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We propose a way to achieve quantum synchronization of two canonically conjugated variables. For

this, we employ a superconducting device where the synchronization of Josephson and Bloch oscillations

results in the quantization of transresistance similar to that in the (fractional) quantum Hall effect. An LC

oscillator is a key component to achieve an exponentially small rate of synchronization errors.
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One of the most interesting discoveries of the twentieth
century was the perfect (fractional) quantization of Hall
transresistance in rather imperfect 2DEG semiconducting
samples [1]. The resistance as a function of electron den-
sity and magnetic field tends to be close to plateaus with
values

R ¼ V

I
¼ 2�@

e2
m

n
; (1)

n, m being integer numbers. The accuracy is so good as to
enable numerous metrological applications [2,3]. The
physical explanation of the effect is the commensurability
of electron density and density of the magnetic flux pene-
trating the sample, which takes place any time the ratio of
numbers of elementary charges and flux quanta in the
structure is a rational fraction n=m.

Quantum Hall samples are macroscopic, involving infi-
nitely many degrees of freedom. Shortly after the discov-
ery, Likharev and Zorin [4] hypothesized that similar
resistance quantization may occur in a Josephson-junction
superconducting device encompassing only a few quantum
degrees of freedom. They foresaw it as the result of
synchronization of two oscillations of complementary
quantum variables: Bloch [5] and Josephson [6] oscilla-
tions. The Josephson frequency !J ¼ 2eVO=@ is propor-
tional to the average voltage dropping at a part of the
device while the Bloch frequency !B ¼ �IO=e is propor-
tional to the average current in another part. A synchroni-
zation condition of the two oscillations, n!J ¼ m!B,
results in

R ¼ VO

IO
¼ �@

2e2
m

n
: (2)

The resistance quantum is modified in comparison with
Eq. (1) manifesting the double charge 2e of Cooper pairs
in superconductors. Unfortunately, the original device
suggestion [4] does not work. The reason for the failure
seems fundamental. The quantities to be synchronized, the
charge and flux in the device, are canonically conjugated
variables. Quantum mechanics forbids them to be

simultaneously certain, and the synchronization is
expected to be destroyed by quantum fluctuations.
A recent burst of theoretical and experimental activities

concerns quantum-coherent phase slips in thin nanowires
[7]. On the theoretical side, the concept of the phase-slip
junction has emerged [8,9]. Such a junction is exactly dual
to a common Josephson junction with respect to charge-
flux conjugation. This inspired the proposals of novel
superconducting devices [10–12]. Very recently, a phase-
slip qubit on InO nanowires has been realized [13].
Relevant experimental developments include observation
of the predicted phenomena: phase slips in Josephson
junction chains [14,15], Bloch oscillations [16], and charge
sensitivity [17].
In this Letter, we demonstrate that combining a phase-

slip and a Josephson junction in a single device solves the
problem of quantum synchronization. A necessary element
of the device appears to be an LC oscillator with high
quality factor Q. With this, one can make the rate � of
synchronization errors exponentially small, � ln� ’ Q,
thereby achieving exponential accuracy of the resistance
quantization. Importantly, the device suggested can also be
used as both the voltage and the current standard, thereby
closing the metrological triangle [18].
To appreciate the difficulty of quantum synchronization,

we consider first a phase-slip and a Josephson junction
embedded in a general linear circuit that can be represented
with four (frequency-dependent) resistors (Fig. 1). The
circuit parts in the dashed boxes represent the Bloch and
Josephson oscillators. Let us first consider them separately
by setting two coupling resistors Z1;2 to Z1 ¼ 1, Z2 ¼ 0.
The Josephson part is then a common [19] Josephson
current-biased junction shunted by the conductor GJ. If
the bias current exceeds the critical one, Ib > IC �
2eEJ=@, the circuit produces voltage oscillations with

frequency !J ¼ 2eVO
@

¼ 2e
@GJ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2b � I2C

q
, VO being the time-

averaged voltage across the junction. The energy accumu-
lated in the oscillation is of the order of Josephson energy
EJ. To have a well-defined semiclassical oscillation, we
shall require that the energy accumulated by far exceeds
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the quantum frequency scale @!J. The latter can be
regarded as an effective noise temperature T�

J characteriz-
ing the quantum fluctuations in the circuit (we neglect the
thermal fluctuations assuming sufficiently small tempera-
ture). The condition EJ � T�

J amounts to GJ � e2=@: the
conductance must be high at quantum scale.

The Bloch oscillator is made by connecting in series a
voltage source, a phase-slip junction, and a resistor RS. It
is dual to the Josephson oscillator upon interchanging the
phase and charge [9]. Upon such a transformation, the
Josephson junction is replaced by a phase-slip junction,
the current bias by the voltage bias, and the parallel con-
ductor becomes a series resistor RS. Bloch oscillations
occur provided the bias voltage exceeds the critical voltage
of the junction, Vb > VC ¼ �ES=e. Their frequency,

!B ¼ �IO
e ¼ �

eRS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
b � V2

C

q
, is related to IO, the average

current in the junction. To have a well-defined semiclassi-
cal oscillation, we shall require that the energy accumu-
lated ’ ES by far exceeds the effective noise temperature
T�
B ’ @!B. This gives RS � @=e2: for Bloch oscillations, it

is the resistance that must be high at quantum scale.
Let us now couple the circuits. The main effect of the

coupling is a transfer of oscillating voltage from the
Josephson to the Bloch part, or a transfer of oscillating
current from the Bloch to the Josephson part, whereby the
voltage or current is multiplied with the amplification coef-
ficient Kð!Þ � Z2=ðZ1 þ Z2Þ. Additionally, the effective
resistance or conductance of the Bloch or Josephson part
is modified, �RS ¼ Z2Z1=ðZ2 þ Z1Þ, �GJ ¼ 1=ðZ2 þ Z1Þ.
In order to preservewell-defined oscillations, we require this
modification to be small, �RS � RS, �GJ � GJ.

We estimate the energy scale Ecp associated with the

coupling and synchronization of the oscillations as a prod-
uct of oscillating voltage and current (denoted by a tilde)
in each device times the oscillation period, assuming
!B ’ !J ’ !, Ecp ’ ~IOKð!Þ ~VO=!. It is important to

recall that the oscillating quantities are fundamentally
related to frequency, ~IO ’ e!, ~VO ’ @!=e. With this,
Ecp ’ K@!. A generic estimation for K is K & 1.

Indeed, for real impedances Z1;2 K < 1. In this case Ecp &

T�
B;J and the envisaged synchronization in a general circuit

is destroyed by quantum fluctuations.
To overcome this, we need large K. An active amplify-

ing circuit could provide this but brings extra noise that
increases the fluctuations. The main idea of this Letter is to
use a passive amplifying circuit, an LC oscillator, replac-
ing Z1 with a capacitor C and Z2 with an inductor L
(Fig. 2). With this, Kð!Þ � 1 near the resonant frequency

� � ðLCÞ1=2. Assuming that a small real part of Z2 gives
rise to a finite quality factor Q of the oscillator, K ¼
½2ð!=�� 1Þ þ iQ��1 at ! � �. The maximum value of
K is thus limited by Q, leading to Ecp ’ Q@! � T�

J;B. We

expect the synchronization errors to be related to the
activation over this energy barrier and thus to occur at an
exponentially small rate ’ expð�Ecp=T

�Þ ’ expð��QÞ, �
being a coefficient of the order of 1. We stress and prove
further that the synchronization takes place in a rather
broad interval of frequencies near �: the Josephson and
Bloch oscillations are thus synchronized with each other
rather than with the LC oscillations.
The effective quality factor in our circuit is in fact

limited by dissipation in RS, GJ. The conditions of non-
obtrusive coupling �GJ � GJ, �RS � RS imply that

Q � minðGJz0; RS=z0Þ, where z0 ¼
ffiffiffiffiffiffiffiffiffiffi
L=C

p
is the effective

impedance of the oscillator. In fact, the corresponding
equality estimates the maximum effective quality factor

Q�1
m ¼ 1=GJz0 þ z0=RS. The choice z0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RS=GJ

p
opti-

mizes Qm to the value Qm ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
RSGJ

p
=2.

The synchronization persists in a finite interval of fre-
quencies!BðVbÞ,!JðIbÞ near the line where those satisfy a
given fractional ratio !B=!J ¼ n=m. To estimate the
width of the interval, we compare Ecp with an energy scale

characterizing the frequency deviation, which is either
ð�!B=!BÞES or ð�!J=!JÞES. This leads to ð�!B=!BÞ ’
K=ðRSe

2=@Þ, ð�!J=!JÞ ’ K=ðGJ@=e
2Þ. We note that, for

the limiting Q and at frequencies close to �, the width of

FIG. 2. The proposed quantum synchronization circuit. The
resistors Z1;2 of Fig. 1 are replaced with a capacitor and an

inductor, respectively, forming an oscillator. This results in a big
amplification coefficient K � 1 close to the resonant frequency
� enabling the quantum synchronization. The dc output voltage
and current VO, IO manifest the quantized transresistance
R ¼ VO=IO.

FIG. 1. A general linear circuit embedding a phase-slip
(diamond) and a Josephson (cross) junction illustrates the prob-
lem of quantum synchronization of the circuit parts (dashed
boxes) that generate Bloch and Josephson oscillations. The parts
are coupled by the (frequency-dependent) resistors Z1 and Z2.
The circuit is controlled with voltage and current sources Vb, Ib
and provides current and voltage outputs VO, IO. The solution to
the problem is presented in Fig. 2.
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these intervals may become comparable with the frequency
itself, �!J=!J, �!B=!B ’ 1.

In the remainder of the Letter, we support these quali-
tative estimations with quantitative illustrations.

The adequate quantum description of the circuit involves
two variables: superconducting phase drop at the

Josephson junction �̂ and dimensionless charge q̂ ¼ �
e Q̂

flown in the phase-slip junction. The action is obtained in
the framework of Keldysh action formalism [20] where

variables are doubled �̂ ! ��ðtÞ, q̂ ! q�ðtÞ correspond-
ing to two parts of the Keldysh contour. It is convenient to
use ‘‘classical’’ and ‘‘quantum’’ variables defined as
2�;�d ¼ ð�þ ���Þ, 2q; qd ¼ ðqþ � q�Þ. The total
Keldysh action

S ¼ SB þ SJ þ Scp þ SN

is contributed by the Bloch and Josephson parts,

SJ ¼
Z

dt

�
2EJ sin� sin

�d

2
� Ib

2e
�d þ _��d

GJ

4e2

�
; (3)

SB ¼
Z

dt

�
2ES sinq sin

qd
2
� eVb

�
qd þ _qqd

e2RS

�2

�
; (4)

the coupling part

Scp ¼
Z d!

2�

�
�d�!

�G

4e2
ð _�Þ! þ qd�!

e2�R

�2
ð _qÞ!

þ Kð!Þ
2�

½qd�!ð _�Þ! ��d�!ð _qÞ!�
�
; (5)

and the noise part SN that is quadratic in qd, �d and
satisfies the fluctuation-dissipation theorem (see Ref. [21]
for concrete expressions). The resulting action is nonlocal
in time and therefore cannot be treated exactly.

The saddle point equations of the Keldysh action [21]
neglect the noise and are the classical circuit-theory equa-
tions. To start with, we study these nonlinear equations.
This approximation gives a good estimation of the posi-
tions and widths of the synchronization domains while
disregarding rounding of large and vanishing of small
domains. We solve the equations numerically at given
Vb, Ib and assess if the solution is periodic. If it is the
case, we note the corresponding n, m. We repeat the
procedure to scan the Vb, Ib plane and to find the synchro-
nization domains. Typical results are presented in Fig. 3.
For this plot, we made (mostly for esthetic reasons) a
symmetric choice of parameters ES ¼ EJ, GJ@�=4e

2 ¼
e2RS=�@, so that output current and voltage, and
correspondingly the oscillation frequencies, are symmetric
in the plane of Vb and Ib, !BðIb=IC; Vb=VCÞ ¼
!JðVb=VC; Ib=ICÞ. On average, these frequencies are close
to those of uncoupled oscillators, �!BðVbÞ, �!JðIbÞ; the
deviations are mostly due to synchronization. We observe
the domains corresponding to the fractions n=m. They
are centered at the curves where m �!BðVbÞ ¼ n �!JðIbÞ.

The widest domain the one with n ¼ 1, m ¼ 1 and is
centered at the diagonal. The domains with higher n, m
are increasingly narrower, as is also the case in quantum
Hall effect. The parameters are chosen such that the reso-

nant frequency � is achieved at Ib=IC ¼ Vb=VC ¼ ffiffiffi
2

p
,

where the domains are widest. RS ¼ 10�@=e2 and the

oscillator impedance is optimized, z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RS=GJ

p
, so that

Qm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RS=GJ

p
=2 ¼ 10. In accordance with the above

estimations, the widest synchronization domain spreads
at the scale of� itself. The widths of the domains decrease
at much higher and much lower frequencies �!B, �!J owing
to a decrease of Kð!Þ. More details and finer steps can be
seen in the right-hand panel where the transresistance is
plotted along the cut in the Vb � Ib plane showing a typical
devil’s staircase curve. As a side note, the domains are not
precisely single connected; there is a fine structure of small
‘‘islands’’ of the same n, m near each domain. This struc-
ture is, however, too fine to be resolved at the scale of
the plots.
To address the quantum effects, we restrict ourselves to

narrow synchronization domains where a new long time
scale ’ ð�!B;JÞ�1 � ð!B;JÞ�1 emerges. Our purpose is to

find the rate of synchronization errors � with exponential
accuracy (Fig. 4). At this time scale, one can disregard the
dispersion of quantum noise and amplification coefficient
and end up with a local-in-time action which is formally
equivalent to that of a classical system subject to a white
noise. A similar approach has been applied to narrow
Shapiro steps [19]. The slow variables in our case are the
phases �ðtÞ, �ðtÞ of Bloch and Josephson oscillations,
respectively. With those, the time-dependent current
[voltage] is represented as IOðtÞ ¼ IO þ ~IO½ �!Btþ �ðtÞ�
[VOðtÞ ¼ VO þ ~IO½ �!Jtþ�ðtÞ�]. We derive the effective
action in the vicinity of the point in the Ib � Vb plane where
n �!J ¼ m �!B ¼ ! aiming to describe the (n, m) domain
(in the formulas for the action, @ ¼ 1 for compactness).

S ¼ SB þ SJ þ Scp; (6)

FIG. 3 (color online). Left: Synchronization domains (n=m) in
the plane of normalized bias voltage and bias current. Right:
Quantized plateaus of transresistance R ¼ VO=IO along the cut
given by the line in the left-hand figure. Dashed curve:
Continuous transresistance as set by uncoupled Bloch and
Josephson parts, R ¼ ð�@=2e2Þ �!JðIbÞ= �!BðVbÞ.
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S B ¼ r
Z

dt½ _��d � iT�
B�

2
d � ð�!BÞ�d�; (7)

SJ ¼ g
Z

dt½ _��d � iT�
J�

2
d � ð�!JÞ�d�; (8)

Scp ¼ !
jKj
2�

Z
dt½�AB cosðm�� n�þ �Þ�d

þ AJ cosðm�� n�� �Þ�d�: (9)

Here, SB;J describe the Brownian motion of the phases

in the absence of the coupling, with g, r � 1 being
g � ð@=4e2ÞðdIb=dVOÞ, r � ðe2=�2

@ÞdVb=dIO the dimen-
sionless differential conductance and resistance, respec-
tively, and T�

J;B ’ @! the effective noise temperatures that

depend on the bias current and voltage. Scp gives the energy

(’ @jKj) gained by synchronization and � � argðKÞ.
The coefficients AB;J depend on Ib, Vb as well as on n, m.

We concentrate on the relevant variable � ¼ m�� n� to
reduce the action to the form

S ¼
Z

dt½að _��d � iT��2
d � �!Þ � Ecp�d sin��: (10)

Here, the susceptibility a¼gr=ðgm2þrn2Þ, noise tempera-
ture T� ¼ ðT�

Bm
2gþ T�

Jn
2rÞ=ðgm2 þ rn2Þ, the energy

barrier Ecp ¼ @!jABnrKþ AJmgK�j=ðgm2 þ rn2Þ, and

�! ¼ m� �!B � n� �!J. This action is formally equivalent
to that of an overdamped particle moving in a trapping
washboard potential Uð�Þ¼�Ecpcos���@a�! (Fig. 4)

and being subject to thermal noise. If we neglect the noise,
the motion obeys a _�þ @Uð�Þ=@� ¼ 0. The stationary
solutions of this equation where � is trapped in one of
the minima correspond to the synchronization of the oscil-
lations. They occur within a strip j�!j � Ecp=@a, in accor-

dance with the estimations made. Beyond the strip, �
increases with time corresponding to two unsynchronized
frequencies.

The synchronization errors are thermally activated hops
between the neighboring minima and their rate governs the
accuracy of the resistance quantization. To estimate this
rate one needs to compute the energy barrier separating the

minima and the effective temperature T�. Clearly, this rate
is exponentially small, � ¼ expð�Ecp=T

�Þ, in the center

of the synchronization domain. This guarantees the high
quality of the resistance quantization. The rate increases
towards the strip edge owing to the lowering of the barrier
in the washboard potential, ln� ¼ �ðEcp=T

�Þ½ð1� y2Þ þ
y arccosðyÞ� (see Fig. 4), y � j�!j=�!. The coefficient
Ecp=T

� ’ K depends on the bias current and voltage, as

well as on n, m. We provide extensive illustrations of this
dependence in Ref. [21].
In fractional quantum Hall effect, the excitations at the

background of a certain plateau bear fractional charge or
flux. The synchronization errors may also be considered as
excitations at the background of a synchronization domain.
One might conjecture that extra charge or flux induced by a
hop over the barrier is fractional: this would be the case if
the 2� change in � is equally split between the two phases
�, �. In fact, the situation is more complex since the hop
takes a relatively long time ’ a@=Ecp during which the

charge and flux (related to the superconducting phase
difference �) may fluctuate. Owing to this, the average
extra charge and flux transferred in the course of a hop do
not exhibit a strict quantization,

�q

2e
¼ mg

gm2 þ rn2
;

��

2�
¼ �nr

gm2 þ rn2
: (11)

However, in the limit g � r the extra charge approaches
fractional values 2e=m, while the extra flux approaches
�1=n in the opposite limit.
In conclusion, we have proven the feasibility of

synchronization of quantum conjugated variables. The
superconducting device suggested shall manifest a
quantum-Hall-like (fractionally) quantized transresistance
owing to the synchronization of Bloch and Josephson
oscillations. The high amplification coefficient required
for stable synchronization is achieved by using an LC
resonator with high quality factor Q. The minimum syn-
chronization error rate is shown to be exponential in Q.
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