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Abstract. To retrieve aerosol properties from satellite mea-
surements of the oxygen A-band in the near-infrared, a line-
by-line radiative transfer model implementation requires a
large number of calculations. These calculations severely re-
strict a retrieval algorithm’s operational capability as it can
take several minutes to retrieve the aerosol layer height for
a single ground pixel. This paper proposes a forward mod-
elling approach using artificial neural networks to speed
up the retrieval algorithm. The forward model outputs are
trained into a set of neural network models to completely re-
place line-by-line calculations in the operational processor.
Results comparing the forward model to the neural network
alternative show an encouraging outcome with good agree-
ment between the two when they are applied to retrieval
scenarios using both synthetic and real measured spectra
from TROPOMI (TROPOspheric Monitoring Instrument) on
board the European Space Agency (ESA) Sentinel-5 Pre-
cursor mission. With an enhancement of the computational
speed by 3 orders of magnitude, TROPOMI’s operational
aerosol layer height processor is now able to retrieve aerosol
layer heights well within operational capacity.

1 Introduction

Launched on 13 October 2017, The TROPOspheric Monitor-
ing Instrument (Veefkind et al., 2012) on board the Sentinel-
5 Precursor mission is the first of the satellite-based at-
mospheric composition monitoring instruments in the Sen-
tinel mission of the European Space Agency. The aerosol

layer height (ALH) retrieval algorithm (Sanders and de Haan,
2013; Sanders et al., 2015; Nanda et al., 2018a, b) is a part
of TROPOMI’s operational product suite, and is expected to
be delivered in near-real time. The ALH (symbolised as zaer)
retrieval algorithm, operating within the near-infrared region
in the oxygen A-band between 758 and 770 nm, exploits in-
formation on the heights of scattering layers derived from
the absorption of photons by molecular oxygen – the amount
of absorption indicates whether the scattering layer is closer
to or farther from the surface; if the number of photons ab-
sorbed by oxygen is higher, it suggests a longer photon path
length due to an aerosol layer present closer to the surface.
This principle has been applied to cloud height algorithms
such as FRESCO (Fast Retrieval Scheme for Clouds from the
Oxygen A-band) by Wang et al. (2008), which use lookup
tables to generate top-of-atmosphere (TOA) reflectances to
compute cloud parameters. As clouds are such efficient scat-
terers of light, FRESCO can approximate scattering by cloud
using a Lambertian model – this simplification works quite
well for optically thick cloud layers. For aerosol layers, how-
ever, such calculations need to be carried out in much greater
detail due to their weaker scattering properties. TROPOMI’s
ALH algorithm employs the DISAMAR (Determining In-
strument Specifications and Methods for Atmospheric Re-
trievals) science code; DISAMAR uses the “Layer Based Or-
ders of Scattering” (LABOS) radiative transfer model based
on the doubling–adding method (de Haan et al., 1987), which
calculates reflectances at the TOA and its derivatives with re-
spect to aerosol layer height and aerosol optical thickness
(τ ). These calculations are carried out line-by-line, requir-
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ing calculations at 3980 wavelengths to generate these TOA
reflectances within the oxygen A-band. Having computed
the TOA reflectance spectra, aerosol layer heights are re-
trieved with optimal estimation (OE), an iterative retrieval
scheme developed by Rodgers (2000) that incorporates a pri-
ori knowledge of retrieval parameters into their estimation.
Such a retrieval scheme also provides a posteriori error es-
timations, which are important for assimilation models and
diagnosing the retrieval results.

The ALH retrieval algorithm is computationally expen-
sive, requiring several minutes to compute zaer for a sin-
gle ground pixel (Sanders et al., 2015). As near-real time
processors need to consistently go through large volumes
of data recorded by the satellite for the mission lifetime,
TROPOMI’s operational computation capability is much re-
stricted. This is due to the fact that TROPOMI records ap-
proximately 1.4 million pixels within a single orbit where,
on average, 50 000 pixels are typically identified as aerosol
contaminated pixels (with a UV aerosol index, UVAI, value
greater than 0.0) for retrieving aerosol layer height. This
places a steep requirement on the computational infrastruc-
ture with respect to processing all possible pixels from a sin-
gle orbit. The online radiative transfer model severely limits
the ALH data product, processing only a small fraction of the
total possible pixels within a single orbit while compromis-
ing the timeliness of the data delivery.

The bottleneck identified here is the large number of calcu-
lations that the forward model has to compute to retrieve in-
formation on weak scatterers such as aerosols. Several steps
to circumvent this bottleneck exist, such as using correlated
k distribution method to reduce the number of calculations
(Hasekamp and Butz, 2008), using a lookup table to cal-
culate forward model outputs, or entirely foregoing the for-
ward model and directly retrieving zaer from observed spec-
tra using neural networks (Chimot et al., 2017, 2018). Stud-
ies by Sanders and de Haan (2016) have shown that the
lookup table for reflectance alone measure up to 46 GB in
size, and is perhaps a similar size or even larger for the
derivatives. Chimot et al. (2017) describe an approach us-
ing a radiative transfer model to generate slant column den-
sities of the O2–O2 band at 477 nm from Ozone Monitoring
Instrument (OMI) measurements for different aerosol opti-
cal depths (among other input parameters) to train several
artificial neural network models that directly retrieve aerosol
layer height. Operationally, their neural network models use
the MODIS aerosol optical depth at 550 nm and retrieved
OMI slant column densities, thereby entirely foregoing line-
by-line calculations and significantly speeding the retrieval
algorithm up. The trained neural network models directly re-
trieved aerosol layer heights from spectra measured by OMI
on board the NASA Aura mission, without using line-by-
line calculations or an iterative estimation step such as OE
(Chimot et al., 2018). A similar example of retrievals is the
ROCINN (Retrieval of Cloud Information using Neural Net-
works) cloud algorithm developed by Loyola (2004) which

uses neural networks to compute convolved reflectance spec-
tra to retrieve cloud properties. These retrievals show the ex-
ploitable capabilities of artificial neural networks in the con-
text of retrieving atmospheric properties from oxygen ab-
sorption bands.

The studies of Chimot et al. (2018) and Loyola et al.
(2018) bring to light the efficacy of artificial neural networks
in the satellite remote sensing of oxygen absorption bands
for retrieving properties of scattering species in the atmo-
sphere. This paper discusses a method inspired by Chimot
et al. (2017) and Loyola (2004) to retrieve the aerosol layer
height from oxygen A-band measurements by TROPOMI.
While Chimot et al. (2017) directly retrieved aerosol layer
heights from their neural network models, the operational al-
gorithm in this paper utilises neural networks to calculate
top-of-atmosphere radiances in the forward model. This is
subsequently used by an optimal estimation scheme to re-
trieve aerosol layer heights. Similarly while Loyola (2004)
derived top-of-atmosphere sun-normalised radiances only
for their cloud property retrieval algorithm, the method in
this paper has dedicated neural network models that cal-
culate the Jacobian as well as the top-of-atmosphere sun-
normalised radiances. By reducing the time consumed for
calculating forward model outputs, the computational effi-
ciency of TROPOMI’s aerosol layer height retrieval algo-
rithm can be significantly improved.

Section 2 introduces the operational aerosol layer height
algorithm and discusses the line-by-line forward model. The
neural network forward model approach is detailed in Sect. 3,
and its verification on a test data set is discussed in same
section. This approach is then applied to various test cases
using synthetic and real TROPOMI spectra (Sect. 4) before
conclusions are given in Sect. 5.

2 The TROPOMI aerosol layer height retrieval
algorithm

The TROPOMI aerosol layer height is one of the many
algorithms that exploit vertical information on scattering
aerosol species in the oxygen A-band (Timofeyev et al.,
1995; Gabella et al., 1999; Corradini and Cervino, 2006; Pel-
letier et al., 2008; Dubuisson et al., 2009; Frankenberg et al.,
2012; Sanghavi et al., 2012; Wang et al., 2012; Sanders and
de Haan, 2013; Hollstein and Fischer, 2014; Sanders et al.,
2015; Geddes and Bösch, 2015; Sanders and de Haan, 2016;
Colosimo et al., 2016; Davis et al., 2017; Xu et al., 2017;
Nanda et al., 2018b; Zeng et al., 2018). These methods in-
vert a forward model that describes the atmosphere, to com-
pute the height of the scattering layer. This section discusses
the set-up of the TROPOMI ALH retrieval algorithm, which
consists of the inversion of a forward model representing the
atmosphere using optimal estimation as the retrieval method,
and a description of the forward model.
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2.1 The retrieval method

The cost function χ2 represents the departure of the mod-
elled reflectance F(x) from the observed reflectance y con-
strained by the measurement error covariance matrix Sε , and
is defined as

χ2
=
[
y−F(x)

]TS−1
ε

[
y−F(x)

]
+ (x− xa)

TS−1
a (x− xa) . (1)

Minimising this cost function for a particular zaer and τ (the
elements of the state vector x to be retrieved and fitted) gives
us the final retrieval product. This definition of the cost func-
tion is unique to OE, as it is constrained with a priori knowl-
edge of the state vector x (represented by xa) and the a priori
error covariance matrix Sa. In the TROPOMI ALH proces-
sor’s OE framework, the a priori state vector is fixed at spe-
cific values, usually 200 hPa above the surface for zaer and
1.0 for τ at 760 nm. The a priori error of the zaer is fixed at
500 hPa, and the a priori error for τ is fixed at 1.0, to allow
freedom for the variables in the estimation (this also reduces
the impact of the a priori on the retrieval). The forward model
is employed to simulate the measured reflectance spectrum
with model parameter x with

F (x)(λ)=
πI (λ)

µ0E0 (λ)
, (2)

where I and E0 represent the Earth radiance and solar irra-
diance respectively, with the cosine of the solar zenith an-
gle (θ0) denoted by µ0. As the forward model is non-linear,
a Gauss–Newton iteration is employed to the updated state
vector as follows:

xi+1 = xa+
[
KT
i S−1

ε Ki +S−1
a

]−1
K−1
i S−1

ε[
y−F(x)+Ki (xi − xa)

]
, (3)

where Ki is the matrix of derivatives (Jacobian) of the
reflectance with respect to the state vector parameters at
the current iteration i. The derivatives are calculated semi-
analytically similar to the method described by Landgraf
et al. (2001). The nth iterative estimate is convergent to a
solution if the relative changes in the state vector are less
than the expected precision (usually fixed at a certain value).
The retrieval is said to be “failed” if the number of iterations
exceeds the maximum number of iterations (usually set to
12) or the state vector parameters are projected outside the
respective boundary conditions. Retrieval errors are derived
from the a posteriori error covariance matrix Ŝ, which is com-
puted as

Ŝ=
[
KTS−1

ε K+S−1
a

]−1
. (4)

2.2 The DISAMAR forward model and its many
simplifications of atmospheric properties

Optimal estimation iteratively simulates TOA radiance spec-
tra until the convergence of χ2 (Eq. 1). For this, DISAMAR

computes reflectances at a high-resolution wavelength grid.
The computed high-resolution reflectances are combined
with a reference solar spectrum derived from Chance and
Kurucz (2010) to obtain a high-resolution Earth radiance.
The high-resolution Earth radiance and the solar spectrum
are convolved with the instrument spectral response function
to obtain the Earth radiance and solar irradiance spectrum in
the instrument’s wavelength grid, before finally computing
the reflectance spectrum in the instrument grid using Eq. (2).
It is important to note that the steps of including the reference
solar spectrum to compute reflectances in the instrument’s
wavelength grid are not undertaken by the neural network
algorithm. The neural network aerosol layer height retrieval
algorithm directly convolves the reflectance. The difference
between including and excluding a reference spectrum in the
convolution process results in differences in the order of 4 %
to 5 % around 762 and 766 nm. Further on in this paper, a di-
rect comparison between DISAMAR retrievals of the aerosol
layer height and retrievals with the neural network algorithm
is provided.

Reflectances are calculated by accounting for scatter-
ing and absorption of photons from their interactions
with aerosols, the surface, and molecular species. Molec-
ular scattering of photons in the oxygen A-band is de-
scribed by Rayleigh scattering, and absorption is described
by photon-induced magnetic dipole transition between
b16+g ←X36−g (0, 0) electric potential levels of molecu-
lar oxygen and collision-induced absorption between O2–
O2 and O2–N2. The total influence of the oxygen A-band
on the TOA reflectance is described by its extinction cross-
section, which is the sum of the three aforementioned con-
tributions. As the vertical distribution of oxygen is exactly
known, the extinction cross-section can be exploited to re-
trieve zaer from satellite measurements of the oxygen A-
band. For this, DISAMAR calculates absorption (or extinc-
tion) cross-sections at 3980 wavelengths within the range of
758–770 nm.

To reduce the number of calculations, various atmospheric
properties are simplified. As the Rayleigh optical thickness
is low at 760 nm, DISAMAR only computes the monochro-
matic component of light by calculating the first element of
the Stoke’s vector. The exclusion of higher-order Stoke’s vec-
tor elements of the radiation fields has not shown to be a sig-
nificant source of error (Sanders and de Haan, 2016).

Calculating the influence of rotational Raman scattering
(RRS) is also ignored, as it is a computationally expensive
step. While this exclusion of RRS is not advised by the liter-
ature (Vasilkov et al., 2013; Sioris and Evans, 2000), prelim-
inary experiments by Sanders and de Haan (2016) have as-
certained that the errors in the retrieved aerosol layer height
resulting from ignoring the RRS of the oxygen A-band in
the forward model are significantly smaller than the effect
of other model errors such as errors due to incorrect surface
albedo. Therefore, RRS has historically not been simulated
in the forward model of the Royal Netherlands Meteorologi-
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cal Institute (KNMI) aerosol layer height retrieval algorithm.
The atmosphere is assumed to be cloud-free, which is a re-
quired simplification as the retrieval of zaer in the presence
of clouds is still challenging (Sanders et al., 2015); there-
fore, zaer retrieval is only performed for pixels which are un-
likely to contain clouds. Compared with totally cloud-free
scenes, errors in retrieved zaer are large for cloud-free scenes
containing undetected optically thin cirrus clouds (Sanders
et al., 2015). The fraction of the pixel containing aerosols is
assumed to be 100 %, which further simplifies the represen-
tation of aerosols within the atmosphere.

Perhaps the largest simplification of the atmosphere lies
in model’s description of aerosols, assumed to be distributed
in a homogeneous layer at a height zaer with a 50 hPa thick-
ness, a fixed aerosol optical thickness (τ ), and a single scat-
tering albedo (ω) of 0.95 (so, scattering aerosols). A Henyey–
Greenstein model (Henyey and Greenstein, 1941) with an
asymmetry parameter g value of 0.7 is used to parame-
terise the aerosol scattering phase function, which is one of
the widely used approximations. These fixed aerosol opti-
cal properties have been derived from AERONET data and
tested by Sanders et al. (2015), who retrieved zaer from
GOME-2 spectra to show that the algorithm is robust with
respect to fixed aerosol model parameters such as the sin-
gle scattering albedo and the Henyey–Greenstein phase func-
tion asymmetry parameter. The surface is assumed to be an
isotropic reflector with a brightness described by its Lam-
bertian equivalent reflectivity (LER). This is also an impor-
tant simplification, requiring less computations over other
surface models such as a bi-directional reflectance model.
Although the forward model is capable of including sun-
induced chlorophyll fluorescence into the retrieval, it is
currently being considered for a future implementation of
TROPOMI’s operational ALH retrieval algorithm. Lastly, the
atmosphere is spherically corrected for incoming solar radia-
tion and remains plane-parallel for outgoing Earth radiance.

These simplifications in the DISAMAR forward model
are a necessity for the line-by-line aerosol layer height algo-
rithm, owing to its slow computational speed. The speed-up
of forward model simulation encourages an increase in the
complexity of the simulation assumptions.

2.3 Application to TROPOMI

TROPOMI’s near-infrared (NIR) spectrometer records data
between 675 and 775 nm, spread across two bands: band 5
contains the oxygen B-band and band 6 contains the oxy-
gen A-band. The spectral resolution, which is described by
the full width at half maximum (FWHM) of the instrument
spectral response function (ISRF), is 0.38 nm with a spectral
sampling interval of 0.12 nm. The spatial resolution is around
7km× 3.5km for bands 5 and 6. Initial observations from
the TROPOMI NIR spectrometer show a signal-to-noise ra-
tio (SNR) of 3000 in the continuum before the oxygen A-
band. The instrument polarisation sensitivity is reduced to

below 0.5 % by adopting the technology of the OMI polari-
sation scrambler (Veefkind et al., 2012; Levelt et al., 2006).
DISAMAR utilises TROPOMI’s swath-dependent ISRFs to
convolve I (λ) and E0(λ) into I (λi) and E0(λi) in the instru-
ment’s spectral wavelength grid respectively, after which the
modelled reflectance is calculated using Eq. (2).

Input parameters required by the TROPOMI ALH retrieval
algorithm encompass satellite observations of the radiance
and the irradiance, solar–satellite geometry, and a host of at-
mospheric and surface parameters required for modelling the
interactions of photons within the Earth’s atmosphere (see
Table 1). Meteorological parameters are taken from ECMWF
(European Centre for Medium-Range Weather Forecasts), in-
cluding the temperature–pressure profile at 91 atmospheric
levels (of which the surface is a part). The various geophysi-
cal parameters are interpolated to TROPOMI’s ground pixels
using nearest neighbour interpolation.

TROPOMI incorporates information from the VIIRS in-
strument to detect the presence of cirrus clouds in the mea-
sured scene (using a cirrus reflectance threshold of 0.01).
This information is further combined with cloud fraction re-
trievals by the TROPOMI FRESCO algorithm (maximum
cloud fraction of 0.6), and the difference between the scene
albedo in the database in the UV band and the apparent scene
albedo at the same wavelength calculated using a lookup ta-
ble (if the difference is larger than 0.2, it suggests cloud con-
tamination). A combination of these different cloud detection
strategies results in the “cloud_warning” flag in the Level-2
TROPOMI ALH product. In this paper, however, we use a
strict FRESCO cloud fraction filter of 0.2 to remove cloudy
pixels.

Calculation of TOA reflectance and its derivatives with
respect to zaer, and τ in a line-by-line fashion takes ap-
proximately 40–60 s to complete on a computer equipped
with Intel(R) Xeon(R) CPU E3-1275 v5 at a clock speed
of 3.60 GHz. In an iterative framework such as the Gauss–
Newton method, the retrieval of zaer can take between three
and six iterations depending on the amount of aerosol infor-
mation available in the observed spectra, requiring several
minutes to compute retrieval outputs for a specific scene. If
these retrievals fail by not converging within the maximum
number of iterations, the processor can waste up to 10 min
on a pixel without retrieving a product. In order to compute
DISAMAR’s outputs more quickly, a neural network imple-
mentation is discussed in the next section.

3 The neural network (NN) forward model

Artificial neural networks consist of connected processing
units, each individually producing an output value given a
certain input value. The interaction of these individual pro-
cessing units, also known as nodes (or neurons), enable the
connecting network to map a set of inputs (also known as
the input layer) to a set of outputs (also known as the out-
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Table 1. Input parameters required for retrieving aerosol layer height using TROPOMI measured spectra.

Parameter Source Remarks

Radiance and irradiance TROPOMI Level-1b product
SNR measured spectrum TROPOMI Level-1b product
Geolocation parameters TROPOMI Level-1b product
Surface albedo GOME-2 LER database Tilstra et al. (2017)
Meteorological parameters ECMWF A 17 km horizontal resolution
Cloud fraction TROPOMI Level-2 FRESCO product
Absorbing aerosol index (AAI) TROPOMI Level-2 AAI product
Land–sea mask NASA toolkit
Surface altitude GMTED2010 Pre-averaged

put layer). The connections are known as weights and their
values symbolise the strength of a connection between two
nodes. As the nodes connect inputs to the outputs, higher
values in a set of connecting weights represent a stronger in-
fluence of a particular parameter in the input layer over a
particular parameter in the output layer. These weights are
determined after training the neural network.

The training (or optimisation) of a neural network begins
with a training data set containing many instances of input
and output layer elements. As true values of the output layer
for a given set of inputs are exactly known in the training
data set, the biased output of the neural network calculated
after using randomised, non-optimised weights can be eas-
ily calculated. These biases are called prediction errors, and
are an essential element in the optimisation of the neural net-
work weights. The mean squared error (MSE) between the
true output and the calculated output is also called the loss
function (henceforth annotated as 1), which is synonymous
with a cost function (Eq. 5),

1=
1
nλ

∑
∀λ

(nnλ− oλ)2. (5)

Here λ is the wavelength, nλ represents the number of ele-
ments in the output layer, nnλ represents the calculated out-
put for wavelength via forward propagation, and oλ are the
outputs in the training data set. The weights are updated us-
ing optimisers such as the “Adam” optimiser (adaptive mo-
ment estimation) by Kingma and Ba (2014) to minimise 1,
within set number of iterations.

3.1 The TROPOMI NN forward model for the ALH
retrieval algorithm

The standard architecture of the NN-augmented operational
aerosol layer height processor includes three neural network
models for estimating top-of-atmosphere sun-normalised ra-
diance, the derivative of the reflectance with respect to zaer,
and the same for τ . It is also possible to assign the neu-
ral network to compute the reflectance instead of the sun-
normalised radiance – the results will not change. The def-
inition of sun-normalised radiance used in this paper is the

ratio of Earth radiance to solar irradiance. DISAMAR calcu-
lates derivatives with respect to reflectance, which is the sun-
normalised radiance multiplied by the ratio of π and cosine
of the solar zenith angle. All three neural network models
share the same input model parameters. Optimising a single
neural network model for all three forward model outputs is
not necessary; the correlations between the input parameters
and the different forward model outputs are different, which
can complicate the optimisation of a general-purpose neural
network. This paper, however, acknowledges modern devel-
opments in neural network optimisation techniques that now
afford selectively when optimising a neural network for dif-
ferent tasks (Kirkpatrick et al., 2016; Wen and Itti, 2018).

The models are trained using the Python Tensorflow mod-
ule (Abadi et al., 2015), and further implemented into an op-
erational processor using the C++ interface to Tensorflow.
These neural network models require training data contain-
ing DISAMAR input and output parameters and a connecting
architecture that encompasses the input feature vector con-
taining scene-varying model parameters, the number of hid-
den layers, the number of nodes in each hidden layer, and
an activation function that maps the input to the final out-
put layer containing DISAMAR outputs. In Tensorflow, the
derivative of 1 with respect to the weights are computed us-
ing reverse-mode automatic differentiation, which computes
numerical values of derivatives without the use of analytical
expressions (Wengert, 1964).

The inputs for NN are collectively referred to as the fea-
ture vector. The parameters included in the feature vector are
a very important factor deciding the performance of the neu-
ral network. The primary classes of model parameters (rel-
evant to retrieving zaer) that vary from scene to scene are
solar–satellite geometry, aerosol parameters, meteorological
parameters, and surface parameters (Table 2). The various
aerosol parameters that are fixed from scene to scene are the
aerosol single scattering albedo (ω), the asymmetry factor of
the phase function, and the Ängstrom exponent, as they are
also fixed in the line-by-line operational aerosol layer height
processor. The scattering phase function of aerosols is cur-
rently limited to a Henyey–Greenstein model with a fixed g
value of 0.7 to mimic DISAMAR. Surface pressure as well
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as the temperature–pressure profile are two important me-
teorological parameters relevant to retrieving zaer. A differ-
ence between the DISAMAR and NN models is the defini-
tion of this temperature information in the input. DISAMAR
requires the entire temperature–pressure profile of the at-
mosphere, whereas NN only uses the temperature at zaer.
Surface albedo is specified at 758 nm as well as 772 nm in
DISAMAR, whereas it is only specified at 758 nm in the fea-
ture vector of NN. In general there is a greater scope to add
detailed information in DISAMAR. However, DISAMAR
has historically incorporated many simplifications in order
to reduce computational time. The current NN model is de-
veloped with the aim of mimicking DISAMAR as much as
possible, without including additional state vector elements
into the retrieval, such as chlorophyll fluorescence, aerosol
optical properties, cloud properties, and so on.

3.2 Training the neural networks

As the NN forward model is specifically designed for
TROPOMI, the solar–satellite geometry is selected to rep-
resent TROPOMI orbits for the training data. Meteorologi-
cal parameters for the locations associated with these solar–
satellite geometries are derived from the 2017 60-layer ERA-
Interim reanalysis data (Dee et al., 2011), and aerosol and
surface parameters are randomly generated within their phys-
ical boundaries. This training data generation strategy spans
the entire set of TROPOMI solar and viewing angles as well
as meteorological parameters.

Generally, the required training data size increases with
increasing nonlinearity between input and output layers in a
neural network – there is no specific method to accurately de-
termine the required sample size before training. The number
of spectra generated for the training set was determined by
training different models with a different number of spectra
in the training set ranging from 1000 to 600 000. In general
it was observed that incorporating more data resulted in a
better neural network model. In order to test the trained neu-
ral network model, 500 000 spectra were selected. Finding
the most optimal neural network configuration requires test-
ing the trained neural network model. To that end, the train-
ing data set was divided into a training–testing split, where
the model was trained on the majority of the training data
set and tested on the remaining minority. Once trained, the
model was tested again on a test data set with 100 000 scenes
outside of the training data set. These spectra were generated
using DISAMAR with the model parameter ranges described
in Table 2. Figure 1 plots the distribution of the input param-
eters necessary for training the neural network. The neural
network model accepts solar azimuth and viewing azimuth
angles separately; however, they are plotted together as the
relative azimuth angle in Fig. 1 to save space. The generation
of this training data set is by far the most time-consuming
step as each DISAMAR run requires between 50 and 60 s
to generate the synthetic spectra. Once the data have been

generated, they are prepared for training the neural network
models in NN. This is done by data normalisation, which
is achieved by subtracting the mean of each of the training
input and output parameters and dividing the difference by
its standard deviation; this treatment of the data makes the
learning process quicker by reducing the search space for the
optimiser. The offset and scaling parameters are important,
as the neural network computes outputs within this scaled
range, which needs to be rescaled back to physical values.
This training requires a few hours on an Intel(R) Xeon(R)
CPU E3-1275 v5 at a clock speed of 3.60 GHz.

The most optimal configurations for each of the three
NN models are determined by the number of hidden layers,
the number of nodes on each layer, and the chosen activa-
tion function for which the discrepancy between the mod-
elled output for specific inputs and the truth (derived from
DISAMAR) is minimal. The difference between the outputs
calculated by DISAMAR and NN for these three models pro-
vides insight into their performance.

In order to test the most optimal number of layers, the
most optimal number of nodes per layer, and the activation
function, several neural network configurations were trained
for 250 000 iterations and their summed losses (defined as
1× nλ) were compared to find out which configuration was
best. Figure 2 plots the summed losses as a function of train-
ing iteration for different configurations.

To begin, with 50 nodes per hidden layer, three neural
networks – one-layered, two-layered, and three-layered –
for each of the three models were trained. The neural net-
work models performed best with at least two hidden layers
(Fig. 2a). For all three models, the two-layered versions show
a similar summed loss to their three-layered alternatives, with
the summed loss for the two-layered NNDISAMAR(Kτ ) show-
ing more stability with training epoch. Therefore, a sim-
pler two-layered architecture is chosen for all three mod-
els. Continuing on, three other architectures for each of the
three models were chosen with 50, 100, and 200 nodes
for each of the two hidden layers. The results showed
that with more training steps, the choice of 100 nodes for
each of the two layers was a good compromise between
summed training loss and simplicity (Fig. 2b), especially for
NNDISAMAR(Kτ ). Finally, going ahead with a two-layered
architecture and 100 nodes for each layer, three activation
functions – namely the sigmoid function, the hyperbolic tan-
gent function (tanh), and the rectified linear unit (relu) func-
tion – were tested for each of the neural network models
(Fig. 2c). In this case, while all functions converge to sim-
ilar summed loss values by 250 000 iterations, the sigmoid
function showed a good compromise between training loss
and stability. Figure 3 gives a graphic representation of the
neural network model.

The finalised configurations were then trained for 1 million
iterations after which they were applied to the test data set
to study prediction errors. Figure 4 plots the performance of
each of the neural networks trained on the testing data set. An
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Table 2. Scene-dependent input model parameters for the NN model. See also Fig. 1 for a histogram of the input parameters. The solar–
satellite geometry parameters are generated in combinations conforming to those encountered by TROPOMI’s orbits.

Parameter class Model Parameters Remarks Limits

Geometry

Solar zenith angle (θ0) In feature vector 8.20 to 80.0◦

Viewing zenith angle (θ ) In feature vector 0.0 to 66.60◦

Solar azimuth angle (φ0) In feature vector −180.0 to 180.0◦

Viewing azimuth angle (φ) In feature vector −180.0 to 180.0◦

Aerosol parameters

Aerosol pixel fraction Fixed 1.0
Single scattering albedo (ω) Fixed 0.95
Aerosol optical thickness (τ ) In feature vector 0.05–5.0
Aerosol layer height (zaer) In feature vector 75–1000.0 hPa
Aerosol layer thickness (pthick) Varied but excluded from feature vector 50–200 hPa
Scattering phase function Fixed Henyey–Greenstein
Asymmetry factor (g) Fixed 0.7
Ängstrom exponent (Å) Fixed 0.0

Meteorological parameters Temperature In feature vector Temperature at zaer

Surface parameters
Surface pressure (ps) In feature vector 520–1048.50 hPa
Surface reflectance model LER
Surface albedo (As) In feature vector 2.08× 10−7–0.70

Figure 1. Histograms of the various input parameters for each of the neural network models in NN. Minimum and maximum values for each
of the parameters are shown in Table 2.

error analysis revealed that the trained neural networks were
capable of calculating DISAMAR outputs with low errors,
generally within 1 %–3 % of DISAMAR calculations. Aver-
aged convolved errors of the neural network model for the
sun-normalised radiance (NNI ) did not exceed 1 %. The neu-
ral network model for the derivative of the reflectance with
respect to τ and zaer perform well in general for parts of the
spectrum with large oxygen absorption cross-sections, where
the value of the derivatives are high (indicating a higher
amount of information content from those specific wave-
length regions). Errors in the deepest part of the R-branch

between 759 and 762 nm and the P-branch between 752.50
and 765 nm do not exceed 3 % for NNKzaer . The same can be
said for NNKτ , which displays errors of approximately 1 %
in the same wavelength region. For wavelengths outside of
the deepest parts of the R- and P-branch, the relative errors
are large, and easily exceed 10 %. However, the relative er-
rors are calculated as the absolute value of the difference be-
tween the true spectrum and the neural-network-calculated
spectrum, divided by the true spectrum. These values can be
very large when the value of the true spectrum is very small,
which is the case for the derivatives outside the deepest part
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Figure 2. Summed loss as a function of training step for different neural network model configurations. (a) The neural network models have
50 nodes per layer with a sigmoid activation function. (b) The neural network models have two hidden layers with each node activated by
the sigmoid function. (c) The neural network models have two hidden layers with 100 nodes for each layer.

Figure 3. Schematic of each of the three neural networks in NN. There are two hidden layers, each containing 100 nodes. z represents inputs
for each of the nodes, whereas nn represents the inputs and outputs of the neural network.
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Figure 4. Performance of the finalised neural network. Panels (a), (c), and (e) represent the averaged output of each of the neural networks
for surface albedo less than 0.4. Panels (b), (d), and (f) represent the convolved version of (a), (c), and (e) (plotted as the red line read from
the left-hand y axis) and the convolved relative error (plotted in log scale) with the truth (plotted in blue and read from the right-hand y axis).
The relative errors are computed as the absolute value of the difference (post-convolution) between the averaged true and averaged predicted
spectra, divided by the averaged true spectra. Panels (a) and (b) represent the neural network computed sun-normalised radiances, panels (c)
and (d) represent the same for the derivative of reflectance with respect to the aerosol layer height, and panels (e) and (f) represent the same
with respect to the aerosol optical thickness.

of the R- and P-branch. The consequences of these errors in
a retrieval scenario from synthetic and real spectra are dis-
cussed in the following section.

4 Comparison between DISAMAR and NN aerosol
layer height retrieval algorithms

To test the NN-augmented retrieval algorithm, we apply the
generated NN models to synthetic test data and real data from
TROPOMI and compare its retrieval capabilities to those
of DISAMAR. The synthetic data were produced using the
DISAMAR radiative transfer model; therefore, we expect the
online radiative transfer retrievals to be generally better than
the NN-based retrievals. The aerosol model utilised in the re-
trieval is the same at that in Sect. 2.2, using fixed parameters
for aerosol single scattering albedo, aerosol layer thickness,
and aerosol scattering phase function.

4.1 Performance of NN versus DISAMAR with respect
to retrieving aerosol layer height in the presence of
model errors

A comparison of biases (in the presence of model errors)
in the final retrieved solution is indicative of the efficacy
of NN in replacing DISAMAR to retrieve ALH. To di-

rectly compare the zaer retrieval capabilities of DISAMAR
and NN, radiance and irradiance spectra convolved with
a TROPOMI slit function were generated to replicate
TROPOMI-measured spectra. Bias is defined as the differ-
ence between the retrieved and the true aerosol layer height
(i.e. retrieved minus true). A total of 2000 scenes for four
synthetic experiments were generated from the test data
set containing TROPOMI geometries, with randomly varied
model errors in aerosol single scattering albedo, the Henyey–
Greenstein phase function asymmetry parameter, and surface
albedo (described in Table 3). Figure 5 compares the re-
trieved zaer from line-by-line and neural network approaches
for each of the synthetic experiments. A histogram of these
differences is plotted in Fig. 6.

The retrieved aerosol layer heights from DISAMAR and
NN in the presence of model errors in aerosol layer thick-
ness were found to be similar (Fig. 5a), with a Pearson cor-
relation coefficient close to 1.0. Introducing model errors
in other aerosol properties such as single scattering albedo
(Fig. 5b) and scattering phase function (Fig. 5c) also re-
sulted in a similar agreement between DISAMAR- and NN-
retrieved aerosol layer heights. Furthermore, both methods
also retrieved similar aerosol layer heights in the presence of
model errors in surface albedo (Fig. 5d).
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Figure 5. Retrieved layer heights compared between DISAMAR and NN for 2000 synthetic spectra in the presence of model errors. The
dots represent converged scenes only, with the x axis representing retrievals from DISAMAR and the y axis representing the same from NN.
The model errors represented in this figure are (a) aerosol layer pressure thickness, (b) aerosol single scattering albedo, (c) aerosol scattering
phase function asymmetry factor, and (d) surface albedo. These results as well as the introduced model errors are summarised in Table 3.
The Pearson correlation coefficient (R) between the retrieved zaer from different methods is mentioned in each of the plots.

Table 3. A count of converged and non-converged results from synthetic experiments (sim) comparing retrieved (ret) aerosol layer heights
between DISAMAR and NN.

Experiment DISAMAR NN

Model parameter Value in sim Value in ret Converged Non-converged Converged Non-converged

pthick 200 hPa 50 ha 1641 359 1550 450
ω 0.93–0.96 0.95 1396 604 1412 588
g 0.67–0.73 0.7 1571 429 1567 433
As 0.95As–1.05As As 1536 464 1575 425

A total of 5558 retrievals from the 8000 different cases
converged to a final solution. On average, zaer retrieved us-
ing NN differed by approximately 5.0 hPa from zaer retrieved
using DISAMAR (Fig. 6), with a median of approximately
2.0 hPa. The spread of the retrieval differences was mini-
mal, with the majority of the retrievals differing by less than
13.0 hPa. Differences close to and above 100.0 hPa did exist,
but such retrievals were very uncommon.

From the 8000 scenes within the synthetic experiment,
NN retrieved aerosol layer heights for 546 scenes where
DISAMAR did not. Conversely, 586 scenes converged for
DISAMAR and not for NN. A comparison of the biases
from these odd retrieval results is plotted in Fig. 7, which in-
dicates that retrievals from NN in cases where DISAMAR
fails are realistic as the distribution of the biases is very
similar to those cases when DISAMAR succeeds and NN
does not (Fig. 7). Retrievals using the NN forward model
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Figure 6. Histogram of differences between the retrieved zaer
values using DISAMAR and NN retrieval methods for synthetic
spectra generated by DISAMAR. The total number of cases is
8000, whereas the plot contains 5558 retrieved samples for both
DISAMAR and NN; non-converged cases are not included. A map
of these differences is plotted in Fig. 9c.

required three more iterations on average to reach a solu-
tion compared with the retrievals by DISAMAR. Similarly,
retrievals from DISAMAR had a significantly lower min-
imised cost function (4 orders of magnitude less on aver-
age) at the end of the retrieval compared with to NN. This
is expected as NN cannot truly replicate DISAMAR. Having
tested the NN-augmented retrieval algorithm in a synthetic
environment, the retrieval algorithm was installed into the
operational TROPOMI processor for testing with real data.

4.2 Application to December 2017 Californian forest
fires observed by TROPOMI

The December 2017 southern California wildfires have been
attributed to very low humidity levels, following delayed au-
tumn precipitation and severe multi-annual drought (Naus-
lar et al., 2018). Particularly on 12 December the region of
the fires was cloud-free, owing to high-pressure conditions.
A MODIS Terra image of the plume and the retrieved AAI
from TROPOMI are shown in Fig. 8. The biomass burning
plume extended well beyond the coastline and over the ocean
(Fig. 8a), which provides a roughly cloud-free and low sur-
face brightness test case for implementing the aerosol layer
height retrieval algorithm. The AAI values were above 5.0 in
the bulk of the plume (Fig. 8b), indicating a very high con-
centration of elevated absorbing aerosols. Pixels with an AAI
value of less than 1.0 were excluded from the retrieval ex-

Figure 7. Histogram of biases (retrieved minus true) for scenes in
the synthetic experiment for which either NN converges to a so-
lution (red bar plot) and DISAMAR does not, or DISAMAR con-
verges to a solution (blue bar plot) and NN does not.

periment. Cloud-contaminated pixels were removed from the
data selected for processing using the FRESCO cloud mask
product from TROPOMI (maximum cloud fraction of 0.2);
parts of the biomass burning plume that did not contain any
clouds were also removed as the cloud fraction values for
these pixels were higher than the threshold. This is because
FRESCO-based cloud fraction values over cloud-free scenes
containing aerosols (biomass burning aerosols in this case)
are generally expected to be positively biased. The retrieval
algorithms did not process pixels on the coastline, where the
surface albedo retrieval is likely to be wrong.

Figure 9 compares the retrieved zaer over the plume using
the line-by-line and neural-network-based forward models
respectively. The number of converged retrievals is 7418 for
the line-by-line algorithm, but 7370 for the neural network
algorithm. The differences between zaer (DISAMAR) and
zaer (NN) are up to 0.5 km (Fig. 9c). The majority of the neg-
ative differences are for the part of the plume extending from
the coast between 47 and 40◦ N. Figure 10 provides plots
for further comparison between the two retrieval techniques.
The neural-network-augmented processor retrieved aerosol
layer heights which were (on average) less than 50.0 m from
the retrieved aerosol layer heights by DISAMAR (Fig. 10b).
The standard deviation of the differences is approximately
160 m, which indicates the presence of outliers. However, the
majority of the differences in the two retrievals are less than
100 m; this is indicated by the 15th and the 85th percentile
of these differences of −115.0 and 40.0 m respectively. Al-
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Figure 8. (a) MODIS Terra image of 12 December 2017 southern Californian wildfire plume, extending from land to ocean. (b) The
calculated aerosol absorbing index from the TROPOMI Level-2 processor. Missing pixels are flagged by a cloud mask or land–sea mask, or
have an AAI less than 1.0.

Figure 9. (a) Aerosol layer height retrieved using DISAMAR as the forward model. (b) The same, but with NN replacing DISAMAR in the
operational processor. (c) Difference between DISAMAR and NN retrieved aerosol layer heights.

though the retrieval algorithms show good agreement, they
primarily differed for the lower aerosol loading scenes (Ta-
ble 4). The majority of the pixels where the neural network
algorithm differed from the line-by-line counterpart by more
than 200 m were for AAI values of less than 2.0 (Fig. 10c).
Most of these biases were caused by an over-estimation of
the retrieved aerosol layer height using the neural network
algorithm, in comparison to the points from DISAMAR. Pix-

els with AAI values larger than 5.0 also showed a consistent
bias of 60 m with a standard deviation of 30 m. This bias is
not well understood.

The time required by the line-by-line operational pro-
cessor was 184.01± 0.50 s per pixel, whereas the time re-
quired by the neural network processor was 0.167±0.0003 s
per pixel. The neural network algorithm shows an improve-
ment in the computational speed by 3 orders of magnitude
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Figure 10. Comparison of retrieved aerosol layer heights from TROPOMI-measured spectra (orbit number 858) for the 12 December 2017
southern California fires using DISAMAR and NN. (a) Retrieved aerosol layer heights from the two methods. (b) Histogram of the difference
between retrieved heights from DISAMAR and NN. The difference is defined as zaer(DISAMAR)− zaer(NN). (c) Differences compared
with TROPOMI’s operational AAI product (x axis).

Table 4. Statistics of difference between retrieved zaer from DISAMAR and NN from Fig. 9c.

AAI Number of Mean Median Standard 15th percentile 85th percentile
(–) samples (m) (m) deviation (m) (m)

(m)

< 2.0 3227 −50.74 −62.10 206.44 −228.65 108.31
2.0–3.0 2723 −54.96 −43.20 110.75 −184.85 67.10
3.0–5.0 1167 10.32 19.42 63.65 −61.63 65.26
> 5.0 253 61.35 61.00 30.954 26.56 95.22

over the line-by-line retrieval algorithm. The computational
speed gained from implementing NN enables the retrieval of
aerosol layer heights from all potential scenes in the entire
orbit within the stipulated operational processing time slot.

5 Conclusions

Of the algorithms that currently retrieve TROPOMI’s suite
of Level-2 products, the aerosol layer height processor is an
example of one that requires online radiative transfer calcula-
tions. These online calculations have traditionally been tack-
led with KNMI’s radiative transfer code DISAMAR, which
calculates (among other parameters) sun-normalised radi-
ances in the oxygen A-band. There are, in total, 3980 line-
by-line calculations per iteration in the optimal estimation
scheme, requiring several minutes to retrieve aerosol layer
height estimates from a single scene. This limits the yield of
the aerosol layer height processor significantly.

The bottleneck is identified to be the number of cal-
culations DISAMAR needs to carry out at every iteration
of the Gauss–Newton scheme of the estimation process.
As a replacement, this paper proposes using artificial neu-
ral networks in the forward model step. Three neural net-
works are trained for the sun-normalised radiance and the

derivative of the reflectance with respect to aerosol layer
height and aerosol optical thickness, which are the two state
vector elements. As the goal is to replicate and replace
DISAMAR, line-by-line forward model calculations from
DISAMAR were used to train these neural networks. A to-
tal of 500 000 spectra were generated using DISAMAR, and
each of the neural network models was trained for a total of
1 million iterations with the mean squared error between the
training data output and the neural network output being the
cost function to be minimised in the optimisation process.

Over a test data set with 100 000 different scenes unique
from the training data set, the neural network models per-
formed well, with errors generally not exceeding 1 %–3 % in
the predicted spectra and derivatives. Having tested the neu-
ral network models for prediction errors in the forward model
output spectra, they were implemented into the aerosol layer
height breadboard algorithm and further tested for retrieval
accuracy. In order to do so, experiments with synthetic as
well as real data were conducted. The synthetic scenes in-
cluded 2000 spectra with different model errors in aerosol
and surface properties. In these cases, the neural network
algorithm showed very good compatibility with the aerosol
layer height algorithm, as it was able to replicate the biases
satisfactorily.
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We evaluate aerosol layer heights retrieved from
TROPOMI measurements over southern California on
12 December 2017, when the fire plume extensively floats
from land to ocean over a dry and almost cloudless scene.
Operational retrievals using both DISAMAR and the neural
network forward models showed very similar results, with a
few outliers around 500 m for pixels containing low aerosol
loads. These biases were outweighed by the upgrade in the
computational speed of the retrieval algorithm, as the neural-
network-augmented processor observed a speed-up of 3 or-
ders of magnitude, making the aerosol layer height processor
operationally feasible. Having achieved this improvement in
its computational performance, the aerosol layer height algo-
rithm is planned to operationally retrieve the product for all
possible pixels in each orbit of TROPOMI. Such a boost in
processor output allows for better analyses of retrievals and
offers the possibility of removing some of the forward model
simplifications mentioned in Sect. 2.2, which then paves the
way to further develop the TROPOMI aerosol layer height
algorithm.

Data availability. Satellite images of the 12 December 2017
Californian fires were derived from the MODIS 1 km Cal-
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