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Preface

This report is aimed at verification of a 3D liquefaction model for DIANA software. The
model has originally been developed by Nishimura (2002). In the first chapter of this report,
a detailed study of the model itself will be made. To this end, the expressions involved in the
model will be derived and their agreement with those given in the original model will be
checked. Further elaboration of the model will also be made to have a better understanding
of the model. The derivations and elaborations helped to identify some aspects of the model
which need further improvement before being made available for customers.

A Fortran program which is based on this model is also already available. In the second
chapter, this subroutine will be studied in detail and its consistency with the expressions
given in the earlier chapter will be checked. First, each variable involved in the program will
be defined according to those given in chapter one. The function of each subroutine
involved in the program will be explained with further elaborations when necessary. The
flow of analysis of the whole program will be reviewed in detail by recalling the expressions
given in chapter one.

The third chapter will be about the input data file which will be used for the liquefaction
analysis. This data file contains the material and state parameters which will be used in the
program discussed in chapter two. Each component of the data file will be discussed. In this
chapter, a guide for the determination of the material parameters from laboratory tests will
also be given.

Analytical verification of the program for simple boundary conditions will be the main task
in chapter four. For this, a simple shear model will be constructed and analytical calculations
will be made for computing the resulting deviatoric stresses from a given strain. A
liquefaction analysis will be made by DIANA software for a similar model and the results
will be compared with the analytical ones.

The verification process will be extended further in chapter five by comparing DIANA
software results with laboratory observation and other numerical simulations. Liquefaction
analyses will be made for different types of loading and drainage conditions. From the result
by DIANA software, important graphs will be plotted and compared with those from
laboratory observations. Depending on the results of the comparisons, explanations will be
given.

Depending on the discussions in the previous chapters, the last chapter gives conclusions
and recommendations.



Acknowledgement

Thanks to God for helping and finally letting me express my gratefulness to those peoples
who helped me to complete this thesis. My first appreciation goes to Prof. Molenkamp,
whose continuous support and suggestions has been helpful to go forward. This thesis was
done in a company which produces state-of-the-art civil engineering softwares, which
wouldn’t be possible without the allowance of Dr. Schreppers. I would like to acknowledge
him for letting me do the thesis at the company. In addition , his supports and comments
has been instrumental. I would also like to extend my gratitude for Dr. Hendriks who was
also giving helpful ideas and suggestions.

My appreciation should also go to all TNO DIANA staff members who have been helping
me while I was doing the thesis at the company.

I'am also grateful to my families and friends who have been continuously encouraging me to

reach to this point.

Asaye Dilbo

II



Lo Summary. . ..o \Y
IL List of SymMbOIS. ... VI
1. Definition of the multiple spring model ....... ..o 1
1.1. Back ground of the multiple spring model................ociiin 1

1.2. General structure of the model............ooooiii 1

1.3. Rotation of coordinate SYStEMS... ... uueuutuiiiie ittt e 2

1.4. Stress and strain transformMation. ..........o.eiiiiieiii i 4

1.5. Shear strain in the SPIINgs. ... ..oouiiiiiiiitii e 11
1.5.1. Decomposition of isotropic and deviatoric components.................. 11

1.5.2. Decompostion of shear mechanisms.................oooo 12

1.6. Aggregate shear Stress. .. ...ovuiiuiiiiii i 13

1.7. Formation of tangent stiffness matrixX............cooooeviiiiiiiiiiiiin . 13

1.8. Distribution of constituent SPLINgs. ......oovvvuiiiiitiiniiieiie e 16

1.9. One dimensional stress strain relationship................c.o..... e 16
1.9.1. Masing’s rule............ooooi U I

1.9.2. Determination of Spring parameters. ... .....ovuvvuuineiniieiiniinenenns.. 20

1.9.3. Mean effective stress dependency of parameters.........coeeeeiniinennn.. 27

1.9.4. Hysteresis loOp.......oviuiiiiiiii i 28

1.9.5. Modeling of hardening due to shear loading....................oo 38

1.9.6. Tangent shear stiffniess. ..o 39

1.10. Dilatancy and isotropic compression and swelling..................oooioa 40
1.10.1. Modeling of stress-dilatancy relationship................ooooiii 40

1.10.2. Stiffness matrix with Dilatancy...............coooo 42

1.10.3. Modeling of isotropic compression and swelling.......................... 45

1.11. Overview of material and state parameters.........ccoovvviiiineiiniiniiiinnnnnnn 47

2. ANALYSIS PLOCESS .ottt ettt 49
2.1, Flow of analysis .....ccooiiiiiiiiii i 49

2.2. Review of the source code ........oooiiiiiiiiiiiiiiii 50
2.2.1. List of quantities used in the program ..............cooiiiiiiiiiiiii. 50

2.2.2. Subroutines used in the program ..............coociiii 53

2.2.3. Details of the SUDFOUtINES ....ouviitiiiiiiii i 54

2.2.4. Review of the main source code ..........ooiiiiiiiiiiiiiiiiiin, 67

2.2.4.1. Definition of variables and parameters.................oooeiiiin. .. 67

2.2.4.2. User defined parameters...........oooviiiiiiiiiiiiiiiiiiii s 67

2.2.4.3. Computation of incremental Strains.........cccovvuiiiiiniiiininn 68

2.2.4.4. Assigning initial values for stresses and strains......................... 69

2.2.4.5. Initialization of the analysis process.............cooviiiiiiiiiin. 70

2.2.4.6. The main analysis ProCess.........coovviiiiiiiiiiiiiiiii i, 73

3. Inputdata for analysis ........oooeiiiiiiiiii i e 79
31 Inputdatafile.......oooiii i 79

3.1.1. Element properties. . ... ..ouuvuiur ittt 79

3.1.2. Matefial Properties. ......ovuviuiiiiiiiiiiii i 80

3.1.3. Loading condition..........oouiiiiiiiiiiiiiiiii i 82

Table of contents

III



3.1.4. Support condition........ovuiiiiiiiii i 82

3.1.5. Global directions. ... ...ovuiiuiii i 82
3.2. Determination of user defined parameters from laboratory tests............. 83
4. Analytical validation of the model.................oo 89
4.1. Shear applied in Xy dit€CON. . ..oiuiiiiiti i 89
4.1.1. Analytical calculations............oooiiiiiiiii 90
4.1.2. Analysis by DIANA .. ..o 101
4.2. Shear applied in zx dir€CtON. .....oviiiiiiii i 101
4.2.1. Analytical calculations.............oooiiiiiiiiiini 102
4.2.2. Analysis by DIANA. ... 109

4.3. Clarification of the torsion shear-icosahedral distribution of deviatoric stress
relationship with DIANA. ... 110
5. Verification of the model for different soil parameters.................oooiiiinn. 111
5.1.Drained monotonic one way simple shear ..................o 111
5.2. Drained cyclic simple shear ... 116
5.3. Undrained monotonic simple shear ..o, 119
5.4. Undrained cyclic simple shear ... 120
6. Conclusion and recommendation............oooiiiiiiiiiiiiiii 124
0.1.CoNCIUSION. ...t 124
0.2. Recommendation...........ooouiiiiiiiiiii i 124

Appendices:

Appendix A: Values of 0 and ¢ for normal lines to each virtual plane....................... 127
Appendix B: Proof of transformation matrix properties using MAPLE program.......... 128

Appendix C: Fortran 77 program for matrix computations of icosahedra distribution of
springs....140
Appendix D: Part of Simple shear data for determination of liquefaction parameters.....143
Appendix E: consolidation test data for determination of liquefaction parameters........ 144
Appendix F: The source code for liquefaction analysis................ooooiiiiiii. 145

v



Summary

With the advancement of solution techniques and solving computers, 3D analysis of civil
engineering problems has increasingly become more interesting. The multiple spring
model is one of the tools to give good solutions to 3D liquefaction analyses. In this
model, the deviatoric stress is determined in a finite number of springs distributed over
virtual planes in the soil element for which liquefaction analysis is to be undergone.
Among the several options for the distribution of the virtual planes in the soil element, it
was previously found that an icosahedral distribution results in an isotropic model.

For the displacement based analysis which is going to be discussed in this report, the
global strains will be decomposed into one-dimensional strains in each spring through
transformation matrices. Then the Masing rule after several modifications will be used to
obtain stress ratio from those transformed strains. The product of the stress ratio and
the mean effective stress gives the shear stress in each spring. The global shear stress of
the soil mass is calculated from the shear stress in each spring through transformation
matrices.

The model also uses stress-dilatancy relationships to calculate volumetric strain due to
dilatancy which enables to calculate the volumetric strain due to consolidation.
Expressions for a curve of isotropic compression or swelling help to calculate the mean
effective stress. Along with the stress ratio, it is this mean effective stress that will be
used to calculate the shear stress in each spring,.

In this report, it is discovered that the icosahedral distribution of planes results in an
isotropic behavior. However, the way the springs are oriented on those plane as
described in the original model by Nishimura (2002) will not result in an isotropic
behavior. At the end of the report, suggestions will be given to overcome this anisotropy.
It will also be seen that the volumetric strain due to dilatancy is overestimated in the
model. The source for the overestimation is discovered and will be forwarded for further
improvement. Suggestions for the modification of the hysteresis loop when the stress
ratio in the past is exceeded will also be given.
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Scalar quantities

x,y,z — Cartesian coordinates of the original coordinate system
X" y'"" 2"~ Cartesian coordinates of the rotated coordinate system
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R®™ - stress ratio of each spring
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7 a
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CHAPTER ONE
DEFINITION OF THE MULTIPLE SPRING MODEL

1.1. Background of the multi-spring model

The multiple inelastic spring model is shown in fig 1 below. The model consists of an
infinite number of non-linear springs and can take into account the effects of principal stress
axes rotation. Rotation of principal axes is the phenomenon by which the principal stress
axes rotates during progressive shearing of the soil element as it often occurs during cyclic
liquefaction processes. When an external force is applied at the center of the model, the
surrounding springs deform and the center point moves. By assuming that the external force
represents the shear stress and that the displacement of the center point stands for the shear
strain under plane strain conditions, shear distortion of the soil can be predicted.

Multi-anelastic-spring model

Tax l Yzui2

Externai force F
causing displacement u

l
i (0z-0x )12

(Ez-Ex)12
(Oz-0u 2
F:l Tax }

u=(s=-e.m]

VYaxi2

Fig. 1.1. Multiple spring model

1.2. General structure of the model

The essence of multiple shear mechanism is to express two- or three-dimensional shear
stress-strain relationships as a summation of one-dimensional stress-strain relationships
mobilized in virtual planes, which are oriented to various directions inside a soil element as
shown in Fig. 1.2. Each plane contains two-dimensional shear stress and shear strain and
hence two degrees of freedoms on each plane. To reduce the degree of freedom to one, the
shear in the virtual plane is further broken down into several one-dimensional shear
mechanisms.



Sand element
» V
Virtual planes x
2-D shear
mechanisms
{a) Virtual shear planes inside 3-1 soil element
2-D shear 1-D shear 1DOF
mechanism  mechanism
2 DOF 1-D shfsar
mechanisms

Virtual plane a

in 3-0 space .
P Analogy to the original 2-D model

(b} 2-D and 1-D shear mechanisms in virtual shear plans
Figure 1.2 . a) Virtual planes inside the 3-D soil element b) Decomposition of 3-D shear
into 2-D and 1-D shear mechanisms.

The distribution of the prepared virtual planes determines characteristics of modeled shear
behaviors. If the orientation of the planes which contain the springs aligned with constant
intervals is regular and omni-directional, the model will be isotropic; otherwise it will become
anisotropic. The strain is related to stresses in such a manner that, first, the shear strains of
one-dimensional springs are calculated from strain components in an overall system. Then,
the corresponding shear stresses are obtained based on spring characteristics and summed to
become the shear stress in the overall system.

1.3. Rotation of coordinate systems

The shear strain in each one-dimensional shear mechanism is obtained by coordinate
transformation from the global shear strain. The coordinate transformation between the
global xyz and the coordinate of a particular spring X'''y'"'z'"" follows the following steps as



shown in Figs. 1.3 through 1.6 below. The aim of the axes rotation is to have one of the
cartesian axes of the new coordinate system aligned with each of the springs.
First, a new system X'Yy'z' will be formed by rotating the original xyz coordinate system by

angle 0 around z axis.

»

X
Figure 1.3 . Rotation of the coordinate xyz system by an angle 6 around z axis.

Further rotation of the X'Yy'z' coordinate system by angle ¢ around Y' axis will result in a

new X''y'"'Zz" system.

Figure 1.4. Rotation of the coordinate X' y'WZ' system by an angle ¢ around y’ axis.

The plane X"'y" which is shown in fig. 1.5 below is assumed to correspond to one of the
virtual shear planes inside the 3-D soil element shown in fig. 1.2.

Figure 1.5. The X"'Yy" plane containing the springs



Finally the X'"'y"'z" will be rotated step-by-step around z'' axis by an angle { so that the
y'"" axis of the new X'""'y'"'z"' system will lie on each of the one-dimensional shear

mechanisms.

Figure 1.6. Rotation of the coordinate X''y''z" system by an angle € around z” axis.

Hence, the full transformation between the original xyz and the new X''"'y'"'z'" axis

involves coordinate rotation with regard to three angles 0, ¢ and €. The angles between a
vector and the positive axes of the original coordinate system are termed as direction angles.
The cosines of these direction angles are termed as direction cosines. The direction cosines
between the original and the new coordinate system are given as /, 7, and #;in table 1.1.

Table 1.1 . Direction cosines between the original and the rotated coordinate system

X y z
x" /; m ny
y" /5 " 7 "o
z" /5 " 5 " s

1.4. Stress and strain transformation

The stresses and strains given in original xyz coordinate system can be transformed into
X'""'y'"' 72" coordinate system. If the unit vectors along the x, y and z axes of the original
coordinate system be e;, e, and e; respectively. And the corresponding unit vectors in the
transformed coordinate system are &, &, and &;. Let = {e, e, €;} ande,.= { & &, &}".
Then following relationship can be developed between {e;} and {e;.}.

€ =[M];w & e =[MJi.e. (1.1)

In which the coordinate transformation matrix containing the direction cosines given in
table 1 is given by,



Il ml nl Il |2

T
[M], ={l, m, n, and [M]iw=|m, m,
|3 m3 n3 nl n2

It can be proved that the matrix [M ],.; is an orthogonal matrix i.e. [M]

A. Strain transformation

The strain tensor is given by the expression:

Exx gxy €y
[e]l=]¢eyx &, &, |=¢&;& @€,
oy zy €y

Exngn  Exmgn Eyugn
[e]=] Epngn Eyuyn Eyugn | = Ejuju
Equgm  Eqngn  Egugm

Depending on this, the following relation can be developed,
[e]=¢&pnjnein @€ =£,6 B,

= &l @€ =5 [MTine. ®[M 1" e =5, [M i [MT].e ®e,.

)
=[M]i (M} .

T
= Eimjn =[M Jiw &5[M 0
Therefore,
L, m, N, &« &y e | I,
[gi"'j"']: |2 m2 n2 gyx gyy gyz ml m2
I, m, Ny &, &y En LM M

le, + M, &y, +MEy, Il‘gxy +me,, +neé, le, + meé,, +Nég,

=|le, + M,&,, + Ny, I2gxy +Mye,, +NyE, lLe, + m,e,, +N,&, | M,

e, + M, + &, I35Xy +Me, +Ne, le, + Mg, + N,

Considering the symmetry of strain tensor, the matrix product leads to the following:

T

H A
1

(1.2)

(1.3)

(1.4

(1.5)

(1.6)

(1.7



S =78, + mlzgw +n’e, + 2lme,, +2mne, +2Iin¢g,

Engn = Epugn =L Ley + mMye 06, +(m, +1,m)e,, +(mn, +myn, e, + (150, +1,n,)e,
Eqngn = Egnn = L& + mMye + 06, + (LM, +1,m e, +(mn, +myn, e, + (10, +1;n) )e,,
Eynygn = 1%, + mzzgyy +n’e, +2l, m,e,, + 2m,n,e,, +2l,n,¢,

Eyugn = Epugn = LliE + Mumye +nynse, +(L,m, +1,m, e, +(myn, +myn, e, + (1,0, +1,n, )e,,
& =8+ m325yy +n’s, +2l,mye,, +2m;n.e, +2lnsg,,

These equations can be put in the matrix format as follows:

I’ m,’ n,’ 21,m, 2m;n, 2ln, £
1, m,’ n,’ 21, m, 2m,n, 21,n, €y
_| 1y m,’ n,’ 21,m, 2m,n, 2l,n, €z | (1.8)
1, m,m, nn, I,m, +I,m,  mn,+m,n I,n, +1,n; || %%
LI, m,m, n,n, ILm,+I,m,  m,n,+m;n, Ln, +1n, |[¢y
115 m,m, n,n, [m, +1Im;,  myn +mn, In,+Ln, |[€x

This matrix equation can also be written as in the following form to give the engineering shear

strains.
[ 2 2 2 T
€y I m, n, Im, mn, I, &
2 2 2
Eymyr I m, n, [, m, m,n, I,n, Eyy
&gy — |32 m32 n32 |3m3 m;n, |3n3 €n (19)
28, | (201, 2m;m, 2n,n, Lm, +L,m,  mn,+myn, L, +1,n, || 2y
28 || 21,14 2m,m, 2n,n, Lm,+l,m, m,n,+m.n, Ln +ln, ||26,
28,me ) [ 2114 2m,m, 2n,n, I,m, +I,m,  m,n, +mn, Iiny +15n, |28,
The strain vectors in the original and rotated coordinate systems can then be written as:
=4 4 1.10
{g} - gx gy gz 7xy 7yz 7zx ( . )
T
" —
{&"'} = {5X.,, Eyn  Egn Vg Vymgn Vg } (1.11)
Therefore, eq. (1.9) can be written as:
te"y=[T, Ke} (1.12)

Wher

e [Tg] is the transformation matrix of engineering strains from the xyz coordinate

system to X'"'Yy'"'Z"" . The transformation matrix [T¢] will have the format as in (1.9), namely



I12 ml2 n12 Ilml mlnl Ilnl
|22 m22 n22 |2 m2 m2n2 |2n2
[Tg]: |32 ms2 nsz Ism, m;n, I, (1.13)
211, 2mm,  2nn, Im, +L,m,  mn, +m,n, I,n, +1,n,
2LL, 2mm,  2n,n, Lm, +Lm, mn,+mn, Ln +1n,
2Ll 2mmg 2nng Lmy+1m, m,n, + m;n, In, +1n, |

As mentioned eatlier, the rotations in this model are aimed to align the 2z’ axis with the
respective spring. Hence the strains in the rotated coordinate system belong to that of the

} will be written as {e®} . A
superscript (i) will always indicate that the quantity being considered belongs to a spring.

springs. In the subsequent parts, the strain vector {&'"

The overall transformation matrix [T¢] can also be obtained as a product of the three
matrices [T, ,],[T, ;] and [T, .] which respectively represent the coordinate transformation

processes given in figs. (1.3), (1.4) and (1.6) respectively.

When a new system X'Y'z' will be formed by rotating the original xyz coordinate system by
angle 0 around z axis, the transformation matrix to the new coordinate system [T, ,] can be

obtained by substituting the correct values of the direction cosines in eq. (1.13).

Referring to fig 1.3, the direction cosines for the first rotation around z axis will be:

|, =cosé 1 =cos(%+t9)=—sin9 I =cosZ =0

7 . p/a
m, :cos(E—H):slnH m, =cos@ m, :cosE:O (1.14)
n = cos(%) =0 n, = cos(%) =0 n, =cos0=1

Substitution of these values in eq. (1.13) will result in,

cos’@ sin’fd 0 %sin2t9 0 0
sin@ cos’d 0 —%sin20 0 0
[Teol=| o 0 1 0 0 0 (1.15)
—sin26 sin26 0 cos26 0 0
0 0 0 0 cosd —sinf
0 0 0 0 sind  cos@ |

Referring to fig 1.4, the direction cosines for the second rotation around y’ axis will be:



|, =cos¢ l, = cos% =0 l, = cos(% — @) =sing
m1=c0s£=0 m, =cos0 =1 m3=cos£=0
2 2
n = cos(% +¢) = —sing n, = cos(%) =0 n, = cos¢
Substitution of these values in eq. (1.13) will result in,
i 2 ) 1 . |
cos"g O sin” ¢ 0 0 —Esm2¢
0 1 0 0 0 0
m.,1= sin®¢ 0 cos’ ¢ 0 0 %sin2¢
0 0 0 cos¢ —sing 0
0 0 0 sing  cos¢ 0
|sin2¢ 0  —sin2¢ 0 0 cos2¢ |

Referring to fig 1.6, the direction cosines for the third rotation around z” will be:

I, =cosd l, :cos(%+§):—sin§ |3:c0s§:0
m, =cos(§—§’)=sin§ m, =cos¢ m, =cos—=0
n, =cos(£)=0 n, =cos(z)=0 n, =cos0=1
2 2
Substitution of these values in eq. (1.13) will result in,
P . 1. ]
cos ¢ sin” & 0 Esm2§ 0 0
sin®¢  cos’¢ 0 —%sinZg“ 0 0
[Tecl=| o 0 1 0 0 0
—-sin2d sin2¢ 0 cos2¢ 0 0
0 0 0 0 cosd —sind
0 0 0 0 sing  cosq |

The overall transformation matrix will be obtained as:

[Tg ] = [Tg,§ ][Tg,gﬁ ][Ta‘ﬁ ]

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)



B. Stress transformation

The stress transformation follows the same procedure as the strain. The stress tensor can be
given in the original and rotated coordinate system as:

Ouw Oy Oy Oy Oymgn O
[ocl=|o, o0, 0,|=0&®€ =0,uu Opum O |= 0T @€ (1.21)
Oy Oy Oy Oy Tguygn Oy

Depending on this, the following relation can be developed as it was done for the strain
transformation,

Tinjn =[M ] o5 [M 1 (1.22)

i

Following the same procedure as for the strain transformation matrix, the stresses in the
original and rotated coordinate systems can be related as:

Oy | | 1,2 m,’ n,’ 21,m, 2m;n, 21,n, O
Oyoyn | 1,7 m,’ n,’ 21, m, 2m,n, 2l,n, Ty
T | _| 12 m,’ n,’ 21,m, 2m,n, 2l,n, o | (1.23)
Oy 1, m,m, nn, I,m, +1,m, m,n, +m,n, I,n,+L,n, ||%
O ymgen LI, m,m, n,n, l,Lm,+l,m,  m,n,+m,n, Ln,+1;n, Oy
e ) |1y m,m, nn, I,m, +1,m, m,n, +m;n, In; +1n, (0«

The stress vectors in the original and rotated coordinate systems can then be written as:

{0'}={0'X o, O, Ty T, Ty, }T (1.24)

{O_YH} — {O-Xm O-ym Uzm TX"'y"' Tymzm TZ"'X"' }T (125)

Hence, eq. (1.23) can be written as:

(o'} =[T,llo} (1.26)

Where [Ts] is the transformation matrix of stresses from the xyz coordinate system to
X'"'y""'z"" The transformation matrix [Ts] will have the following format identical to eq.

(1.8), namely



1,2 m,’ n’ 21,m, 2m,n, 2ln, |
2 m,’ n,’ 21, m, 2m,n, 2l,n,
T ]- 2 m,’ n,’ 21,m, 2m,n, 2l,n, (1.27)
11, m,m, n,n, I,m, +1,m, m,n, +m,n, In, +1,n,
LI, m,m, n,n, I,m, +1,m, m,n, +m,n, I,n, +1;n,
L1, m,m, n,n, I,m, +I,m, m,n, +m;n, I,ny +15n; |

The inverse the stress transformation matrix can be derived from eq. (1.22) as:

_ T _ T
Opmjn =[M Lo [M]n = oy =[M]jwomu[M ] (1.28)
Therefore,
L L, L O Tyoge Ty |1 M, n,
[oyl=|m, m, M| 7 Opy Ty [, My N, (1.29)
n1 n2 n3 Ty szym O Jngm |3 m3 n3
L0 e + 157 o + 157 g L7y + 1,0 g + 157 g L + 1T + 15000 1 m, N
= MOy + My T g + M M Ty MO + My Ty M Ty + M7y + Moy |1, My N,
N0 e + Ny T g + N3 T ) PRI 0 | PYo VR S | Y i A PR (P W 8 | o I, my n,
(1.30)

Considering symmetry of the stress tensor, the matrix product leads to the following:

O =120 + |220y,,.y,,, + 1200 + 207 + 2L57 0 + 2157 0

Ty = MO + 1M, g + 1My 0 e + (M, + 1M )z + (M0, + M0 )z + (150, 41,0520
Ty = N0 + 1,0 g + 1,050 0 + (Mg + 1M, )z + (M0 MmN )z + (10 + 150, )70
Gy =M O + M, G+ M O g +2M) M, T+ 2M,M, T + 20 M, T

Ty = MM G + MyN,0 g + MMy 0 g + (Mg + 1M, )z + (M0 +My0, )z + (10 +10,)z 00

2 2 2
Oy =N O + Ny O g N30 0 +2LMy7 0 +2MiNST 0 + 21505700

This leads to the following relationship:
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O |12

ny ml2
Gzz _ n12
O Im,
Oy, m,n,
O _|1n1

l,? 1,2 21,1, 21,1, 21,1, Oy
m,’ m,’ 2m,m, 2m,m, 2mm, || Ty
n,’ n,’ 2n,n, 2n,n, 2n,n, Oy
[,m, [,m, L,m, +1I,m, [,m, +1,m, [,m, +1m, [[Cxmy
m,n,  m,n, m,n, +mmn,  m,n,+m,n, m,n, +mn; || Ty
I,n, I,n, IL,n, +1n, L,n, +1,n, Lin, +1ny [0

In short, eq. (1.31) can be written as:

to=[T,1"e")

. . . . -1 . .
In which the inverse of the stress transformation matrix [TU] is given by:

Ilml
m,n

_|1n1

1, l, 21,1,
m,’ m,’ 2m,m,
n,’ n,’ 2n,n,
[,m, I,m, [,m +1m,
1 m2n2 m3n3 m2nl + man
I,n, I;n, I,n, +1,n,

21,1,
2m,m,
2n,n,
I,m, +1,m,
m,n, + m,n,
I;n, +1,n,

21,1,
2m,m;

2n,n,
,m, +1,m,
m,n, + m;n;

I;n, +1,n, |

Comparing egs. (1.13) and (1.33), the following relationship can be deduced.

(1.31)

(1.32)

(1.33)

(1.34)

It follows that the following relationships will also be valid between the transformation
matrices of stress and strain after each rotation.

[T, 017" =[T,,1
[T,,1" =TT
[T, 17 =TT

(1.35)

[T, 17" =T, 1T, 17T, 1"

1.5. Shear strain in the springs

1.5.1. Decomposition into isotropic and deviatoric components

The multiple mechanism model decomposes strain components in three-dimensional space
into numerous one-dimensional strain components by means of coordinate transformation.
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The strain vector {€} which is given by eq. (1.10) can be decomposed into isotropic and
deviatoric components.

tey =01} 1) (1.36)
In which,
& =&y tEy TE, (1.37)
{}=f 1 1 0o o o
{7}: {gxx _% Eyy _% Eu _i;l Yy Vy 7/ZX} (1.38)

The stress component given by eq. (1.24) can also be decomposed in a similar way into
isotropic component and deviatoric component.

{o}=pll}+ 1z} (1.39)
In which, the hydrostatic pressure p is given by,

o,to, +o,
P (1.40)

And the deviatoric stress component {7}is written as:
.
{r} = {UX -p o,-p 0,-P T, T, T, } (1.41)

1.5.2. Decomposition of shear mechanisms

Multiplication of the strain vector in eq. (1.10) with the transformation matrix between the 7

inelastic spring and the global coordinate system of the soil element for strain [T"] gives

the strain vector of each spring, {™}.

=N =t o) ey ) A (1.42)
Thus shear strain of a particular shear mechanism (namely, the shear strain in y'"" direction)
is the extracted from the strain vector of each spring as:

U I=INIED =INIT e =40 0 0 0y o) (1.43)

The matrix [N] is given by:
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0 0 0 0 0 0
0 0 0 0 0 0
(N]= 0 0 0 0 0 0 a4
1o o 0 0 0 0 (149
0 0 0 0 1 0
| 0 0 0 0 0 0]
Alternatively, the value of the shear strain of each spring can be derived as:
y" = eV} (1.45)
where {7} is a vector given by:
{n}={00 0 01 0}F (1.40)

With the repetition of the procedure above for all springs, three dimensional strains in the
original xyz coordinate system is decomposed into n one-dimensional shear strains.

1.6. Aggregate shear stress

The shear stress of the same mechanism,{t""}, is then obtained from {y”} via a one-
dimensional shear stress-strain relationship. The obtained shear stress in the mechanism is
transformed into stress in the original xyz coordinate system as follows:

e =17
where £®}=p o o 0o ® of
The total strain increment is distributed for each spring. Hence, whenever shear stresses or

strains are calculated back for the soil element, the average of the contribution from each
spring should be taken. Thus, the total shear stress imposed to the soil is calculated by taking

(1.47)

the summation (actually an average) of (t"} for # number of springs which will be
considered in eq. (1.50) as

(=22 =TT ) (149

Finally, the stress vector {O‘} is obtained by adding the mean principal stress, p, to the first

3|._.

three rows of {t} in accordance with eq. (1.39).The derivation of p will follow later.

1.7. Formation of the tangent stiffness matrix

The basic tangent stiffness matrix can be developed from the equations developed so far. If
O]

the tangent shear modulus of the i shear spring is given as G ,

the relationship between

shear stress increment and shear strain increment is
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=60y (1.49)

For the total soil mass, substitution of eq. (1.48) for global deviatoric stress increment will
lead to

1y .
{dr}=—> GLIT," T dy"} (1.50)
N
Inserting eq. (1.43) in this equation and using the relationship in eq. (1.34) in this equation
yields,

o} = LGOI INIT O e
o (1.51)
=%ZGS§ [T INIIT," ] {ded

i=1

Since the volumetric strain {dgv} doesn’t change with coordinate transformation and since

the product [N]{d¢,} becomes a zero matrix, combination of eq. (1.36) and eq. (1.51) gives:

(de} =Y GUITO T INIT iy +1de,)

=LY GUITOT (NIT Vi + N i) (152

i=1

tan

- LY GUITOTINITY i)

The shear stress increment and the shear strain increment vectors can be related to
eachother through the overall tangent shear stiffness matrix [G] as:

{dz}=[G]{dy} (1.53)

Referring to eqs (1.52) and (1.53), the overall tangent shear stiffness matrix can be given as:

(61= 1> GA T T INIT) (154

i=1

For isotropic elastic material the shear stiffness matrix is given by:
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4 _2 _2 i
%6 %G -G 0 0 0
_2 4 _2
246 4G -2%G6 0 0 0
_2 _2 4
G]=|-24G -%G %G o0 0 0 (1.55)
0 0 0 G 0 0
0 0 0 0 G 0
.0 0 0 0 0 G |
The incremental isotropic effective stress-strain relation is described by:
! de,
dp'{l1} =[B] 3 {1} (1.56)

in which the isotropic vector {1}, the volumetric strain €, and the mean effective stress p’
have been defined by (1.37) and (1.40). Elaboration of eq. (1.56) in matrix form gives:

de,
dp') [B B B 0 o0 o0]]3
'l |8 B B 0 o ol
ol BB B 0 0 ol

= de, (1.57)

0 0.0 0 0 0 0[5
0 0 0 0 0 0 0flg
0/ 0 0o 0 0 0 0flg

0

Where B is the tangent bulk modulus for compression (or swelling) and is given in terms of
incremental values of effective stress and volumetric strain as:

_dp
B= ac, (1.58)
Next, substituting eqgs.(1.53) and (1.56) in eq.(1.39) gives:
d
{do'} =dp'{l}+{dz} =[G]{dy} +[B] §V{|}=[K]{d€} (1.59)

Hence the tangential stiffness matrix [K] relates the incremental effective stress vector {do’}

with incremental strain {dg}.The overall tangent stiffness matrix [K] is then given by the
sum of the shear stiffness matrix [G]| and the overall tangent compression (or swelling)
stiffness matrix [B].

K] =[G] + [B] (1.60)
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1.8. Distribution of constituent springs

The multi-spring model presented here deals with only isotropic behavior. Thus, the
distribution of the springs on the virtual planes and the distribution of the planes themselves
should also be isotropic. Regular orientation of springs on each virtual plane can be achieved
by simply distributing them evenly with a constant angle 0 between them.

For even distribution of the virtual planes, their orientation is determined with the aid of an
icosahedron which consists of twenty facets and twelve apices. Vectors directed from the

center of an icosahedron to its apices coincide with the normal vectors of the planes ( T in
Figure 1.). In this model, the total number of the virtual planes is increased by using the
center of gravity of the planes together with the apices. Thus, 32 planes, 12 based on the
apices and 20 on the additional points will be used. By distributing 6 single-degree-of-
freedoms shear mechanisms on each of them, 192 one-dimensional shear mechanisms will
be employed. Note that the actual calculation is required for only half of them, considering
the symmetry of the icosahedron with regard to the xy plane.

If prepared planes and shear mechanisms on each plane are numbered from 1 ...j.... n and
1. k... n, respectively, constituent springs are to be numbered 1 ... 1 .... n, then the
following formula should be met.

I=(j-Dn,+k (1.61)
1.9. One dimensional stress-strain relationship
The three-dimensional stresses and strains are decomposed into stresses and strains of
single-degree of freedom with the help of the multiple mechanism model. Hence the

behavior of each one-dimensional shear mechanism is a crucial part of the behavior in three-
dimensional model.
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1.9.1. Masing’s rule

A shear stress-strain relationship of the constituent one-dimensional shear mechanism is
formulated based on the extended Masing’s rule along with several modifications and a
hyperbolic skeleton curve.

The extended Masing’s rule outlines the following four basic main points:

1. For initial loading, a stress-strain relationship is prescribed by a skeleton curve
(backbone curve) ( Masing ,1920)

2. When reloading or unloading occurs from the initial loading, the stress-strain
relationship forms a loop which is obtained by enlarging the skeleton curve by
variable factors in size.( Pyke, 1977)

3. If the previous maximum shear strain is exceeded, a stress-strain relationship
follows a skeleton curve again. (Finn et. al.,1977, Jennings, 1977)

4. If a hysteresis loop intersects a previous loading or unloading curve, a stress-
strain relationship follows that previous curve (Finn et. al. , 1977)

R (Stress ratio)

.

max

| =

4

Figure 1.8. Stress ratio-strain relationship using the modified Masing’s rule

The information about the recent reversal point is necessary in the extended Masing’s rule
for choosing the hysteresis loop to be followed when the strain amplitude is subsequently
increased. Hence this rule requires memorization of all loading reversal points when cyclic
strain amplitude is diminished with the number of loading cycles. However, this requires
immense amount of computer memory in three-dimensions rendering this method to be
impractical.

The proposed model simplifies the problem of huge memory requirement by creating

hysteresis loops connecting only two points: the point of the most recent reversal point and
the point of the maximum ever-experienced shear stress ratio.
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The skeleton curve in this model which is shown by curve 0-1 in Fig. 1.8 is given by the
hyperbolic relationship of Hardin and Drenevich (1972b). This hyperbolic relationship is for
each spring is given by:
()
L0 r— (1.62)
1 ]/(l)
— +
G Toax

Dividing both sides of this equation by the mean effective stress p’ leads to:

(i)

T r (1.63)
p' P Py

G(i) Z.(i)

max max

The ratio of shear stress to mean effective stress gives the stress ratio R.

) O]

ROV=Z_  and R, =-mx (1.64)
p p
Hence eq. (1.63) can also be written as:
Gr(r:;x (i)
Rb___ P (1.65)
0
1+ ‘7

(i)
z-m%(i)
Gm'ilx

Note that the absolute value of shear strain is taken in the denominator in eq. (1.65) to keep
the positive sign in front of it valid for all ranges of shear strain.

For each constituent spring, the non-dimensional stiffness parameter £, and the reference

max

shear strain y; can be defined as:

G(i) (M
Kpnar = —I‘;‘?" and y, =—é“§?;‘ (1.66)

Substituting the expression for the mean stress p’ from eq. (1.64) in this equation, the
relationship between these two parameters can be established.

(i)
k Gmax — Rmax (167)

max = (i)
Tm%(i) }/r
Rmax

Hence, the equation of the skeleton curve for each spring becomes:

()
RO — _kmax7( ' (1.68)
y?
I+—
7,

-18 -



in which the superscript 7 indicates that the quantities belong to constituent springs. The
graph of R” versus v¥ can be plotted as shown in Fig. 1.9. From the graph, it can be seen
that at Y = 0, the slope of the tangent curve is £
intersects the horizontal line at R = R

7ax>

At the point where this tangent line

max*

the value of y will be equal to y;.

Figure 1.9 The skeleton curve on R versus y space.

Normalizing both sides of eq. (1.68) by R . gives :

% ( Lm
R kw7 2 (169)
R i i ()
R ‘M Ry 1 ‘M ‘7 |
7r 7r 7I’

From eq. (1.69), it can be observed that the stress ratio R will be equal to half of the
maximum value R, when the shear strain is equal to ;. This is the equation of the skeleton

max

curve under normalized space. The skeleton curve looks like:

1=

Figure 1.10. The skeleton curve on the normalized space.
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The slope of the skeleton curve at any point can be obtained by taking the derivative of eq.

(1.69)
(M
s )
Rmax _ 1

8[7“)] (1+ yO ]2
Ve Ve

The slope of the skeleton curve at different levels of shear strain can be assessed. When the
shear strain is zero, the slope of the tangent skeleton curve is equal to one. This tangent line
also intersects the horizontal line at R = K, when the value of y is equal to y;. As the level

naxd

of shear strain goes to infinity, the slope of the curve will be zero.

(1.70)

1.9.2. Determination of spring parameters:

Defining the spring parameters k

max> max

G and 7" and identifying their relationship with
max ying p
global quantities at this stage is important. In this subsection, these issues will be addressed.
The stiffness parameter £, can be given as a function of the overall maximum shear
and mean effective stress p. Combination of eqs. (1.54) and

max

modulus of an element, G
(1.66) gives:

max

13 . .
(G 1= =2 'K [T T INT[T,V ] (1.71)
NS

For isotropy of the model, the spring stiffness £
springs. Hence the above equation becomes:

should have the same value for all the

max

L i
(G 1= K p'[;Z[T; TINILT, Hj (1.72)
=
For icosahedron distribution of springs, the matrix in the bracket can be computed as:
T
15 15 15
I T
15 15 15
1 2 i ) - ll - ll li 0 0 0
paTmNmey=) B (1.73
- 0 0 o — 0 0
5
1
0 0 0 0 - 0
5
1
0 0 0 0 0 -
L 5]

The shear stiffness matrix [G] was given by eq. (1.55). Substitution of the expressions in
egs.(1.54) and (1.73) in eq. (1.72) and using eq. (1.60), the following relationships between
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the overall tangent shear modulus of the soil G,,,, the effective stress and the stiffness of

each spring £, can be established:

max

maxd

K. = —SG‘“""‘ (1.74)

max p,
In addition, for icosahedral distribution of planes, comparison of eqs. (1.54),(1.55) and (1.72)
along with the calculated matrix expression in eq. (1.73) leads to the relationship between the

maximum shear stiffness of the soil element G, and that of the individual springs Gr(rzx as:

1 .
G = 2 G (1.75)
With the help of eq. (1.48), the shear strengths of the soil element in torsion shear test and

that of the springs in icosahedral manner can be related.

g

zZZ

\ \
\Gw\\ o,
O, | | 5 L

\

|

\
e

< 7

Figure 1. 11. Stress directions in isotropic torsion shear test.

The deviatoric stress vector in torsion shear test for the shear component applied in xy, yz
and zx directions respectively are given by:

{r} = {O'X -p o,—p o,—-p Ty 0 O }T (1.762)
{r} = {O‘X -p o,—p o,—p 0 7, 0 }T (1.76b)
{r} = {O'X -p o,—p o,—p 0 0 Ty }T (1.76¢)

The expression of the shear stress level in the springs 7" in terms of the maximum
p pring

attainable shear stress in the springs 7\) can be derived utilizing eqs. (1.63), (1.64) and
(1.606). The derivation leads to the following relationship.

_ (i 0
(') — Tmax7/ (1.77)

T —_—

e+
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The deviatoric stresses in the springs and that of the soil element in the isotropic torsion
shear test can be related using eq. (1.48). Substituting the expression of 7 from eq. (1.77)

in eq. (1.48), an equation relating the maximum deviatoric stresses in the isotropic torsion
shear test and in the springs can be obtained as:

1 L2 ) {Z'(i) }],(i)
R R L R 1.78
Where,
W=t 0 0 0 1 o0 (1.79)

If it is assumed that the ultimate stress of the overall element is mobilized when all of the

springs take their own ultimate stresses, the term {7\

max

} can be taken out of the summation.

The expression for the shear strains in the springs (¥"") was given by eq. (1.43). Substituting
this expression in eq. (1.78),

192 i ! T i
= L3y ) [f ].{gxﬂ} 0} (1.80)
N5 Vet {n} [TE(I)]{8XYZ}

By applying a global shear strain in one direction, a simple shear test for each of the
directions xy, yz and zx is simulated. Computing the term in the bracket of eq. (1.80) for all
springs, the relationship between the shear strength of in torsion shear test and icosahedral
distribution can be established. Depending on the level of shear strain applied in different

directions in the torsion shear test, the ratio of the shear stress in the torsion shear test 7,

and that of the springs Tr(nie)lx vary in the manner shown in the following graph.

04
0.35 A
0.3
0.25 A
Trax 0.2
r(” —— Shear in XY direction
.15 4 —— Shearin YZ direction
01 4 —— Shear in Z¥ direction
0.05
O T T T
0.01 1 100 4 0000 1000000
logl —
7

Fig. 1.12. Variation of 1(1:2;" along with the shear strain level in isotropic torsion shear test.

max
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Tmax
70

max

The graph shows that the ratio converges to a certain value as the strain level increases.

This happens when the shear strain level in the springs {n}T rl'g(i)]{gxyz} is large as compared

to the reference shear strain y, . In that case, the relationship in eq. (1.80), can be

approximated as:

L n} M6

1 i _
(o =| = 2T r.) (1.81)
i [} 1)

max

Substituting the values of the stress vectors in each direction given by eq. (1.76) from torsion
shear test and that of the spring from eq. (1.79) in eq. (1.81), the shear strengths of the soil
element and that of the springs can be related.

Torsional shear applied in xy direction

For shear strain applied in xy direction, eq. (1.81) can be more elaborated as:

o,—p 0
o,—p 0
T
o, — LI Ny [T, 1w [1O0] &

Pl > { }T : lew) i (1.82)

z-Xy/max n i=1 ‘{n} [Tg(l)]{gxyz } 0

0 1

0 0
Wherte 7, is the maximum value of stress Tyy in torsion shear test. In eq. (1.82), the term

in the bracket can be computed for all the springs giving:

[0.0000  0.0000  0.0000 —0.2708  0.0000 0.0000]
0.0000  0.0000  0.0000 0.2507  0.0000 0.0000
{ef 00000 0.0000  0.0000 0.0201  0.0000 0.0000

19247 ‘{n}T[Tuq{gm} 0.0104 —0.0104  0.0000  0.0000  0.3749 0.0000
0.0000  0.0000  0.0000 —0.0305  0.0201 0.0000
10.0000  0.0000  0.0000  0.0000 —0.0072  —0.0201
(1.83)

Thus, eq. (1.82) can also be written as:
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o,—P| [0.0000 0.0000 0.0000 -0.2708 0.0000 0.0000 | 0
o,—p 0.0000 0.0000 0.0000 0.2507 0.0000 0.0000 || O
o,-p 0.0000 0.0000 0.0000 0.0201 0.0000 0.0000 || 0| (1.84)
= T
Ty 0.0104 -0.0104 0.0000 0.0000 0.3749 0.0000 || O ™
0.0000 0.0000 0.0000 —-0.0305 0.0201 0.0000 || 1
0 1 0.0000 0.0000 0.0000 0.0000 —-0.0072 -0.0201]| 0
Simplification of this equation leads to:
Oy — p 0
o,—P 0
o,=pl_J O 0 (1.85)
Ty /max 0.3749
0 0.0201
0 -0.0072

Relating the corresponding elements on either side of eq. (1.85), the shear strength of the
soil when the shear applied in xy direction is given by:

r. ~0.375¢0 (1.86)

max
Torsional shear applied in yz direction

For shear strain applied in xy direction, eq. (1.81) can be more elaborated as:

o,—p 0
o,— P 0
Trr@®
o, — P _ li[-l-(i)]—l {n} [Tgl ]{gxyz} 0 z_(i) (1.87)
0 NS [T T | |0
7'-yZ/max 1
0 0
Where 7, is the maximum value of stress Ty, in torsion shear test. The computation of

term in the bracket around all the springs gives:
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0.0000  0.0000 0.0000 0.0000 0.0258 0.0000 |
0.0000  0.0000 0.0000 0.0000  -0.0236 0.0000
%2:[ TOp A (I)]{é‘ } 0.0000  0.0000 0.0000 0.0000  -0.0022 0.0000
192 4= ‘n} [T;I)]{ngZ} 0.0208 —0.0208 0.0000  —0.0338 0.0000 0.0000
0.0000  0.0000 0.0000 0.0000 0.3836 0.0000
10.0000  0.0000 0.0000 0.0590 0.0000 0.0000 |
(1.88)
Substitution of the result obtained in eq. (1.89) into eq. (1.88) leads to:
o,—P| [0.0000  0.0000 0.0000 0.0000 0.0258 0.0000 | 0
oy—P 0.0000  0.0000 0.0000 0.0000  —-0.0236 0.0000 || O
o,—p| _[0.0000  0.0000 0.0000 0.0000  —0.0022 0.0000 || O -0 (1.89)
0 0.0208 -0.0208 0.0000  -0.0338 0.0000 0.0000 || of ™
Ty 0.0000  0.0000 0.0000 0.0000 0.3836 0.0000 || 1
0 10.0000  0.0000 0.0000 0.0590 0.0000 0.0000 | O
Simplification of this equation gives:
oy =P 0.0258
o,—p —-0.0236
o, =P | _ —-0.0022 0 (1.90)
0 0
Ty 0.3836
0 0

Relating the corresponding elements on either side of eq. (1.90), the shear strength of the
soil when the shear applied in yz direction is given by:

~0.3847"

max

max

Torsional shear applied in zx direction

(1.91)

For shear strain applied in zx direction, eq. (1.82) can be more elaborated as:

[
T T T

0
0

r

ZX/max

(M
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oS = O O O O




Where 7, ..« 15 the maximum value of stress T, in torsion shear test. The term in the

bracket can be computed for all the springs.

[-0.0312 -0.0312  0.0000  0.0265  0.0000 0.0000 |
~0.0312 —0.0312  0.0000  0.0025  0.0000 0.0000
1 & o o, | _| 0.0000  0.0000 -0.0625 -0.0291  0.0000 0.0000 | (1.93)
19257 ‘{n}f [T ;iq{EMﬂ 0.0000  0.0000  0.0000  0.0000 —0.0270 0.0000

0.0000  0.0000  0.0000 —0.0844  0.0000 0.0000
| 0.0000  0.0000  0.0000  0.0000 0.3776 0.0000 |

Substitution of this into eq. (1.93) results in:

o,—p [—0.0312 -0.0312 0.0000 0.0265 0.0000 0.00007( 0
y—P -0.0312 -0.0312 0.0000 0.0025 0.0000 0.0000 (| 0
o,-p 0.0000 0.0000 —-0.0625 —0.0291 0.0000 0.0000 || O (i) (1.94)
= T
0 0.0000  0.0000 0.0000 0.0000 —0.0270 0.0000 || O] ™
0 0.0000 0.0000 0.0000 —0.0844 0.0000 0.0000 || 1
T L 0.0000 0.0000 0.0000 0.0000 0.3776 0.0000 ] 0
Simplification of this equation leads to:
Oy — p 0
o,—p 0
o-p|l_] 0 0 (1.95)
0 —-0.02703
0 0
sz/max 03775

Relating the corresponding elements on either side of eq. (1.86), the shear strength of the
soil when the shear applied in zx direction in terms of the shear strength of the springs is

given by:

.. ~0378c") (1.96)

The relationship p = (oxtoy+0,)/3 remains valid for all directions. This can be checked by
adding the first three rows of eqgs. (1.85), (1.90) and (1.95) which should result in zero.

Egs. (1.85), (1.90) and (1.95) concern deviatoric stresses. Instead of producing a global shear
stress corresponding to the applied global shear strain, also other terms are non-zero, namely

eq. (1.90) for y,, gives normal stress errors and eqs. (1.85) and (1.95) for vy, and v,, give shear
stress errors. The relative errors in the deviatoric stress vector in each direction relative to
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the deviatoric stress in the direction of the applied global strain can be summarized in the
following table.

Table 1.2. Relative values of deviatoric stresses in torsion shear test relative
to those applied global in the direction of global shear strain.

Deviatoric Global shear strain direction
strain in
torsion shear XY YZ ZX
test
. P 0 0.0673 0
o, P 0 -0.0615 0
c,p 0 -0.0057 0
T, 1 0 -0.0716
T, 0.0536 1 0
T, -0.0192 0 1

As can be seen from the table, there is an error associated to every direction. This error
would affect the performance of the model to simulate real case or laboratory observations.

1.9.3. Mean stress dependency of parameters

With the help of egs. (1.66) and (1.91), the reference strain y; is given as a function of the

overall shear strength, 7 as:

max 2

2,607z,

1.97

kmax p' ( )
The parameters £, given in eq. (1.74) and Y, given in eq. (1.97) are functions of the mean
effective stress. The common assumption for cohesionless materials states that shear
modulus G, at small strain is proportional to square root of mean effective stress pP'. This
dependence can be expressed by:

N (1.98)

Where p, is a reference mean effective stress and G is the corresponding small-strain

max,0

shear modulus at p,. Thus, if &, given by eq. (1.74) is defined in terms of &, , at the

max max,o

reference mean effective stress, P, ,then £, ata given mean effective stress, p', satisfies:
1
kmax — Gmax / p — pO max -0 (1 99)
kmaxo Gmax,o / po p Gmaxo u u
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A similar equation can also be written for y, using eqs. (1.97) and (1.99).

7y 2 65T /kmax p T kmaxo po

max

— * — — max po —
J/r,o 2'651-max,0 /kmax,o po z-max,o kma maxo U po maxo

respectively are y, and 7, at p'= p,. For cohesionless materials the

(1.100)

where y,, and 7

max,0
maximum global shear stress T, is proportional to the mean effective stress p’ through the
expression involving a function of ¢, and 6, by:

7. . =p' (4.0 (1.101)

In which, ¢, is the maximum friction angle and 0 is Lode angle in m-plane. The function is
constant for every mean effective stress. Hence eq. (1.100) can be written as:

RAR T L N R M (1.102)
Vio Tmaxo VP Po VP Po

1.9.4. Hysteresis loop

The equation of the skeleton curve for regular loading is given by eq. (1.68). When irregular
or asymmetric loading is applied, the origin of the skeleton curve might need to be shifted so
as to reproduce cumulative strain on one side. For this reason, and for the sake of generality
and flexibility of the model, the origin of the skeleton curve is made movable by introducing

a parameter }/éi) .

R(i) max(j/(i) (i))

‘}/(.)

(1.103)

Vr
By introducing the parameter y!" | the skeleton curve starts from a different point than the

origin as shown in fig 1.13.
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_O/CE,J

Figure 1.13. The skeleton curve on the normalized space.

The original Masing’s rules states that the hysteresis loop is given as the hyperbolic curve
which has doubled size of the skeleton curve and passes through the most recent reversal

point (¥, R"Y . In that case, the curve which is shown in fig 1.14 is given by the equation
. ok M _ ()
B _ 0
o -7
2y,

;} Z(l-)
(o
_gfe-.r

Figure 1.14. The skeleton curve on the normalized space.

When R® =RY | the difference 3™ — ) in this model is equal to twice the value of the

strain amplitude }/;i) as illustrated in fig. 1.14. Hence eq. (1.104) becomes

()

_ _ k 2 0 R(i) _R(i) k
RO =R +mx—7/(éil) a rev — ma"y(ei‘) (1.105)
27, 2 Va
1+ I+—
2]/r Ve
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R® _RM ) . .
where % is the stress ratio amplitude.

From this , the expression for strain amplitude can be derived as:

(i) (i) 0) Vs’ Ry — Rier

For y" >0, in which [y{"|=y = o (1.106a)
: : ) Ve 2kmax7r - (R;I) - leel\)/)
. . . O] H _p

For y{" <0, in which \7;”\ =—yV Ya_ - Ry — Ry (1.106b)

e - 2kmax7/r +(Ra(1i) - R(i))

rev

Eq. (1.104) can also be written in another form by adding two terms which add up to zero,
namely:

RO = RO) 4 K s ;)723) ) K (7(()) —7(()’) K (7" ;)723)
1+ al 1+ 7‘7 A 1+ el
Yy 27, Ve

(1.107)

Now we consider eq. (1.107) in more detail. The second term in eq. (1.107) expresses the
line connecting both ends of a loop and the last terms in the parentheses represent deviation
of a loop from that line as can be proved below by referring to Fig. 1.15.

‘R(r)

RY

a

GO.RY)

0
N

70 po
o LR

0]
@ -7
Ya
C
Skeleton curve

Masing curve
™
| - RS

\

Figure 1.15. Illustration of skeleton curve and Masing curve for
RO = R¥and 50 = 5
a rev a

rev

(rd R

The corner points are on the skeleton curve. Hence, the coordinates satisty the skeleton
curve equation given by eq. (1.68). The respective equations for the right and left corner
points are given by:
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(i) ()
Re(li) kmaxy(a) and _ R(i) - _ kmaxj/a(l)

a'| 147 Va

Ve Vi
The slope of the line connecting these corner points is given as ratio between vertical
increment and horizontal increment of any two points. Taking the two corner points, the
slope is given by :

(1.108)

1+

(I) ( R(I)) R(i) k

i ~

slope = — 0
“ —(-r0) 7

max (1.109)
72”

7r

If (y,R™) represents a coordinate of any point on this line and if the reversal point is

(yD RYY)  then the following equation can be written:

R(i) (R(l)) k

rev

7(I) _(7relz\)/)

max (1.110)
yé”

Ve

Then eq. (1.110) can be written as:

s 7 = 7)
7|
Ve

This equation is identical to eq. (1.107) without the terms in the parenthesis. Hence, it can be
concluded that the first two terms of eq. (1.107) represent the equation of the diagonal line
connecting the left hand side and the right hand side corners of figure 1.15 if .

R(l) R(l)

rev

(1.111)

1+

RO =RMand @ =4®  [right corner point] (1.112a)

rev rev

RO =-RVand 5@ =—y  [left corner point] (1.112b)

rev rev

By substituting these values in eq. (1.111), it can be checked that the resulting expression
equals the expression of the skeleton curve given by eq. (1.65).

The resulting lines for eq. (1.111) can also be illustrated in figure below for two Masing
curves with the same reversal point but different strain amplitude.
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K o
Fig. 1.15b. inclined line with slope : —*— through (O RYY
()

Va
Ve

1+

) RDY | part of eq. (1.107) excluding the terms in the

For an atbitrary reversal point (7&;,, rev

parenthesis represent a line through both this reversal point and point on the corresponding
Masing’s curve representing the other end point of a closed loop with double amplitude }/;') .
From this , it can be clearly observed that the terms in the parenthesis represent the

difference of shear stress ratio obtained by eqs. (1.107) and (1.111). This difference is

denoted by line ac in fig. (1.15). In a physical sense, the diagonal line stands for the
deformation associated with secant modulus, while the deviation is related to energy
dissipation.

The combination of the original Masing’s rule and a hyperbolic skeleton curve yield
exaggerated damping ratio. In this model, the damping ratio is reduced by multiplying the
area of the hysteresis loop by an arbitrary factor 1. Therefore, the damping ratio can be
reduced to an arbitrary level by scaling the terms in the parenthesis of eq. (1.83) with a factor

n.

R(i) — R(i) + kmax(y(i) _7§E|3\3) + kmax(y(i) _7/23) _ kmax(y(i) _72\)/)

rev (i) n @ _ 0 ()
Va 4 7 rev Va
1+ 1+ 1+

Ve 2y, Ve

(1.113)
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The Masing curves before and after applying the reduction factor are shown in the figure
below in which point b is located on a reduced curve.

Skeleton curve R
Loopfor n=1 L
Loop for n <1

%:Eaﬁ:l

Figure 1.16. Modification of damping ratio

When irregular loading with 7 # 7 and R # R is concerned, the above equation is
not sufficient to portray a closed loop. For example, if unloading occurs at point 3 in fig.
(1.17), egs. (1.106) and (1.107) would offer the path from point 3 to point 4 in fig. (1.17),

while the path connecting point 3 with the point of previously maximum stress ratio on the
skeleton curve is desired. This is because those equations give Y, for this unloading in place
of y,” in fig.1.17. Consequently, the loop is obtained by shifting the bold dotted curve in fig.
1.17 by 2pa-254’. This fact means that the calculation of y, in terms of the stress ratio by eq.
(1.100) is not appropriate when loading reversal at second-order loops (loops which are
originating from curves other than the skeleton curve) is concerned. The same goes for a
loading reversal at loops originating from the skeleton curve in case of | # 1. Indicating the
(M

max >

maximum shear strain amplitude which is going to occur by . the amplitude of strain

illustrated in fig. 1.17 as 72’ is given in the following by:

72 = |y — el /2 (1.114)

will depend on the type of curve which is going to occur

()

max

In this equation, the sign of ¥
from the point of reversal considered. If the curve which is going to occur is unloading

curve, 7 will take negative value otherwise it will be positive.

Figure 1.17. Hysteresis loops without modifying the strain amplitude.
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At this stage it may be noted that the Masing’s rule requires that the maximum reversal point

is located on the skeleton curve, in which its coordinate is indicated by (y& R’

max ? max) °

However, in the following formulation, instead of a scaling factor C? is introduced while the

is replaced by R

max >

: . . *
previously maximum stress ratio R, the strength parameter that was

X
defined in eq. (1.64). The scaling factor will also ensure that any reversal point (30, RYY is
connected to the point of maximum stress ratio (¥ ,RY Yor (= ~R" ) Then the

scaling factor C? is defined, while modifying eq. (1.105), by

27(i)
max —a 0! (i (i 0!
2_ _ Ra - Rrev _ Rmax _'Rrev (1115)
27/;0 2 2c(l)
I+——
2y,
In which,
(i)
RO RO 1472
- R(i) ~ R(i) max rev 7,
() _ "“max rev. __
cr= RO _RO ~ 2k y® (1.116)
By the introduction of C?, eq. (1.107) will be written as:
R(i) — R(i) + C(i)kmax(j/(i) _7/;;3\)/) + C(i)kmax(]/(i) _yiflz\)/) _ C(i)kmax(y(i) _7/25\)/) (l 117)
rev (i) n (ONIO) (i) )
A A A
7 2y, e

The whole part of the equations involved in the hysteresis loop will be summarized with the
following graph:

Skeleton curve

Masirh‘&-‘e before multiplying

/ wi th reduction factor »
\vkiasmg' s curve after multiplyin g

with reduction factor 7

Fig. 1.18. Skeleton, Masing and hysteresis curves.
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e For the initial loading shown by curve ab in fig. 1.18 , the curve is governed by the
equation of the skeleton curve given by eq. (1.68). The maximum values of 7" and

R® will be taken to be the values of RY @

max max

and y,,, respectively. The parameters

K., and 7., which will be used for calculation of the stress ratio R® from }/(i)

max

should be given at the beginning.

e When unloading starts, the consequent part of the curve will be a Masing curve
governed by eq. (1.117). This part is described by the curve bc in the figure. This
curve heads to point g which is the reflection of the point where the skeleton curve
ended. Here the reversal point will be the point where the skeleton curve ended and

the values of RY () will be the values RY M

rev rev max max

and y and ¥, . obtained from the

skeleton curve.

Other variables which will be used in this equation are the amplitude of shear strain
7" calculated by eq. (1.114) the scaling factor C” calculated by eq. (1.116). The

reduction factor 1 should be given at the beginning. For the unloading part of the
Masing curve, ¥ is always equal to — ) and for the re-loading part it will be
O

max

equal to 7 . The value of C" is always 1 for the Masing curve.

e If re-loading occurs before the curve reaches point g, it will be a hysteresis curve
governed by eq. (1.117). The only change with the Masing curve is that the values of
R(i) () ()

rev rev M “and y) . The hysteresis curves are

and y,., will no more be the values R

also directed towards the point of maximum stress ratio or its reflection.

The effect of the three parameters K and 1 on the value of stress ratio R" will

max ’7/r
be shown in the graphs below. The ordinate of the graphs represent the value of stress
ratio.

’A‘ i 1728 ¥ - = 2(‘2_1
7, = 0.0004 ¥ = 0.0004
}3:(!_4 }3:[!4
1 i1
(@) ©)
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k = 1728

e k"“\ = 2624
7, = 0.0008 7, = 0.0008
n=04 n=04
k. =1728 ke = 2624
¥, = 0.0008 7, = 0.0008

n=0.06 n=06

.(e) | ®

Fig. 1.19.(a)-(f) effect of the parameters K and 1 on normalized stress ratio R

max >7/I’
Figures 1.19. (a) and (b) represent normalized stress ratio- normalized strain graphs for
different values of K ;keeping the other two parameters constant. The graphs show that

max 2

the spring stiffness K. is directly proportional to the stress ratio because both graphs with

X
normalized qantities are identical in accordance with R, =Kk __y . Comparing (a) and (c)
or (b) and (d), the effect of reference shear strain », on normalized stress ratio R /R,
can be noticed. From the graphs, it can be again observed that with increasing y, the
normalized stress ratio increases in accordance with eq. (1.103) due to the effect of

normalized strain ratio }/(i) /y.. The effect of the reduction factor m can be observed by

comparing the graphs (c) and (e) or (d) and (f). Larger value of reduction factor means wider
Masing or hysteresis curves.

In eq. (1.117), the term in the parentheses along with the reduction factor for the damping
ratio M gives the deviation of the hysteresis loop from the diagonal line in fig. 1.16. This
deviation will be denoted by R and will be given by the equation:
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)

ﬁ _ C(i)kmax(y(i) _7rev) _ C(i)kmax(y(i) _723\)/) (1 118)
=7 M _ 0 (i) ‘
VT Y re Va
I+ 1+—
27 Ve
Then the area inside the hysteresis loop can be given by:
Vo _
AW =2 [R'dy®
7o (1.119)

The factor two is introduced because the area should be calculated for the hysteresis loop on
both sides of the diagonal. The hysteresis curve is bounded by curves governed by eq. (1.80).
Thus, the following relations can be written for the curve on the top of the diagonal:

() ()
(i) — }/max _(_j/max) (i)

CU=1 ,ym=-7 »Re=-RL .7 7 = Vmax (1.120)
By substituting these values, eq. (1.118) can be simplified into:
s Lo o) wio
77 max ‘7(” +7(i) }/(i) :
1 n a 1 + ra
27, Ve

In this case, for any value of 7(i) , the expression 7/“) +7/£) is always positive. Thus, the

absolute value in the expression for R’ can be removed without bringing any change in the
final outcome. Now, the area inside the hysteresis loop can be explicitly expressed as:

o

(i) (i) (i) (i) _
AW =21, | 7 tra) T Ara) dy

. — — 4 (1.122)
0 1+7(|)+7;I) 1+£
27 Vr
The integration will finally result in the area inside the hysteresis loop to be given by:
2 7a 27/§
AW =2nk . 147y, —4y; In| 1+ 2 | ——2— (1.123)
7r 1+ &

Vr
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The elastic work done Iis given by

k 2

W :% Zmar/'a (1.124)
1+7/—"’1
Ve

The damping ratio h is given by the formula:

2
2
h:ﬂ:i7 1+L_2[ﬁJ (1+ﬁ]1n(1+ﬁ] (1.125)
AW x| 7a \7a Ve Vr

Thus, damping ratio h can be plotted against the amplitude of strain v,/y, for vatious values
of 1 as:

07 S
06 |
os|
0,4-

03

Damping ratio, h

0.2}

01

00 PR S 1 1 b d A 1211 PRt sl PR
1E-3 0.01 0.1 1 10 100 1000
v,

Figure 1.20. Damping ratio for various values of 1.

1.9.5. Modeling of hardening due to shear loading

Sand exhibits gradual hardening when subjected to drained cyclic loading. The hardening can
be attributed to a densification and influence of shear history. The effects of shear history on
hardening of sand means that sand which has experienced some extent of shearing exhibits
harder response than virgin sand at the same density does. In order to model this hardening
phenomenon, a correlation between stress amplitude for a constant strain amplitude and
accumulated volumetric strain was experimentally investigated by Shahnazari and Towhata
(2000) leading to the linear relationship in the fig. 1.21 below. In the figure, the maximum
shear stress in each cycle normalized by the maximum shear stress in the initial loading for a
given constant strain amplitudes versus the volumetric strain.
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e,..=0.892 v =+3%
e,..~0.832 ¥ =:3%
e, =0.756 v =+3%
e, =0.694 y_=+3%

e, =0.888 1, =t1%

e,.~0.833 v,=11% |
e,,=0.763 v,=:1%
e,..=0.695 v =t1% '

1 [+ 0 0

M
N
<« b em

2.04 -
; |
F 1.8-
(1]
!—'E |
16 |
g 44l A (T | T, J7011A €, )
l'_l'
1.2 [ . .
| Drained simple shear test _
1.0 4 Isotropic cons. P=98 kPa |
0 2 4 6 8 10
Volumetric strain (%)

Figure 1.21.Correlation between shear stress amplitude and volumetric strain.

The linear relationship suggested the following equation:
R'=(1+H,¢,)R (1.120)

in which R is the stress ratio amplitude before hardening is considered and R’is the value
after modification for hardening and H,, is a coefficient which corresponds to the gradient of
the line in the fig. 1.21 above. Hence, in this model, the hardening effect is reproduced by
multiplying the shear stress of each shear mechanism by a factor of (1+H ¢,

1.9.6. Tangent shear stiffness

The tangential stiffness of each one-dimensional stress-strain relationship G\ is required in

order to form the overall tangent stiffness matrix. Its expression can be obtained from eq.
(1.49). If the effect of hardening is included,

_ ® dRVp'(t+H
Gt(;ﬂ:j;(i) _ ( pd(y('i") pgv)) (1.127)

When p’ is constant, the tangent stiffness of the one-dimensional relationship is given as:

p'(1+H,& JARD
d },(i)

The expression of R” for the skeleton curve is given by eq. (1.103). Substitution of this

equation in eq. (1.128) and after some algebraic manipulation we will get:

GY =

(1.128)
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i _ kmax p'(l + H pgv)

tan 2
(1+|7_7/0|]
Ve

For the hysteresis loops, the expression of R” is given by eq. (1.117). Similarly, the
expression of the tangent shear stiffness when p’is constant can be derived as:

(1.129)

GO = p'(1+H &, Ky I=n T (1.130)
1+7/7a (1+|7/_7/rev|J
Ve 27r

When the effective principal stress p’is not constant, the tangent stiffness matrix is obtained
by the following equation:

i i) dp' . drR" o i de,
6l = (14 H,0 RO) TG + P (1 Hoe, )+ PROH, 55 (1.131)

Sand exhibits an elastic response when subjected to small unloading or reloading. Thus, an
()
eq
appears immediately after loading reversals. Its expression can be derived by inserting the

value Y = Yrey in eq. (1.130).

equivalent elastic shear stiffness G, can be defined to be the tangent stiffness which

GY = p(1+H &, ok {4 (1.132)
1+Zi

Ve
1.10. Dilatancy and isotropic compression/swelling

1.10.1. Modeling of stress-dilatancy relationship

The two-dimensional Towhata-Iai model uses a correlation between excess pore water
pressure and shear work done to sand to calculate the development of excess pore water
pressure. This assumption renders the model to be used only for undrained conditions.
However, the present three dimensional model enables modeling of volumetric change with
a stress-dilatancy relation which will be applicable for general drainage conditions.

The total volumetric strain increment, dg

d
v o

. > 18 assumed to consist of two components;

dilatancy component , dg, , induced by plastic shear strain increment and consolidation

component dg; induced by the change in p’.
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de, =de! +dgf (1.133)

The volume change under drained condition is related to variation of excess pore water
pressure under undrained condition via a consolidation curve, based on a postulation that
undrained condition is equivalent to constant volume condition.

Since dilatancy is closely related to shear deformation, this model applies a stress-dilatancy
relation to all the constituent shear mechanisms. The plastic shear strain increment dy PO

of each one-dimensional shear mechanism is given by:

dy PO =dy® —dys® (1.134)
in which dy"” is the total shear strain increment and dy*" is the elastic shear increment
calculated by the following formula:

ey _ A7
G

eq

dy (1.135)

p.(1)

The ratio between de’ and dy is termed as dilatancy ratio. A linear relationship

between the stress ratio and dilatancy ratio as shown in the figure below will be employed in
this model. The ratio between the stress ratio and dilatancy ratio is called stress-dilatancy
relationship.

R 2
+ Dilative

: Contractive :

Dilative

Contractive
y L0
» ¥
Gilative
Dilative ! Contractive
Figure 1.22. Stress dilatancy diagram.
The following equations can be written from the linear stress-dilatancy relationship.
For loading in positive direction or dy *® >0
() d, ()
RO=L _NO s +RW (1.136)
1) d dy PO t :
o 4
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For loading in negative direction or dy P <)

0) _ ded-® _
iy T ] _ Y _p
R =5 =N [ —dyp’(i)] R (1.137)

Here, N§" and Rgt) are constants as shown in the fig. 1.22 above. Their values can be

determined directly by performing a drained torsion shear from isotropic consolidation test
if those parameters are assumed to be identical for all shear mechanisms.

A value of R:)it) varies for initial and subsequent loading cycles in a cyclic problem. Thus,

the present model employs RS&. and Rf)'t)s

for the initial and subsequent loadings
respectively. In this model, a threshold strain parameter Y is introduced for all of the shear
mechanisms. If loading in one direction generates a plastic shear strain which exceeds Y
measured from a point of the last loading reversal, R:n). is switched to R:)t)s after the next
loading reversal. Otherwise, the loading in this direction is considered to be still minor and

the initial stress-dilatancy relation is kept unchanged even after the next loading reversal.

The dilatancy-induced volumetric strain of a soil element is calculated from the average of
contributions from all the shear mechanisms.

=—> deg " (1.138)

i=1

3|»—

1.10.2. Stiffness matrix with dilatancy

In section 1.9.6, the stiffness matrix without the contribution from dilatancy was derived.
The stiffness matrix under existence of dilatancy can also be derived using egs. (1.134),
(1.135) and (1.43).

d p(')—d}/(')—d]/e’(i)
o dr
— D
A
i Gtan
=dy" - Gmdy (1.139)

G(alr)l (i)
=

Gt(aln T i
-[1- 8oy

eq
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If the plastic shear strain is approximated to be equal to the total shear strain, then the
plastic shear strain will be given by:

dy™® = ()" [TO]{de} (1.140)

From eqs. (1.136) and (1.137), the increment of volumetric strain due to dilatancy can be
given as:

_ ) Rv(l) + R(l)
d,(i) _ _ p,(i) pt
del® = —dy (—N o (1.141)
d

Using egs. (1.138), (1.139) and (1.140) and considering the hardening effect, the volumetric

strain vector due to dilatancy for the overall soil element, dé:\(,j , can be obtained as:

ot} )5 om0, 1o 1 )

d i=1
(1.142)
In which ,

7 7 B (1143)

Rearranging the above equation,

{de? |=[D1{ds) (1.144)
where ,
ol —(1+Hpgv)R<‘>iRp( 6o o
[D]= {m}n & Nd L G(.) [T ] (1.145)

The total strain vector is given by the following equation:
{de} ={dy}+{de} +{de]} (1.146)

If [C] is the inverse of the tangential stiffness matrix, then the total strain vector can also be
given as:

{de} =[C]{do}+[D]{de} (1.147)

by inverting and re-arranging the terms this equation,
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{do}=[K]([11-[DD{de} (1.148)
where [I] is the unit matrix and thus the stiffness matrix with dilatancy, [K], is
(K7 = [KI(I-[D]) (1.149)

The previous assumption of approximating the plastic shear strain increment dy ™" by the

total shear strain increment dy " leads to the expression for {dgvd } to be given by:

{def}={ Lz( (1+H,g)RV{n}' [TV xR, {n}' [T;”]){dg} (1.150)

nNd -
The first term of eq. (1.150) is associated with shear stress vector normalized by mean
effective stress p’in the original xyz coordinate system. Thus, this term becomes
TN o 1 v {r}
ml——{ds" Y-+ H, e )ROTO T i} =—{de] Y (1.151)
nNd i=1 Nd p'

When loading in positive direction in isotropic torsion shear mode is considered,

(de}’ ={de, /3 de,/3 de,/3 0 0 y, | (1.152)
Hence the product {de}’ {T} gives,

{de} {r}=7,d7, (1.153)

The second term in eq. (1.150) is numerically calculated for extended icosahedral distribution
with n=192.

R, & |
s }:ﬁ > (& ) fro]de) ~ 0. 3840 9 gy (1.154)

Then eq. (1.150) will become,

fds¢)= 7 g 3840 g, (1.155)
Ny p' Ny

If the aforementioned assumption of approximating the plastic shear strain increment by the
total shear strain increment is again applied in eq. (1.136) and (1.137), the stress-dilatancy
equation of an overall element undergoing isotropic torsion shear is derived as:
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d
o Nd(— SSVP} 0.384R,, (1.156)
}/ZX
For loading in negative direction,
d
Ti:Nd[— ngpj—o 384R (1.157)
p' Y 2

1.10.3. Modeling of isotropic compression and swelling

Isotropic compression and swelling are modeled using the conventional linear €-logp’ curve
as shown in fig. (1.23) . The expression of the volumetric strain due to isotropic
compression and swelling can be given as:

ALY (1.158)
1+e,

&y

Where C, and e, are compression index of sand and initial void ratio respectively, and f3 is
constant. The bulk modulus of sand can be derived from C_ as:

P __1*& p' (1.159)
det  0.434Cc

\

The bulk modulus is dependent on the level of mean effective stress. The bulk modulus of

the sand skeleton is given as B, at reference mean effective principal stress, p', , namely

_ e (1.160)
° " 0.434C, P '

By relating eqgs. (1.159) and (1.160), the bulk modulus B at mean effective principal stress, p’,
is given by:

B=B, — (1.161)

Then eq. (1.158) becomes:

&, :g—‘)ln p'+p (1.162)

[¢]

If ( p'y ,&,,) tepresents the point of isotropic compression yield stress as shown in fig. 1.23,

the value of the constant 3 can be obtained as:
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Figure 1.23. Bilinear elasto-plastic isotropic compression curve.

(1.163)

Two different values for Bo should be prepared in order to describe normal isotropic
compression (N.C.) and over-consolidated isotropic consolidation (O.C.). Those are referred
to in the present model as B_, and B,, respectively. These parameters respectively

correspond to compression and swelling indices in the g-logp” plot.
Taking the derivative of both sides of eq. (1.126) with respect to p’ gives:

P gy B
dp' p'B, P,

Substitution of the value of p’ from eq. (1.162) in eq. (1.164) leads to the relation:

' B
dp= 2= exp{ % (o —e&,n}.dss
P, P

Under undrained condition where de, =0, eq. (1.133) leads to:

c _ d
de, =—de,

The mean effective stress can be derived from egs. (1.162) and (1.163).

p'= py'exp[ B0 (e —ei,y)]

P’
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The variation of effective stress under undrained condition is reproduced via the isotropic

d

compression model by first calculating virtual dilatancy, de, ,

and subsequently calculating

increment of mean effective stress from stress-dilatancy relation as follows.

', B
dp'=— P L exp{ B'° (&) — &y, )}.dgvd
P P

[¢]

(1.168)

1.11. Overview of material and state parameters of the model

The material parameters describe the properties of the material for which the analysis is to
be executed. Thus, their values are constant throughout the computation process. The state
parameters are variable quantities in the model which should be updated each time as the
computation progresses. The material and state parameters which are necessary for the
model are summarized in the following table.

A. Material parameters
There are thirteen parameters which will have constant value throughout the analysis process.
They are listed in the following table along with the equation number in which the parameter

is involved.

Table 1.3. Material parameters of the model.

Parameters Descrintion Equation
symbol escriptio number
Kmaxso Spring stiffness at initial mean effective stress 1.99
Yo Reference shear strain at initial mean effective stress 1.102
n Reduction factor for damping ratio 1.117
Bco Bulk modulus of compression at mean effective stress 1.165
Bs,o Bulk modulus of swelling at mean effective stress 1.165
' . 1.98,1.99
p', Reference mean effective stress 1102 1.161
R Stress ratio at phase transformation point for initial 1.136,
oLl loading 1.137
R Stress ratio at phase transformation point for subsequent 1.136,
pts loading 1.137
Slope of the curve of stress ratio versus dilatancy ratio 1.136
Ng g
lagram ,1.137
Hp Factor to consider hardening effect 1.126
7 Threshold value for transfer of stress-dilatancy relation 1.136,1.137
NN Coefficient of stress dependency of bulk modulus (=1) 1.161
MM Coefficient of stress dependency of k. and y, (=0.5) 1.99,1.100
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B. State parameters of the model

The parameters which should be updated during the computation process are listed in the
following table.

Table 1.4. State parameters of the model.

Parameters r The quantity Equation
Description
symbol belongs to: number
c 3 Total Volumetr1c strain due to global 1.133,1.141
dilatancy
c Volumettric strain due to
Evy consolidation at yield stress global 1165,1.167
P, Yield stress global 1.165,1.167
p' Mean stress at the previous step Plane 1.167
wp Total plastic shear work Spring -
p’ Normal stress to each plane plane 1.167
Ghmax Shear stiffness Spring 1.72
Vmax Maximum shear strain in the past Spring 1.114
Vrev Shear strain at reversal point Spring 1.117
Shear strain at the end of previous Sprin i
n step pring
Roa Maximum stress ratio attained in the Spring 1116
past
Rrev Stress ratio at reversal point Spring 1.117
R Stress ratio Spring 1.64,1.68,1.117
CO Scaling factor Spring 1.116
Ya Amplitude of shear strain. spring 1.68,1.114,1.117

- 48 -



CHAPTER TWO
ANALYSIS PROCESS

2.1. Flow of analysis

Based on the constitutive model described in chapter one, the flow of the analysis for
liquefaction analyis can be given. Since the finite element procedure adopted is a
displacement based finite element procedure, only the strain controlled flow of analysis is
relevant for understanding the source code. The flow diagram for the strain controlled

analysis is shown in the flow chart below.

®_._,m_ INPUT
]

parameteres

Strain increment and state

(Coordinates fransformation)

DEFS:I;:&BI‘JD VCOHANGE
S - N
@ 1 | Ty CEANGF
Shear strain | @ —_—1 |_'l."olumeuic strain ||
of each spring Volumetric strain . l |
L e increment dueto ——— l
i ditatancy ————
(1-D modei) R B ®Volumeiric strain i
@—?— i increment due to
Stress ratio | (Stress-dilatancy I compression/
Lﬂf @ach spring relation) swellin
- 1 ]
- ——(Hardening}4—— |

@

=~Deviatoric stress
of each spring

(Coordinates t}ansfonna!ion}

4 }
Shear stress

@L:]Tangent shear modulus

| ®

_—

Mean effective stress,
i —
| ‘
|
_A_!

X

| Bulk modulus
L.

@)

Tangent stiffness matrix |

Effective stress +
state parameters

Depending on this flow of analysis, the source code for the 3-D liquefaction analysis will

QUTPUT

Fig. 2.1. Flow of calculation for strain controlled case

follow the following task orders.
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1. The prescribed value of strain increment, the material parameters, the status
parameters and the initial mean effective stress will be read.

2. The shear component of strain for each spring will be computed from the given
strain using coordinate transformation.

3. From Masing’s rule, the stress ratio of each spring will be determined

4. Using stress-dilatancy relationships, the volumetric strain increment due to dilatancy
will be computed.

5. The volumetric strain increment due to isotropic compression and swelling will be
reproduced from the “virtual” dilatancy.

6. The mean effective stress will be computed from isotropic compression and swelling
curve.

7. 'The volumetric strain along with the hardening rule and the mean effective stress will
be used to compute the shear stress in each spring.

8. The total deviatoric shear stress in the soil element will be calculated from shear
stresses in each spring by coordinate transformation.

9. The tangent shear modulus and the bulk modulus will be calculated from the shear
stress of each spring and from the mean effective stress respectively.

10. The tangent shear modulus and the bulk modulus will finally be used to compute the
tangent stiffness matrix and the effective stresses in the soil.

2.2. Review of the source code

The source code to be reviewed in this report is used at integration point level. The
matrix manipulation facilities to assemble the computed quantities for the whole soil
mass are obtained by linking the user supplied subroutine with DIANA environment.

2.2.1. List of quantities used in the program.

e BETA: the angle € which determines the orientation of each spring on the plane.
e BULK: compression (or swelling) stiffness matrix.|[B]

e BULKO: bulk modulus of compression, B,,

e BULKS: current bulk modulus

e BULKS0: bulk modulus of swelling ,B,

e COOR (NPLANE?*2): the angles 0 and ¢ of the normal vectors for planes in
icosahedral distribution.

e COORD(3) : coordinates of integration point

e COR(SPRING): correction factor C

o  DEPS(NSTR)/Intent: in] : total strain increment (XX,yy,zz,Xy,yZ,ZX)
e DET incremental volumetric strain.

e DEI/C:incremental volumetric strain due to consolidation, de; .

e DEID:incremental volumetric strain due to dilatancy, de .

e  DMODE(SPRING): User indicator

e DPEPS: incremental plastic shear strain of each spring, dy PO,
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DPSIG(NPLANE): incremental mean effective stress, dp’.
DPWORK: incremental plastic shear work.

DTIME : time increment

EILEMEN : current element number

EPSO(NSTR)/Intent:in] : strain vector at the start of the increment
ETVCSUM: volumetric strain due to consolidation.

EVDSUM: volumetric strain due to dilatancy.

ETVSUM: total volumetric strain.

E17Y: value of consolidation strain at the yield point.
G(SPRING,1): the shear strain of each spring at previous step.
G(SPRING,2): the shear strain of each spring at the current step.
GAMP(SPRING): amplitude of shear strain.

GLAST(3): carries the last three diagonal elements of the stiffness matrix.
GMAX(SPRING): the maximum tangential shear stiffness.

GORI(SPRING): factor for the shift of skeleton curve when the maximum stress ratio
in the past is exceeded.

GR: reference shear strain, ;.

GRO: reference shear strain Yy,

GREV/(SPRING): shear strain at the recent reversal point, Yrey.

GTH: threshold shear strain = 0.0001

GTYPE=1: parameter.

HP: a parameter used to compute the factor for hardening effects ,H,.
HPEV: factor to account for hardening effect, 1+&,Hp.

I: simple counter.

IDE1/D: incremental volumetric strain of each spring, da;“\;j D

IEPS(NSTR): strain vector at the current step.

INTPT : current integration point number.
ISIG(NSTR): shear stress vector of each spring, ™,
ISTIFF(INSTR,NSTR): tangential stiffness matrix of each spring.
ITER : current iteration number

J: simple counter

K: simple counter

KEQU: equivalent elastic shear stiffness.

KMAX: the stiffness of each spring at small strain.
KMAXQO: initial stiffness of each spring, k. ,
KTAN(SPRING): tangent stiffness matrix each spring.
L: simple counter.

LTDEPS=E-4: minimum possible total initial strain.

LTDGAM=E-74: minimum allowable value for the difference between shear strains
at consecutive steps.

LTDPEP=E-74: minimum possible value for plastic shear strain.
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LTETVCS: minimum possible value of volumetric strain due to consolidation.
LTGTAN=E4: minimum possible value for GLAST.

LTMEAN=E-4: the minimum possible mean effective stress.

LTPSIG=E-4: the minimum possible mean effective stress.

LTRATI=E-3: threshold value for the rate of stress dependency.
LTSTP=100: maximum possible number of steps.

M: simple counter.

MAXSTP: maximum number of steps

MEPS: mean effective isotropic stress.

MEPSO: initial effective isotropic stress o'

MM: the rate of stress dependency.

MMODESPRING): User indicator

N: simple counter.

NDI(3): vector containing the values of the gradient of stress-dilatancy relationship.
NINDIC/Intent :in] : number of status indicators

NDI1"=6: number of springs on each plane in icosahedral distribution.
NDN: a gradient of stress-dilatancy relationships for each mechanism, N,
NDS(3): vector containing the values of the gradient of stress-dilatancy relationship.
NN: the rate of stress dependency.

NOWSTP: current step number.

NPLANE=32: total number of planes for 3-D modeling.

NSTATE [Intent : in]: number of user indicators.

NSTR [Intent :in]: number of stress components.

NUSRI’L : number of user parameters to be defined.

OFFSET=40: parameter.

PAI: set to the value of 7.

PHI: the angle ¢ of the normals to each plane.

PINO: current plane number

PSIG(NPLANE): mean effective stress vector.

PTAN(SPRING): overall tangent compression (or swelling) stiffness matrix.
PWORK: cumulative plastic shear work.

R(SPRING,1): stress ratio at the previous step.

R(SPRING,2): stress ratio at the current step.

RMAX(SPRING): maximum stress ratio.

RPT{(1): stress ratio, R,,;

RPT(2): stress ratio, R,

RREV/(SPRING): stress ratio at recent reversal point.

SE (NSTR,NSTR) : elastic stiffness matrix.

SIGMA(NSTR): stress vector.

SIG(NSTR): vector containing total shear stress vector imposed to the soil.
SIGMA: stress vector.
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o  SIGMAB(NSTR)/Intent : in/ ont] : vector containing total normal stress.
e SIGY: the value of mean effective stress at the yield point.

e SPNO: the spring number.

e SPRING (=192): the total number of springs in 3-D icosahedral distribution.
o STIFF(NSTR,NSTR) [Intent: in/ out] : current tangent stiffness

e THETA: the angle 0 of the normal lines to each plane.

e TIMEQ :time

o USRIND(NINDIC)/Intent : in/ out/: user supplied status indicators

o USRSTANSTATE) : user state variables at start of the increment.

o USRIVALNUSRIVL)/Intent : in] : user-supplied material parameters.

e WIDTH=Y9: parameter

o XDEPS(NSTR): incremental strain vector per each step

o XEPSONSTR): accumulated strain vector from previous step

e YFETA: factor to control damping ratio 7

2.2.2. Subroutines used in the program.

e SPLOCA (COOR) : gives the angles 0 and ¢ of the normal vectors for planes in
icosahedral distribution.

e TRANSMAT (THETA, PHI, BETA, TA, TB, TC): establishes the

transformation matrix.

e TRANSFER (CASE, THETA, PHLBETA,ISIG): transfers strains and stresses

from one coordinate system to another.

e RENEW (KMAX,GR,MM,PSIG(PLNO)MEPSO,KMAXO,GRO): determines

the current values of the spring stiffness and reference shear strain.
e SPMAT (THETA,PHLBETA,ISTIFF): computes the matrix product
[Te] [NI[T:].

e MASING (PSIG(PLNO),KMAX,GR,YETA,GORI(SPNO)) : establishes the 1-
D shear stress-strain relationships using Masing’s rule.

e DILATANCY(IDEVD, DPEPS, DMODESPNO), G(SPNO,1),
G(SPNO,2), R(SPNO,1), R(SPNO,2), NDI, NDS,
KEQU , GTH, RPT, LTDPEP, GREV(SPNO) ,
RREV(SPNO) , HPEV, PSIG(PLNO))) : calculates the volumetric strain due
to dilatancy.

e SUBSIGMEPS, MEPSO, BULKSO, BULKO, EVCSUM, EVY, SIGY, SIGI,
DEVC, BULK, NN, LTRATI): computes the mean effective principal stress
from the component of volumetric strain ~ due to consolidation.

e ZEROM (STIFF): forms the pattern of the elastic stiffness matrix.

e EXTHD (R, KTAN, KMAX, GAM(2), GR, MEAN, JUDGE, GREV,

RREV, COR, GAMP, YETA ): calculates the stress ratio and tangent stiffness
matrix for regular and general loading patterns.

e CORRECT (GAMP, COR, GREV, GTMAX, RTMAX, RREV, GR, KMAX, 1):

determines the strain amplitude and the correction factor for regular as well as
for general loading patterns.
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e EQUIV (KEQU,KMAX,COR,YETA,GAMP,GRMEAN,MMODE): computes
the equivalent elastic shear stiffness.

The inter-relation of the main source code USRLIQ), the subroutines and the DIANA
environment can be summarized as in fig below. Some of the subroutines also require
other subroutines to accomplish their tasks.

-Matenial parameters

-Irutial values of state parameters

-Prescribed strain increment

- EEEEEEE—

DIANA USRLIQ
|

-Stress vector

-Tangential stiffness

i

PLOCA

TRANSMAT

TRANSFER |— TRANSMAT |
NEW

——{SPMAT |— TRANSMAT |

MASING CORRECT,EXTHD

TATaNGY XY
SUBSIG
EXTHD

matrix

|

i

O o
F% 5
Q !

EQUIV

Fig. 2.2. Structure of the main source code

2.2.3. Detailed overview of the subroutines.

The subroutines outlined above will be explained in detail in the next section by referring
back the theoretical background given in chapter one.

1. SPLOCA (COOR):

For even distribution of virtual planes so as to have an isotropic model, an icosahedron
is proven to be the best option for the multi-spring model (Nishimura 2002). A plane
can be uniquely described by a (normal) line and a point on the plane. In this model, 32
planes will be used. These planes are described by perpendicular lines originating from
the center of the icosahedron towards the center of gravity of the facets and apices will
be used. Hence, there will also be 32 normal lines. These normal lines can be uniquely

described by two angles 0 and ¢ in space as shown in fig 1.2a. The aim of this
subroutine is to give the values of 0 and ¢ for each normal line.

A double precision array COOR(64) is used to store these values. This array contains 64
elements: 32 of which belong to the value of 0 and the rest 32 for the values of ¢.

COOR (1) up to COOR (32) stores the values of 0 for line 1 up to line 32.
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COOR (33) up to COOR (64) stores the values of ¢ for line 1 up to line 32.

The values of 0 and ¢ are given in appendix A. There is agreement between the values
given in the source code and in the original model.

2. TRANSMAT (THETA, PHI, BETA, TA, TB, TC):

In this multiple mechanism model, the strain imposed to the soil should be distributed to
each spring. For this, the transformation matrices given in eqs. (1.15) ,(1.17) and (1.19)
are necessary. This subroutine establishes the transformation matrix for each rotation
operation of strain. The statements used in the program are:

cC

cC

cC

CcC

cC

cC

cC

cC

cC

cC

cC

cC

DOUBLE PRECISION THETA, PHI, BETA, TA(6,6), TB(6,6), TC(6,6)

DOUBLE PRECISION CTHETA, STHETA, CPHI, SPHI, CBETA, SBETA

CTHETA=DCOS(THETA) ; STHETA=DSIN(THETA)

CPHI  =DCOS(PHI) SPHI  =DSINCPHI)

CBETA =DCOS(BETA) : SBETA =DSIN(BETA)
TA(1,1)=CTHETA*CTHETA; TA(1,2)=STHETA*STHETA; TA(1,3)=0.D0
TA(1.,4)=CTHETA*STHETA;TA(1,5)=0.D0;TA(1,6)=0.D0

TA(2,1)=STHETA*STHETA; TA(2,2)=CTHETA*CTHETA; TA(2,3)=0.D0
TA(2.4)=(-1.DO)*CTHETA*STHETA; TA(2,5)=0.D0; TA(2,6)=0.D0

TA(3,1)=0.D0;TA(3,2)=0.D0;TA(3,3)=1.D0
TA(3.4)=0.D0;TA(3,5)=0.D0;TA(3,6)=0.D0

TA(4,1)=(~2.D0)*CTHETA*STHETA; TA(4,2)=2 .DO*CTHETA*STHETA
TA(4,3)=0.D0;TA(4,4)=CTHETA*CTHETA-STHETA*STHETA
TA(4,5)=0.D0;TA(4,6)=0.D0

TA(5,1)=0.D0;TA(5,2)=0.D0;TA(5,3)=0.D0
TA(5,4)=0.D0;TA(5,5)=CTHETA; TA(5,6)=-1.DO*STHETA

TA(6,1)=0.D0;TA(6,2)=0.D0;TA(6,3)=0.D0
TA(6.4)=0.D0;TA(6,5)=STHETA; TA(6,6)=CTHETA
TB(1,1)=CPHI*CPHI ; TB(1,2)=0.D0;TB(1,3)=SPHI*SPHI
TB(1.4)=0.D0;TB(1,5)=0.D0;TB(1,6)=(~1.D0)*CPHI*SPHI

TB(2,1)=0.D0;TB(2,2)=1.D0;TB(2,3)=0.D0
TB(2.4)=0.D0;TB(2,5)=0.D0;TB(2,6)=0.D0

TB(3,1)=SPHI*SPHI ; TB(3,2)=0.D0; TB(3,3)=CPHI*CPHI
TB(3,4)=0.D0;TB(3,5)=0.D0;TB(3.6)=CPHI*SPHI

TB(4,1)=0.D0;TB(4,2)=0.D0;TB(4,3)=0.D0
TB(4.4)=CPHI ;TB(4,5)=(-1.D0)*SPH1;TB(4,6)=0.D0

TB(5,1)=0.D0;TB(5,2)=0.D0;TB(5,3)=0.D0
TB(5.4)=SPHI ; TB(5,5)=CPHI ; TB(5,6)=0.D0

TB(6,1)=2.DO*CPHI*SPHI ; TB(6,2)=0.D0
TB(6.3)=(-2.D0)*CPHI*SPHI ; TB(6,4)=0.D0
TB(6.5)=0.D0;TB(6,6)=CPHI*CPHI-SPHI*SPHI
TC(1,1)=CBETA*CBETA;TC(1,2)=SBETA*SBETA;TC(1,3)=0.D0
TC(1.4)=CBETA*SBETA;TC(1,5)=0.D0;TC(1,6)=0.D0

TC(2,1)=SBETA*SBETA;TC(2,2)=CBETA*CBETA;TC(2,3)=0.D0
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TC(2,4)=(-1.D0)*CBETA*SBETA;TC(2,5)=0.D0;TC(2,6)=0.D0

cc
TC(3,1)=0.D0;TC(3,2)=0.D0;TC(3,3)=1.D0
TC(3,4)=0.D0;TC(3,5)=0.D0;TC(3,6)=0.D0
cc
TC(4,1)=(-2.D0)*CBETA*SBETA;TC(4,2)=2.DO*CBETA*SBETA;
TC(4,3)=0.D0;TC(4,4)=CBETA*CBETA-SBETA*SBETA;
TC(4,5)=0.D0;TC(4,6)=0.D0
cc
TC(5,1)=0.D0;TC(5,2)=0.D0;TC(5,3)=0.D0
TC(5,4)=0.D0;TC(5,5)=CBETA;TC(5,6)=-1.DO*SBETA
cc
TC(6,1)=0.D0;TC(6,2)=0.D0;TC(6,3)=0.D0
TC(6,4)=0.D0;TC(6,5)=SBETA;TC(6,6)=CBETA
cc

Here, TA, TB and TC represent [Tgp], [Te ] and [Te¢] respectively with THETA ,PHI and

BETA representing 0, ¢ and C respectively in eqs. (1.15), (1.17) and (1.19). The
expressions given here are consistent with the theory.

3. SPMAT (THETA,PHI,BETA,ISTIFF):

The product [To] " [N][Te] appears in many parts for the computation of the stiffness
matrices. This subroutine computes the value of this expression. Before looking into the
Fortran format to accomplish this task, the mathematical simplification of the matrix
product will be reviewed.

Writing the matrices in index format, will result in [T¢]ij and Ni. From the definition of
matrix N, N, = 0, if k#5 or 1#5. Hence, the expansion of the product [Ni][Te]; will
yield:

[Nki][Tg]ij :[Nm][Tg]u +[Nk2][Tg]2j +[Nk3][T5]3j +[Nk4][Tg]4j +[Nk5][Tg]5j
[N T, 1,
for k #5o0r j=5, all the terms except the fifth term will be zero. Hence
[N 1T, Iy = [Nss 10T, 1s;
and the value of [N]is equal to 1 which finally simplifies the exp ression to:
[Nki][Ts]ij = [Tg]sj
therefore, thewhole product [Te]"[N][T,] will become
[T, 1 INI[T, 1= [T, 1;[T, s

In this subroutine, the expression to compute [T¢] is :

DO 100 1=1,6
DO 200 J=1,6
TEMP1(1,J)=0.DO0
TEMP2(1,J)=0.D0
STIFF(1,J)=0.D0
200  CONTINUE
100 CONTINUE
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cc
CALL TRANSMAT(THETA, PHI, BETA, TA, TB, TC)
cc
DO 1100 1=1,6
DO 1200 J=1,6
DO 1300 K=1,6
TEMPL(1,J)=TEMP1(I,J)+TB(I,K)*TA(K,J)
1300 CONTINUE
1200  CONTINUE
1100 CONTINUE
cC
DO 1400 1=1,6
DO 1500 J=1,6
DO 1600 K=1,6
TEMP2(1,J)=TEMP2(1,J3)+TC(1 ,K)*TEMP1(K,J)
1600 CONTINUE
1500  CONTINUE
1400 CONTINUE
ccC

To have a complete product, the other term [Ny][Te]; =[T¢]s; should also be

calculated as follows:

DO 1700 1=1,6
DO 1800 J=1,6
TEMP1(1,J)=0.D0
1800  CONTINUE
1700 CONTINUE
cc
DO 1900 1=1,6
TEMP1(5, 1)=TEMP2(5, I)
1900 CONTINUE

Here TEMP2(I,J) represents [T¢] and the final product is written in the program as:

DO 2000 1=1,6
DO 2100 J=1,6
DO 2200 K=1,6
STIFF(1,J)=STIFF(1,J)+TEMP2(K, 1) *TEMP1(K, J)
2200 CONTINUE
2100  CONTINUE
2000 CONTINUE

4. TRANSFER (CASE, THETA, PHI,BETA,ISIG):

This subroutine transfers stress and strain quantities from the original coordinate system
to the new coordinate system or the other way round by multiplying the quantities with
the right transformation matrix. The total transformation matrices for strain and stress

are obtained by the products of the transformation matrices for each rotation angles 0, ¢
and € according to egs. (1.20) and (1.35).

In this subroutine, three cases will be selected for the product.
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TCASE = 1 : to multiply global strain vector with the overall transformation matrix for
strain to get the strain vector in the rotated coordinate system[eq.(1.9).].

TCASE = 2 : to calculate the stress vector in the global coordinate system from strain
vector in the springs according to eq.(1.23).

TCASE = 3: to transfer stress vector from xyz to X'"'y'"'z"" coordinate system.

When stress quantities are transferred from the xyz coordinate system to the new system,
the angles should be reversed and therefore have opposite sign in which the overall
transformation matrix will be calculated when TCASE = 3. The angles are defined for
the three cases as follows in the subroutine.

IF(TCASE.EQ.3) THEN
THETA=(-1.DO)* ITHETA
PHI =(-1.DO)*IPHI
BETA =(-1.DO)*IBETA

ELSE
THETA=ITHETA
PHI  =IPHI
BETA =IBETA

END IF

The first case which transforms the strain quantity TMAT(J) is:

CASE(1)
DO 1100 I=1,6
DO 1200 J=1,6
TEMPL(1)=TEMPL(1)+TA(I,J)*TMAT(J)
1200 CONT INUE
1100 CONTINUE
DO 1300 I=1,6
DO 1400 J=1,6
TEMP2(1)=TEMP2(1)+TB(1,J)*TEMP1(J)
1400 CONT INUE
1300 CONTINUE
DO 1500 1=1,6
TMAT(1)=0.D0
1500 CONTINUE
DO 1600 1=1,6
DO 1700 J=1,6
TMAT(D)=TMAT(1)+TC(I, J)*TEMP2(J)
1700 CONTINUE
1600 CONTINUE

In compact form, the above statements compute the product [TC]*[TB]*[TA]*[TVMAT]
which gives [Te]*[TMAT]. Under Case 2, the following statements can be found.

CASE(2)
DO 2100 1=1,6
DO 2200 J=1,6
TEMPL(1)=TEMPL(1)+TC(J, 1)*TMAT(J)
2200 CONT INUE
2100 CONTINUE
DO 2300 1=1,6
DO 2400 J=1,6
TEMP2(1)=TEMP2(1)+TB(J, 1) *TEMP1(J)
2400 CONTINUE
2300 CONT INUE
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DO 2500 1=1,6

TMAT(1)=0.D0
2500 CONTINUE

DO 2600 I1=1,6
DO 2700 J=1,6
TMAT(1)=TMAT(1)+TA(J, 1)*TEMP2(J)

2700 CONT INUE
2600 CONT INUE

These statements aim to get the result of the product [TA]™[TB]™[TC]™[TMAT]

which is [To] '"*[TMAT]. The third case which is aimed to decompose the stress
components from the soil into each spring in the original coordinate system is written as

follows.
CASE(3)
DO 3100 1=1,6
DO 3200 J=1,6
TEMPL(1)=TEMPL(1)+TA(J, 1D*TMAT(J)
3200 CONTINUE
3100 CONTINUE
DO 3300 1=1,6
DO 3400 J=1,6
TEMP2(1)=TEMP2(1)+TB(J, 1)*TEMP1(J)
3400 CONTINUE
3300 CONTINUE

DO 3500 I1=1,6
TMAT(1)=0.D0
3500 CONTINUE
DO 3600 I=1,6
DO 3700 J=1,6
TMAT(1)=TMAT(1)+TC(J, 1) *TEMP2(J)
3700 CONT INUE
3600 CONTINUE

The outcome of these statements being [TC]™[TB]™[TA]™[TMAT] which is the
overall transformation matrix from X''"'y'"'z'""" to the original xyz coordinate system.
Here it is worth noticing that the angles of rotations will be in reverse order.

5. RENEW (KMAX, GR, MM, PSIG (PLNO),MEPSO,KMAXO,GRO):

The magnitude of effective stress has a significant role in establishing stress-strain
relationships of sand. Thus, this subroutine determines the current values of spring
stiffness and reference shear strain. The Fortran expression used in the source code to
calculate these values is:

KMAX=KMAXO* (MEPS/MEPS0)** (DABS (MM)-1.D0)
IF(MM.GT.0.D0O) THEN
GR=GRO*(MEPS/MEPSO)** (1 .DO-MM)
ELSE IF(MM.LE.0.DO) THEN
GR=GRO*(MEPS/MEPS0)** (-1 .DO*DABS(MM))
END IF

If the value of MM is defined to be 0.5 as an input, this expression will be in good
agreement with the equations given in the model [eqs.(1.99) and (1.100)]. However, the
expression in the source code will be applicable for any values of MM as the rate of stress
dependency may vary for various soil types.
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6. ZEROM (STIFF):

In the liquefaction analysis, the shear stiffness matrix is often involved at different stages
of computation. This matrix will always have the same pattern for isotropic elastic
materials as shown eq.(1.55). Due to numerical instabilities, some of the elements in the
matrix which should be zero may attain non-zero values. Pre-establishment of the matrix
pattern in a subroutine will ensure that the off-diagonal deviatoric elements will only
have a zero value. The objective of this subroutine will be defining the pattern of the
stiffness matrix.

In the subroutine, the statements to form this are:

DO 100 1=1,3
DO 200 J=1,3
MAT(1,J+3)=0.D0
MAT(1+3,3)=0.D0
200  CONTINUE
100 CONTINUE
MAT(4,5)=0.D0 ; MAT(4,6)=0.D0
MAT(5,4)=0.D0 ; MAT(5,6)=0.DO
MAT(6,4)=0.D0 ; MAT(6,5)=0.DO

7. EQUIV (KEQU,KMAX,COR,YETA,GAMP,GR, MEAN,MMODE):

Sand exhibits elastic response when subjected to small unloading or reloading and an
equivalent elastic stiffness Gé:]) was defined by stiffness in this elastic region as given in

eq. (1.132). In this model, the elastic shear strain is calculated based on this stiffness.

Two cases should be defined to calculate the elastic shear stiffness i.e. when n =1 and

whenn # 1. Whenn =1, Ge(;) is simply equal to p’k,,.. otherwise the expression given in

max

eq. (1.132) will be stipulated. In the subroutine, this case happens when ECASE = 1. The
Fortran statements for this task are:

IF(ECASE._EQ.1) THEN
KEQU=MEAN*KMAX
ELSE
KEQU=MEAN*KMAX*COR*( (1 .DO-YETA)/(1.DO+GAMP/GR)+YETA)
END IF

8. CORRECT (GAMP, COR, GREV, GTMAX, RTMAX, RREV, GR, KMAX; 1):

The correction factor C and the shear strain amplitude y, are important quantities in the
formation of the hysteretic loops. This subroutine aims in computing these values. Three
cases (CCASE) will be defined in the subroutine to write the equations.

CCASE
CCASE

1, formulation for regular loading in which C = 1 and Ya = [Ymax|

2, formulation for general loading and when p’is constant in which C and Y,
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will be given by eqs. (1.116) and (1.114) respectively.
CCASE = 3, formulation for general loading and when p’is constant in which C and y,
will be given by eqs. (1.116) and (1.114) respectively.

The Fortran statements which are written in the subroutine for this task are:

IF(CCASE.EQ.1) THEN
GAMP=DABS (GMAX)
COR=1.DO
ELSE IF(CCASE.EQ.2.0R.CCASE.EQ.3) THEN
GAMP=0 . 5D0*DABS (GMAX-GREV)
COR=DABS (RMAX-RREV)* (1 . DO+GAMP/GR)/ (2 . DO*KMAX*GAMP)
END IF

9. EXTHD (R, KTAN, KMAX, GAM(2), GR, MEAN, JUDGE, GREV,

10.

RREV, COR, GAMP, YETA ):

Calculation of the stress ratio R and the tangent shear stiffness of each spring GY is

tan
mandatory for each hysteretic loop . This subroutine calculates these values. Three cases
(MCASE) will be defined.

MCASE = 1- calculates R and Gt(a'z for skeleton curve as per egs. (1.68) and (1.129).
MCASE = 2- calculates R and Gfa'r: for unloading hysteretic loops as per eqs. (1.117) and
(1.130).

MCASE = 3- calculates R and G for re-loading hysteretic loops as per egs. (1.117) and
(1.130).

The fortran statements for these computations are:

IF(MCASE.EQ.1) THEN
R=(KMAX*GAM/ (1 . DO+DABS(GAM)/GR))
KTAN=KMAX*MEAN/ (1 .DO+DABS(GAM)/GR)**2 D0

ELSE IF(MCASE.EQ.2.0R.MCASE.EQ.3) THEN

R=RREV+COR*KMAX* (GAM-GREV)/ (1 .DO+GAMP/GR) +

$  YETA*(COR*KMAX*(GAM-GREV)/

$  (1.DO+DABS(GAM-GREV)/(2.D0O*GR))-

$  COR*KMAX*(GAM-GREV)7(1.DO+GAMP7GR))
KTAN=KMAX*MEAN*COR*((1.DO-YETA)/ (1 .D0+GAMP/GR)+

$ YETA/ (1 .DO+DABS(GAM-GREV)/ (2 .DO*GR))**2.D0)

END IF

These Fortran statements are in good agreement with the expression given in chapter
one.

MASING (PSIG (PLNO), KMAX, GR, YETA, GORI (SPNO)) :

Establishing the shear-stress strain relationship is one of the core components of the
whole model. This relationship in the model is formulated using Masing’s rule along with
a few details.
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The following four stages of the curve of stress ratio strain relationship are important to
notice. The shear strains in the previous iteration (y,) and current iteration (y,) are given
by GAM(1) and GAM(2) respectively. Their difference GAM(2) - GAM(1) is represented
by DGAM.

1. Loading from the origin along the skeleton (back-bone curve) depicted by the
curve a-b in the Fig. (1.18). If y; and y; are shear strains at the beginning and at
the end of a curve, the condition for this case to occur is (y2- y1)* y1 =0. In the
subroutine, this case is identified by JUDGE = 1.

IF(DGAM*(GAM(1)) .GE.0.DO) THEN
JUDGE = 1

2. Unloading curves are depicted by the curves b-c and d-e in Fig. (1.18). It is
important to notice that the unloading curve always connects the point of recent
stress reversal to the point of maximum stress ratio. The condition for this case

to occur is (y2- v1) <O. In the subroutine, this case is assigned as: JUDGE = 2.

ELSE IF(DGAM.LT.0.DO) THEN
JUDGE = 2

3. Re-loading curve delineated by the curve c-d in Fig. (1.18). This curve also
connects the recent reversal point with the point of maximum stress ratio. The
condition for this case to occur is (y2- Y1) =0. This case is identified in the
subroutine when JUDGE = 3

ELSE IF(DGAM.GE.0.DO) THEN
JUDGE = 3

4. The remaining case which should be enumerated here is the case when the
calculated stress ratio exceeds the maximum stress ratio ever experienced in the
soil. In such cases, the hysteresis loop follows again the skeleton curve. This
condition occurs whenever R > R .

The steps followed in order to construct the hysteresis loops are as follows:

1. The value of MMODE will be read from the previous step. MMODE is an integer which
attains values from 1 to 4. Its value indicates where the previous iteration step ends
on the hysteresis loop. This is done by assigning different values for MMODE. MMODE
= 1, MMODE = 2 and MMODE = 3 will respectively indicate that the previous
iteration step ended on the skeleton, unloading and reloading part of the curve .The
process starts from MMODE = 1.

2. For each value of MMODE , the value of JUDGE will be decided depending on the
values of yj and y3,. This helps to decide the type of curve as explained above. For all
type of curves, ¥1 and R values from previous calculation will be set to Yry and R,
values. For initial loading, these values will have a value of zero.

3. The stress ratio R and the tangent shear stiffness matrix will be calculated using the
subroutine EXTHD; from which the new value shear strain y, will be calculated.
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The values of R,
skeleton curve, R, and Ymax will respectively be the value of R and y; calculated at
the current step. For the hysteresis loops R, and ymax are taken to be the
corresponding maximum values ever experienced.

The value of MMODE for next iteration will be assigned so as to indicate the location
of the current point where the computation ended up for the current iteration.

and Ymax will be set from the previous calculations. For the

X

When the maximum stress experienced in the soil is exceeded, the transfer from a
hysteresis loop to a skeleton curve considered to occur so that the calculated stress
ratio never exceeds the limit determined by the skeleton curve. This adjustment is
achieved by shifting the origin of the skeleton curve. When the stress ratio exceeds the
maximum value in the past,.

Fig. 2.2. Adjustment of Masing’s curve when the stress ratio is exceeded

The point at which the transfer occurs is the point at which the current loop crosses
the value of R,.. As shown in fig. , the curve will lead to new value of R .. However
the maximum stress ratio limit should be determined by the skeleton curve equation
given by eq. (1.68). Hence, the position of the skeleton curve should be adjusted by
shifting its origin so that it passes through the transfer point.

Since the current curve is on the hysteresis loop, the distance from the origin to the
transfer point Yans Will be determined from eq. (1.117) by equating R to R, and
determining the value of y. The procedure of determination of the value of Yirans.
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The values given by eqs. (2.4) and (2.6) are the distance between the origin and the
transfer point. Thus, the origin of the skeleton curve should be shifted back by a distance
0] (1

max — Virans - Lhen the skeleton curve will be continued. Here it has to be noted that

of ¥

the new calculated shear strain and stress ratio will respectively be the y, . and R_,..

These values of the scaling factor C? and the shear strain amplitude 7! in eqs. (2.4) and
(2.6) are determined by eqs. (1.114) and (1.116) by replacing R, by the new value of R

and 7V, by the new value of shear strain y. However, the new value of R is not yet
determined. Hence it is better to devide the case into two parts: part of the curve till the
stress ratio reaches the previous Rmax value and the remaining part.

11.DILATANCY(IDEVD,DPEPS,DMODE(SPNO),G(SPNO, 1), G(SPNO,2),
R(SPNO,1), R(SPNO,2), NDI, NDS, KEQU , GTH, RPT, LTDPEP, GREV(SPNO) ,
RREV(SPNO), HPEV, PSIG(PLNO))):

In contrast to the 2D Towhata-Iai model which suits only for undrained conditions, this
model utilizes stress-dilatancy relations to deal with drained analysis as well. This
subroutine calculates the contribution of volumetric strain due to dilatancy.

The following sequence of operations will be performed in this subroutine to calculate
the volumetric strain due to dilatancy.

1. Calculate the incremental plastic shear strain DPEPS and the plastic shear strain
increment measured from the last reversal point PEPS according to eq. (1.134) and the
current value of stress ratio RHPEV as:

DPEPS=G2-G1-(R2-R1)*MEAN/KEQU
PEPS =G2-GREV-(R2-RREV)*MEAN/KEQU
RHPEV=HPEV*R2

2. Choose between “initial” and “subsequent” stress dilatancy relationship by comparing
the values of PEPS and GTH.

If the value of PEPS is between GTH and —GTH, then the “initial” stress dilatancy
relationship will be considered and the initial value of Rgt) , RPT(1), will be used in the

stress dilatancy relationship given in eq. (136) and (137). Otherwise, RPT(2) will be used
to calculate the volumetric strain increment due to dilatancy IDEVD.

3. Depending on the value of DMODE from the previous step, set the value of DMODE for
the current step. This value of DMODE helps to make a selection whether the strain level is:

- on the initial loading curve or on the subsequent loading curve
- the loading is in the positive direction or on the negative direction.

Thus there are four combinations which will be assigned with four DMODE values.
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DMODE = O for initial loading in both negative and positive direction.

DMODE = 1 for initial loading in the positive direction or subsequent loading in the
negative direction.

DMODE = 2 for initial loading in the negative direction or subsequent loading in the
positive direction.

DMODE = 3 for subsequent loading in both negative and positive direction.

4. Choose which value of Rgt) should be used to calculate 1DEVD from the value of
DMODE of the current step.

DMODE = O - RPTI(1)=RPT(1);RPTI(2)=RPT(1)
DMODE = 1- RPTI(1)=RPT(1);RPTI(2)=RPT(2)
DMODE = 2 - RPTI(1)=RPT(2):RPTI(2)=RPT(1)
DMODE = 3 - RPTI(1)=RPT(2):RPTI(2)=RPT(2)

5. Set new values of DMODE depending on the direction of loading.

For loading in the positive direction:

IF(G2.GE.G1) THEN
DMODE=DMODE+10

For loading in the negative direction:

ELSE
DMODE=DMODE+20

This new value of DMODE will be assigned to (USRIND((SPNO-1)*2+2) value to be used
as an input DMODE value for the next step.

6. Depending on the new value of DMODE, calculate the incremental strain due to
dilatancy IDEVD.

For initial loading:
IF(DMODE.LT.20) THEN
1DEVD=(RPTI (1)-RHPEV)*DPEPS/NDN

For subsequent loading:

ELSE I1F(DMODE.GE.20) THEN
IDEVD=(=RPT I (2)-RHPEV)*DPEPS/NDN

In any case, if the absolute value of IDEVD value should not be less than the minimum
allowable value LTDPEP.

This sequence of operations will be performed for all the springs at each increment of
strains.

12. SUBSIG(MEPS, MEPSO, BULKSO, BULKO, EVCSUM, EVY, SIGY, SIG],
DEVC, BULK, NN, LTRATI):
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This subroutine computes the mean effective principal stress by using eq. (1.167) and
the updated bulk modulus using eq. (1.161). Two conditions must be considered for
the normally consolidated part and for the over consolidated part as shown in Fig.
(1.17). however in this program an over-consolidation ratio value of 1 is assumed.
Hence the initial stress will be equal to the preconsolidation stress. In this case, the
bulk modulus of compression can be used for the loading part and the bulk modulus
of swelling can be used for unloading part.

When p”< p,', the bulk modulus for compression B,, will be used and the coordinate

of the yield point (py',g\x ) will be taken from USRSTA (3) and USRSTA(4) values.

Hence, the Fortran statements for this case are:

SI1G=SIGY*DEXP(KKS0/S1G0*(EV-EVY))
KK=KKSO*(S1G/S1G0)**(NN)
IF((SIG.GT.SIGY) .AND.
$ (SIGI*DEXP(KKO/S1G0O*(EV-0.D0)) .GT.SIGY)) THEN
SIG=SI1GI*DEXP(KKO/SI1GO*(EV-0.D0))
KK=KKO* (S1G/SIG0)**(NN)
SIGY=SIG
EVY=EV
END IF

When p’> p,' and the origin of the curve given in Fig. 1.17 will be considered as a

yield point. Hence, the Fortran statements for this case are:
S1G=S1GI*DEXP(KKO/S1GO* (EV-0.D0))
KK=KKO*(S1G/STGO)**(NN)
SIGY=SIG
EVY=EV

In both conditions, the stress and strains after the computation are set to represent the

yield coordinates (p,', ¢, ) for the next step.

2.2.4. Review of the main source code

The main source code is programmed for strain controlled analysis. For convenience,
each line of this main source code is numbered to help the explanations of the source
code in the subsequent parts with the same sequential order as it is written in the
program.

2.2.4.1. Definition of variables and parameters
The first major task in the main subroutine is definition of the quantities used in the
program. The quantities are defined according to their type. The parameters, variables

or arrays defined can be integers or double precision reals. The definition runs from
line 6 to line 49 of the main subroutine.

Line 51 of the source code sets the value of T according to the formula:
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PA1=DATAN(1.D0)*4.D0O

7 =4arctan (1.0)

2.2.4.2. User defined parameters

There are thirteen values describing the properties of the soil for which 3D
liquefaction analysis is to be executed to be defined by the user. These values are
collected in the USERVAL (NUSRVL) array. NUSRVL representing the number of user
defined parameters which is thirteen. The following table outlines these parameters.
Table 1.3 or section 2.2.1 can be referred for the description of the parameters.

Table 2.2. User defined parameters

Symbol in the Position in the Conventional
source code USRVAL array symbol
KMAXO USRVAL (1) Kmaxso
GRO USRVAL (2) %o
YETA USRVAL (3) n
BULKO USRVAL (4) Bco
BULKSO USRVAL (5) Bs,o
MEPSO USRVAL (6) p',
NN USRVAL (7) n
MM USRVAL (8) m
RPT(1) USRVAL (9) Rpt,i
RPT(2) USRVAL (10) Rots
NDN USRVAL (11) Ng
HP USRVAL (12) Hp
GTH USRVAL (13) Yh

2.2.4.3. Computation of incremental strains

For this displacement controlled analysis, there will be a predefined strain vector at
each integration point at the beginning of the calculation process. A method of
incremental strains is adopted in the source code. The number of increments should
be calculated first to calculate the value of the incremental strains at each step. The
statements to calculate the number of increments MAXSTP in the source code are:

68 NOWSTP=0

69 MAXSTP=1

70 DO 1000 "I1=1,NSTR"

71 IF(INT(DABS(DEPS(1))/LTDEPS) .GE .MAXSTP) THEN
72 MAXSTP=INT(DABS(DEPS(1))/LTDEPS)
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73 END 1F

74 1000 CONTINUE

75 CcC

76 IF(MAXSTP.GE.LTSTP) THEN
77 MAXSTP=LTSTP

78 END 1F

The above statements dictate that the number of strain increments for each
component of strain vector is calculated by dividing that strain component by LTSTP
= 10-4. However, whenever these values are smaller than the minimum number of
strain increments (= 1) or larger than the maximum number (=100), these values will
be stipulated for MAXSTP.

The strain increment for each strain vector component XDEPS(I) will then be
computed by dividing the total strain increment applied DEPS(1) by the number of
strain increments.

80 DO 1100 "I1=1,NSTR"
81 XDEPS(1)=DEPS(1)/MAXSTP
82 1100 CONTINUE

Then the whole analysis process shown in Fig 2.1 will be carried out for each strain
increment. The accumulated strain at the beginning of each step is calculated in the

program as:

87 DO 1200 "1=1,NSTR"

88 XEPSO(1)=EPSO(1)+DEPS(1)*(NOWSTP-1)/MAXSTP
89 1200 CONTINUE

2.2.4.4. Assigning initial values

To begin the analysis for each strain increment, some of the quantities are given initial
values while the expression for others is given.

91 DO 1300 "I=1,NSTR"

92 DO 1400 "J=1,NSTR"

93 "STIFF(I,J)=0.D0"

94 1400 CONTINUE

95 SI1G(1)=0.D0

96 SIGNMAB(1)=SIGMA(I)

97 1300 CONTINUE

98 cc

99 DEVD = 0.D0

100 EVCSUM = 0.D0

101 DPWORK = 0.DO

102 MEPS = ~1.D0*( SIGMA(L)  +
SIGMA(2) + SIGMA(3)  )73.DO

103 EVSUM = ~1.D0*( XEPSO(1)  +
XEPSO(2) + XEPSO0(3)

104 DEV = ~1.D0*( XDEPS(1)  +
XDEPS(2) + XDEPS(3) )

105 HPEV =(EVSUM+DEV)*HP+1.D0

It can be observed that, the stiffness matrix, stress vector, volumetric strain due to
dilatancy and volumetric strain due to consolidation are nullified at the beginning. The

-69 -



mean effective stress, the cumulative volumetric strain and the incremental volumetric
strain are given by the following formulae.

Line 102 : MEPS — mean effective stress as given by eq. (1.40).

Line 103 : EVSUM — cumulative volumetric strain as given by eq. (1.37).

Line 104 : DEV — incremental volumetric strain as given by eq. (1.37).

Line 105 : HPEV — factor for considering hardening as given by eq. (1.126).
2.2.4.5. Initialization of the analysis process

Before proceeding into the time dependent analysis, there is initialization analysis
which is executed for each spring. This stage of analysis runs as long as the following
criterion is met.

108 IF(DTIME.EQ.0.DO .AND. USRIND(385) .LE. USRIND(386))

This loop runs from line 108 to line 170 of the source code. Hence whenever DTIME #
0 or USRIND(385) value is greater than USRIND(386), this loop of analysis is
terminated to proceed to the next step. At the beginning of the program, there is a
statement to add a unit value to USRIND(385) . After one step of initialization, the
value of USRIND(385) will be higher than that of USRIND(386) and the
requirement USRIND(385).LE.USRIND(386) will be violated after one step which
allows to proceed to the main analysis process.

The computations which are made in this loop will be briefed line by line.

110 BULKS=BULKSO*(MEPS/MEPSO)**NN

This expression calculates the current value of the bulk modulus according to eq.
(1.161) with the value of NN to be equal to 1.

The next sequence of statements aim at computing the shear stresses, mean effective
stresses and the overall tangent shear stiffness matrix for each spring on each plane.
The subroutine SPLOCA gives the orientation of the normal lines to each plane. The
spring number SPNO will be calculated according to eq. (1.61) in line 114. The angles
THETA (0) and PHI (¢) will be extracted from the subroutine SPLOCA in lines 115 and
116.

The angle BETA in line 117 gives the distribution of springs on each plane. Since, the
springs are distributed evenly, only the half plane distribution of the six springs is
required. The expression BETA=PAI*(J-1)/NDIV+0.5D0*PAI/NDIV states that the
six springs are oriented with 30 interval between them and the first spring making an
angle of 15" with the center line of the plane. The orientation of the springs is shown
in the fig below.
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Fig 2.1. Orientation of springs on half plane

The next task will be determining the initial stresses components of the stress vector
for each spring.

118 DO 2200 "K=1,NSTR"
119 1S1G(K)=-1.DO*SIGMA(K)
120 2200 CONTINUE

Since the mean effective stress for each plane is the same, the mean effective stress will
be computed for each plane not for individual spring. The criteria to switch from
springs on one plane to the next is IF(MOD(SPNO-1,NDIV).EQ.0). Then the
statement CALL TRANSFER (3,THETA,PHI,BETA,ISIG) computes the total initial
stress on the soil. Then the mean effective stress of each plane is taken to be the third
component of the total stress because the other normal stress components will be zero
due to the coordinate transformation.

121 IF(MOD(SPNO-1,NDIV) _EQ.0)  THEN

122 CALL TRANSFER(3, THETA, PHI,BETA,  ISIG)
123 PSIG(PLNO)=1SIG(3)

124 END IF

The minimum value of the initial effective stress should not be less than the minimum
allowable value LTPSIG.

125 IF(PSIG(PLNO) .LE.LTPSIG) THEN
126 PSIG(PLNO)=LTPSIG
127 END  IF

The subsequent statements are aimed at constructing the overall tangent shear stiffness
matrix for each spring. The subroutines RENEW and SPMAT will calculate the current

Kmax value and its product with [Te] [N][Te] respectively. Then, the overall tangent
shear stiffness matrix will be computed according to eq. (1.54).

130 DO 2300 L=1,NSTR
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131 DO 2400 M=1,NSTR

132 STIFF(L,M)=STIFF(L,M)+KMAX*PSIG(PLNO)*ISTIFF(L,M)/SPRING
133 2400 CONTINUE
134 2300 CONTINUE

In which ISTIFF represents the matrix product [Te]"[N][T:]. This shear stiffness
matrix will have the pattern shown in eq. (1.55).

Then the last three diagonal elements of the overall tangent stiffness matrix is assigned
to the array GLAST (3). For isotropy of the model, these values should be equal.

Since the matrices [G] and [B] have the formats as shown in eqs. (1.55) and (1.57)
respectively and since the last three diagonal elements of [G] are stored in the array
GLAST(3), the remaining non-zero elements of both matrices will be the first three
rows and columns of both. Hence, both matrices can be compressed into 3X3 matrix
consisting of these non-zero elements. In the source code, these statements are written
as:

140 DO 2500 L=1,3
141 DO 2600 M=1,3

142 STIFF(L,M)=STIFF(L,M)+BULKS
143 2600 CONT INUE

144 2500 CONTINUE

The next statements aim at determining the initial values of the status parameters and
user indicators. The description of these parameters along with their initial values is
given in the following table.

Table 2.3. initial values of the user status parameters and the user indicators.

USRSTA/ USRIND value Riiﬁizgfd 2ZZ$§;?E:EZ 3zi§
source code
USRSTA(L) &! EVDSUM 0
USRSTA(2) &y EVY 0
USRSTA(3) P, SIGY p',
USRSTA(4) P SIGI D'
USRSTA(5) wp PWORK 0
USRSTA(6) & USRSTA(37) P, > pL, PSIG(PLNO) D'
USRSTA(38) GLAST (1) GLAST (1) Gtﬁ§T
USRSTA(39) GLAST (2) GLAST (2) G%Q§T
USRSTA(40) GLAST (3) GLAST (3) G%§§T
USRIND((SPNO-1)*2 + 1) MMODE (SPNO) MMODE (SPNO) 1
USRIND((SPNO-1)*2 + 2) DMODE (SPNO) DMODE (SPNO) 0
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USRSTA((SPNO-1)*9 + 41) GORI (SPNO) GORI (SPNO) 0
USRSTA((SPNO-1)*9 + 42) Ymax GMAX(SPNO) 0
USRSTA((SPNO-1)*9 + 43) Yrev GREV (SPNO) 0
USRSTA((SPNO-1)*9 + 44) Vi G (SPNO,1) 0
USRSTA((SPNO-1)*9 + 45) Rmax RMAX (SPNO) 0
USRSTA((SPNO-1)*9 + 46) Rrev RREV (SPNO) 0
USRSTA((SPNO-1)*9 + 47) R R (SPNO,1) 0
USRSTA((SPNO-1)*9 + 48) c COR(SPNO) /
USRSTA((SPNO-1)*9 + 49) Va GAMP(SPNO) 0

2.2.4.6. The main analysis process

When the condition for the initialization is violated, the main liquefaction analysis
process follows. The analysis starts by setting the initial values of the status parameters

and the user indicators.

174 EVDSUM USRSTA(1)

175 EVY = USRSTA(2)

176 SIGY = USRSTA(3)

177 SIGI = USRSTA(4)

178 PWORK USRSTA(5)

179 DO 5000 "PLNO=1,NPLANE"

180 PSIG(PLNO)= USRSTA(5+PLNO)

181 5000 CONT FNUE

182 GLAST(1)=USRSTA(38)

183 GLAST(2)=USRSTA(39)

184 GLAST(3)=USRSTA(40)

185 DO 5100 "SPNO=1,SPRING"

186 MMODE (SPNO) = USRIND((SPNO-1)*2+1)

187 DMODE (SPNO) = USRIND((SPNO-1)*2+2)

188 GORI(SPNO) = USRSTA((SPNO-1)*WIDTH+OFFSET+1
189 GMAX(SPNO) = USRSTA(C(SPNO-1)*WIDTH+OFFSET+2
190 GREV(SPNO) = USRSTAC(SPNO-1)*WIDTH+OFFSET+3
191 G(SPNO,1) = USRSTA((SPNO-1)*W1DTH+OFFSET+4
192 RMAX(SPNO) = USRSTA((SPNO-1)*WIDTH+OFFSET+5
193 RREV(SPNO) = USRSTAC(SPNO-1)*WIDTH+OFFSET+6
194 R(SPNO,1) = USRSTA((SPNO-1)*WIDTH+OFFSET+7
195 COR(SPNO) = USRSTA((SPNO-1)*WIDTH+OFFSET+8
196 GAMP(SPNO) = USRSTAC(SPNO-1)*WIDTH+OFFSET+9
197 5100 CONTINUE

o\ o/ o/ o/ N N

The main analysis process will be explained with the same numerical order as given in Fig

2.1.

1. Input value of strains

As explained in section 2.2.4.4, the strain increment vector XDEPS(1) will be given at the
beginning of each step. From this the cumulative strain is computed as:

212 IEPS(K)=-1.D0* (XEPSO(K)+XDEPS(K))

2. shear strain of each spring
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The cumulative strain increment at the beginning of the calculation step is decomposed into
shear strains in each spring. Hence the transformation matrix will be called by the subroutine
TRANSFER.

211 CALL TRANSFER(1, THETA,PHI, BETA, I1EPS)

Then the fifth component of the decomposed strain represents the current one-dimensional
shear strain of each spring. The one-dimensional shear strain in the previous step G(SPNO,1)
was stored in USRSTA ((SPNO-1)*9+44) and the corresponding value at the current step
will be extracted from the strain vector as:

212 G(SPNO,2)=1EPS(5)
Here, G(SPNO,2) represents the value of shear strain at the current step y.
3. Stress ratio of each spring

Calculation of the shear stress ratio of each spring will be the next step. For this, the
effective stress on each plane should be calculated first. The stress vector of the current step
is taken as.

208 1S1G(K)=-1.D0*SIGMA(K)

This stress is decomposed for each sprig using the subroutine TRANSFER.

214 CALL TRANSFER (3,THETA,PHI, BETA, ISIG)

Note that each spring is aligned with the z"-axis of the new coordinate system. Thus, the
effective stress of each one-dimensional spring will then be the stress component in that
direction.

213 PSIG(PLNO)=1SIG(3)

The subroutine RENEW calculates the current values of spring stiffness and reference shear

strain.
220 CALL RENEW(KMAX,GR,MM,PSIG(PLNO) ,MEPSO,KMAXO,GRO)

The previous value of the stress ratio was stored in USRSTA ((SPNO-1)*9+47) as
R(SPNO,1). This value will be used as RREV in the MASING subroutine to calculate the
current value of the stress ratio.

221 R(SPNO,2)=R(SPNO, 1)

222 CALL MASING(PSIG(PLNO),KMAX,GR,YETA,GORI(SPNO),
223 $ GMAX(SPNO) , GREV(SPNO), G(SPNO,1), G(SPNO,2),
224 $ GAMP(SPNO),COR(SPNO), RMAX(SPNO), RREV(SPNO),
225 $ R(SPNO,2), KTAN(SPNO), KEQU, MMODE(SPNO))

4. Volumetric strain due to dilatancy
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The stress-dilatancy relation is used to determine the volumetric strain due to dialatancy. The
subroutine DILATANCY calculates the incremental value of this quantity for each spring.

227 CALL DILATANCY (IDEVD,DPEPS, DMODE(SPNO), G(SPNO,1),
228 $  G(SPNO,2), R(SPNO,1), R(SPNO,2), NDI, NDS,
229 $  KEQU,GTH,RPT,LTDPEP,GREV(SPNO),

230 $  RREV(SPNO),HPEV,PSIG(PLNO) )

The total volumetric strain increment due to dilatancy DEVD is calculated according to eq.
(1.138) as:

231 DEVD=DEVD+ IDEVD/SPRING
5. Volumetric strain due to consolidation

The volumetric strain due to consolidation is derived from the total volumetric strain and
the volumetric strain due to dilatancy as per eq. (1.133).

246 DEVC =EVSUM - EVDSUM
247 EVDSUM = EVDSUM + DEVD
248 EVCSUM =(EVSUM+DEV)- EVDSUM
249 DEVC = EVCSUM - DEVC

If the value of NN is different from one, then the volumetric strain due to consolidation
can be given by:

250 IF(DABS(NN-1.D0) .GT.LTRATI) THEN
251 LTEVCS=(MEPSO**NN)/BULKSO*1 .D0/ (1 .DO-NN)*(LTMEAN** (1 .DO-
NN) -

252 $ SIGI**(1.DO-NN))

253 EVCSUM=MAX(EVCSUM, LTEVCS)

254 END IF

6. Mean effective stress

After calculating the strain due to consolidation, the conventional €- log p’ curve can be
used to compute the effective stress according to eq. (1.131) for the next strain increment.
The subroutine SUBSIG will be called to accomplish this task. The mean effective stress
calculated at this strain increment, MEPS, will be added to the mean effective stress in the
previous step to give the value of mean effective stress for the next step SIG.

255 CALL SUBSIG(MEPS,MEPSO,BULKSO, BULKO,
EVCSUM,EVY,SIGY, SIGI,

256 $  DEVC, BULK, NN,  LTRATI)

257 MEPS=MAX(MEPS, LTMEAN)

258 DO 6400 L=1,3

259 SIG(L)=SI1G(L)+MEPS

260 6400 CONTINUE

7. Shear stress of each spring
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The shear stress of each spring considering the hardening effect is given by the product of
the new stress ratio calculated by MASING subroutine and the mean effective stress.

The one-dimensional shear stress of each spring which is expressed by eq. (1.47) is
determined as:

233 1S1G(5)=R(SPNO, 2)*PS1G(PLNO)*HPEV
234 1S1G(1)=0.D0
235 1S1G6(2)=0.D0
236 1S1G(3)=0.D0
237 1S1G(4)=0.D0
238 1S1G(6)=0.D0

8. Total shear stress

The total shear stress in the soil is calculated according to eq. (1.48).

239 CALL TRANSFER(2, THETA,PHI,BETA, ISIG)
240 DO 6300 L=1,NSTR

241 SIG(L)=SIG(L)+1SIG(L)/SPRING

242 6300 CONTINUE

9. Tangential shear stiffness matrix

The tangential shear stiffness matrix for each spring is established by the subroutine EXTHD.
To consider the hardening effect, this stiffness will be multiplied by the factor to consider
this hardening effect.

KTAN(SPNO)=KTAN(SPNO)*HPEV

When the value of p’ is not constant the tangential shear stiffness matrix is given by eq.
(1.131). In that case, the value of the parameter GTYPE will be 3. In eq. (1.131), the last two
terms represent the tangential shear stiffness matrix computed so far, KTAN. The first term is
calculated separately as PTAN and will be added to the value of KTAN afterwards.

PTAN can be obtained by dividing the change in effective stress multiplied by stress ratio by
the change in shear strain between two consecutive steps. The effective stress at the current
strain increment and at the previous strain increment are 1SIG(3) and PSIG(PLNO)
respectively. The corresponding change in shear strain is G(SPNO,2)- G(SPNO,1). This
change in shear strain should not be less than the minimum allowable value LTDGAM. In the
program the statements for this computation are:

277 IF(DABS(G(SPNO,2)-G(SPNO, 1)) . GE . LTDGAM) THEN
278 PTAN(SPNO)=DPSIG(PLNO)*R(SPNO, 2)*HPEV/

279 $  (G(SPNO,2)-G(SPNO,1))"

280 ELSE

281 IF(G(SPNO,2)-G(SPNO,1) .GE.0.DO)  THEN

282 PTAN(SPNO)=DPSIG(PLNO)*R(SPNO, 2)*HPEV/LTDGAM

283 ELSE

284 PTAN(SPNO)=DPSIG(PLNO)*R(SPNO, 2)*HPEV/ (-1.DO*LTDGAM)
285 END IF
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286 END IF

Then the tangential stiffness of each spring will then be the summation of KTAN and PTAN.

287 IF(PTAN(SPNO) .GE_0.DO) THEN
288 KTAN(SPNO)=KTAN(SPNO)+PTAN(SPNO)
289 END IF

The total tangential shear stiffness of the soil is given by the formula in eq. (1.54) and in the
program, this is given as:

292 DO 7300 ''L=1,NSTR"

293 DO 7400 "M=1,NSTR"

294 STIFF(L,M)=STIFF(L,M)+KTAN(SPNO)*ISTIFF(L ,M)/SPRING
295 7400 ~ CONTINUE

296 7300 CONTINUE

The last three diagonal elements of the tangential shear stiffness matrix represent the current
shear modulus of the soil. These values which are stored in GLAST array are computed as the
ratio between change in shear stress and change in volumetric strain. These values should be
greater than or equal to the minimum allowable value LTGTAN.

316 DO 8200 1=4,6

317 IF(DABS(DEPS(1)) .GE.LTDGAM) THEN

318 GLAST(1-3)=(-1-D0*SIGMAB(1)-SIG(1))/DEPS(I)
319 ELSE

320 IF(DEPS(1) .GE.LTDGAM) THEN

321 GLAST(1-3)=(-1.D0*SIGMAB(1)-SIG(1))/LTDGAM
322 ELSE

323 GLAST(1-3)=(-1.DO*SIGMAB(1)-SIG(1))/(-
1.DO*LTDGAM)

324 END IF

325 END IF

326 8200 CONTINUE

The change in volumetric strain should not be less than the minimum allowable value
LTDGAM.

Any of the diagonal elements of the tangential shear stiffness matrix cannot be less than the
value attained by the current shear modulus values which are store in the GLAST array.

10. Tangential stiffness matrix

The tangential stiffness matrix with dilatancy [K’] is given by eq. (1.149). The tangential
stiffness matrix without dilatancy effect [K] is given by eqs. (1.60). In this calculation process
the stiffness matrices which do not include the effects of dilatancy are used. The dilatancy is
calculated independently along the shear deformation and then added to the results obtained
by using [K].

The tangential stiffness matrix will be given as the summation between the tangential shear
stiffness matrix and the compression (or swelling) stiffness matrix.
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327
328
329
330
331

DO 7500 L=1,3
DO 7600 M=1,3
STIFF(L,M)=STIFF(L,M)+BULK
7600 CONTINUE

7500 CONTINUE

The final pattern of the tangential stiffness matrix should have similar form as given by eq.
(1.55). The subroutine ZEROM ensures this.

332

CALL ZEROM(STIFF)

The whole loop for a single strain increment will be tied by setting the new values of the
status parameters , user indicators and stress vectors to be ready for computations for the
next strain increment. The same string of procedures will then follow for the next strain
increment till the strain increments add up to the strain applied.
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CHAPTER THREE
INPUT DATA FOR ANALYSIS

3.1. Input data file

In the previous chapters, the multiple mechanism model and the source code are discussed.
This chapter aims at briefing another component to execute a liquefaction analysis which is
the input data file. The source code uses the input data file to read in the element and
material properties and the initial values of some of the state parameters. This data file
contains five main components and they will be briefly discussed in the next sections. A
procedure to determine some of the material parameters will also be discussed.

3.1.1. Element properties

For the validation of the source code, an eight nodded single brick element shown in the fig.
3.1 below will be used. In DIANA, this element is named as HX24L. For this element, the

strain € and stress G are constant in x direction and vary lineatly in y and z direction. The
strain € and stress G, are constant in y direction and vary linearly in x and z direction. The

strain €, and stress G, are constant in z direction and vary linearly in x and y direction. The
coordinates of the nodes of the element will be given in the data file as depicted in the figure
3.1. In the data file this is given as:

"COORDINATES™
1 0.000000E+00 0.000000E+00 0.000000E+00
2 1.000000E+00 0.000000E+00 0.000000E+00
3 0.000000E+00 1.000000E+00 0.000000E+00
4 1.000000E+00 1.000000E+00 0.000000E+00
5 0.000000E+00 0.000000E+00 1.000000E+00
6 1.000000E+00 0.000000E+00 1.000000E+00
7 0.000000E+00 1.000000E+00 1.000000E+00
8 1.000000E+00 1.000000E+00 1.000000E+00
Z
> ‘ 70,1,1)
|
i
|
P i a,1,1)
|
|
! (0,1,0)
(T R R g v
1,10
2( 0,0) 4 (10
X

Figure 3.1. An eight nodded brick element
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The connectivity of the element should also be given. For the solid element considered, the
node numbering sequence in DIANA will be governed by the right hand rule in a counter
clockwise direction. Hence the type and connectivity of element 1 is specified as:

CONNECT
1 HX24L 12435687

The material properties of the element should also be assigned. Since there is one element
property in this analysis, that property should be assigned to the element. This is done as:

MATERI
/171
DATA
/7171
"DATA*
1 NINTEG 111
NOCSHE
NUMINT GAUSS GAUSS GAUSS

3.1.2. Material properties

The properties of the soil for which the liquefaction analysis to be undergone will also be
introduced. These data include the general properties of the soil such as the Young’s
modulus, Poisson’s ratio and bulk modulus of watet. The other data are the thirteen
USERVAL values which are directly related to the liquefaction analysis. A user has to define
these soil and spring parameters to carry-out the 3D liquefaction analysis using this model.
The elaboration and determination of these parameters will follow in the next section.

il

111

Ko [USRVAL (1)]

£,.. 1s the non-dimensional stiffness of each spring. k

max

corresponds to the initial

max,o

stiffness of each spring at the mean effective stress p;. Its value can be determined

using the shear modulus of the sand G, , which is measured at p = p, by using eq.

(1.99). The shear modulus of the sand can be determined from any standard test.
yr,0 [USRVAL (2)]

0 1s the reference shear strain at initial mean effective stress P, . It is also a parameter

associated with the springs. If the shear strength of the sand is determined as Tmax, the

value of ) is determined by using eqgs. (1.100). The value of k_, , obtained above will
be used in this equation.

n [USRVAL (3)]

This is the factor which controls the damping ratio of sand. Its value can be
determined either from eq. (1.125) or from fig. 1.20 for a given values of shear strain
amplitude, reference shear strain and damping ratio. The values of these three soil
parameters can be determined from simple cyclic shear or torsion tests.
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vi.

vil.

VIIL.

X7,

Bc,0 [USRVAL (4)]

B,, represent the bulk modulus of compression at reference mean cffective stress p,.

60
Its value is obtained by performing consolidation tests. From these tests, a graph of
volumetric strain versus p’ can be drawn. The slope of the resulting curve for the

normally consolidated part at p’ = p, will give the value of B o

Bs,o [USRVAL (5)]

B,, represent the bulk modulus of swelling at reference mean effective stress p, . From

60

consolidation tests, a graph of volumetric strain versus p’ can be drawn. The slope of

the resulting curve for the over consolidated part at p’= p, will give the value of B,,

Po [USRVAL (6)]

p, is the initial mean effective stress to be decided by the user. In most cases, a value
is 100kPa used.

NN [USRVAL (7)]

This parameter is the coefficient of stress dependency. In this model its value is set to
0.5.

MM [USRVAL (8)]

This parameter is the coefficient of stress dependency. In this model, its value is equal
to 1.0.

Rpt,i [USRVAL (9)]
R, is the stress ratio at phase transformation point in terms of each dilatancy

mechanism for initial loading. Its value can be determined by drained cyclic simple
shear tests.

Rpt,s [USRVAL (10)]
R, is the stress ratio at phase transformation point in terms of each dilatancy

mechanism for the subsequent loadings. Its value can be determined by drained cyclic
simple shear tests.

Nd [USRVAL (11)]

N, is the gradient of stress-dilatancy relationship as shown in fig. 1.22. Its value can be
determined by drained simple shear tests.
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xii. Hp [USRVAL (12)]

H, is a factor of hardening effects as shown in fig.1.21. Its value can be determined by
drained simple shear tests.

xiti. ¥, [USRVAL (13)]

It is the threshold plastic strain introduced for the sake of numerical stability. In this
model its value is given to be 0.0001.

Along with the soil and spring parameters discussed above, in this part, the initial values of
the USERSTA and USERIND are given. These values will be used for the initialization stage of
the liquefaction analysis. The initial value of USERSTA is for all the springs is zero. There will
be 1768 (=(192-1)*9+40+9) USERSTA values. The initial USERIND values for all the springs
are zero. But for the sake of computational suitability as discussed in section 2.2.4.5 two
more values of USERIND are given. These extra values ,USERIND(385) and USERIND(386)
are zero and one respectively.

3.1.3. Loading condition

The loading consists of two stages given by CASE 1 and CASE 2 in the data file. The first
stage of loading given under CASE 1 is the constant normal stress in the z-direction and the
initial stresses at each node. The value of the constant normal stress is 98kN/m?* in the
negative z-direction applied on the ZETA2 face of the cube. ZETA2 face is the face containing
the nodes 5-6-8-7. In DIANA, z-direction is denoted by direction 3.

The second stage of loading given under CASE 2 is the translational deformation of the
upper face of the element. The nodes 5, 6, 7 and 8 will be deformed by 10~ in x-direction.

3.1.4. Support condition

Nodes 1 through 8 are supported in x- and y-directions. Additionally, nodes 1 through 4 are
supported in z-direction. A tying is also applied for nodes 5 -8 so that they will have the
same deformation in the z-direction.

"SUPPORTS™
/1-8/7 TR 12
/ 1-4 / TR 3
"TYINGS™®

EQUAL TR 3

/ 6-8 /75

3.1.5. Global directions

The global direction to define the directions of loadings and supports. It will be given in
matrix of three columns. The first ,second and third columns representing the x-, y- and z-
directions respectively. In this analysis, direction 1 described by a value of 1 in the first
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column i.e x-direction and zero in the others. Which indicates that direction 1 is oriented
along the positive x global direction. Similarly, directions 2 and 3 are oriented in positive y
and z global directions respectively.

"DIRECTIONS™
1 1.00000E+00 0.00000E+00 0.00000E+00
2 0.00000E+00 1.00000E+00 0.00000E+00
3 0.00000E+00 0.00000E+00 1.00000E+00

3.2. Determination of the user defined parameters from laboratory tests

The parameters which the user has to define are discussed in section 3.1.2. These users
defined parameters can be completely determined from three set of tests:

1. Cyclic simple shear (or torsion shear ) test
2. Standard traixial test and
3. Consolidation(or Oedometer) test

Some of the data necessary for the calculations of the parameters are given in the appendix
D and E. The determination of these parameters will be discussed briefly in the next
sections.

i.  Kkmaxo [USRVAL (1)]

Knaxo is calculated by eq. (1.99) for given values of shear modulus G and initial mean effective
stress. In this case, the initial mean effective stress is assumed to be 98kPa. The shear
modulus at this mean effective stress level is determined by the formula:

_ Az _ 0.953kPa - 0kPa
" Ay 0.00002 —0.00001
Then substituting these values in eq. (1.99) the value of Ky, can be determined.

G =9.53E4kPa

 5G,mo  5*9.53E4kPa

Koo = = 4862
’ p', 98kPa

ii. Y,, [USRVAL (2)]

The value of this parameter will be determined by eq. (1.100). In this equation, the
parameters T, kmao and P’ will be used as an input. T, is the shear strength of the sand
obtained by standard triaxial test. From the result in appendix E, the values of cohesion C

and friction angle ¢ are OkPa and 300 respectively. Then the shear strength of the soil is
calculated using Mohr-Coulomb equation for the reference normal stress as:

T... =C+otang=0+98tan30=56.58kPa

Then the reference shear strain is calculated as:
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_2.65*56.85kPa

Vig & =0.000315
© 7 4862*98kPa

iii. n [USRVAL (3)]

The reduction factor 1 is determined by using eq. (1.91) or fig. 1.11 for given values of
damping ratio ,reference shear strain and shear strain amplitude. For a particular soil, these
values can be obtained from simple shear test results.

The reference shear strain can be taken from calculation above. For the data given in
appendix D, the damping ratio h is calculated by the equation:

1 AW

Az W
In which, AW is the area inside the hysteresis loop and W is the elastic energy. As shown in
fig. 3.2, the hysteresis loop for the data is not a closed loop for each cycle. Hence, it should

be adjusted to be a closed loop. For the ease of adjustment each hysteresis loop will be
subdivided into four regions.

Region1:R=0,anddy >0

Region2: R >0,and dy <0

Region3: R <0,anddy <0

Region4: R <0,anddy>0
To form a closed loop, the last point of region 4 for each hysteresis loop should be
connected to the first point of region 1. But this is not usually the case. Hence an adjustment
will be made on the fourth region of the hysteresis loop so that these two points will connect
to each other. After the adjustment is made for each loop, the damping ratio will be
calculated from the total and elastic energies calculated for all the loops.

e
3.E-04 4 E-04

-3.E-04 -2.E-04

Fig. 3.2. Stress ratio versus shear strain graphs.
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Here the adjustment will be done only for the first loop. First, the coordinates of the first
point and the last point of the loop should be determined. The first point of the loop has

coordinates of (y, R) = (107, 0). This loop ends somewhere between after 108" and 109"
cycle. The exact value where R = 0 should be determined by interpolation. The coordinates

of the hysteresis loop for the 108" cycle is (y, R) = (-3X107, -0.00609) and for the 109" cycle
is (v, R) = (-2X10%, 0.001545).

After interpolation, the coordinates of the last of point of the hysteresis loop is (y, R) = (-

2.202X107, 0). Hence the value of y deviates by 107 - -2.202X10”° = 3.202X10” from the
starting point. A proportion of this deviation will be applied to all points of the curve in the
region 4. After application of the adjustment the curve looks like:

0.10 4

Ann }/
T T T S T 1

-3.E-04 -2 E-04 -1.E-04 3.E-04 4E-04

-020 -

Fig. 3.3. A single hysteresis loop after adjustment

Now the area inside the hysteresis loop shown in fig3.3 which is the total strain energy for a
single loop can be computed by any appropriate method. Using trapezoidal rule, this area

inside the hysteresis loop it AW = 4.6023E-05. The value of the elastic energy W for this
loop is part of the shaded area shown in fig 3.4. Its area is computed to be 7.77E-00.
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-3.E-04

-0.20 -
Fig 3.4. Elastic strain energy

Then the damping ratio is calculated to as:

h_ LAW 1 4603E-5

4z W 471 17TE—-6

The value of v,,is calculated to be 0.000315 and the value of ¥,= Y. is 0.00037. Substituting
these values in eq. (1.125).

2
2
h_ AW 27 1+L_2(£j (1+7—ajln[l+7—aj
4z Va 7a Y Y

% 2
0.47 :2_77 14 2%0.000315 ) 0.000315 14 0.00037 mnl 1+ 0.00037
0.00037 0.00037 0.000315 0.000315

T

=>n=038
Hence the value of the reduction factor 1 is 0.8.
iv. Bc,o [USRVAL (4)]

The bulk modulus of swelling Bco is determined from consolidation curve. A data for
consolidation curve is given in appendix D. The consolidation curve for this data can be

drawn and shown below:
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Fig. 3.5. Void ratio versus logarithm of effective stress curve.

An overconsolidation stress is the stress point at which the slop of the consolidation curve
changes. From the graph, this value is determined to be around 250kPa. The parameter is

Bco the slope of this curve for the normally consolidated part i.e. p”> p',. This slope is
determined to be 6.88E3. Hence the value of B¢ is 6.88E3.

v. B, [USRVAL (4)]

The bulk modulus of compression B, is also determined from consolidation curve. Its value
is equal to the slope of this cutve for the over consolidated part ie. p’< p', . The

consolidation cutrve above suggests that this slope is 1.79E4 which is the value of Bgp.

vi. p', [USRVAL (6)]

The initial mean effective stress P', in this case is fixed to the value of to 98kPa.

vii. NN [USRVAL (7)]

This parameter is the coefficient of stress dependency will have a value of 0.5.

viii. MM [USRVAL (8)]

In the model the value of this parameter is equal to 1.0.

x. Rpi,i [USRVAL (9)]

Rptiis the stress ratio at phase transformation point in terms of each dilatancy mechanism for

initial loading. Its value can be determined from stress-dilatancy diagram. Rptiis the stress
ratio when the value of dilatancy ratio is zero for initial loading.

-87 -



xi. Rpi,s [USRVAL (10)]
Rptsis the stress ratio at phase transformation point in terms of each dilatancy mechanism

for the subsequent loadings. Its value can be determined stress-dilatancy diagrams. Rptsis the
stress ratio when the value of dilatancy ratio is zero for subsequent loading.

xii. Nq [USRVAL (11)]

Na¢ is the gradient of stress-dilatancy relationship as shown in fig. 1.22. Its value can be
determined by drained simple shear tests.

xxv. H, [USRVAL (12)]

Hp is a factor of hardening effects as shown in fig.1.21 . Its value can be determined by
drained simple shear tests.

xxvi. 7, [USRVAL (13)]

It is the threshold plastic strain introduced for the sake of numerical stability. In this
model its value is given to be 0.0001.
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CHAPTER FOUR
ANALYTICAL VALIDATION OF THE MODEL

In this chapter, the consistency of the 3D liquefaction analysis using DIANA with analytical
results will be checked. For this, a small prescribed elastic strain will be applied on a soil
element and the resulting stresses will be calculated using the multiple spring model
analytically. Later the results will be compared with results obtained DIANA under similar
conditions. To have a similar model in both the analytical and DIANA analysis, there will be
minor modifications in the main source code.

At the end of the chapter, the clarification of the relationship between stresses and strains in
torsion shear test and DIANA results will be discussed. Since the DIANA analysis uses an
icosahedpral distribution, the values given in Table 1.2 will be recalled for comparison.

4.1. Shear applied in the xy direction

To apply the multiple shear mechanism method for analysis of a simple shear model shown
in fig. 4.1 below, the flow of analysis given in Fig 2.1 will be used. The analysis procedure
will be explained in detail below.

Fig 4.1. The simple shear multiple-spring model [shear strain applied in xy direction].

The material and spring parameters which will be used for the analysis in both the analytical
and DIANA computations are indicated in table 5.1.

Table 5.1. Material and spring parameters
Symbol Value
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Dr [%] 22
Rrmax 0 1728
7o 0.0008
n 0.4
B, [kPa] 43200
B;p [kPa] 54000
H, 22
Ry, 1.3
Ry 0.85
Ny 1.3
Jh 0.0001
Plo [kPa] 100
n 1
Vi 0.5

For the verification of the results, shear strain applied in two directions will be considered; in
the xy and zx directions.

4.1.1. Analytical calculation
1. A prescribed value of strain will be given.

The strain vector of the soil can be given by:

{g} = {‘9xx ‘9yy gyy yxy 7yz Y x }T (41)

Particularly, for simple shear case at constant volume shown in fig 4.1 the strain vector can
be written as:

{e}={0 0 0 y», 0 0 4.2)

Since the analysis will be displacement controlled one, the values of Yy, should be given from
the beginning. In this example, its value will be assumed to be 10*. Hence the strain vector
for this particular analysis will be:

{et={0 0 0 10° 0 0 4.3)

2. The shear component of strain for each spring will be computed from the given
strain using coordinate transformation.

The one-dimensional shear strain of each spring will be determined from the strain of the
overall soil element. For this the transformation matrices for each spring should be
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determined. Referring to fig. 4.1, the transformation matrices between the global coordinate
system xyz and the rotated coordinate system x’y’z’ for each spring can be computed. The

rotation is made only around z-axes. Thus, the transformation matrix for strain [T¢] can be
given by eq. (1.19).

For this model, the coordinates will be rotated around the origin so that the x’-axis of the
new coordinate system will be aligned with the springs. There will be six springs in total. For
the spring orientation given in fig. 4.1, the transformation matrices for each spring can be
obtained by substituting the corresponding values of C in eq. (1.19). The values of { are as
given in fig. 2.1. The springs will be numbered from 1 — 6 and their transformation matrices

will be:

For spring no. 1, {= 15°

0933013 0.066987 0 0.25 0 0 ]
0.066987  0.933013 0 -0.25 0 0
1 0 0 1 0 0 0
[T, 1=
-0.5 0.5 0 0.866025 0 0
0 0 0 0.965926 —0.258819
.0 0 0 0.258819  0.965926 |
For spring no. 2, = 45°
0.500000  0.500000 0.50 0 0 ]
0.500000  0.500000 0 -0.50
. 0 0 1 0 0 0
[T, 1=
-1.0 1.0 0 0 0 0
0 0 0 0 0.707107 -0.707107
0 0 0 0 0707107 0.707107|
For spring no. 3, {= 75°
[0.066987 0.933013 0 0.25 0 0
0.933013 0.066987 0 -0.25 0 0
. 0 0 1 0 0 0
[T, 1=
-0.5 0.5 0 —0.866025 0 0
0 0 0 0 0.258819 —0.965926
L 0 0 0 0 0.965926 0.258819
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For spring 4, C= 105°

[0.066987

0.933013 0 -0.25 0 0
0.933013 0.066987 0 0.25 0 0
\ 0 0 1 0 0 0
(T.]=
0.5 -0.5 0 —0.866025 0 0
0 0 0 —0.258819 —0.965926
L 0 0 0 0.965926 —0.258819 |
For spring no. 5, (= 135°
[0.500000  0.500000 0 -0.50 0 0 ]
0.500000  0.500000 0 0.50 0
. 0 0 1 0 0 0
[T, 1=
1.0 -1.0 0 0 0 0
0 0 0 -0.707107 -0.707107
0 0 0 0.707107  —0.707107 |
For spring no.6, {= 165°
[0.933013  0.066987 0 -0.25 0 0 i
0.066987  0.933013 0 0.25 0 0
. 0 0 1 0 0 0
[T.']=
0.5 -0.5 0 0.866025 0 0
0 0 0 0 -0.965926 —0.258819
L 0 0 0 0 0.258819  —0.965926 |

Multiplication of the strain vector by the transformation matrix of each spring gives the
strain vector of each spring. The strain vector of each spring will be obtained by multiplying
the strain vector of the soil by the corresponding strain transformation matrix.

e =M eb=ten) &) &b 7y v 7Y (4.6)
This will result in the following:
eV =[T/He}=10"*{025 -025 0 0866 0 0}
ey =T He}=10"*{05 -05 0 0 0 0}
(e} = [Tj]{g}:l S*0025 -025 0 —0.866 0 O}
(e =T e}=10"*%{-025 -025 0 -0866 0 0}
(69} =[T e}=10"*%{=05 05 0 0 0 0
(e =T Ue}=10"*{-025 025 0 0866 0 0}
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The springs are assumed to carry only one dimensional shear strain. Hence, the shear
components of the springs should be extracted from the total strain vector of the springs.
The springs are oriented in a xy plane rotating along the 2z’ axis. Thus, the strain component

in the springs will be v.... Hence, one-dimensional strains in each spring will be:

P=10"%0 0 0 0866 0 O
@1=10"*%0 0 0 0 0 0
P1=10*{0 0 0 -0866 0 0
®1=10"%{0 0 0 -0866 0 O
O1=10*{0 0 0 0 0 0
©1=10"%*0 0 0 0866 0 0

3. From Masing’s rule, the stress ratio of each spring will be determined

The shear stiffness matrix of the soil element and that of each spring are related by eq. (1.56).
Here it is assumed that the shear modulus of all the springs is the same.

(i) n

G - i
[G]=%Z([T;”] INIT]) @.7)

i=1

For the skeleton curve, the value of the shear modulus of each spring can be determined
from eq. (1.129).

W _ Ko p'(l +H pgv)

tan 2
{1_’_ |7/_7/0|J
Ve

For this simple shear case, the volumetric strain is zero and the value of the initial strain y, is
zero. Hence the tangent shear modulus of each spring can be computed as:

Gt(a]rz _ kmaxp - — kmaxp 5 20230584kmax pv:39845E4kN /m2
| 0.000866|
L | B PP e
’ 0.0008
G(Z) _ kmax p _ kmax p _ k p|: 17825E5kN /m2

tan 2 2 7 Mmax
(2)
4 I fp
7, 0.0008
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GO = KmP' Ky P —0.230584k__p'=3.9845E4kN /m’

tan 2 2 max
e [ - 0.000866|J
1+ I
7 0.0008
G(4) — kmax p' _ kmax p' _ 0230584k "V 2
tan 2 5 — Y- maxp = 39845E4kN /m
i ( - 0.000866|]
ol 4+
7 0.0008
G = s P Ko P ~ =k, p'=1.7825E5kN /m?
(%)
1+ ‘7 ‘ (1 + O|j
v, 0.0008
. Ko P _ =0.230584K,, p'=3.9845E4kN /m’
‘y(é)‘ 10.000866|
1+
v, 0.0008

Substituting these values in eq. (4.7), the expression for shear stiffness matrix of the soil
element can be obtained as:

[ 6.4241 -6.4241 0.000 —0.5751 0.000  0.000 |
—-64241 64241 0.000 0.5751 0.000 0.000
® n . . 0.000 0.000 0.000 0.000 0.000 0.000
Gmn}:(TUqT[N]Uﬁnﬂz E4kN /m?
= —-0.5751 0.5751 0.000 1.9922 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000  0.000  0.000  0.000 |

Assuming there will be insignificant change in the mean effective stress, the bulk modulus of
the soil element is equal to B, , =4.32E4kPa. Thus the bulk stiffness matrix is given by:

(4320 4320 4320 0.000 0.000 0.000]
4320 4320 4320  0.000 0.000 0.000
4320 4320 4320 0.000 0.000 0.000 , 438
[B] = E4kN /m (4.8)
0.000  0.000 0.000 0.000 0.000 0.000
0.000  0.000 0.000 0.000 0.000 0.000

10.000  0.000 0.000 0.000 0.000 0.000 |

The tangential stiffness matrix which is the summation of the shear stiffness matrix and the
bulk stiffness matrix is given by:
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[ 1.0744 -0.2104 0.4320 -0.0575 0.000 0.000 ]
-0.2104 1.0744 0.4320 0.0575 0.000 0.000
0.4320  0.4320 0.4320 0.000 0.000 0.000
—-0.0575 0.0575 0.000 0.1992 0.000 0.000
0.000  0.000 0.000 0.000  0.000 0.000
0.000  0.000 0.000 0.000  0.000 0.000 |

[K]=[G]+[B]= ESKN /m?

Now the stress ratio of the each spring can be calculated. Here it is assumed that the
relationship between the stress ratio and shear strain can be given by the back bone curve
hence the following relationship can be used eq. (1.68) to calculate the stress ratio:

(M

R(I) — kmaxy (4 9)
() )
e
1+—
Ve

The spring stiffness k., shear strain and the reference shear strain 7y, of each spring is given
Table 4.1. If the change in mean effective stress is also assumed to be insignificant, then the
reference shear strain can be taken to be equal to the initial reference shear strain. Hence, the
stress ratio of the springs can be calculated as:

K,.7"  1728%0.866X10~

RO — = ——=0.7186
7<1>‘ 0.866x10
I+ I
7. 0.0008
R® — Ko™ 1728*0 ~0
2 0
4 1+
1+7 0.0008
(3 % _ -3
RO _ K,/ _ 1728 *—-0.866X10 — 07186
y® —0.866x10~°
I+~ 1+
7, 0.0008
(4) % _ -3
R® _ kmaxy4 _ 1728 0.866x103 —_0.7186
= |- 0.866x10°
l+— I+—
7, 0.0008
RO _ Knan?'” _ 1728%0 0
(5 0
127 ‘ 1+
+7 0.0008
(6) * -3
RO _ Ko _ 1728 0.866x1_(z ~ 07186
7o), 0866x107
1+ , 0.0008
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4. Using stress-dilatancy relationships, the volumetric strain increment due to
dilatancy will be computed.

The volumetric strain increment due to dilatancy for loading is calculated from the following
equation given by eq. (1.136)

_ () ded-® _
R0 = T.(.) —Nu)( Bv_ j+ R (4.10)

The values of N{" and Rgt) are given to be to be 2.0 and 1.65. The plastic shear strain is
calculated by eq. (1.139)

O]
dy P :[1 S ]dy(” (4.11)
Gy

Gy is calculated using eq. (1.101)

G = p/(i+H 2, )k, {—

(4.12)

1+7/a
7

For each spring the values of  and Hp is given in table 4.1 to be 0.4 and 22 respectively.

For the backbone curve, the value of C is 1.0. Hence, the expression for the elastic shear

stiffness Gé(:) can be simplified into:

0.6

Gy =p'k +0.4 (4.13)

1+Zi
Vr

Since the strain level is assumed to be on the skeleton curve, the amplitude of shear strain
will be equal to the maximum shear strain.

y® _‘y;n'gx (4.14)
7 =] yi.|=0.000866
7 = V| =0
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y& =ly® 1=0.000866
P =y 1=0.000866

) ® =

}/a = ]/max
79 =ly© 1=0.000866

Then the value of the elastic shear stiffness and the corresponding ratio term in eq. (4.11)
can be computed as:

W _ 0.6 _ng _
Gl = Pk ) 5000866+ 041 =00881P Ky = | 1= 5 = 0.6649

S bt 9
0.0008

(2)
G? = p'k,., —0'60 +0.40=pk,, = (1 S ]: 0

(2)
+ Geq
0.0008
0.6 GY
3) _ ' — tan _
G = DKy | —p goraee + 041 = 0.6881p'k,,,, = [ R
0.0008
0.6 GW
(4) _ _ ' tan
G = p kmlx W+04 —O6881p kmlx :(I_Gég) =0.6649
0.0008

%)
eq

0.6 G
S _ n —n' _ Ttan | _
Gey = P'Kpay — 0 " 0.4 =p'K,.. :>[1 Gl 0

+
0.0008
0.6 G©
(6) _ 'k 44 = 10'k _ “tan 4
Geq p max W +O 0 688 p max [ G(é) O 66 9
0.0008

eq
Then from eq. (4.11) ,the plastic shear strain increments are calculated as:

d (l) Gt(;n T [T (1)] d —
7 oo {n}' [TV [{de}=0.0005758
eq
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(2)
o7 <[ 1- G o oo

G®
dy® =|1- = T[T O Jlde} = —0.0005758

©)
dy® = (1 _%]{n}T [Tf) ]{dg} =0.0005758
eq

Now the volumetric strain due to dilatancy can be calculated using eq. (1.141).

i R0
4t = _dj/p,(i{ﬂ]

m
Nd

Rgt) will be negative for d;/p’(i) >0 and positive ford]/p’(i) < 0. Since the loading is initial

)

i —1.3,in accordance with Table 4.1 will be used.

loading the value of R

i —_gyrof RO
dgv (D = —d]/p’( ) T = 00002575
d

12), p@)
det® = _dy mm(ﬂ} =
'

@
Nd

Rv(3)+R(3)
del® = —dy M)[T)ptj =-0.0002575
d

v (4)
Nd

15, R
det® = _d},pm[m] -

R|(6)+ (6)
ded©® — _dyp’(é) [—th =0.000275

Rv(4)+ (4)
de®® = —dy N‘”(—"tj =-0.0002575

©
N,

The shear stresses in each spring will then be calculated from the product of the stress ratio
of the particular spring as amended by the hardening effect according to eq. (1.126) and
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mean effective stress of p’ = 100kPa. Here, for the applied small strain the mean effective
stress will be assumed to be constant.

O = RO p'(l1+H pgv) =71.86kPa
@ =R®p'(1+H ¢,) =0kPa
@ =R®p'(1+H .&,) =—71.86kPa
@ = R® p'(l+H pgv) =-71.86kPa
9 —ROp (14 H,z,) - 0kPa
@ =R@p'(1+H,¢,) =71.86kPa

Note that this is the only the fourth component of the stress vector of each spring. All the
remaining components are zero. Hence the stress vector of each spring will then be given as:

f=f 0o o 7186 0 O0kPa
f=b 0 0 0 0 okPa
~7186 0 O}kPa
~7186 0 OkPa
tPi={0 0 0 0 0 O0kPa
fol=b 0 0 7186 0 OkPa

The global deviatoric stress will then be given by eq. (1.48).

e = LT O = L3Oy )

i=1 i=1

After calculation, the deviatoric stress is obtained to be:
fTf={0 0 0 4149 0  0jkPa

Here, it has to be noted that only the magnitudes of the shear stress will be considered to
determine the aggregate shear stress of the soil element.

4.1.2. Analysis by DIANA:
For the analysis using DIANA, the 3D soil element shown in fig. 4.1 will be used. The
components of the data file which will be used for DIANA liquefaction analysis were

explained in chapter 3. Some modifications will be made in the data file to create the model.

To align the origin of the coordinate system with the center of the virtual plane, the
coordinates of the nodes should be changed to:
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"COORDINATES™

-5.000000E-01 -5.000000E-01 -5.000000E-01
5.000000E-01 -5.000000E-01 -5.000000E-01
-5.000000E-01 5.000000E-01 -5.000000E-01
5.000000E-01 5.000000E-01 -5.000000E-01
-5.000000E-01 -5.000000E-01 5.000000E-01
5.000000E-01 -5.000000E-01 5.000000E-01
-5.000000E-01 5.000000E-01 5.000000E-01
5.000000E-01 5.000000E-01 5.000000E-01

O~NOUTAhWNE

A prescribed shear strain value of yxy = 10 is used and the analysis is made. This will be
entered in the LOAD case 2.

CASE 2
DEFORM

/ 3-4, 7-8 / TR 1 -1.0E-4

The stress vector which is obtained by DIANA is:

90.97
90.97
90.97

= kN /m?
o} 4149 [

There is good agreement between the resulting shear stress between the analytical and
DIANA deviatoric stresses are in good agreement.

4.2. Shear applied in the zx direction

To analyze a similar multiple shear mechanism as shown in fig. 4.1 for a simple shear in zx
direction, the same values of material and spring parameters as given in table 4.1 will be used.
The calculation of the stress vector from a strain vector applied in zx direction will be
discussed briefly step by step in the next sections.

A prescribed value of strain will be given.

For simple shear case shown in fig 4.2, the prescribed strain vector can be written as:

{et={0 0 0 0 0 107} (4.15)

The shear component of strain for each spring will be computed from the given
strain using coordinate transformation.
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The one-dimensional shear strain of each spring will be determined by multiplying the strain
of the overall soil element by the transformation matrix. In this case, the rotation is made

only about y-axis. Thus, the transformation matrix for strain [T¢] can be given by eq. (1.18).

For this model, the coordinates will be rotated around the y axis so that the x’-axis of the
new coordinate system will be aligned with the springs. There will be six springs in total. For
the spring orientation given in fig. 4.1, the transformation matrices for each spring can be
obtained by substituting the corresponding values of ¢ in eq. (1.18). The values of ¢ are as

given in fig. 2.1. The springs will be numbered from 1 — 6 and their transformation matrices
will be:

For spring no. 1, = 15°

[0.933013 0 0.066987 0 0 -0.25
0 1 0 0 0 0
= 0.066987 0 0.933013 0 0 0.25
¢ 0 0 0 0.965926 —0.258819 0
0 0 0 0.258819  0.965926 0
| 05 0 -0.5 0 0 0.866025 |
For spring no. 2, ¢= 45°
0.5 0 0.5 0 0 —0.5]
0 1 0 0 0 0
Too[05 0 oS 0 0 0.5
¢ 0 0 0 0707107 -0.707107 0
0 0 0.707107 0.707107 0
I 0 -1 0 0 0
For spring no. 3, = 75°
[0.066987 0 0.933013 0 0 -0.25
0 1 0 0 0 0
T3]= 0.933013 0  0.066987 0 0 0.25
¢ 0 0 0 0.258819  —0.965926 0
0 0 0 0.965926 0.258819 0
| 05 0 -05 0 0.965926  —0.866025 |
For spring 4, ¢= 105°
[0.066987 0 0.933013 0 0 ~0.25
0 1 0 0 0 0
T4]= 0.933013 0 0.066987 0 0 0.25
¢ 0 0 0 0.258819 —0.965926 0
0 0 0 0.965926  0.258819 0
05 0 -05 0 0 —0.866025 |
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For spring no. 5, = 135°

[0.5 0 0.5 0 0 0.5 |
0.5 1 0 0 0 0
T]= 0 0 0.5 0 0 -0.5
‘ 0 0 0 -0.707107 -0.707107 0
0 0 0 0.707107 -0.707107 0
-1 o 1 0 0 0|
For spring no.6, ¢= 165°
[0.933013 0 0.066987 0 0 0.25
0 1 0 0 0 0
6= 0.066987 0 0.933013 0 0 -0.25
‘ 0 0 0 -0.965926 —0.258819 0
0 0 0 0.258819 —0.965926 0
| -05 0 0.5 0 0 0.866025 |

Multiplication of the strain vector by the transformation matrix of each spring gives the
strain vector of each spring. The strain vector of each spring will be obtained by multiplying
the strain vector of the soil by the corresponding strain transformation matrix.

This will result in the following:

(e =T He}=10"*{-025 025 0 0 0 0866}
(P =[T }e}=10"*{-05 0 05 0 0 0
(N =T e}=10"*{-025 0 025 0 0 —0.866}
(e =T He}=10"*{-025 0 025 0 0 —0.866}
(e =T Hef=10"%{05 0 -05 0 0 0}
(e =[T°e}=10"%{025 0 -025 0 0 0.866}

The springs are assumed to carry only one dimensional shear strain. Hence, the shear
components of the springs should be extracted from the total strain vector of the springs.
The springs are oriented in a xy plane rotating along the z’ axis. Thus, the strain component
in the springs will be v..,.. Hence, one-dimensional strains in each spring will be:

GOI=10"*{0 0 0 0 0 0.866)
GP1=10"%0 0 0 0 0 0
OV =10"%0 0 0 0 0 —0.866)
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GPr=10"*%0 0 0 0 0 -0.866"
GOV=10"*0 0 0 0 0 0
GOV=10"%0 0 0 0 0 0866}

From Masing’s rule, the stress ratio of each spring will be determined

For the skeleton curve, the value of the shear modulus of each spring can be determined
from eq. (1.129). For this simple shear case, the volumetric strain is zero and the value of the

initial strain 7y, is zero. Hence the tangent shear modulus of each spring can be computed as:

Gt(alrz _ kmaxp _ kmaxp 5 20230584kmax pv:39845E4kN /m2
™ 10.000866|
7/ I+
7r 0.0008
G = Ko P = s P — =k, p'=1.7825E5kN /m?
}/(2)‘ (1 . 0| ]
I+~ hnno
7. 0.0008
G = —KnasP = Ko P _=0.230584k,, p'=3.9845E4kN /m’
s |- 0.000866|
1+ I
7 0.0008
Gt(;l) — kmax p 5 — kmax p > — 0.230584k1nax pV — 3.9845E4kN /m2
s |-0.000866|
1+ e
7 0.0008
6y =P kmaxT _—k,,.p'= 1.7825E5KN /m’
(5) 0
Ral (Hoooosj
Ve ’
© = KunP Ko P _ =0.230584K,, p'=3.9845E4kN /m’
© 10.000866|
7/ I+—
’. 0.0008

Now the stress ratio of the each spring can be calculated. Here it is assumed that the
relationship between the stress ratio and shear strain can be given by the back bone curve
and the relationship which is already used in eq. (4.9) will be adopted here as well.

- 103 -



The spring stiffness, shear strain and the reference shear strain of each spring is given in
Table 4.1 and previous computations. If the change in mean effective stress is also assumed
to be insignificant, then the reference shear strain can be taken to be equal to the initial
reference shear strain. Hence, the stress ratio of the springs can be calculated as:

RO _ Ko7 1728%0.866x107°

o 0 R66x107 =0.7186
y . x10
1+ T
7 0.0008
oK™ _1T28%0__,
1+7—‘ I+
y 0.0008
3 % _ -3
R = Kow? —_ 1728770.866XI10 ° _ 7146
7y —0.866x10"
b 0008
7/r :
“4) % _ -3
R _ K./ _ 1728 * —0.866X10 —_0.7186
y<4) —0.866x107°
1+ 1+
7, 0.0008
RO _ k. y® __1728%0 _
5) 0
1+ 1+ 50008
y 0.0008
(6) * -3
RO _ K./ _ 1728 *0.866x10 —0.7186

1 0.866x10~>
1+ L
0.0008

Using stress-dilatancy relationships, the volumetric strain increment due to
dilatancy will be computed.

The volumetric strain increment due to dilatancy for loading is calculated by using eq. (4.10).
Before the calculation of the volumetric strain due to dilatancy, the plastic shear strain

should be calculated first. The values of the input parameters in the calculations, Néi) and

R(i)

pt >

will be taken from table 4.1. The plastic shear strain is calculated by eq. (4.11) which

requires the value of equivalent shear stiffness. The equivalent shear stiffness Gé;) for each

spring is calculated using eq. (4.12). Substituting the right values of the reduction factor m
and H from table 4.1 , a simplified version of this equation can be obtained as given in eq.
(4.13).
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The amplitude of shear strain for the back bone curve is half of the maximum shear strain

which is given by eq. (4.14). Substituting the maximum shear strain of each spring in this
equation, the amplitude of shear strain can be determined as:

O

W= y0 1=0.000866
7 =|ri]=0

9 =y 1=0.000866

y® =ly® 1=0.000866
yS =k =0

7' =y |=0.000866

Then the value of the elastic shear stiffness can be computed as:

06
0.000866
I+ 2
0.0008

Gy = p'k

max

0.6
2 _
Geq - p kmax O

14—
0.0008

06
0.000866
42
0.0008

G = P'Kpa 0.4

0.6

0.41=0.6881p'k = (1—

+04,=p'k,.. :(1—

=0.6881p'k =

max

@

M
% =0.6649
GO

G (2)
Gt(a;) J =0
eq

(©)

(©)
€q

——J = 0.6649
G

(4)

“4) _ n
Gey' = P'Kpax 0.4 o

eq

' Gtan _
—gon0ges * 04| <00 Ik = (l—G—] ~ 0.6649

0.0008

, 0.6 ,
Gé;) = p kmax —0+04 = p kmax :[1__

1+
[1_

0.0008

06
0.000866
I+ 2
0.0008

(6)

G
GY = pk,, 0.4} =0.6881p'k = Gﬂ]=06649

max

(6)
eq
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Then from eq. (4.11) ,the plastic shear strain increments are calculated as:

@
eq

o2 {152 oot

eq

d o _ Gt(aln T[ (1)] —
7 S )T [T® fde}=0.0005758

3 _ ___EE;;;L TH® —
drg’ =|1-2% [fn} [T Jide} = -0.0005758

Now the volumetric strain due to dilatancy can be calculated using eq. (1.141).

1(i) (i)
dgd’(i) — _d}/p,(i)(R iRpt j

(i)
Nd

R will be negative for dy ™" >0 and positive fordy ™" < 0. Since the loading is initial

loading the value of Rgt)l =1.3, in accordance with Table 4.1 will be used.

R'O_RM
ded® = -dy"’“{N—‘“J =0.0002575
1(2) (2)
ded® — _dyp,(Z){ﬂ] _
—] =—0.0002575

F?'(4)-% (€))
ded@ = —dyP® (N—] —0.0002575

5), )
det® = —dy"’(s)( R™+Ry J ~0
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R|(6)+ (6)
del® = _d?,p,w){T)pt] =0.000275
d

The shear stresses in each spring will then be calculated from the product of the stress ratio
of the particular spring and mean effective stress. Here, for the applied small strain the mean
effective stress will be assumed to be constant and equal to the initial mean effective stress.

O = RO p'(l1+H pgv) =71.86kPa
P =R®p'(1+H ¢,) =0kPa
@ =R®p'(1+H .&,) =—71.86kPa
@ = R® p'(l+H pgv) =-71.86kPa
& - R® p'(1+H pgv) = 0kPa
7 =R®p(1+H ,&,) =71.86kPa

Note that this is the only the fourth component of the stress vector of each spring. All the
remaining components are zero. Hence the stress vector of each spring will then be given as:

%= o o 0o 0 7186KPa
= 0 0 0 0 okPa
0 0 0 0 —7186kPa
0 0 0 0 -7186kPa
f9}=0 0 0 0 0 okra
fol= 0 0o 0 0 718KPa

()

The global deviatoric stress will then be given by eq. (1.47).
R I N P .
S Ll R EEO U
= =)

After calculation, the deviatoric stress is obtained to be:

=0 o0 0 0 0  41.49}

Xyz

Here, it has to be noted that only the magnitudes of the shear stress will be considered to
determine the aggregate shear stress of the soil element.

This is the resulting stress vector for the analysis. Similar analysis under the same conditions
will be carried out by DIANA and the results will be compared with this one.
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4.2.2. Analysis by DIANA:
For the analysis using DIANA, the 3D soil element shown in fig. 4.1 will be used. The
components of the data file which will be used for DIANA liquefaction analysis were

explained in chapter 3. Some modifications will be made in the data file to create the model.

To align the origin of the coordinate system with the center of the virtual plane, the

coordinates of the nodes should be changed to:

"COORDINATES™
1 -5.000000E-01 -5.000000E-01 -5.000000E-01
2 5.000000E-01 -5.000000E-01 -5.000000E-01
3 -5.000000E-01 5.000000E-01 -5.000000E-01
4 5.000000E-01 5.000000E-01 -5.000000E-01
5 -5.000000E-01 -5.000000E-01 5.000000E-01
6 5.000000E-01 -5.000000E-01 5.000000E-01
7 -5.000000E-01 5.000000E-01 5.000000E-01
8 5.000000E-01 5.000000E-01 5.000000E-01

A prescribed shear strain value of Yy = 10 is used and the analysis is made. This will be
entered in the LOAD case 2.

CASE 2
DEFORM
/ 5-8 /TR 1 1.0E-4

And all the nodes will be fixed in the three directions which is done through the following
statement:

"SUPPORTS™
/1-8/7 TR 123

In this case, the rotation of the springs is done only around y axis. Hence, the values of 0

and C will be zero for all the springs while the value of ¢ changes according to the
orientation of the spring.

The results are shown for 20 load steps to the same strain level as the analytical solution is
given below.

90.97

90.97

90.97

41.49
0

0
from the analytical and DIANA are again in good

kN /m?

)=

The shear stress values resulting
agreement.
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4.3. Clarification of the torsion shear-icosahedral distribution deviatoric stress
relationship with DIANA analysis.

To compare the relative values given in table 1.2 of chapter one with Diana results, a drained
analysis is performed for different values of shear strain level. The resulting relative values
for the deviatoric shear part are summarized in the table below:

Table 4.2. Normal and

shear stresses at different strain levels [Global shear strain direction

24|
normalized
strain in zx Gxx Gyy Gzz Txy Tyz Txz p' Tmax Tuy/Tmax | Tyz/Tmax | Tzx/Tmax
direction(%)
12.5 -91.57 -85.97 -98.00 -0.472 -0.500 41.610 -91.847 | -126.969 0.004 0.004 -0.328
25 -91.42 -84.80 -98.00 -0.551 -0.789 45.420 -91.407 | -126.361 0.004 0.006 -0.359
37.5 -91.31 -84.30 -98.00 -0.520 -0.983 47.180 -91.203 | -126.079 0.004 0.008 -0.374
50 -91.20 -83.93 -98.00 -0.451 -1.122 48.300 -91.043 | -125.858 0.004 0.009 -0.384
62.5 -91.11 -83.62 -98.00 -0.366 -1.222 49.120 -90.910 | -125.674 0.003 0.010 -0.391
75 -91.04 -83.34 -98.00 -0.279 -1.298 49.770 -90.793 | -125.513 0.002 0.010 -0.397
87.5 -90.98 -83.09 -98.00 -0.194 -1.358 50.310 -90.690 | -125.370 0.002 0.011 -0.401
100 -90.94 -82.86 -98.00 -0.113 -1.405 50.780 -90.600 | -125.245 0.001 0.011 -0.405
112.5 -90.92 -82.64 -98.00 -0.037 -1.443 51.190 -90.520 | -125.135 0.000 0.012 -0.409
125 -90.90 -82.44 -98.00 0.034 -1.475 51.560 -90.447 | -125.033 0.000 0.012 -0.412
1000 -101.50 -91.53 -98.00 -2.907 -0.708 47.840 -97.010 | -134.107 0.022 0.005 -0.357
3000 -101.80 -91.78 -98.00 -2.749 -0.597 47.980 -97.193 | -134.360 0.020 0.004 -0.357
Relative value of shear stress with respect to -0.061  -0.015 1.000 -0.061 -0.015 1.000
shear stress in the direction of global shear
strain for the last two strain levels -0.057 -0.012 1.000 -0.057 -0.012 1.000
Table 4.3. Normal and shear stresses at different strain levels [Global shear strain direction
yz]
Normalized
strain in yz Oxx Gyy Cyz Tyy Tyz Tyz p' Tmax Tyxy/Tmax | Tyz/Tmax | Tax/Tmax
direction(%)
12.5 -84.19 -98.00 -90.60 0.000 41.480 0.000 -90.930 -125.702 0.000 -0.330 0.000
25 -82.32 -98.00 -90.66 0.000 45.290 0.000 -90.327 -124.868 0.000 -0.363 0.000
37.5 -97.74 -98.00 -97.79 0.000 5.926 0.000 -97.843 -135.259 0.000 -0.044 0.000
50 -80.92 -98.00 -90.88 0.000 48.240 0.000 -89.933 -124.324 0.000 -0.388 0.000
62.5 -80.48 -98.00 -90.89 0.000 49.070 0.000 -89.790 -124.126 0.000 -0.395 0.000
75 -80.12 -98.00 -90.87 0.000 49.730 0.000 -89.663 -123.951 0.000 -0.401 0.000
87.5 -79.80 -98.00 -90.84 0.000 50.270 0.000 -89.547 -123.789 0.000 -0.406 0.000
100 -79.52 -98.00 -90.80 0.000 50.740 0.000 -89.440 -123.642 0.000 -0.410 0.000
112.5 -79.27 -98.00 -90.75 0.000 51.140 0.000 -89.340 -123.504 0.000 -0.414 0.000
125 -79.04 -98.00 -90.70 0.000 51.500 0.000 -89.247 -123.375 0.000 -0.417 0.000
1000 -82.67 -98.00 -92.22 0.000 45.430 0.000 -90.963 -125.748 0.000 -0.361 0.000
3000 -82.68 -98.00 -92.24 0.000 45.480 0.000 -90.973 -125.762 0.000 -0.362 0.000
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Relative value of shear stress with respect to 0.000 1.000 0.000 0.000 1.000 0.000
shear stress in the direction of global shear
strain for the last two straii levels 0.000 1.000 0.000 0.000 1.000 0.000
Table 4.4. Normal and shear stresses at different strain levels [Global shear strain direction
xy]
Normalized
strain in Xy Oxx Gyy Ozz Txy Tyz Txz p' Tmax Txy/ Tmax Tyz/ Tmax Tox/ Tmax
direction(%o)
12.5 -98.00 -90.07 -85.45 41.070 | 0.382 -0.243 -91.173 | -126.038 | -0.326 -0.003 0.002
25 -98.00 -89.90 -83.77 44,730 | 0.720 -0.333 -90.557 | -125.186 | -0.357 -0.006 0.003
37.5 -98.00 -89.90 -83.77 44.730 | 0.720 -0.333 -90.557 | -125.186 | -0.357 -0.006 0.003
50 -98.00 -90.04 -82.44 47.560 | 1.010 -0.391 -90.160 | -124.637 | -0.382 -0.008 0.003
62.5 -98.00 -90.08 -82.08 48.380 | 1.078 -0.426 -90.053 | -124.490 | -0.389 -0.009 0.003
75 -98.00 -90.13 -81.83 49.050 | 1.118 -0.475 -89.987 | -124.398 | -0.394 -0.009 0.004
87.5 -98.00 -90.19 -81.66 49.630 | 1.140 -0.534 -89.950 | -124.347 | -0.399 -0.009 0.004
100 -98.00 -90.25 -81.56 50.130 | 1.150 -0.601 -89.937 | -124.328 | -0.403 -0.009 0.005
112.5 -98.00 -90.31 -81.50 50.590 | 1.151 -0.673 -89.937 | -124.328 | -0.407 -0.009 0.005
125 -98.00 -90.38 -81.48 51.010 | 1.145 -0.749 -89.953 | -124.351 -0.410 -0.009 0.006
1000 -98.00 -93.10 -86.50 45.400 | 0.764 -1.040 -92.523 | -127.904 | -0.355 -0.006 0.008
3000 -98.00 -93.10 -86.50 45.450 | 0.760 -1.034 -92.527 | -127.909 | -0.355 -0.006 0.008
Relative value of shear stress with respect to shear 1.000 | 0.017 -0.023 1.000 0.017 -0.023
stress in the direction of global shear strain for the
last two strain levels 1.000 | 0.017 -0.023 1.000 0.017 -0.023

The values written in bold in each table, show more or less similar trend as given in table 1.2
in chapter one. But there is difference which can be attributed to the differences in the
loading and boundary conditions between the DIANA analysis and when originally
establishing table 1.2. in the DIANA analysis, there is a vertical loading and volumetric strain.
Where as both these conditions were not assumed in chapter one.
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CHAPTER FIVE
VERIFICATION OF THE MODEL FOR DIFFERENT SOIL
PARAMETERS

In chapter two, the agreement between the source code for the 3-D liquefaction analysis and
the theoretical background of the model was proved to be acceptable. In this chapter, the
consistency of the analysis results with laboratory results and with another numerical analysis
result will be checked. For this, 3-D liquefaction analysis will be carried out by DIANA on a
soil element for different soil parameters.

The analysis will be carried out with equal material and state parameters as the tests. The list
of user defined parameters to be used for the analysis will be given in tables.

Table 5.1. Data for the drained analysis

Symbol Value
Drx [%] 75 57 38 22
Rimax0 3072 2624 2176 1728
%o 0.0008
n 0.4
B.o [kPa] 76800 65600 54400 43200
B, [kPa] 96000 82000 68000 54000
H, 22
Ry 1.3
Ry, 0.85
Ny 1.3
Y 0.0001
p'o[kPa] 100
7 1
m 0.5

5.1 DRAINED MONOTONIC ONE-WAY SIMPLE SHEAR

Stress and strain components in simple shear for the monotonic one-way simple shear are
illustrated in Fig. 5.1. The normal stress in z direction is kept constant and normal strains in
x and y directions are always zero. In this case, strain-controlled analysis will be carried out
and Yxy and Yy, are zero while Y, is controlled. The top nodes of the cube element will be
deformed by a strain of 10 per step.
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Fig 5.1. Stress-strain components in simple shear mode

Shear stress versus shear strain graphs

For monotonic loading the shear stress converges to a certain value. This state corresponds
to critical state and the simulation by the analysis shows this phenomenon. The figures
below show similar plot by Nishimura and also the comparison between his simulation and
laboratory results. It can be noted that the computed results overestimate the observed ones.
This is because the computed results retained larger mean effective principal stress p’ than
sand test did. The larger p’led to larger G, and consequently resulted in the overestimation
of stress-strain relation.

100
80 1
a
Lo
Z O
24
g
240
g —— Dr=22%
<
» Dr=38%
R —E£70
2 ] Dr=57%
— Dr=75%
0 T T T T T T T T T

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
Shear strain

Fig 5.2. Stress strain relationship result by DIANA
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Fig 5.3. Computed stress strain relationship result by Nishimura (2002)
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Fig 5.4. Compar-i.son of computed stress strain relationship result by Nishimura(2002)
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0.04

and laboratory observation by Shahnazari(2001).

Referring to eq. (1.167), it can be deduced that this difference of the mean effective stress
values between the simulation and the test arose from the difference between the values of
the volumetric strain due to dilatancy. This effect can be reduced by two ways to have

agreeable plots between the simulated and observed ones. They are:

2 normalizing the shear stress by mean effective stress

With the results of the analysis, the stress ratio (t/p)-strain graph can also be drawn. These
graphs are shown below. Comparing the resulting graphs from DIANA with the observation

results for Dr = 22% , a better agreement exists between the two.
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Fig 5.6. Comparison of computed stress ratio strain relationship result by Nishimura
and laboratory observation.
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Volumetric strain versus shear strain graphs

The graphs below show that the volumetric strain versus the shear strain curve. Here,
positive volumetric strain is positive dilatancy and negative volumetric strain represents
contraction or negative dilatancy for the DIANA results. The reverse is true for the results

by Nishimura and observed ones.

The result from DIANA underestimates the contraction of sand as compared to the
computed result by Nishimura or by laboratory tests. Due to this, there will be less swelling
due to change in p’. The relationship between these two quantities for the observation is only

given till shear strain reaches 0.03.
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Fig 5.7. Volumetric change along with shearing result by DIANA
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Fig 5.8. Volumetric strain change along with shearing result by Nishimura and
laboratory results.
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5.2. DRAINED CYCLIC SIMPLE SHEAR

This curve shows that volumetric change with shearing for different soil densities. The shear

strain amplitude is kept constant at the value of 0.03. The volumetric strain progresses and

converges at a certain value as expected. The shapes of the curves are also in good

agreement with that of the computed results by Nishimura and laboratory observations.
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Fig 5.9 Shear strain versus volumetric strain result by DIANA
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Fig 5.10 Shear strain versus volumetric strain result by Nishimura(2002)
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Fig 5.11 Shear strain versus volumetric strain result from laboratory observation by
Shahnazari (2001).

Shear stress versus shear strain graphs

These graphs show the calculated stress-strain relationships for three different densities. The
skeleton curve and the hysteresis loops are well delineated in the graphs. As the number of
cycle increases, the stress amplitude will also increase. This is the effect of hardening. In
addition in both results by DIANA and Nishimura the effect of hardening is more
pronounced for the soils with lower densities which is logical.
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Fig 5.12. Shear strain versus volumetric strain result by DIANA.
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Fig 5.13 Shear stress versus shear strain result by Nishimura (2002).

5.3. UNDRAINED MONOTONIC SIMPLE SHEAR

The stress-strain relationships for different soil densities are shown below. As expected, the
soil with low density, complete flow occurs while the soil with the higher density has some
shear resistance. This is also supported by laboratory observation as shown in the

subsequent graph.
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Fig.5.14. Shear stress strain relationship result by DIANA for undrained monotonic

loading
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Fig.5.16. Deviatoric stress versus shear strain curves by Nishimura(2002) and
Yoshimine (1996)

5.4. UNDRAINED CYCLIC SIMPLE SHEAR

Good agreement between the calculated results by DIANA and laboratory observation
exists. In addition, the diagrams below suggest that the model is capable of predicting
softening of loose sands and the cyclic mobility of dense sands. Abrupt softening is observed
on the soils with less density. The number of cycles required to zero effective stress is
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smaller for looser sands. All these features of the result are consistent with the laboratory

observation.
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Fig.5.17. shear stress versus shear strain curves by DIANA
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Fig.5.17. shear stress versus effective stress curves by DIANA
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CHAPTER SIX
CONCLUSION AND RECOMMENDATION

6.1. CONCLUSION

e Stress and strain vectors can be transformed between one coordinate system and
another coordinate system. The inverse of transformation matrix for stress is equal
to the transpose of strain transformation matrix.

e An icosahedron is the best geometrical element to distribute the planes. Nishimuara
(2002) suggests that there will be distribution of six springs on each plane. However,
comparison of maximum deviatoric stresses and (1.95)) in isotropic torsion shear test
and from icosahedral distribution shows some disagreements between the two (as
described in eq. (1.85), (1.90)). The likely reason for the discrepancy is the
distribution of the springs on each plane with respect to an arbitrary coordinate
system on the planes.

e The one-dimensional stress-strain relationships of the model give good prediction of
the stress ratio. However, the stress dilatancy relationship results in an
overestimation of contraction which there by affects the mean effective stress. The
effect is also propagated into shear stress which is calculated from the product of
mean effective stress and stress ratio.

e There is good agreement between the analytical calculation of stresses for a simple
shear case and Diana result. This indicates that the fortran program is written
correctly in accordance with the theoretical background given in chapter one.

e The comparison of shear stress-shear strain and volumetric strain-shear strain graphs
from DIANA result and laboratory investigations show that there is a considerable
differences. The main sources of these differences are:

- anisotropic distribution of the springs on the virtual planes and

- overestimation of contraction by the stress-dilatancy relationship

- drawbacks in the MASING subroutine of the report for the case when the
stress ratio in the past is exceeded.

6.2. RECOMMENDATION

e The stress-dilatancy relationship should be modified. The effect of the problem with
the stress-dilatancy relationship is discussed in the stress-strain graphs in section 5.1.

e The springs on each plane should be distributed isotropically so that orientation is
unique. One way to achieve a unique distribution of springs will be discussed below.

In chapter one, it is stated that the virtual planes are oriented perpendicular to the normal
lines from the center of an icosahedron towards the corners and centroids of each face.
Hence looking into an icosahedral element given in fig. 1.7, it can be noticed that each
corner point is surrounded by five other corners. The lines connecting the corner point
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under consideration and the surrounding corners are unique for that particular corner point.
Hence, the springs on the planes at the corners can be oriented along those lines. Hence
there will be five springs on the planes which have their normal line pointing towards the
corner points of an icosahedron.

The faces of an icosahedral element are equilateral triangles. Hence, the line directing from
the centroids of each face towards each corner point and to the centers of each side are
unique for each face. Thus six springs can be aligned along these directions: three towards
the corners and three towards the bisectors of the sides. In this manner complete isotropy of
the model can be achieved.

(b)

Fig. 6.1 Distribution of springs (a) on the planes around the corner (b) on the planes at the
centroid of each face.

® The MASING subroutine in the source-code should be modified for the case when
the maximum stress ratio in the past is exceeded. Some suggestions are made in
section 2.2.3 of the report.
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Appendix A. Values of 0 and ¢ for normal lines to each virtual plane.

Line
number

[ SRS R R L T R L T T T LN T TR N TR W A R o W W U O
Fo 5 S e oh = o th R D3 Mk S mo = o O P L g e W00 O e ) R

0

0.00000000000
1.57079632680
0.31415926536
534070751110
408407044970
282743338820
0.94247779608
5.96902604180
471238898040
345575191890
2.19911485750
0.00000000000
0.94247779608
5.96902604180
471238898040
3.45575191890
2.19911485750
1.57079632680
0.31415926536
534070751110
4 08407044970
282743338820
0.94247779608
5.96902604180
471238898040
345575191890
219911485750
0.31415926536
534070751110
4 08407044970
282743338820
1.67079632680
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¢

0.00000000000
1.10714871780
1.10714871780
110714871780
110714871780
1.10714871780
2.03444393580
2.03444393580
2.03444393580
2.03444393580
2.03444393580
3.14159265360
0.65235813978
0.65235813978
0.65235813978
0.65235813978
0.65235813978
2.48923451380
2.48923451380
248923451380
248923451380
248923451380
1.38208579600
1.38208579600
1.38208579600
1.38208579600
1.38208579600
175950685760
1.75950685760
1.75950685760
1.75950685760
1.75950685760



Appendix B. Proof of transformation matrix properties using MAPLE program

The transformation matrix M between the unit vectors of two coordinate systems contains the direction cosines between those
coordinate systems. It is defined as :

S with( lineardlgebra)
= M o= Matrix([[11, ml, nl], [ 12, m2 n2], [I3,m3, r3]])

Il mi ni
M=|12 m2 n2
I3 m3 n3
:> The strain tensor(considering its symmetry), denoted by E here is given as :
>
"> E = Matrix([[Fxx, Exy, Exz], [ Exy, Fyy, Eyz] [Fxz, By, Ezz]]);
Exx Exy Exz
E=| Exy Byy Eyz
fxz Byz Hzz
S
>
_> The stress tensor(considering its symmetry), denoted by 5 is given as :
>
> 5= Metrix(| [ Bz Sxy, Smz|, [ Sxv, Syy, Svzl] [Sm syz Szz]]):
Sxx Snmy Szx
8= Sxy Syy S=
Srx SyZ &Iz
>
>

:> The strain in the new coordinate system is obtained by the product M-E-MT. This is calculated as :

=-> Enew = simplify(Matrizhfatrizhultiply (M, Matizhdatrixhfultiph: (B, Transpose(24))) );

Brew = | [Bxx 1% + 200 Bxymi + 211 Bxznl + Byymi® + 2mi Bye nd + Bz nd® 17 Bxxi2 + 11 BExym2 + 1 Exz 02 +ml BExy 12 + mi By m2 + mi Byznl
4+l Exzi2 + nl Byzm2 + nf Bzzp2 15 BExx I3+ 1 Exym3 + 1 Exzni+ml Exyii+ml Byym3i+ml Byenl+nf Exzii+ rl Byzmi+ nf EZZM],
[H Exxl2 + 11 Exym2 + 11 Exzn2 +mi Exyl2 +ml Byym2 +mi Byrp2 + nd Exzl2 4 ni Byzm2 + nl EZHZ,EXXIZQ + 202 Exym2 + 212 Exz 2
+ Eyym22 + Im2 Byznl + Ezz»e22,I2Exx1'3 + 2 Exym3+ 12 Bxznld +m2 Exyl3 +m2 Byym3 +m2 Byznl + 02 Exz 13 + n2 Byzmi + n2 Ezzni],
[H Eax I3 + 1 Bxym3 + 1] Exznl +ml Exyl3 +ml Byym3 +mi Byznd + nl Bxzl3 + nl Byzm3 + nl Bzenld, 12 Exx 13 + 12 Bxym3 + 12 Exznl
+m2 Eay i3+ m2 Byym3 + m2 Eye nd + n2 Bz 13 + n2 Byem3 + n2 Bz nd, Bxx I + 203 Bxym3 + 213 Bz nd + Byym3 + 2m3 Bve n3 + Bz ]|

-
> Note that , this is a 3 X3 matrix and the strian components given are not the engineering strains.
_> Each strain eomponents of the transformed strain tensor can be determined as follows :

> Emewrx = Row(Matrix( [ Cokenn(Enew, 1)]), 1);

Enewxx = E‘xxH2 + 200 Bxymi + 211 Exznl + Eyymi® + 2mi Byznl + Ezz ni® ]
> Erewyy = Fow(Matriz([ Colime(Enew, 2)]), 2);

Enewyy = | Exxi2® + 212 Exym2 + 212 Exzn2 + EjzymZ + 2m2 Eyzn2 + Fzz n2 ]

Enawzz =

]

> Enewszz = Row(Matrix( | Colwnn(Enew, 3)]), 3);
[ Exxlf 4+ 213 Bxpmi+ 213 Bxznd + Byym$ + 2m3 Byznd + Bzzni® ]
)

> Emewry = Row(Matrix(|Colnr(Enew, 2)]), 1),

Enewxy = [ I Bxxi2 + 1 Bxym2 + 1] Bxz a2 +ml Exyl2 + mi Byym2 +ml Byz n2 + nl Bxzi2 + nl Eyzm2 + ni Ezz n2 ]
> Erewyz == Row(Matrix( [ Cofump(Enew, 3)]), 2);

Enewyz = [ 12 Bxx i3 + 12 Bxym3 + 12 Bxznld +m2 Exy I3 + m2 Byym3 +m2 Byz n3 + w2 Bxz i3 + n2 Eyzm3 + n2 Brzwnl ]
> Enewrs == Row(Matrix( [ Codume(Enew, 3)]), 1);

Enewzx = [ I Bxx i3+ 1 Bxym3 + 1] Bxznld +ml BExyl3 +mi Byym3 +ml Byzn3 + nl Bxz i3+ nl Eyzm3 + ni Bzzwnl ]
:> From symmetry, the full strain tensor can be written.
> Let us define the strain vector in the original coordinate system :
=
> Ev= Marix([[Exx] [Eyy] [Ezz] [2- Exy] [2- Eyzl] [2- Ez]]);

Exx

Ezz
2 Exy
2 Byz
Z Bzx
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> Let us also define the engineering strain vector in the rotated coordinate system containing the elements of the strain tensor as :

-~
>

> Evmew = Adatriz(| | Enewsz], [ Enewyy ), [Enewszz), | 2- Enewsy], [2- Enewyz], [2- Enewz]]);
Exxii®+ 21 Bxyml + 211 Bxznd + Byymi® + 2mi Byznl + Ezzni®

"> Atransformation matrix Te can be set up which stransfers the strain vector
in the oringinal coordinate system (Ev) into strain vector in the rotated coordinate system(Evnew)

Bvnew =

Exxi2®+ 202 Bxym2 + 212 BxznZ + Byym2® + 2m2 Byz n2 + Bzznz®

Exxii + 213 Bxymi+ 213 Bxzni+ Byymi + 2m3 Byz ni + Bzzni
2L Bxxi2+ 20 Exym2 + 20 BExzn2 + 2mi Exy 2+ 2ml Byym2 + 2mi Eyzn2 + 2nd Exz 2+ 2nl Byzm2 + 2ni Bzznl
22 Exxi3 4+ 22 Exymi 4+ 22 Barnd + 2m2 Exy I3+ 2m2 Byym3 + im2 Byznl 4+ 202 Exz i34 202 Byemi 4 102 Bzz nd
2 Exxid 4+ 20 Exymi+ 20 Bxznd+2ml Exyl3+2ml ByymI+ 2ml Byznl+ 2nf Exzi3 4+ 20l Byvami+ Inl Bzznd

. The elements of this transformation matrix can be obtained as;

> Tell

> Tel2

> Tel3

> Text

> Tem

> Tezs

> Tednt

> Texz

> Te3s

= (coeff(Enews, Exx) ),
= (coeff(Enews, Eyy) ),
= (coeff(Enewssy Ezz) ),
= [coeff[ % Enewsor Exy]]
= [coeff[ % Enewsog Eyz]];
= [cueff[ % Enewsz, Exz]]

= (coeff(Enewyy, Est) ),

= (coeff( Enewyy, Eyv) ),

= (coeff( Enewyy, Ezz) ),
= [coeff[ % Enewyy, Exy]]
= [coeff[ % Enewyy, Eyz]];

= [coeff[ % Enewyy, Exz]];
= (coeff(Enewszz, Exx) ),
= (coeff(Enewzz, Evy)),

= (coeff(Enewszz, Ezz) ),
= [coeff[ % Enewszz, Exy]]
= [coeff[ % Enewszz, Eyz]J;

= [coeff[ % Enewzz, Exz]]

= (coeff(2- Enewsxy, Exx)),

Tell :[132]
Tel2 :=[mj2]
Tefs.z[mﬂ]

Telg=|lini |

Tei5=|minl]

Teit =1l nl |

Te2] = [ s ]
Te22 = [m22 ]
Tp23 = [ s ]

Te2d = [ Zm2 ]

Te25=|m2n2 |

Te26:=| (2 n2 |

Te3l = [ 7 ]
Tesz = [mgz ]
Te33 = [ ni ]

Te3s=|l3m3 |

Te%:[mgns]

Tes6=[13n3 |
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= Te3f =

> Tedl :

= Tedd =

> Tedd :

= Tedd s

> Teds s

> Tedd s

> Tesl =

> Teb:

> Teb3 =

> Te54 :

= Tes5 s

= Tesh =

> Tedl =

> Tehl:

o> Tedd =

> Tedd =

> Ted5 =

= Tenf =

YV VVY

[coeff[ % Enewszz, EXZJ ]

(coeff(2- Enewsy, Emx));
(coeff(2- Enewny, Eyv)),
(coeff(2- Enewny, Ezz) ),
(coeff( Enewsy, Exy)),
(coeff( Enewsy, Eyz)),
(coeff( Enewsy, Exz)),
(cneff( 2 Enewsyr, Exx) ),
(coeff(2- Enewyz, Eyy));
(coeff(2-Enewyz, Ezz) ),
(coeff( Enewyz, Exy));
(coeff( Enewyz, Eyz));
(coeff( Enewyz Exz));
(coeff( 2 Enewzz, Exx)),
(coeff( 2 Enewzz Evy));
(coeff(2 Enewmy, Ezz));
{coeff( Enewsms Exy)):
(coeff{ Enewzz Eyz));

(coeff( Enewsz Exz));

Tez6:=[1in3 |
reqr =| 21112 ]
Teqz = 2mim2 |
Teds=[ 2nln2 |
Tesg=[lim2+mli2]
Ted5=|minz+ninz |
Tedt = IF n2 + ni 12 |
Tesi=| 21217 |
Tes2 = 2m2m3 |
Tess=[2n2n3 |
Tesq=[12m3+m213 |
Tess=|m2ni+n2m3 |
Tes6=[12n3 +n213 |
Tedl =] 24113 |
Tesz=|imlim3 |
Tesi=| 20l n7 |
Tebd=[lim3+mli3]
Teds=|min3+nim3 |

Teo6 = [ 1l n3+ni 13 |

Then the 6 X6 strain transformation matrix Te can be written as :

Te == Muatrix([[Tell, TelZ, Tel3, Teld, Tels, Telé], [ Te2l, Te22, Te23, Te24, Te2s5, Te26], [Tedl, Te32, Ted3, Tedd, Te3s, Ted6 ], [Te4l, TedZ, Ted3, Tedd, Teds,

Ted6 |, [TeS1, Te52, Tes3, Tes4, Tess, TeSt), [ Teb1, Te62, Tetd, Tetd, Teds, Tebt | ])

» This is the transformation matrix engineering strains between the original and the new coordinate system
. The inverse transformation matrix for engineering strains can also be developed in a similar manner(M -S.MT)

>
>

ni? mi minl
n2? Zm2 m2 n2
3t 3m2 m3n3

2 Zmim2 2rin? Hm2+mil2 min2+nim2 lin2+nil
2I203 Zmim3 Zmind EmI+m2ii m2ri+nz2mi 2ni+n2is
IR Zmimd Zrind Hm3+milimind+nimilini+nils

> First let us define the stress in the rotated coordinate system as :

g

> En = Matix(| | Eror, Ensey, Enzxe |, | Etcey, Enyy, Enyz)|, | Enze, Enye, Enez]]);

Enxx Enxy Enzx

En =| Enxy Emyy Enyz

Enzx Emyz Enzz
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>
e
-

Then the stress tensor in the original coordinate system can be calculated by (MT -Sn-M) :

EE == simplify(Matrizdatrizhuliply (Transpose (M), MatrizMatrizMultiply(Bn, M) ) ),

EE = |[Bmxx 1i* + 207 Evxy 12 + 217 Evzx I3 + Enyy 12° + 212 Enyz 13 + Enzz 135 1] Enxxmi + 11 Enxym2 + 11 Bnzxm3 + (2 Bnaym] + 12 Enyypm2

=>
>
>
>

+ 12 Enyzm3 + {3 Enzxmi + I3 Enyzm2 + i3 Enzzm 3, 1I Euxx nd + I Enxy n2 + [7 Enzx n3 + 12 Enxy ni + 12 Emyy 02 + 2 Emyz 03 + I3 Enzx ni
+ 13 Euyznl + 13 Bnzz nd),

[ff Erxxmi + 17 Buxym2 + 17 Brzxm? + 12 Enxymi + 12 Bmyym2 + 12 Briyzm3 + 13 Buzxml + 13 Bmyem2 + 13 Eﬂzsz,E‘nmmiz + 2mi Enxym2
+ 2mi Buzxm3 —+ EP?WMZ’Q + 2m2 Emyzm3 + E‘sazzmﬂ,mf Euxx el +mi Enxy nd +mi Enzzn? +m2 Enxy nl + m2 Enyy n2 +m2 Emyzn?

+m3 Erzx ol +m3 Enyznl +m3 Eﬂzzn?],

[U Eaxxnd + 1] Buxynl + ] BEnzxnd + 12 Enxy nl + 12 Emyy 02 + 12 Emyz 0 + 13 Enzznd + 13 Bayz m2 + 13 Bnzz n3 ml Enxx nl + ml Enxy n2
+m! Erzxnd +m2 Enxynl +m2 Bnyyns +m2 Buyznd +m3 Buzxnd +m3 Enyzns +m3 EMMﬁ,EHXXHfZ + 2nf Taxyn2 + Znl Erzxnid
+Enyyn£2+ 2n2Enﬂn3+E‘szzn32]]

This is a 3 X3 matrix containing elements of the stress tensor in the original coordinate system. Each element can be extracted
from this matrix as :

E&xx == FRow(Matriz([Column(EE, 1)]), 1);
EExx = [ Enxx 1%+ 207 Bnayi2 + 217 Bnzx I3 + Enmyy I2° + 202 Enyz I3 + Bnzz 13 }
ERyy == Row(Matriz(|Cobenn(EE, 2)]), 2);
BBy = | Buxami®+ 2ml Fuxym2 + 2mi Bnzzmi + Eﬂwm22 + Zmi Emzmi+ Enzzm3® }

EEzz == Row(Matrix(| Columa(EE, 3)]), 3);
EEzz = [ Enxx ni® + 2nl Buxy n2 + 2ni Bnzxnd + Enyy n2° + 202 Buyz n3 + Enzz ni’ ]

> EEry == Row(Matix([Cokamn(EE 2)]), 1)

AEEzy = [ IF Erzxml + 0 BEnxym2 + 13 Brzxm? + 12 Erxyml + 2 Bmyym2 + 02 Buyem? + 13 Enzaml] + 13 Emyzm2 + 13 Bnzzm 3 ]

> Efyz = Row(Matriz(| Columer(EE, 3)]), 2);

>

=
>
=
>
=

=
>
=

ERyz = [mIE‘Psxxm} +mi Euxy n2 +mi Enzxnd + m2 Enxy nl +m2 Enyy n2 +m2 Ernyznd +m3 Bnzxonl +m3£‘nyzss2+m3£‘mzzn3]

EEzz == Row(Matriz(| Colanr(EE, 3)]), 1),
ERzx = [ IF Buxxwd + 1] Buxy n2 + 17 Bnzx el + 2 Bnxy nd + 12 Enyy 02 + 12 Enyz n3 + 13 Brzxnd + 13 Bnyz 02 + 13 Enzz nl ]

If we define a stress vector in the rotated (Svrotated) and original (S5v Jcoordinate system as :

Bvraotated == Matrix(||Erz=], [Eryy], [Erzz], [ 2- By, [ 2- Eryel, [ 2- Erzx]]):
Erxx
Eryy
Brez
2 Erxy
2 Eryz
2 Erzx

Evrotated =

EBv = Mairix([[EEzx], [EEyy], [EEz], [ 2- EExy] [2- EEyz] [2- EEm]]),
Enxxli* + 217 Enxy 12 + 211 Bnzx 13 + Bnyy [2° + 212 Enyz [3 + Enzz [3°
Enxxmi® + 2mi Euxymz + imli Enzxm3i + Enwm22 + im2 Emyzm3 + Enzzm 3
Bnxxnl® + 20l Euxyns + 2nl Buzxnl + EmwnZz + Zn2 Bmyznl + Bnzz n it
20 Bexxml + 21 Buxym2 + 210 Enzxmi + 212 Enxymd 4+ 202 Bmyym2 + 212 Emyzm3 + 213 Enzxml + 213 Emyzm2 + 213 Enzzm 3
2ml Buxx ol 4+ dmi Buxyn2 + 2md Brzxnd + 2ma Enxynd + 2m2 Enyynl + 2m2 Bnyznd + 2m3 Brzxnl + dm3 Enyzn2 + 2m3 Enzz nld
21 Bexx el + 211 Bruxy 2 + 210 Brzxnd + 212 Brexynl + 212 Bayy 2 + 212 Bmyzrd + 213 Brzx vl + 213 BEryz n2 + 213 Brzz i3

A transformation matrix which transforms the stress vector in the rotated coordinate sytem to stress vector
in the original coordinate system can be set up
. This transformation matrix is nothing but the inverse of the previously established stress transformation matrix(Ts)
. Hence it will be called Tsinverse. The elements of Tsinverse can be determined as :

TEinwersell == (coeff(EExx Enx));
TRinverselfi = [ _[12 ]

TEinwersel? == (coeff(EExx Enyy)):
TRinversefl = [ _[22 ]

TEinwverseld = (coeff(EExx Enzz)),
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TEmwversel3

TEmwerseld

TEmversels

TEumrrerseld

TEmwverse2l

TEmwversedl

TEmwerse23

TEmwversezd

TEmwverseds

TEinversed

TEmnverse3l

TEitrversed2

TEinverse33

TEinwverse34

TEinverse35

TEinverse36

TEinverse4l

TEinverse42

TEinverse43

TEinversed4

TEinverseds

TEinversedf

TEinverses1

TEinverse52

TEinverse53

= (coeff(EEm Ener));

TRimversel3 = | _[32 |

1 AY
- [cneff[—- EExz, Enxy | |;
2 2/

TEimverseld = | 1112 |

1 AR
- [cueff[—' EEs, Enyz | |
2 iy

THinversed 5 = 1213 |

1 N Y
- [cueff[—- EExx, Enzx | |,
2 2/

TEuversed6 = | 1113 |

= (coeff(EEyy, Enxx) ),

TEinverse2] = | mit |

= (coeff(EEyy, Enyy));

TEinverse22 = | m2* |

= (coeff(EEyy, Enzz));

TEinverseld = | m3 |

1 Ny
= [cueff[—' EEyy, EHXY| ‘
2 s/

TEinverseld = | mims |

1 3
= [cueff[—' EEwy, Enyz| |;
2 Iy

TRinversel 5 = | mimi |

1 3
= [cueff[—' EE¥y, Enzx| |;
2 i

TRinverselo = | mimi |

= (coeff(EEzz, Emm));

TRimverseif :=| nl |

= (coeff(EEzz, Enyy));

TEinverseiz = | n2* |

= (coeff(EEzz, Enzz) ),

TRinverseii = | n3 |

1 N Y
- [cneff[—- EEzz, Enzy | |:
2 'y,

TEinverse3d = | nin2 |

1 Ny
- [coeff[—- EEz, Enyz | |;
2 y

TRimverseis = | n2ni |

1 AR
- [coeff[ ~ EEzz Enz | |,
2 iy

TRimverseis = | nini |

== (coeff(2- EExy, Enxx));

TEimversed] = | 20 m1 |

= (coeff(2-EExy, Enyy));

THinversed2 = | 202m2 |

= (coeff(2-EExy, Enzz));

TRimversad? = | 203 m3 |

== (coeff(EExy, By );

TEinversedd = | Umi+miiz |

== (coeff(EExy, Eave) ),

TEinversedd = | IZm3+mz2is |

= (coeff(EExy, Enm) ),
TEinversedG = | I m3 +mi i3 |

= (coeff(2-EEyz, Enx) ),
TEinverse 57 ::| 2mini ‘

= (coeff(2-EEyz, Enyy));
TEinversa 52 = | im2n2 ‘

= (coeff(2-EEyz, Enzz));
TEinverse 53 = | imin3 ‘
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>
>
>

>
>

TEinverse5d == (coeff(EEyz, Enxy));
TRinmverseSd = [ mind +nimz2 ]

TEnverse5s == (coeff{EEyz, Enyz));
TEinversels = [ m2nl+ndm3 ]

TEinversesd == (coeff(EEyz, Enz)),
THinverself = [ mini+nim3 ]

TEinversefil == (coeff(2-EEzx Enxx)),
TRinversetii = 217 ni |

TEinwersef2 == (coeff(2-EEzz Enyy)),
TEinversad? = [ 2i2m2 ]

TEinwversef3 = (coeff(2-EEzx Enzz));
TRinversat3 = [ 2iin3 ]

TEnversefd == (coeff{EEm Enxy));
TRimversafid = [ It w2+ nil2 ]

TEinverse6s == (coeff(EEzz, Enyz)),
TEinversets = [ 2R3+ n2is ]

TEnversedf == (coeff{EEm Enm));
TRipversafis = [ Il 34+ nils ]

Then the inverse of the stress transformation matrix can be given as :

TEinverse = Matrix([ | TEmwversell, TEmnversel12, TEmversel3, TEnversel4, TEmversel5, TEiwerseld], [ TEwwerse2l, TEmverse2Z, TEmwverse23, TEmverse24,
TEinverse2s, TEmverse2 ), [ TEmverse31, TEmverse3Z, TEmverse33, TEinverse34, TEmverse35, TEmverse3d], [ TEinversed4l, TEmverse4Z, TEmversed3,
TEinversedd, TEmversed5, TEinversedd |, [ TEmverse51, TEmverse52, TEinverse53, TEmverse5d, TEmverse55, TEmwverse56 ], [ TEmwversefil, TEmnverse62,
TEinversefd, TEinversefid, TEmversefis, TEmnversefifi]])

i i i iz i2iz i
m12 m22 m32 mimz m2m3 mim3?
ni n2? n3l nin2 nZ ni nlni

TEiverse =
2iimi 22m2 23m3 Um2+mll2 R2Zm3i4+m2il Iw3+miis

dminl imznpZ Imind minZ+nimd mzni+nzmimini+anlm?
2iimd 202m2 203nr3 Un24wil2 eI+ w2y Dri+wils

This is the inverse transformation matrix for engineering strains between the original and the new coordinate system

. The transformation matrix for stresses can also be developed in a similar manner(M-S.M7T ).

Swew = simplify (MatrixMatrizMultply (M, Matrixdatrixultiply (5, Transpose(M))) ),

Snew = | [Stx1I® + 207 Sxymi + 215 Sexni + Syymi® + 2mi Syzni + Szzni® I Sxx 12 + 1 Stym2 + 1 Szxn2 +mi Sxy 2 +mi Syym2 + mi Syzn2

+ nf Szx il 4 wi Syzm2 + wl Szzp2 1 Sxx I3+ 01 Sxym3 + 07 Sexnd +mi Sxyld +ml Syym3 +mi Syznl 4wl Sex I3+ nl Symi 4wl Sﬂn_?],
[H Sxx 2 4+ 17 Sxym2 + 17 Sex w2 +mi Sxy 2 +mi Syym2 +mi Syz 2 + ni Sex 12 + ni Syzm2 + nl SzznZ,SxxIZz—F 2i2 Sxym2 + 212 Szx nl
+Syym22+ 2m2 vzl +Szzn22,£25xx53 + 2 Eymi+ 2 Sl A m2 Syl w2 BymI +ml S nd 4 on Sxil 4 2 Syzmi +n25‘zzps_?],
[H Sxx I3 + 10 Sxym3 + 17 Sexwd +mi Sxyl3 +mi Sym3 +ml Svznd +nd Sexl3 + wl Syem3 + nl Szzn3 2 5xx13 + 12 Sxym3 + 12 Sexnd
+m2 53+ m2 SymI +m2 Syzad + n2 Sexli 4 ng Semi+ 62 Sz ad Sxxr P 4+ 203 Sym3 4 203 Szxni 4 Bym3 + 2m3 Syzad + szzadt]]

This is a 9 X3 matrix containing the components of stress tensor in the new coordinate system
. Each component can be exracted as follows :

) 1)

Snewzxx = Row(Matrix( | Column(Snew, 1) ]
[Sxx312 + 2010 Sxymi + 211 Sexwd + Syymi® + 2ml Syz i + Sez ni® ]

Snewxx =

) ;
Snewyy = Row(Matrix([ Cokann(Snew, 2)]), 2),
Snewyy = | Sxxi2® + 212 Sxym2 + 242 Sex n2 + Syym2® + 2m2 Syz w2 + Sez n2 ]

Snewrz == Row(Matriz([ Column(Bnew, 3)]), 3),
Shewzz = [ Sxx i3t + 203 Sxym3 + 243 Sexnl + Syym3E + 2m3 Syz n3 + Sez nst ]

Snewxy = Row(Matrix( | Columan(Snew, 2)]), 1),
Snewxy = [ I Sxnl2 + 17 Sxym2 + 10 Sexnl +mid Sxyl2 v ml Syym2 +ml Byznl + nd Sex 124 0l Beml 4 a0l Szzn? ]

Swewyz = Fow(Matriz(| Colume(Snew, 3)]), 2);
Shewyz = [ [25xx I3+ 1258xym3 + 2 8exn? +m2 Sxyii+m2Svyml +m2 Syzn3 + n25zx i3+ n2 Syemi + n2 Szznl ]

Snewrx == Row(Matrix([ Colume(Snew, 3)]), 1);
Shewzx = [ I Exn I3 + 1 Sxym? + 0 Sexnd +md Sxpld v ml Byymd v ml Byznd +nd Bex I3+ 0l Syemd + nl Sernl ]
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_)
;> The stress vector in the original coordinate system can be written as :
>
> Sy = Matrix([[ S, [Syy], [Szz] [ Sayl, [ Svzl, [ 8=11);
Sxx

Syy

Sz
Sy = 104y
Sxy
Syz
Sezx

>
> Svmew = Matrix( || Snewsz], [ Snewyy ], [Snewzz), [ Snewsy], [ Snewvz], [ Snewzx]]):

Sxx il 4 21 Sxymi+ 20 Szxal + Symit + 2ml Syznal + Szzal®

Sxx 2%+ 202 Bpm2 + 202 Szxn? + Syym2t + 2m2 Syznl + Sz nit

Sxx i3t 4 203 Sxymd + 243 Sexnd 4 SymP 4 ImI Szal + Szalt
I Bxx 124 11 Sxym2 + 11 Sexn2 +ml Sxyl2 +mi Syym2 +ml Syzn2 + ni Sexl2 + ni Syzm2 + nl Szz n2
I28xx I3 412 8xym3 + 12 Sexnd + m2 Exyl3 +m2 Syym3 +m2 Sz n3 + n2 8ex i3 + n2 Syzm3 + n2 Szz nd
B Sxxi3+ 0 Sxym3+ i Sexnd+ml Sxyll+mi Syml+mi Syznl +wl Szxld+nl Syemi + al Szzrd

Svpew = (105)

>
>
> Atransformation matrix Ts can be set up which stransfers the stress vector in the oringinal coordinate system (Sv) into strain vector
} in the rotated coordinate system(Svnew) . The elements of this transformation matriz can be obtained as :
>
>
= Tsll = (coeff(Snewsm Sxx));
Tsil = [ 12 ] 106)
> Tsize= (coeff(Snewszz, Byv));
o1z = [mﬂ ] aom
"> Tel3 = (coeff( Snewss, Szz));
Toid = [ s ] aos)
T Tsld = (coeff( Snewsz, Szy)).
mig=|2linl | (109}
> Tsl5 = (coeff( Snewsz, Syz));
Tsis=| 2mlnl | (110)
> Telf = (coeff( Snewsz, Bm) ),
Twis=| 2 al | 111y
"> Teal = (coeff( Snewyy, Smx));
Ts2i = [ 122 ] aiz)
> Te22 = (coeff( Snewyy, Syv));
7522 = [m 22 ] a1
T Te23 = (coeff({ Snewyy, Bzz));
7523 = [ 22 ] a4
> Ts24 = (coeff( Snewyy, 8zv));
m2d=|2l2m2 | (115)
> Te25 = (coeff( Snewyy, 5vz) ),
Ts25=|1m2nz | (116)
> Ts26 = (coeff( Bnewyy, Bmt));
2= 21202 | 17
T Tedl = (coeff( Snewszz, Bxx));
Ts3f = [ 172 ] a18)
T T3 = (coeff( Snewsez, 3yy));
Tr32 = [m P ] 119)
> Te33 = (coeff(Snewsrz, 522));
533 = [ it ] 120
T Ted = (coeff( Snewszz, Sxy));
Te36=|203m3 | 121y
> Te3s = (coeff( Snewsz, Syz));
T35=|2mins | (122)
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Ts35=|2m3nd | 122)
> Tsi6 = (coeff( Bnewsz, 8m));

36 = 2052 | (123)
> Tl = (coetf( Snewsy, Sxx) ),
Teqi =iz ] (124)
- Ted? = (coeff(Snewsy, Syy) ),
7542= [ min2 | (125)
> Ted3 = (coeff(Snewsy, Szz));
7543 = nln2 | (126)
> T4 = (coeff( Bnewsy, Bxv));
Tead = lmz+mli2 ] 127
> TS = (coeff( Snewsy, Syz) ),
95 = minz +nln2 | (128)
- Tedg = (coeff( Snewsy, 8zx) ),
o466 = [ 1 n2 + i 12 | (129
> Test = (coeff(Snewyz, Sux) ),
rsi=| 243 ] (130)
> Tss2 = (coeff( Enewyz, Svy) ),
7552 = m2m3 | 131
> Ts53 = (coeff( Snewyz, Bez) ),
7353 = nz n3 | (132)
e Tesd = (coeff( Snewysz, 3xy)),
Tesg= | 2m3 +m2 13 | (133)
> TS5 = (coeff( Snewys Syz));
Tss5=|m2n3+n2m3 | (134)
> Tes6 = (coeff( Snewyz 5m));
Tese=[i2n3 +n217 | (135)
> Te6l = (coeff( Snewmz, S ),
Te6r = 1147 ] (136)
> Te62 = (coeff( Snewmz, Syv) ),
Tse2=[mim3 | 37
> Te63 = (coeff( Snewmsz, 5zz) ),
T = nlni | (138)
> Teb4 = (coeff( Snewsz Sxy));
Tsod = limi+miiz | (139)
> Te6s = (coeff( Snewsz Syz));
Ts65 = mini+nims | (140)
> Te6 = (coeff( Snewsz 5m));
Tede = [ It w3 +nil7 | (141)

Then the 6 X6 stress transformation matrix Ts can be written as :

VOV Y VY

Ts o= Matrix([[Ts11, Tsl2, Ts13, Tsld, Tsls, Tsl6], [ Ts2l, Ts23, Ts23, Ts4, Ts25, Ts26], [Te31, TedZ Te33, Ts3d, Teds, Tsd6 ], [Tsdl, Tsd2, Ted3, Tedd, Teds,
Tsd6 ], [Ts51, Ts52, Tss3, Tes4, Ts55, Ts56], [Ts61, Ts62, Ts63, Ts64, Ts6S, Ts66]])

omi? n 2iimi imind 2lini
22 w2 w2 2i2m2 im2n2 212 n2
2 2 2
o= | 13 m3 n3 2i3m3 2m3n3 23 n3 (142)

12 mim2 nin2 Hm2+mil2 mln2+wim2 lln2+nill
203 m2m3 p2ul Zmi+m2li m2ul+w2m? 203 +n213
i3 mlminlnlllmdtmlllmlnd+nin?ilnl+alll
"> This is the transformation matrix to transform the stress vector in the original coordinate system to stress vector
B in the rotated coordinate system.The inverse of this transformation matrix can also be computed as follows :
>
;> First let us define the stress in the rotated coordinate system as :
=
> 8n= Matriz( | [ Srees Sy, Snzx], [ Snxy, Snyy, Snve), [ Snz Snye Snez]]),
Swnxx Swnxy Snzx
Sk = Saxy Smyy Smyz (143)
SwEx Swyz Skez
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> Then the stress tensor in the original coordinate system can be caleulated by (MT -Sn-M) :

=

> 85= sinplify(MatrizMatrizhiuliply (Tramnspose (M), Matrizhfatrizxhuliply (S, M) ),

55 = [swxx 1% + 201 Sy 2 + 247 Swzx i3 + Sy 120 + 212 Snyz 13 + Swzz 3210 Swoxcml + I Snxym2 + 1 Snzxm3 + 12 Swxymi + 12 Snyym2
+ 02 Smyzm3 4+ 03 Swexml 4+ 13 Seyzm2 + 13 Snzzm 3 1 Sexxnl + 1 Swxy w2 + 11 Spzxed + 12 Swynd + 12 Smyy n2 + 12 Sz w3 + 13 Seexond

VYV VVY

>
>
e

>
e
>
>

>
>
g
>

+ I3 Smyz e2 + I3 Snzz el

[H Snxxmd + 11 Snxym2 + 11 Snzxm3 + 12 Sexymi + 12 Snyym2 + 12 Snyzm3 + 13 Swzxmd + 13 Smyzm2 + 13 szsz,SMxmez + 2mi Snxym2

+ Zmi Snzami + Snmez + im2 Smyzmi+ S)xzzmSz,mf Sexxnl +mlSuxyni +mi Snzxnld +me Sexy rd +mz2 Snyy pZ +m2 Seyz i

+m3 Snzxnl +m3 Snyz el +m3 Sfazz.»s?],

[.H Sexxwl + 11 Sexynl + 017 Sezrnd + 12 Sexynl + 12 Swyynl + 12 Smz el + 13 Swzxnl + 13 Smyzr2 + 13 Sezz vl omd Sexxnl +ml Sexy 2
+ml Snzxnd 4 m2 Spxy nl 4+ m2 Snyy 2 +m2 Snyzad +m3 Sezxnl +m3 Swyz el +m3 S»xzzni,SMxxMz + 2l Sexyn2 + 2nl Snzxad + Sﬂyyw22

+ 2 n2 Skyz r3 + Ssﬁzzrxfz]]

This is a 3 X3 matrix containing elements of the stress tensor in the original coordinate system. Each element can be extracted

from this matrix as :

SS5xx

Sy

SHEE =

S5y

S5yz

28m

= Row(Matrix([Cokenr(55,1)]), 1);
5% = | S 1%+ 201 Sy 12 + 211 Seex 3 4 Sy 12 + 202 Sz 13 + Sezz 1 |
= Row(Matriz( [ Colume(55, 2)]), 2);
S5y = [ Swxzmi® + Imi Snxym2 + 2mi Spzxmi + SMWM22 + 2m2 Smyzm3 + Shzzm 3 ]

Fow(Matriz( | Colume (55, 3)]), 3);
Sz = [ Saxx ni® + 20 Snxy n2 + 2 nd Snzx nd + Sy a2t + 202 Sz af + Snzz i }

Fow (Matrix( | Colune(58,2)]), 1),
S5y = [ IF Suxxmd + 1 Sexym2 + 11 Snzxm3 4+ 12 Sexymd + 12 Syypm2 + 12 Smyzm3 + 13 Spexmd + 13 Smyzm2 + 13 Snzzm 3 ]

= Row(Matrin(| Columnr(55, 3)]), 2);

S&‘Z:=[rm’ Swxxnd +md Sexy r2 +mi Sezx el +m2 Sexynd +m2 Snyy n2 +m2 Seyz rd + m3 Snzxond +m3Snyzn2+m5‘Snzzn5‘]

= Row(Matriz(| Colunn(55, 3)]), 1),

S8zx = [ I Suxxpl + 07 Sexym2 + 17 Snzxnd 4 12 Sexynd + 12 By w2 + 12 Seyz el + 13 Snzxnl + 13 Snyz p2 + 13 Snzznl ]

If we define a stress vector in the rotated (Svrotated) and original (S5v Jecoordinate system as :

Svraiated == Matrix([ [ 8rzz], [Sryv], [Srzz], [ Sy, [ Sryzl [ Sr=x]]);

Srxx

Sryy
Svratated =

Srxy

Sryz

Srzx

55v == Matrix([[58x], [B8yv], [S8zz], [ 88xv], [88yvz], [S8m]]);

Snxx 112+ 21 Sy 12 + 21 Snzx 13 4 Smyy 12° + 2102 Smz 13 + Snzz 15
Swxxmi® + 2ml Suxymi —+ imi Swzxm3 + Sﬂwmz‘z + Ilm2 Smyzm3i + Snzz m 3
Shh= Sk nd® + 2nl Saxy n2 + 1af Snzx a3 + Sayy w2+ 2n2 Swmyz n? + Snzz n3*
17 Snxxmd + 11 Bnxym2 + 17 Swexm3 4 12 Snxymd + 12 Smyym2 + 12 Snyzm3 + 13 Snzxml + 13 Swyzm2 + 13 Snzzm 3
ml Snxxnl +md Snxyn2 +mi Snzxnd +m2 By el +m2 Snyyn2 +m2 Snyzn? +miSnzxnl +m3 Snyzn2 +m3 Snzzald
11 Snxxownd + 17 Bexy w2 + 1 Swzz n3 + 12 Snxy ni + 12 Snyy 02 + 12 Snyz n3 + I3 Swex nd + 13 Swyz nl + 13 Snzz n3

A transformation matrix which transforms the stress vector in the rotated coordinate sytem to stress vector
in the original coordinate system can be set up

. This transformation matrix is nothing but the inverse of the previously established stress transformation matrix(Ts)

. Hence it will be called Tsinverse. The elements of Tsinverse can be determined as :

Tsinversell = (coeff(55m St ),

Tripversel i = [ jj2 ]

= Tawersel? == (coeff(55m Bnyy));

TFrispversei2 = [ 1‘22 ]
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Tsinversel3

Tsitwverseld

Tsitwersels

Tsitwverself

Tsitwerse?l

Tsinverse22

Tanverse23

Tsinverse24

Tsinverse25

Tsinverse2(

Tsinverse3l

Tsmversed2

Tsirrerse3s

Tsmverse3d

Temverseds

Tsirwerse36

Temrversed]

Tsmversed2

Tsmversedd

Tsmversedd

Temverseds

Tsirrersedd

Temrverses]

Tsitwerses2

Tainverse53

Tsinverses4

Tsinverse55

Tsitwverses6

= (coeff(3%x Snzz) ),

= (coeff( 59 Sny));

= (coeff( 55, Snyz) ),

= (coeff( SSsz Snz));

== (coeff(5Syy, Snm) ),

== (coeff(38yy, Snyv) ),

= (cosff(5Syy, Snzz));

= (coeff( 33yy, Smxy) ),

= (coeff( 33yy, Snyz));

= (coeff( 38yy, Snz) ),

= (coeff(3%zz Snxx));

= (coeff(S8zz, Snyy)),

= (coeff(S5zz, Srzz));

= (coeff( 35z Snxy));

= (coeff( §5zz Snyz)):

= (coeff( 55zz, Snz));

= (coeff(S8uy, Snum) ),

== (coeff(BExy, Bnyy));

= (coeff(B8xy, Bnzz) );

= (coeff( 38xy, Snxy) ),

= (coeff( S8y, Snyz));

== (coeff( SSxy, Snm));

= (coeff(3%yz, Sm=)),

= (coeff(55yz, Snyy));

= (coeff(B8ys Snee) );

== (coeff( SSyz Snxy));

= (coeff( 5S5yz Snyz));

= (coeff( SSyz, Snzm));

Teimversel2 = 1% |
Trvnversel 3 = | 157 |
Tsinverseld = | 21112 |
Tsinversel 5 =| 21213 |
Tsinversel6 = | 21113 |
Tsinverse2i = | m1? |
Tsinverse22 = | m2* |
Tsinverse23 = | m3* |
Teinverse24 = | 2mim2 |
Teinverse25 = | 2m2m3 |
Trinverse26 = | 2mim3 |
Fsinverse3i = | ni” |

Trimversei2 = | no® ‘

Trinverseis = | n3 ‘

Trimverseid = | 2nfn2 |
Trsimverseis = | 2udni |
Tsimverseio = | 2nf i |

Tstnversed! = | I mi |

Tsinversed2 = | 2m2 |

Teinversed3 = | 3m3 |
Toinversedd = | I m2 +mii2 |
Tstrversedd = [2m3 +m2 15 |
Tsirversed6 = | I m3 +mi 13 |

Trinverses] = | mlnd ‘

Tsinverses2 = | m2 n2 |
Tsinverses3 = | m3 n3 |
Tsinversedd = | ml n2 + nim2 |
TeinverseS3 = | m2n3 + n2m3 |

TsimverseS6 = | mini+nim3 |
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= Tainversefil = (coeff( S5z Sz ),

Tainversesl = 11 ni | (183)
> Tsinverse6l == (coeff( 88z Snyy));
Tstnverse62 = | 12 n2 | (184)
> Tsinverse63 == (coeff (58, Snzz) ),
Tsinverse63 = | 13 n3 | (185)
> Tsinversefd == (coeff( S8z Smxy));
Tstnverseod = | 1 n2 + ni 12 | (186)
"> Teinversess = (coeff( 55z Snyz)),
Tsinverse65 = | 12 n3 + #2137 | (187)
=> Tsinwersefifi == (coeff( S5z Snm));
Tsimverse66 = | 1 53 +ni 17 | (188)

Then the inverse of the stress transformation matrix can be given as :

Tsipverse = Matrix( [ [ Tsinversell, Tsinverseld, Tsinversel3, Tsinverseld, Tsinversels, Tsinverself ], [ Tsinversell, Tsinverse22, Tsinversed3, Tsitverse2d,
Tsinwerse2s, Tsinverse2d ), [ Tsinverse31, Tsinverse32, Tsinversedd, Tsinverse34, Tsinverse3s, Tsinverse36 ), [ Tsitwversed!, Tsinversed 2, Tsinversed 3, Tsitversedd,
Tsinversed5, Tainversedd ], [ TeinverseS1, Tsnverse5Z, Tsinverses3, Tsinverse54, Tsinverse55, TainverseS6 ], [ Tsinverse6l, Tsinversed2, Tsinversed3, Tsinversedd,
Tsinversefs, Tainversedf]])

YV Y

IE N T 21z 21213 2if 3
mit w2 m#A 2mim2 imZm? imim3
2 v 2
Toinverse = ni 1 ni 2ring 2r2ni 2rind (189)

ITmi 12m2 Bm3 Um24mil2 2m3+m213 limi+mllis
mind minzminiminZ+tnimzmani+nimimini+nimi
ITwpi 12p2 13n3 In24+nli2 2a3+a2l3 De3+eiis

>
> The transpose of the engineering strain transformation matrix can be determined as :

= Tetranspose = Transpose(Te),

oo g 21 28213 2B
ni® m2 mP imimz imim3 imim3
2 2 2
Teiranspose = il e n3 2k n2 2m2nid 2ufnd (100)
Ihml 2m2 DImi Um2+mila Rwit+m2l3 Umi+mils
minl m2u2 mind min2+ulm2 m2ud+n2mi mind+nim3
el 2r2 Br3 Ur2+ril2 2r34+n2l? DedI+nilis
>
> Itis worth noting that the Tsinvers is equal to Tetranspose. This can also be checked by performing the following computaion.
-
= gvalm [ Tsimverse — Tetranspase),
gooooao
gooooan
gooooan
191
gooooao
gooooan
gooooan
>
= which leads
B to a conclusion that the transpose of engineering strain transformation matrix is the inverse of stress transformation matrix :
=
> This is the transformation matrix for engineering strains between the original and the new coordinate system
) . The transformation matrix for stresses can also be developed in a similar marmer(M -5.MT).
=
> Tstranspose = Transpose (7)),
T E N g 213 113
mjz m22 m32 mimz mami mimi
2 2 2
Tstranspase =| 74 ne 3 nln2 22 n3 nln3 (192)

2iimi 22m2 213m3 Hm2+mil2 D2mi+m2i3 Hmi+mils
dminl imZnd dmind minZ+nim2mini+nZmimini+nimi
iimd 202p2 21303 w24 nil2 D2ei+p2]3 Uei4+nlll

=> ewtlm (TEinverse — Tsiranspose),
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[ = Y e R e e
o o o o o o
[ = Y e R e e
o o o o o o
[ = Y e R e e
o o o o o o

=>

=>

=>

= This result implies that the traspose of stress transformation matrix is equal
to the inverse of engineering strain transformation matrix.

> This orthogonality of stress and engineering strain transformation matrices can be checked
B by performing the following computations
=

> evaim ( Tetranspose — TEinverse),
0 0 0 Iriz lzi3 iz
0 I 0 mimz m2m3 mim3
0 0 0 nin2 nini nlnd
=limi -l2m2 -I3m3 1 0 0
—minl -minZ -minil 0 0
“lini -12n2 -l3n3 0 0 0

=

> The difference of the transpose and the inverse of engineering strain transformation matrix doesn't result
in zero matrix which suggests that these two matrices are not equal. It can be deduced that the transformation matrix
for engineering strain is not orthogonal.

>

> Similarly for stress transformation matrix

> Similarly for stress transformation matrix
-
= gvabn ( Tstranspose — Teinverse ),

i} 0 0 BT T kY &

1] 0 0 —mimZ —mim3 —mim3

1] 0 0 -nfn2 -n2nl -nind
Fmi 12m2 I3m3 0 0 0
mini m2n2 mind 0 0 0
iRl 12r2 1IR3 0 0 0

Vv Y

This also implies that the transformation matrix for stress is not orthogonal.
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Appendix C. Fortran 77 program for matrix computations of icosahedra distribution

of springs
PROGRAM TRANS2
INTEGER NPLANE, NDIV
PARAMETER ( NPLANE=32, NDIV=6 )
C
INTEGER I, J, K, IPLANE, JDIV, SPNO
DOUBLE PRECISION PAl, G(6,6)
DOUBLE PRECISION COOR(NPLANE*2), ETHETA, EPHI, EBETA,
$ N(6,6), DIR(6), MAG
DOUBLE PRECISION INTMAT(6,6), TRANS(6,6), EE(6)
DOUBLE PRECISION TA(6,6), TB(6,6), TC(6,6),
$ TEM(6,6), TE(6,6), TSM(6,6), TS(6,6)
O
PAI=ATAN(1.D0)*4.D0
CC e e e e e e e e e e

cc ****X*READING THE ORINETATION OF EACH SPRING FOR AN ICOSAHEDRAL
DISTRIBUT ION****>*

cc
CALL SPLOCA(COOR)
cc
DO 600 1=1,6
DO 700 J=1,6
TRANS(1,J)=0.D0
G(1,J)=0.D0
TE(1,J) =0.DO
TS(1,J) =0.DO
700 CONT INUE
600 CONTINUE
DO 2000 IPLANE=1,NPLANE
DO 2100 JDIV=1,NDIV
SPNO=(IPLANE-1)*NDIV+JDIV
ETHETA=COOR( I PLANE)
EPHI =COOR(IPLANE+32)
EBETA =PAI*(JDIV-1)/NDIV+0.5D0*PAI/NDIV
cc
ccC *xx* INITIALIZATION OF
DO 100 1=1,6
DO 200 J=1,6
TEM(1,J) =0.D0
TE(CT,J) =0.DO0
INTMAT(1,J) =0.DO
TSM(T,J) =0.D0
TS(I,J) =0.DO0
DIR(I) =0.D0
cc c(1,9) =0.D0
cc TRANS(1,J)  =0.DO
200 CONT INUE
100 CONTINUE
cc
cc *xxx* READING THE TRANSFORMATION MATRICES AFTER EACH ROTATION
Rk
cc
CALL TRANSM(ETHETA, EPHI, EBETA, TA, TB, TC)
cc
cc **** CALCULATION OF THE OVERALL ENGINEERING STRAIN
TRANSFORMATON MATRIX ks
cc

DO 1100 1=1,6
1

DO 1200 J=1,6
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DO 1300 K=1,6
TEM(I, J)=TEM(1,3)+TB(I,K)*TA(K,J)

1300 CONTINUE
1200 CONT INUE
1100 CONTINUE
cC

DO 1400 1=1,6
DO 1500 J=1,6
DO 1600 K=1,6
TECL,J)=TE(1,I)+TC(1,K)*TEM(K, J)

1600 CONT INUE
1500 CONT INUE
1400 CONT INUE
cC
CC  ***** DEFINING THE SELECTOR MATRIX N
cc
DO 1700 1=1,6
DO 1800 J=1,6
N(1,J)=0.D0
N(5.5)=1.D0
1800 CONT INUE
1700 CONT INUE
cc
CC  *** DEFINING THE COEFFICIENT TO CALCULATE ONLY THE MAGNITUDES OF
ccC STRESSES AND STRAINS AS PER EQ. 1.73 IN THE

DO 6000, 1=1, 6

EE(1)=0.D0
EE(6)=1.D0
6000 CONTINUE
cc
DO 6100, I=1, 6
DO 6200 J=1, 6
DIR(1)=DIR(I)+TE(I,J)*EE(J)
6200 CONT INUE
6100 CONTINUE
IF (ABS(DIR(5)) .GT. 1E-10) THEN
MAG=DIR(5)/ABS(DIR(5))
ELSE
MAG=0.DO0
END IF
cc
CC  **** CALCULATION OF THE OVERALL STRESS TRANSFORMATION MATRIX
R R R S S o o o o o o o
cc
CALL TRANSM(ETHETA, EPHI, EBETA, TA, TB, TC)
cc
DO 3100 1=1,6
DO 3200 J=1,6
DO 3300 K=1,6
TSM(I,J)=TSM(1,J3)+TB(K, 1)*TC(J,K)
3300 CONTINUE
3200 CONT INUE
3100 CONTINUE
cc
DO 3400 1=1,6
DO 3500 J=1,6
DO 3600 K=1,6
TSCI,I)=TS(1,I)+TACK, D*TSM(K, J)
3600 CONTINUE
3500 CONT INUE

- 141 -



3400 CONTINUE

cC
cC *** CALCULATION OF THE MATRIX PRODUCT
transpose(TE)*N*TE *x xx
cC
DO 3700 1=1,6
DO 3800 J=1,6
DO 3900 K=1,6
INTMAT(I, I)=INTMAT(1 ,D)+N(1,K)*TE(K,J)
3900 CONTINUE
3800 CONT INUE
3700 CONTINUE
cC
DO 4000 1=1,6
DO 4100 J=1,6
DO 4200 K=1,6
TRANS(1,J3)=TRANS(I,3)+TS(I,K)*INTMAT(K,J)
4200 CONTINUE
4100 CONT INUE
4000 CONTINUE
cC **** PRINTING THE RESULTS
cC
WRITE(*,*) "spring number= ", SPNO
DO 5200, I =1, 6
DO 5300, J =1, 6
GA,D=G(,D+TS(I ,I)*MAG
WRITEC(*,*)I1,J, G(1,J)
5300 CONT INUE
5200 CONTINUE
2100 CONTINUE

2000  CONTINUE
DO 6020, I = 1, 6
DO 6010, J = 1, 6
G(1,3)= G(1,J)/192.D0

cC call primat(G(1,J), 6, 6, "G =)
6010 CONT INUE
6020 CONTINUE
cC call primat(G(1,J), 6, 6, "G =)
END
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Appendix D. Part of Simple shear data for determination of liquefaction parameters

Number Effective Shegr Shear Stress ratio

of steps stress(kPa) strain stress(kPa)
1.00E+00 | 9.80E+01 | 1.00E-05 | 0.00E+00 | 0.00E+00
2.00E+00 | 9.80E+01 | 2.00E-05 | 9.53E-01 | 9.72E-03
3.00E+00 | 9.79E+01 | 3.00E-05 | 1.82E+00 | 1.86E-02
4.00E+00 | 9.79E+01 | 4.00E-05 | 2.62E+00 | 2.68E-02
5.00E+00 | 9.78E+01 | 5.00E-05 | 3.36E+00 | 3.44E-02
6.00E+00 | 9.78E+01 | 6.00E-05 | 4.05E+00 | 4.14E-02
7.00E+00 | 9.78E+01 | 7.00E-05 | 4.70E+00 | 4.81E-02
8.00E+00 | 9.78E+01 | 8.00E-05 | 5.31E+00 | 5.43E-02
9.00E+00 | 9.78E+01 | 9.00E-05 | 5.90E+00 | 6.03E-02
1.00E+01 | 9.78E+01 | 1.00E-04 | 6.45E+00 | 6.60E-02
1.10E+01 | 9.78E+01 | 1.10E-04 | 6.98E+00 | 7.14E-02
1.20E+01 | 9.78E+01 | 1.20E-04 | 7.48E+00 | 7.65E-02
1.30E+01 | 9.78E+01 | 1.30E-04 | 7.96E+00 | 8.14E-02
1.40E+01 | 9.78E+01 | 1.40E-04 | 8.43E+00 | 8.62E-02
1.50E+01 | 9.78E+01 | 1.50E-04 | 8.87E+00 | 9.07E-02
1.60E+01 | 9.77E+01 | 1.60E-04 | 9.30E+00 | 9.52E-02
1.70E+01 | 9.77E+01 | 1.70E-04 | 9.71E+00 | 9.94E-02
1.80E+01 | 9.77E+01 | 1.80E-04 | 1.01E+01 | 1.03E-01
1.90E+01 | 9.77E+01 | 1.90E-04 | 1.05E+01 | 1.07E-01
2.00E+01 | 9.77E+01 | 2.00E-04 | 1.09E+01 | 1.12E-01
2.10E+01 | 9.76E+01 | 2.10E-04 | 1.12E+01 | 1.15E-01
2.20E+01 | 9.76E+01 | 2.20E-04 | 1.16E+01 | 1.19E-01
2.30E+01 | 9.76E+01 | 2.30E-04 | 1.19E+01 | 1.22E-01
2.40E+01 | 9.75E+01 | 2.40E-04 | 1.22E+01 | 1.25E-01
2.50E+01 | 9.75E+01 | 2.50E-04 | 1.26E+01 | 1.29E-01
2.60E+01 | 9.75E+01 | 2.60E-04 | 1.29E+01 | 1.32E-01
2.70E+01 | 9.74E+01 | 2.70E-04 | 1.32E+01 | 1.36E-01
2.80E+01 | 9.74E+01 | 2.80E-04 | 1.35E+01 | 1.39E-01
2.90E+01 | 9.73E+01 | 2.90E-04 | 1.37E+01 | 1.41E-01
3.00E+01 | 9.73E+01 | 3.00E-04 | 1.40E+01 | 1.44E-01
3.10E+01 | 9.72E+01 | 3.10E-04 | 1.43E+01 | 1.47E-01
3.20E+01 | 9.72E+01 | 3.20E-04 | 1.46E+01 | 1.50E-01
3.30E+01 | 9.71E+01 | 3.30E-04 | 1.48E+01 | 1.52E-01
3.40E+01 | 9.71E+01 | 3.40E-04 | 1.51E+01 | 1.56E-01
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Appendix E. consolidation test data for determination of liquefaction parameters

Vertical

stress(kN) void ratio

57.4564 0.4748
117.3067 0.4725
191.5212 0.4673
287.2818 0.4500
406.9826 0.4200
658.3541 0.3600
957.6060 0.3000
526.6833 0.3023
220.2494 0.3150

95.7606 0.3375
227.4314 0.3285
538.6534 0.3098
1053.3666 0.2798
1843.3916 0.1650
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Appendix F. The source code for liquefaction analysis.

O O ~NO O WNPR

SUBROUTINE USRLIQ( EPSO , DEPS , EPSVEL , NSTR

$ DTIME , ELEMEN , INTPT , COORD
$ ITER , USRVAL , NUSRVL , USRSTA
$ USRIND , NINDIC , SIGMA , STIFF
CC o o e e e e e e e e e e
IMPLICIT NONE

INTEGER, PARAMETER :: NPLANE=32,

$ NDIV=6,

$ SPRING=192,

$ OFFSET=40,

$ WIDTH=9

INTEGER, PARAMETER 2 LTSTP =100

DOUBLE PRECISION,
DOUBLE PRECISION,

PARAMETER :: LTDEPS=1.D-4
PARAMETER :: LTMEAN=1.D-4,

$ LTPS1G=1.D-4,

$ LTDPEP=1.D-14,

$ LTRATI=1.D-3,

$ LTDGAM=1.D-10,

$ LTGTAN=1.D+4

INTEGER, PARAMETER - GTYPE =1

DOUBLE PRECISION LTEVCS

INTEGER NSTR, NUSRVL, NSTATE, NINDIC, ELEME

DOUBLE PRECISION EPSO(NSTR), DEPS(NSTR), EPSVEL(NSTR

$ DTIME, COORD(3), SE(NSTR,NSTR), USR
$ USRSTA(NSTATE), SIGMA(NSTR), STIFF(
INTEGER USRIND(NINDIC)

INTEGER 1, J, K, L, M, N

DOUBLE PRECISION
DOUBLE PRECISION
$

INTEGER

DOUBLE PRECISION
INTEGER

DOUBLE PRECISION
DOUBLE PRECISION
$

$

$

DOUBLE PRECISION

LR A

DOUBLE PRECISION

PAI
KMAXO, GRO, YETA, BULKO, BULKSO, HP
RPT(2), NDN, MEPSO, NN, MM, OPT(10)
NOWSTP, MAXSTP
XDEPS(NSTR), XEPSO(NSTR)
SPNO, PLNO
COOR(NPLANE*2), THETA, PHI, BETA
KMAX, GR, BULK, BULKS,
NDI(3), NDS(3),
KTAN(SPRING), KEQU, PTAN(SPRING),
ISTIFF(NSTR,NSTR), GLAST(3)
GORI(SPRING), GMAX(SPRING),
GREV(SPRING), G(SPRING,2),
COR(SPRING), GAMP(SPRING),
IEPS(NSTR),
EVDSUM, DEVD, EVSUM, DEV, EVCSUM, D
EVY, HPEV, IDEVD, DPEPS, PWORK, DPW
RMAX(SPRING), RREV(SPRING), R(SPRIN
SIG(NSTR), ISIG(NSTR), SIGMAB(NSTR)
PSIG(NPLANE), DPSIG(NPLANE),
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s TIMEO
s SE
s NSTATE

N, INTPT,
), TIVMEO,

VA L(NUSRV
NS TR,NSTR

. GTH,

EV C,
OR K
G, 2),

ITER

L),
)



48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

$
INTEGER

PAI=DATAN(1.D0)*4.DO
USRIND(385)=USRIND(385)+1

BULKSO =
MEPSO
NN =
MM =
RPT(1)
RPT(2) =
NDN =
HP
GTH =

NOWSTP=0
MAXSTP=1

MEPS, SIGY, SIGI
MMODE(SPRING), DMODE(SPRING)

USRVAL (1)

= USRVAL(2)
= USRVAL(3)
= USRVAL(4)

USRVAL (5)

= USRVAL(6)

USRVAL(7)
USRVAL (8)

= USRVAL(9)

USRVAL (10)
USRVAL (11)

= USRVAL(12)

USRVAL (13)

DO 1000 I1=1,NSTR

IF(INT(DABS(DEPS(1))/LTDEPS) .GE.MAXSTP) THEN
MAXSTP=INT(DABS(DEPS(1))/LTDEPS)

END IF

1000 CONTINUE

cC

IF(MAXSTP.GE.LTSTP) THEN

MAXSTP=LTSTP

END IF
cC

DO 1100 I=1,NSTR

XDEPS(1)=DEPS(1)/MAXSTP

1100 CONTINUE

cC

DO 10000 NOWSTP=1,MAXSTP

cC

DO 1200 I=1,NSTR

XEPSO(1)=EPSO(I1)+DEPS(1)*(NOWSTP-1)/MAXSTP

1200 CONTINUE

CcC

DO 1300 I=1,NSTR
DO 1400 J=1,NSTR
STIFF(1,J)=0.D0
1400  CONTINUE

S1G(1)=0.

DO

SIGMAB(1)=SIGMA(I)



97 1300 CONTINUE

98 cc
99 DEVD = 0.DO

100  EVCSUM = 0.DO

101  DPWORK = 0.DO

102  MEPS = -1.DO*( SIGMA(1) + SIGMA(2) + SIGMA(3) )/3. DO
103 EVSUM = -1.DO*( XEPSO(1) + XEPSO(2) + XEPSO(3) )

104  DEV = -1.DO*( XDEPS(1) + XDEPS(2) + XDEPS(3) )

105 HPEV  =(EVSUM+DEV)*HP+1.DO
106 CALL SPLOCA(COOR)

107 O f e e e
108 IF(C DTIME .EQ. O0.DO .AND. USRIND(385) .LE. USRIND(38 6) ) THEN

109 O f e e e
110 BULKS=BULKSO* (MEPS/MEPS0O)**NN

111 cC

112 DO 2000 PLNO=1,NPLANE
113 DO 2100 J=1,NDIV

114  SPNO =(PLNO-1)*NDIV+J

115  THETA=COOR(PLNO)

116  PHI =COOR(PLNO+32)

117  BETA =PAI*(J-1)/NDIV+0.5D0*PAI/NDIV

118 DO 2200 K=1,NSTR

119  IS1G(K)=-1.DO*SIGMA(K)

120 2200 CONTINUE

121 IF(MOD(SPNO-1,NDIV).EQ.0) THEN

122 CALL TRANSFER(3, THETA, PHI, BETA, ISIG)

123 PSIG(PLNO)=1SI1G(3)

124  END IF

125  IF(PSIG(PLNO).LE.LTPSIG) THEN

126 PSIG(PLNO)=LTPSIG

127  END IF

128  CALL RENEW(KMAX,GR,MM,PSIG(PLNO),MEPSO,KMAXO,GRO )
129  CALL SPMAT(THETA, PHI, BETA, ISTIFF)

130 DO 2300 L=1,NSTR

131 DO 2400 M=1,NSTR

132 STIFF(L,M)=STIFF(L,M)+KMAX*PSIG(PLNO)*ISTIFF (L ,M)/SPR ING
133 2400 CONTINUE
134 2300 CONTINUE

135 2100  CONTINUE
136 2000 CONTINUE

137  GLAST(1)=STIFF(4,4)

138  GLAST(2)=STIFF(5,5)

139  GLAST(3)=STIFF(6,6)

140 DO 2500 L=1,3

141 DO 2600 M=1,3

142 STIFF(L,M)=STIFF(L,M)+BULKS
143 2600 CONTINUE

144 2500 CONTINUE

145  CC
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146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

MEPS=MAX(MEPS , LTMEAN)
USRSTA(1)=0.D0
USRSTA(2)=0.D0
USRSTA(3)=MEPS
USRSTA(4)=MEPS
USRSTA(5)=0.D0

DO 2700 PLNO=1,NPLANE
USRSTA(5+PLNO)=PS1G(PLNO)
2700 CONTINUE
USRSTA(38)=GLAST(1)
USRSTA(39)=GLAST(2)
USRSTA(40)=GLAST(3)

DO 2800 SPNO=1,SPRING
USRIND((SPNO-1)*2+1)=1
USRIND((SPNO-1)*2+2)=0

USRSTA((SPNO-1)*WIDTH+OFFSET+1 )
USRSTA((SPNO-1)*WIDTH+OFFSET+2 )
USRSTA((SPNO-1)*WIDTH+OFFSET+3 )
USRSTA((SPNO-1)*WIDTH+OFFSET+4 )
USRSTA((SPNO-1)*WIDTH+OFFSET+5 )=
USRSTA((SPNO-1)*WIDTH+OFFSET+6 )
USRSTA((SPNO-1)*WIDTH+OFFSET+7 )
USRSTA((SPNO-1)*WIDTH+OFFSET+8 )
USRSTA((SPNO-1)*WIDTH+OFFSET+9 )

2800 CONTINUE

ELSE
EVDSUM = USRSTA(1)
EVY = USRSTA(2)
SIGY = USRSTA(3)
SIGI = USRSTA(4)
PWORK = USRSTA(5)

DO 5000 PLNO=1,NPLANE
PSIG(PLNO)= USRSTA(5+PLNO)
5000 CONTINUE
GLAST(1)=USRSTA(38)
GLAST(2)=USRSTA(39)
GLAST(3)=USRSTA(40)

DO 5100 SPNO=1,SPRING
MMODE (SPNO)

USRIND((SPNO-1)*2+1)

DMODE(SPNO) = USRIND((SPNO-1)*2+2)

GOR1(SPNO)
GMAX(SPNO)
GREV(SPNO)
G(SPNO, 1)
RMAX(SPNO)
RREV(SPNO)
R(SPNO, 1)
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.DO
.DO
.DO
-DO
-DO
-DO
-DO
-DO
-DO

= USRSTA((SPNO-1)*WIDTH+OFFSET+1 )
= USRSTA((SPNO-1)*WIDTH+OFFSET+2 )
= USRSTA((SPNO-1)*WIDTH+OFFSET+3 )
= USRSTA((SPNO-1)*WIDTH+OFFSET+4 )
= USRSTA((SPNO-1)*WIDTH+OFFSET+5 )
= USRSTA((SPNO-1)*WIDTH+OFFSET+6 )
USRSTA((SPNO-1)*WIDTH+OFFSET+7 )



195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

COR(SPNO)

5100 CONTINUE
ND1(1)=NDN;NDI(2)=NDN;NDI(3)=NDN
NDS(1)=NDN ; NDS(2)=NDN ; NDS(3)=NDN

cc

DO 6000 PLNO=1,NPLANE

DO 6100 J=1,NDIV

SPNO =(PLNO-1)*NDIV+J

THETA=COOR(PLNO)

PHI =COOR(PLNO+32)

BETA =PAI*(J-1)/NDIV+0_5D0*PAI/NDIV

DO 6200 K=1,NSTR

1S1G(K)=-1.DO*SIGMA(K)

IEPS(K)=-1.D0* (XEPSO(K)+XDEPS(K))

6200 CONTINUE

CALL TRANSFER(1, THETA, PHI, BETA, IEPS)
G(SPNO,2)=1EPS(5)
IF(MOD(SPNO-1,NDIV) .EQ.0) THEN

CALL TRANSFER(3, THETA, PHI, BETA, ISIG)
PSIG(PLNO)=ISIG(3)

END IF

IF(PSIG(PLNO) .LE_LTPSIG) THEN
PSIG(PLNO)=LTPSIG

END IF

CALL RENEW(KMAX,GR,MM,PS1G(PLNO),MEPSO,KMAXO,GRO

R(SPNO,2)=R(SPNO, 1)

CALL MASING(PSIG(PLNO), KMAX, GR, YETA, GORI(SPN

$ GMAX(SPNO), GREV(SPNO), G(SPNO,1), G
$ GAMP(SPNO), COR(SPNO), RMAX(SPNO), R
$ R(SPNO,2), KTAN(SPNO), KEQU, MMODE(S
cc

CALL DILATANCY( IDEVD, DPEPS, DMODE(SPNO), G(SPN

$ G(SPNO,2), R(SPNO,1), R(SPNO,2),
$ KEQU, GTH, RPT, LTDPEP, GREV(SPN
$ RREV(SPNO), HPEV, PSIG(PLNO) )

DEVD=DEVD+I1DEVD/SPRING

DPWORK=DPWORK+DABS(R(SPNO, 2)*PSI1G(PLNO)*HPEV*DPE

1S1G(5)=R(SPNO, 2)*PS1G(PLNO)*HPEV
1S1G(1)=0.D0

1S1G(2)=0.D0

1S1G(3)=0.D0

1S1G(4)=0.D0

1S1G(6)=0.D0

CALL TRANSFER(2, THETA, PHI, BETA, ISIG)
DO 6300 L=1,NSTR
SIG(L)=SIG(L)+ISIG(L)/SPRING

6300 CONTINUE

6100  CONTINUE
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244 6000 CONTINUE

245 PWORK=PWORK+DPWORK

246 DEVC = EVSUM - EVDSUM

247 EVDSUM EVDSUM + DEVD

248 EVCSUM (EVSUM + DEV ) - EVDSUM

249  DEVC = EVCSUM - DEVC
250  IF(DABS(NN-1.D0).GT.LTRATI) THEN

251  LTEVCS=(MEPSO**NN)/BULKSO*1.D0/(1.DO-NN)* (LTMEAN** (1 .DO-NN) -
252 $ SIGI**(1.DO-NN))

253  EVCSUM=MAX(EVCSUM,LTEVCS)

254  END IF

255  CALL SUBSIG(MEPS, MEPSO, BULKSO, BULKO, EVCSUM, EVY, S 1GY, SI Gl,
256 $ DEVC, BULK, NN, LTRATI)

257  MEPS=MAX(MEPS,LTMEAN)

258 DO 6400 L=1,3

259  SIG(L)=SIG(L)+MEPS

260 6400 CONTINUE

261 DO 7000 PLNO=1,NPLANE

262 DO 7100 J=1,NDIV

263  SPNO =(PLNO-1)*NDIV+J

264  THETA=COOR(PLNO)

265  PHI =COOR(PLNO+32)

266  BETA =PAI*(J-1)/NDIV+0.5D0*PAI/NDIV

267  KTAN(SPNO)=KTAN(SPNO)*HPEV

268  IF(GTYPE.EQ.3) THEN

269 DO 7200 K=1,NSTR

270  1SIG(K)=SIG(K)

271 7200 CONTINUE

272 IF(MOD(SPNO-1,NDIV) .EQ.0) THEN

273  CALL TRANSFER(3, THETA, PHI, BETA, ISIG)
274  DPSIG(PLNO)=1S1G(3)-PSIG(PLNO)

275  PSIG(PLNO) =ISIG(3)

276 END IF

277 IF(DABS(G(SPNO,2)-G(SPNO, 1)) .GE.LTDGAM) THEN
278  PTAN(SPNO)=DPSIG(PLNO)*R(SPNO,2)*HPEV/

279 % (G(SPNO, 2)-G(SPNO, 1))

280  ELSE

281  IF(G(SPNO,2)-G(SPNO,1).GE.0.D0O) THEN

282  PTAN(SPNO)=DPSIG(PLNO)*R(SPNO,2)*HPEV/LTDG AM

283  ELSE

284  PTAN(SPNO)=DPSIG(PLNO)*R(SPNO,2)*HPEV/(-1. DO *LTDGAM )

285  END IF
286  END IF

287 IF(PTAN(SPNO) .GE.0.DO) THEN

288  KTAN(SPNO)=KTAN(SPNO)+PTAN(SPNO)

289  END IF

290 END IF

291  CALL SPMAT(THETA, PHI, BETA, ISTIFF)
292 DO 7300 L=1,NSTR
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294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

DO 7400 M=1,NSTR
STIFF(L,M)=STIFF(L,M)+KTAN(SPNO)*ISTIFF(L,M)
7400 CONTINUE

7300 CONTINUE

7100  CONTINUE

7000 CONTINUE

IF(GTYPE.EQ.1) THEN

DO 8000 1=4,6

IF(STIFF(1,1) .LE.LTGTAN) THEN

IF(GLAST(1-3) .GE.LTGTAN) THEN

STIFF(I, 1)=GLAST(1-3)

ELSE

STIFF(I, 1)=LTGTAN

END IF

END IF

8000  CONTINUE

ELSE IF(GTYPE.EQ.2) THEN

DO 8100 1=4,6

IF(STIFF(1,1) .LE.LTGTAN) THEN

STIFF(I, 1)=LTGTAN

END IF

8100  CONTINUE

END IF

DO 8200 1=4,6

IF(DABS(DEPS(1)) .GE.LTDGAM) THEN
GLAST(1-3)=(-1.DO*SIGMAB(1)-SIG(1))/DEPS(I)
ELSE

IF(DEPS(1) .GE.LTDGAM) THEN
GLAST(1-3)=(-1.DO*SIGMAB(1)-SIG(1))/LTDGAM
ELSE
GLAST(1-3)=(~1.DO*SIGMAB(1)-SIG(1))/(~1.DO*LTD
END IF

END IF

8200 CONTINUE

DO 7500 L=1,3

DO 7600 M=1,3

STIFF(L,M)=STIFF(L,M)+BULK

7600  CONTINUE

7500 CONTINUE

CALL ZEROM(STIFF)

USRSTA(1) = EVDSUM
USRSTA(2) = EVY
USRSTA(3) = SIGY
USRSTA(5) = PWORK

DO 7700 PLNO=1,NPLANE
USRSTA(5+PLNO)=PS1G(PLNO)
7700 CONTINUE
USRSTA(38)=GLAST(1)
USRSTA(39)=GLAST(2)
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342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362

USRSTA(40)=GLAST(3)
DO 7800 SPNO=1,SPRING

USR IND((SPNO-1)*2+1)=MMODE (SPNO)
USR IND((SPNO-1)*2+2)=DMODE (SPNO)

USRSTA((SPNO-1)*W1DTH+OFFSET+
USRSTA((SPNO-1)*W1DTH+OFFSET+
USRSTA((SPNO-1)*W1DTH+OFFSET+
USRSTA((SPNO-1)*W1DTH+OFFSET+
USRSTA((SPNO-1)*W1DTH+OFFSET+
USRSTA((SPNO-1)*W1DTH+OFFSET+
USRSTA((SPNO-1)*W1DTH+OFFSET+
USRSTA((SPNO-1)*W1DTH+OFFSET+
USRSTA((SPNO-1)*W1DTH+OFFSET+
7800 CONTINUE

DO 7900 1=1,NSTR
SIGMA(1)=-1.DO*SIG(I)

7900 CONTINUE

END IF

10000 CONTINUE

RETURN

END
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1
2)
3)
4)
5)
6)
7
8)
9)

= GORI(SPNO)
= GMAX(SPNO)
= GREV(SPNO)
= G(SPNO,2)
= RMAX(SPNO)
= RREV(SPNO)
= R(SPNO,2)
= COR(SPNO)
= GAMP(SPNO)



