8):30–37, 2009. doi: 10.1109/MC.2009.263. URL https:

//doi.org/10.1109/MC.2009.263.

[52] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolu-
tional neural networks. In Peter L. Bartlett, Fernando C. N. Pereira, Christopher J. C. Burges, Léon
Bottou, and Kilian Q. Weinberger, editors, Advances in Neural Information Processing Systems 25:

26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of a meeting

held December 3-6, 2012, Lake Tahoe, Nevada, United States, pages 1106–1114, 2012. URL http://

papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.

[53] Paul Lamere and Elias Pampalk. Social tags and music information retrieval. In Bello et al. [8],
page 24. ISBN 978-0-615-24849-3.

http://ismir2009.ismir.net/proceedings/OS5-2.pdf
http://ismir2005.ismir.net/proceedings/2117.pdf
https://doi.org/10.1109/ICDM.2008.22
http://ismir2012.ismir.net/event/papers/403-ismir-2012.pdf
https://doi.org/10.1109/ICASSP.1980.1170934
http://doi.acm.org/10.1145/582415.582418
http://doi.acm.org/10.1145/582415.582418
http://arxiv.org/abs/1611.07308
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
http://ismir2011.ismir.net/
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1109/MC.2009.263
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks

Bibliography 93

[54] Edith Law and Luis von Ahn. Input-agreement: a new mechanism for collecting data using human
computation games. In Dan R. Olsen Jr., Richard B. Arthur, Ken Hinckley, Meredith Ringel
Morris, Scott E. Hudson, and Saul Greenberg, editors, Proceedings of the 27th International Con-

ference on Human Factors in Computing Systems, CHI 2009, Boston, MA, USA, April 4-9, 2009,
pages 1197–1206. ACM, 2009. ISBN 978-1-60558-246-7. doi: 10.1145/1518701.1518881. URL
https://doi.org/10.1145/1518701.1518881.

[55] Edith Law, Kris West, Michael I. Mandel, Mert Bay, and J. Stephen Downie. Evaluation of
algorithms using games: The case of music tagging. In Hirata et al. [41], pages 387–392. ISBN
978-0-9813537-0-8. URL http://ismir2009.ismir.net/proceedings/OS5-5.pdf.

[56] Edith Law, Burr Settles, and Tom M. Mitchell. Learning to tag from open vocabulary la-
bels. In José L. Balcázar, Francesco Bonchi, Aristides Gionis, and Michèle Sebag, editors,
Machine Learning and Knowledge Discovery in Databases, European Conference, ECML PKDD

2010, Barcelona, Spain, September 20-24, 2010, Proceedings, Part II, volume 6322 of Lecture

Notes in Computer Science, pages 211–226. Springer, 2010. ISBN 978-3-642-15882-7. doi:
10.1007/978-3-642-15883-4_14. URL https://doi.org/10.1007/978-3-642-15883-4_14.

[57] Tom L. H. Li, Antoni B. Chan, and Andy H. W. Chun. Automatic musical pattern feature extrac-
tion using convolutional neural network. In Proceedings of the International MultiConference of En-

gineers and Computer Scientists 2010, IMECS 2010, pages 546–550, 2010. ISBN 9789881701282.
International MultiConference of Engineers and Computer Scientists 2010, IMECS 2010 ; Confer-
ence date: 17-03-2010 Through 19-03-2010.

[58] Dawen Liang, Minshu Zhan, and Daniel P. W. Ellis. Content-aware collaborative music recom-
mendation using pre-trained neural networks. In Meinard Müller and Frans Wiering, editors,
Proceedings of the 16th International Society for Music Information Retrieval Conference, ISMIR

2015, Málaga, Spain, October 26-30, 2015, pages 295–301, 2015. ISBN 978-84-606-8853-2. URL
http://ismir2015.uma.es/articles/290_Paper.pdf.

[59] Michael I. Mandel and Daniel P. W. Ellis. A web-based game for collecting music metadata. In
Dixon et al. [27], pages 365–366. ISBN 978-3-85403-218-2. URL http://ismir2007.ismir.net/

proceedings/ISMIR2007_p365_mandel.pdf.

[60] Brian McFee, Matt McVicar, Stefan Balke, Vincent Lostanlen, Carl Thomé, Colin Raffel, Dana
Lee, Kyungyun Lee, Oriol Nieto, Frank Zalkow, Dan Ellis, Eric Battenberg, Ryuichi Yamamoto,
Josh Moore, Ziyao Wei, Rachel Bittner, Keunwoo Choi, nullmightybofo, Pius Friesch, Fabian-
Robert Stöter, Thassilo, Matt Vollrath, Siddhartha Kumar Golu, nehz, Simon Waloschek, Seth,
Rimvydas Naktinis, Douglas Repetto, Curtis "Fjord" Hawthorne, and CJ Carr. librosa/librosa:
0.6.3, February 2019. URL https://doi.org/10.5281/zenodo.2564164.

[61] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative
style, high-performance deep learning library. In Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Ad-

vances in Neural Information Processing Systems 32: Annual Conference on Neural In-

formation Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,

Canada, pages 8024–8035, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/

bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

[62] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Re-

search, 12:2825–2830, 2011.

[63] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: online learning of social represen-
tations. In Sofus A. Macskassy, Claudia Perlich, Jure Leskovec, Wei Wang, and Rayid Ghani,

https://doi.org/10.1145/1518701.1518881
http://ismir2009.ismir.net/proceedings/OS5-5.pdf
https://doi.org/10.1007/978-3-642-15883-4_14
http://ismir2015.uma.es/articles/290_Paper.pdf
http://ismir2007.ismir.net/proceedings/ISMIR2007_p365_mandel.pdf
http://ismir2007.ismir.net/proceedings/ISMIR2007_p365_mandel.pdf
https://doi.org/10.5281/zenodo.2564164
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html

94 Bibliography

editors, The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD ’14, New York, NY, USA - August 24 - 27, 2014, pages 701–710. ACM, 2014. ISBN
978-1-4503-2956-9. doi: 10.1145/2623330.2623732. URL https://doi.org/10.1145/2623330.

2623732.

[64] John C. Platt, Daphne Koller, Yoram Singer, and Sam T. Roweis, editors. Advances

in Neural Information Processing Systems 20, Proceedings of the Twenty-First Annual Con-

ference on Neural Information Processing Systems, Vancouver, British Columbia, Canada,

December 3-6, 2007, 2008. Curran Associates, Inc. URL http://papers.nips.cc/book/

advances-in-neural-information-processing-systems-20-2007.

[65] Jordi Pons, Thomas Lidy, and Xavier Serra. Experimenting with musically motivated convolutional
neural networks. In 14th International Workshop on Content-Based Multimedia Indexing, CBMI

2016, Bucharest, Romania, June 15-17, 2016, pages 1–6. IEEE, 2016. ISBN 978-1-4673-8695-1.
doi: 10.1109/CBMI.2016.7500246. URL https://doi.org/10.1109/CBMI.2016.7500246.

[66] Jordi Pons, Oriol Nieto, Matthew Prockup, Erik M. Schmidt, Andreas F. Ehmann, and Xavier
Serra. End-to-end learning for music audio tagging at scale. In Emilia Gómez, Xiao Hu, Eric
Humphrey, and Emmanouil Benetos, editors, Proceedings of the 19th International Society for

Music Information Retrieval Conference, ISMIR 2018, Paris, France, September 23-27, 2018,
pages 637–644, 2018. ISBN 978-2-9540351-2-3. URL http://ismir2018.ircam.fr/doc/pdfs/191_

Paper.pdf.

[67] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. BPR: bayesian
personalized ranking from implicit feedback. In Jeff A. Bilmes and Andrew Y. Ng, editors, UAI
2009, Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, Mon-

treal, QC, Canada, June 18-21, 2009, pages 452–461. AUAI Press, 2009. URL https://www.auai.

org/uai2009/papers/UAI2009_0139_48141db02b9f0b02bc7158819ebfa2c7.pdf.

[68] Ruslan Salakhutdinov and Andriy Mnih. Probabilistic matrix factorization. In Platt
et al. [64], pages 1257–1264. URL https://proceedings.neurips.cc/paper/2007/hash/

d7322ed717dedf1eb4e6e52a37ea7bcd-Abstract.html.

[69] Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and
MaxWelling. Modeling relational data with graph convolutional networks. CoRR, abs/1703.06103,
2017. URL http://arxiv.org/abs/1703.06103.

[70] Klaus Seyerlehner, Markus Schedl, Reinhard Sonnleitner, David Hauger, and Bogdan Ionescu.
From improved auto-taggers to improved music similarity measures. In Andreas Nürnberger, Sebas-
tian Stober, Birger Larsen, and Marcin Detyniecki, editors, Adaptive Multimedia Retrieval: Seman-

tics, Context, and Adaptation, 10th International Workshop, AMR 2012, Copenhagen, Denmark,

October 24-25, 2012, Revised Selected Papers, volume 8382 of Lecture Notes in Computer Science,
pages 193–202. Springer, 2012. ISBN 978-3-319-12092-8. doi: 10.1007/978-3-319-12093-5_11.
URL https://doi.org/10.1007/978-3-319-12093-5_11.

[71] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):
1929–1958, 2014.

[72] Derek Tingle, Youngmoo E. Kim, and Douglas Turnbull. Exploring automatic music annotation
with "acoustically-objective" tags. In James Ze Wang, Nozha Boujemaa, Nuria Oliver Ramirez,
and Apostol Natsev, editors, Proceedings of the 11th ACM SIGMM International Conference on

Multimedia Information Retrieval, MIR 2010, Philadelphia, Pennsylvania, USA, March 29-31,

2010, pages 55–62. ACM, 2010. ISBN 978-1-60558-815-5. doi: 10.1145/1743384.1743400. URL
https://doi.org/10.1145/1743384.1743400.

[73] Douglas Turnbull, Ruoran Liu, Luke Barrington, and Gert R. G. Lanckriet. A game-based approach
for collecting semantic annotations of music. In Dixon et al. [27], pages 535–538. ISBN 978-3-
85403-218-2. URL http://ismir2007.ismir.net/proceedings/ISMIR2007_p535_turnbull.pdf.

https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
http://papers.nips.cc/book/advances-in-neural-information-processing-systems-20-2007
http://papers.nips.cc/book/advances-in-neural-information-processing-systems-20-2007
https://doi.org/10.1109/CBMI.2016.7500246
http://ismir2018.ircam.fr/doc/pdfs/191_Paper.pdf
http://ismir2018.ircam.fr/doc/pdfs/191_Paper.pdf
https://www.auai.org/uai2009/papers/UAI2009_0139_48141db02b9f0b02bc7158819ebfa2c7.pdf
https://www.auai.org/uai2009/papers/UAI2009_0139_48141db02b9f0b02bc7158819ebfa2c7.pdf
https://proceedings.neurips.cc/paper/2007/hash/d7322ed717dedf1eb4e6e52a37ea7bcd-Abstract.html
https://proceedings.neurips.cc/paper/2007/hash/d7322ed717dedf1eb4e6e52a37ea7bcd-Abstract.html
http://arxiv.org/abs/1703.06103
https://doi.org/10.1007/978-3-319-12093-5_11
https://doi.org/10.1145/1743384.1743400
http://ismir2007.ismir.net/proceedings/ISMIR2007_p535_turnbull.pdf

Bibliography 95

[74] Douglas Turnbull, Luke Barrington, and Gert R. G. Lanckriet. Five approaches to collecting tags
for music. In Bello et al. [8], pages 225–230. ISBN 978-0-615-24849-3. URL http://ismir2008.

ismir.net/papers/ISMIR2008_128.pdf.

[75] Douglas Turnbull, Luke Barrington, David A. Torres, and Gert R. G. Lanckriet. Semantic annota-
tion and retrieval of music and sound effects. IEEE Trans. Speech Audio Process., 16(2):467–476,
2008. doi: 10.1109/TASL.2007.913750. URL https://doi.org/10.1109/TASL.2007.913750.

[76] George Tzanetakis. Automatic musical genre classification of audio signals. In ISMIR 2001,

2nd International Symposium on Music Information Retrieval, Indiana University, Bloomington,

Indiana, USA, October 15-17, 2001, Proceedings, 2001. URL http://ismir2001.ismir.net/pdf/

tzanetakis.pdf.

[77] George Tzanetakis and Perry R. Cook. Musical genre classification of audio signals. IEEE Trans.

Speech Audio Process., 10(5):293–302, 2002. doi: 10.1109/TSA.2002.800560. URL https://doi.

org/10.1109/TSA.2002.800560.

[78] Rianne van den Berg, Thomas N. Kipf, and Max Welling. Graph convolutional matrix completion.
CoRR, abs/1706.02263, 2017. URL http://arxiv.org/abs/1706.02263.

[79] Aäron van den Oord, Sander Dieleman, and Benjamin Schrauwen. Deep content-based music
recommendation. In Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q.
Weinberger, editors, Advances in Neural Information Processing Systems 26: 27th Annual Con-

ference on Neural Information Processing Systems 2013. Proceedings of a meeting held December

5-8, 2013, Lake Tahoe, Nevada, United States, pages 2643–2651, 2013. URL https://proceedings.

neurips.cc/paper/2013/hash/b3ba8f1bee1238a2f37603d90b58898d-Abstract.html.

[80] Aäron van den Oord, Sander Dieleman, and Benjamin Schrauwen. Transfer learning by su-
pervised pre-training for audio-based music classification. In Hsin-Min Wang, Yi-Hsuan Yang,
and Jin Ha Lee, editors, Proceedings of the 15th International Society for Music Information Re-

trieval Conference, ISMIR 2014, Taipei, Taiwan, October 27-31, 2014, pages 29–34, 2014. URL
http://www.terasoft.com.tw/conf/ismir2014/proceedings/T007_118_Paper.pdf.

[81] Chong Wang and David M. Blei. Collaborative topic modeling for recommending scientific ar-
ticles. In Chid Apté, Joydeep Ghosh, and Padhraic Smyth, editors, Proceedings of the 17th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego,

CA, USA, August 21-24, 2011, pages 448–456. ACM, 2011. ISBN 978-1-4503-0813-7. doi:
10.1145/2020408.2020480. URL https://doi.org/10.1145/2020408.2020480.

[82] Fei Wang, Xin Wang, Bo Shao, Tao Li, and Mitsunori Ogihara. Tag integrated multi-label music
style classification with hypergraph. In Hirata et al. [41], pages 363–368. ISBN 978-0-9813537-0-8.
URL http://ismir2009.ismir.net/proceedings/OS5-1.pdf.

[83] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou,
Qi Huang, Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin Lin, Junbo Zhao, Jinyang Li,
Alexander J. Smola, and Zheng Zhang. Deep graph library: Towards efficient and scalable deep
learning on graphs. CoRR, abs/1909.01315, 2019. URL http://arxiv.org/abs/1909.01315.

[84] Jason Weston, Samy Bengio, and Philippe Hamel. Large-scale music annotation and retrieval:
Learning to rank in joint semantic spaces. CoRR, abs/1105.5196, 2011. URL http://arxiv.org/

abs/1105.5196.

[85] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. In Yoshua Bengio and Yann LeCun, editors,
3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May

7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6575.

[86] Hamed Zamani, Markus Schedl, Paul Lamere, and Ching-Wei Chen. An analysis of approaches
taken in the ACM recsys challenge 2018 for automatic music playlist continuation. ACM Trans.

Intell. Syst. Technol., 10(5):57:1–57:21, 2019. doi: 10.1145/3344257. URL https://doi.org/10.

1145/3344257.

http://ismir2008.ismir.net/papers/ISMIR2008_128.pdf
http://ismir2008.ismir.net/papers/ISMIR2008_128.pdf
https://doi.org/10.1109/TASL.2007.913750
http://ismir2001.ismir.net/pdf/tzanetakis.pdf
http://ismir2001.ismir.net/pdf/tzanetakis.pdf
https://doi.org/10.1109/TSA.2002.800560
https://doi.org/10.1109/TSA.2002.800560
http://arxiv.org/abs/1706.02263
https://proceedings.neurips.cc/paper/2013/hash/b3ba8f1bee1238a2f37603d90b58898d-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/b3ba8f1bee1238a2f37603d90b58898d-Abstract.html
http://www.terasoft.com.tw/conf/ismir2014/proceedings/T007_118_Paper.pdf
https://doi.org/10.1145/2020408.2020480
http://ismir2009.ismir.net/proceedings/OS5-1.pdf
http://arxiv.org/abs/1909.01315
http://arxiv.org/abs/1105.5196
http://arxiv.org/abs/1105.5196
http://arxiv.org/abs/1412.6575
https://doi.org/10.1145/3344257
https://doi.org/10.1145/3344257

	Introduction
	Research Questions
	Scientific Contribution
	Thesis Structure

	Background and Related Work
	Music Tags
	What defines a vocabulary of tags?
	Obtaining tags
	Issues with tag vocabularies

	Music Auto-Tagging
	Defining Music Auto-Tagging
	Audio input representations
	Traditional Auto-Tagging systems
	Deep Learning Based Approaches

	Models
	Deep Neural Networks
	Matrix Factorization
	Graph Representation Learning

	Methodology
	Limitations of auto-tagging
	Formalization: Semi Auto-Tagging

	Models
	Content-Aware Matrix Factorization
	Graph Convolutional Network

	Experimental Setup
	Datasets
	Features
	Million Song Dataset (Last.fm)
	MagnaTagATune

	Experimental Design
	Model and Hyperparameter selection
	Loss function
	Evaluation

	Implementation Details
	Hardware

	Research Questions
	RQ1: Effectiveness of a Semi Auto-tagging system
	RQ2: Effective use of the vocabulary

	Results
	Classification Accuracy
	AUC-micro
	AUC-macro
	AUC-samples

	Ranking Accuracy
	NDCG (full)
	NDCG (50% tail)

	Embedding Similarity
	Discussion and limitations
	Discussion
	Limitations

	Conclusion
	Contribution
	Future Work

	Experimental Design
	Classification Accuracy Results
	Ranking Accuracy Results
	Embedding Similarity Results
	Song predictions
	MSD 128 5 seeds
	MTAT 128 5 seeds

	Supporting figures
	Bibliography

