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 I

Preface 
 
This report is aimed at verification of a 3D liquefaction model for DIANA software. The 
model has originally been developed by Nishimura (2002).  In the first chapter of this report, 
a detailed study of the model itself will be made. To this end, the expressions involved in the 
model will be derived and their agreement with those given in the original model will be 
checked. Further elaboration of the model will also be made to have a better understanding 
of the model. The derivations and elaborations helped to identify some aspects of the model 
which need further improvement before being made available for customers. 
 
A Fortran program which is based on this model is also already available. In the second 
chapter, this subroutine will be studied in detail and its consistency with the expressions 
given in the earlier chapter will be checked. First, each variable involved in the program will 
be defined according to those given in chapter one. The function of each subroutine 
involved in the program will be explained with further elaborations when necessary. The 
flow of analysis of the whole program will be reviewed in detail by recalling the expressions 
given in chapter one. 
 
The third chapter will be about the input data file which will be used for the liquefaction 
analysis. This data file contains the material and state parameters which will be used in the 
program discussed in chapter two. Each component of the data file will be discussed. In this 
chapter, a guide for the determination of the material parameters from laboratory tests will 
also be given. 
 
Analytical verification of the program for simple boundary conditions will be the main task 
in chapter four. For this, a simple shear model will be constructed and analytical calculations 
will be made for computing the resulting deviatoric stresses from a given strain. A 
liquefaction analysis will be made by DIANA software for a similar model and the results 
will be compared with the analytical ones. 
 
The verification process will be extended further in chapter five by comparing DIANA 
software results with laboratory observation and other numerical simulations. Liquefaction 
analyses will be made for different types of loading and drainage conditions. From the result 
by DIANA software, important graphs will be plotted and compared with those from 
laboratory observations. Depending on the results of the comparisons, explanations will be 
given. 
 
Depending on the discussions in the previous chapters, the last chapter gives conclusions 
and recommendations. 
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Summary 
 

With the advancement of solution techniques and solving computers, 3D analysis of civil 
engineering problems has increasingly become more interesting. The multiple spring 
model is one of the tools to give good solutions to 3D liquefaction analyses. In this 
model, the deviatoric stress is determined in a finite number of springs distributed over 
virtual planes in the soil element for which liquefaction analysis is to be undergone. 
Among the several options for the distribution of the virtual planes in the soil element, it 
was previously found that an icosahedral distribution results in an isotropic model. 
 
For the displacement based analysis which is going to be discussed in this report, the 
global strains will be decomposed into one-dimensional strains in each spring through 
transformation matrices. Then the Masing rule after several modifications will be used to 
obtain stress ratio from those transformed strains. The product of the stress ratio and 
the mean effective stress gives the shear stress in each spring. The global shear stress of 
the soil mass is calculated from the shear stress in each spring through transformation 
matrices. 
 
The model also uses stress-dilatancy relationships to calculate volumetric strain due to 
dilatancy which enables to calculate the volumetric strain due to consolidation. 
Expressions for a curve of isotropic compression or swelling help to calculate the mean 
effective stress. Along with the stress ratio, it is this mean effective stress that will be 
used to calculate the shear stress in each spring. 
 
In this report, it is discovered that the icosahedral distribution of planes results in an 
isotropic behavior. However, the way the springs are oriented on those plane as 
described in the original model by Nishimura (2002) will not result in an isotropic 
behavior. At the end of the report, suggestions will be given to overcome this anisotropy. 
It will also be seen that the volumetric strain due to dilatancy is overestimated in the 
model. The source for the overestimation is discovered and will be forwarded for further 
improvement. Suggestions for the modification of the hysteresis loop when the stress 
ratio in the past is exceeded will also be given. 
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List of symbols 
 
Scalar quantities 
 
x,y,z – Cartesian coordinates of the original coordinate system 

'''x '''y '''z - Cartesian coordinates of the rotated coordinate system 
θ – the rotation angle around z axis at the first stage of transformation of coordinated 
φ – the rotation angle around y’ axis at the second stage of transformation of coordinated 
ζ – the rotation angle around z’’ axis at the third stage of transformation of coordinated 
li- the direction cosine between the global x-axis and the rotated coordinate system  
mi- the direction cosine between the global x-axis and the rotated coordinate system 
ni- the direction cosine between the global x-axis and the rotated coordinate system 
ei – vector containing the unit vectors in the original coordinate system 
ei’’’ – vector containing the unit vectors in the rotated coordinate system 
εij – strain quantity in each direction 
εv – volumetric strain  
p – mean effective stress 
n-  the number of springs in the icosahedral distribution 

)(
tan
iG - tangential shear modulus of each spring 

B- bulk modulus  
)(iγ - shear strain of each spring 

*
maxR - maximum stress ratio at infinite strain 

maxG -shear modulus at small strain 

oGmax, -shear modulus at small strain at initial mean effective stress 

maxk -spring stiffness 

okmax, -spring stiffness at initial mean effective stress 

rγ - reference shear strain 

or ,γ - reference shear strain at initial mean effective stress 
)(iR - stress ratio of each spring 
)(i

revR - stress ratio for reversal point of each spring 
)(i

revγ - shear strain at reversal point of each spring 
)(i

aγ - shear strain amplitude of each spring 
)(i

aR - maximum shear stress ratio 
η – reduction factor of the hysteresis loop 

)(
max
iγ - maximum shear strain of each spring 

C(i) – scaling factor for Rmax 
∆W- total strain energy. 
W – elastic work done. 
h– damping ratio. 
R’ – stress ratio after hardening is considered. 
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Hp – factor to consider hardening effect 
)(i

eqG  - equivalent elastic tangent shear stiffness 
d
vdε  - increment of volumetric strain due to dilatancy 
c
vdε  - increment of  volumetric strain due to consolidation 

)(, ipdγ - increment of plastic shear strain 
)(, iedγ - increment of elastic shear strain 

Nd – slope of stress ratio versus stress dilatancy curve. 
Cc – compression index 

'yp  - yield stress 
c

yvd ,ε  - increment of  volumetric strain at yield stress 
Bo – bulk stiffness at initial mean effective stress. 
 
Matrix quantities 
 
[M] – transformation matrix containing the direction cosines. 
[ε] – strain tensor 
{ ε }- strain vector in the original coordinate system 
{ ε''' }- strain vector in the rotated coordinate system 
[Tε] – overall transformation matrix for engineering strains 
[Tε,θ] –transformation matrix for engineering strains around global z axis 
[Tε,φ] –transformation matrix for engineering strains around rotated y’ axis 
[Tε,ζ] –transformation matrix for engineering strains around rotated z’’ axis 
[σ] – stress tensor 
{ σ }- stress vector in the original coordinate system 
{ σ''' }- stress vector in the rotated coordinate system 
[Tσ] – overall transformation matrix for stresses 
{ Ι }- isotropic unit vector 
[N] – selector matrix 
{ τ }- deviatoric stress vector in the original coordinate system 
{ ε(i)}- strain vector of the rotated coordinate system 
{ γ(i)}- strain vector of each spring 
[G]- tangential shear stiffness matrix 
[B]- bulk stiffness matrix 
[K]- tangential stiffness matrix 
[D] – stiffness matrix for dilatancy effect 
[C] – compliance matrix 
[K’] – overall tangential stiffness matrix with dilatancy effect 
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CHAPTER ONE 
DEFINITION OF THE MULTIPLE SPRING MODEL 

 
1.1. Background of the multi-spring model 
 
The multiple inelastic spring model is shown in fig 1 below. The model consists of an 
infinite number of non-linear springs and can take into account the effects of principal stress 
axes rotation. Rotation of principal axes is the phenomenon by which the principal stress 
axes rotates during progressive shearing of the soil element as it often occurs during cyclic 
liquefaction processes. When an external force is applied at the center of the model, the 
surrounding springs deform and the center point moves. By assuming that the external force 
represents the shear stress and that the displacement of the center point stands for the shear 
strain under plane strain conditions, shear distortion of the soil can be predicted. 
 

 
Fig. 1.1. Multiple spring model 

 
 

1.2. General structure of the model 
  
The essence of multiple shear mechanism is to express two- or three-dimensional shear 
stress-strain relationships as a summation of one-dimensional stress-strain relationships 
mobilized in virtual planes, which are oriented to various directions inside a soil element as 
shown in Fig. 1.2. Each plane contains two-dimensional shear stress and shear strain and 
hence two degrees of freedoms on each plane. To reduce the degree of freedom to one, the 
shear in the virtual plane is further broken down into several one-dimensional shear 
mechanisms.  
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Figure 1.2 . a) Virtual planes inside the 3-D soil element  b) Decomposition of 3-D shear 

into 2-D and 1-D shear mechanisms. 
 
The distribution of the prepared virtual planes determines characteristics of modeled shear 
behaviors. If the orientation of the planes which contain the springs aligned with constant 
intervals is regular and omni-directional, the model will be isotropic; otherwise it will become 
anisotropic. The strain is related to stresses in such a manner that, first, the shear strains of 
one-dimensional springs are calculated from strain components in an overall system. Then, 
the corresponding shear stresses are obtained based on spring characteristics and summed to 
become the shear stress in the overall system. 
 
1.3. Rotation of coordinate systems 
 
The shear strain in each one-dimensional shear mechanism is obtained by coordinate 
transformation from the global shear strain. The coordinate transformation between the 
global xyz and the coordinate of a particular spring ''''''''' zyx  follows the following steps as 
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shown in Figs. 1.3 through 1.6 below. The aim of the axes rotation is to have one of the 
cartesian axes of the new coordinate system aligned with each of the springs. 
First, a new system ''' zyx  will be formed by rotating the original xyz coordinate system by 
angle θ around z axis.  

 
Figure 1.3 . Rotation of the coordinate xyz system by an angle θ around z axis. 

 
Further rotation of the ''' zyx  coordinate system by angle φ around 'y  axis will result in a 
new '''''' zyx  system.  

 
Figure 1.4. Rotation of the coordinate ''' zyx  system by an angle φ around y’ axis. 

 
The plane '''' yx   which is shown in fig. 1.5 below is assumed to correspond to one of the 
virtual shear planes inside the 3-D soil element shown in fig. 1.2.  

 

 
Figure 1.5.  The '''' yx  plane containing the springs 



 - 4 -

Finally the '''''' zyx  will be rotated step-by-step around ''z  axis by an angle ζ so that the 
'''y  axis of the new ''''''''' zyx  system will lie on each of the one-dimensional shear 

mechanisms. 
 

 
Figure 1.6. Rotation of the coordinate '''''' zyx  system by an angle ζ around z’’ axis. 
 

Hence, the full transformation between the original xyz and the new ''''''''' zyx  axis 
involves coordinate rotation with regard to three angles θ, φ and ζ. The angles between a 
vector and the positive axes of the original coordinate system are termed as direction angles. 
The cosines of these direction angles are termed as direction cosines. The direction cosines 
between the original and the new coordinate system are given as li, mi, and ni in table 1.1.  

 
Table 1.1 . Direction cosines between the original and the rotated coordinate system 

 
 

1.4. Stress and strain transformation 
 
The stresses and strains given in original xyz coordinate system can be transformed into 

''''''''' zyx  coordinate system. If the unit vectors along the x, y and z axes of the original 
coordinate system be e1, e2 and e3 respectively. And the corresponding unit vectors in the   
transformed coordinate system are ê1, ê2 and ê3. Let ei= {e1   e2  e3}T and ei’’’ = { ê1  ê2  ê3}T. 
Then following relationship can be developed between {ei} and {ei’’’}.  
 

'''''''''''' ][][ i
T
iiiiiii eMeeMe ==                             (1.1) 

 
In which the coordinate transformation matrix containing the direction cosines given in 
table 1 is given by, 
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It can be proved that the matrix iiM '''][  is an orthogonal matrix i.e. T

iiM '''][ = 1
'''][ −

iiM  
 
A. Strain transformation 

 
The strain tensor is given by the expression: 
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The same strain tensor can be expressed in the ''''''''' zyx  coordinate system as: 
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Depending on this, the following relation can be developed, 
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Therefore, 
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Considering the symmetry of strain tensor, the matrix product leads to the following: 
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These equations can be put in the matrix format as follows: 
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This matrix equation can also be written as in the following form to give the engineering shear 
strains. 
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The strain vectors in the original and rotated coordinate systems can then be written as: 

 
{ }T

zxyzxyzyx γγγεεεε =}{                                 (1.10) 
   

{ }T
xzzyyxzyx '''''''''''''''''''''''''''}'''{ γγγεεεε =                       (1.11) 

 
Therefore, eq. (1.9) can be written as: 

 
                    [ ]{ }εε εT=}'''{                                                           (1.12) 

 
Where [Tε] is the transformation matrix of engineering strains from the xyz coordinate 
system to ''''''''' zyx .The transformation matrix [Tε] will have the format as in (1.9), namely 
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As mentioned earlier, the rotations in this model are aimed to align the z’’’ axis with the 
respective spring. Hence the strains in the rotated coordinate system belong to that of the 
springs. In the subsequent parts, the strain vector }'''{ε  will be written as }{ )(iε . A 
superscript (i) will always indicate that the quantity being considered belongs to a spring. 

 
The overall transformation matrix [Tε] can also be obtained as a product of the three 
matrices ][,][ ,, φεθε TT  and ][ ,ζεT  which respectively represent the coordinate transformation 
processes given in figs. (1.3), (1.4) and (1.6) respectively. 

 
When a new system ''' zyx  will be formed by rotating the original xyz coordinate system by 
angle θ around z axis, the transformation matrix to the new coordinate system ][ ,θεT can be 
obtained by substituting the correct values of the direction cosines in eq. (1.13). 

 
Referring to fig 1.3, the direction cosines for the first rotation around z axis will be: 
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(1.14) 

 
Substitution of these values in eq. (1.13) will result in, 
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,T                    (1.15) 

Referring to fig 1.4, the direction cosines for the second rotation around y’ axis will be: 
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Substitution of these values in eq. (1.13) will result in, 
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Referring to fig 1.6, the direction cosines for the third rotation around z’’ will be: 

 

10cos0)
2

cos(0)
2

cos(

0
2

coscossin)
2

cos(

0
2

cossin)
2

cos(cos

321

321

321

======

====−=

==−=+==

nnn

mmm

lll

ππ

πζζζπ

πζζπζ

           (1.18) 

 
Substitution of these values in eq. (1.13) will result in, 
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The overall transformation matrix will be obtained as: 

 
]][][[][ ,,, θεφεζεε TTTT =                                                                  (1.20) 
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B. Stress transformation 
 
The stress transformation follows the same procedure as the strain. The stress tensor can be 
given in the original and rotated coordinate system as: 
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Depending on this, the following relation can be developed as it was done for the strain 
transformation, 

 
T
jjijiiji MM '''''''''''' ][][ σσ =                                                     (1.22)                               

 
Following the same procedure as for the strain transformation matrix, the stresses in the 
original and rotated coordinate systems can be related as: 
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The stress vectors in the original and rotated coordinate systems can then be written as: 

 
{ }T

zxyzxyzyx τττσσσσ =}{                           (1.24)    
   

{ }T
xzzyyxzyx '''''''''''''''''''''''''''}'''{ τττσσσσ =                    (1.25)  

 
Hence, eq. (1.23) can be written as: 

                     
[ ]{ }σσ σT=}'''{                                                                     (1.26) 

 
Where [Tσ] is the transformation matrix of stresses from the xyz coordinate system to 

''''''''' zyx .The transformation matrix [Tσ] will have the following format identical to eq. 
(1.8), namely 
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    (1.27) 

 
The inverse the stress transformation matrix can be derived from eq. (1.22) as: 
 

jjji
T
iiij

T
jjijiiji MMMM ''''''''''''''''''''''''' ][][][][ σσσσ =⇒=                        (1.28) 

 
Therefore, 
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Considering symmetry of the stress tensor, the matrix product leads to the following: 
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This leads to the following relationship: 
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In short, eq. (1.31) can be written as: 

                     
[ ] { }'''}{ 1 σσ σ

−= T                                                                     (1.32) 
 

In which the inverse of the stress transformation matrix [ ] 1−
σT  is given by: 
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Tσ
  (1.33) 

 
Comparing eqs. (1.13) and (1.33), the following relationship can be deduced. 

 
[ ] [ ]TTT εσ =−1                                                                (1.34) 

 
It follows that the following relationships will also be valid between the transformation 
matrices of stress and strain after each rotation. 
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                                                    (1.35) 

 
1.5. Shear strain in the springs 
 
1.5.1. Decomposition into isotropic and deviatoric components 
 
The multiple mechanism model decomposes strain components in three-dimensional space 
into numerous one-dimensional strain components by means of coordinate transformation.  
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The strain vector }{ε  which is given by eq. (1.10) can be decomposed into isotropic and 
deviatoric components.                   

{ } { }γ
ε

ε += Iv

3
}{                                                       (1.36)          

In which, 
zzyyxxv εεεε ++=                                                           (1.37) 

                                  { } { }000111=I      
                              

{ }
⎭
⎬
⎫

⎩
⎨
⎧ −−−= zxyzxy

vol
zz

vol
yy

vol
xx γγγ

ε
ε

ε
ε

ε
εγ

333
                     (1.38) 

 
The stress component given by eq. (1.24) can also be decomposed in a similar way into 
isotropic component and deviatoric component.  
 

{ } { }τσ += Ip}{                                                              (1.39) 
 
In which, the hydrostatic pressure p  is given by, 
 

3
zyxp

σσσ ++
=                                                            (1.40)  

  
And the deviatoric stress component }{τ is written as: 
 

{ }T
zxyzxyzyx ppp τττσσστ −−−=}{                      (1.41) 

 
1.5.2. Decomposition of shear mechanisms 

                       
Multiplication of the strain vector in eq. (1.10) with the transformation matrix between the ith  
inelastic spring and the global coordinate system of the soil element for strain ][ )(iTε  gives 
the strain vector of each spring, }{ )(iε . 

 
{ }Ti

zx
i

yz
i

xy
i

z
i

y
i

x
ii T )()()()()()()()( }]{[}{ γγγεεεεε ε ==                        (1.42) 

 
Thus shear strain of a particular shear mechanism (namely, the shear strain in '''y  direction) 
is the extracted from the strain vector of each spring as: 

 
{ } Ti

yz
iii TNN }00000{}]{][[}]{[ )()()()( γεεγ ε ===                  (1.43) 

 
The matrix [N] is given by: 
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][N                                (1.44) 

 
Alternatively, the value of the shear strain of each spring can be derived as: 

 
}{}{ )()( iTi n εγ =                                               (1.45) 

 
where {n} is a vector given by: 

 
                                            {n} = {0   0    0    0   1    0}T                                       (1.46) 

 
With the repetition of the procedure above for all springs, three dimensional strains in the 
original xyz coordinate system is decomposed into n one-dimensional shear strains. 
 
1.6. Aggregate shear stress 
 
The shear stress of the same mechanism,{τ(i)}, is then obtained from {γ(i)} via a one-
dimensional shear stress-strain relationship. The obtained shear stress in the mechanism is 
transformed into stress in the original xyz coordinate system as follows: 

                  
{ }

{ } { }Tii

iii
xyz

where

T

00000

][}{
)()(

)(1)()(

ττ

ττ σ

=

= −

                       (1.47) 

The total strain increment is distributed for each spring. Hence, whenever shear stresses or 
strains are calculated back for the soil element, the average of the contribution from each 
spring should be taken. Thus, the total shear stress imposed to the soil is calculated by taking 
the summation (actually an average) of {τ(i)} for n number of springs which will be 
considered in eq. (1.50) as 
 

}{][1}{1}{ )(

1

1)(

1

)( i
n

i

i
n

i
xyz

i T
nn

τττ σ∑∑
=

−

=

==                                       (1.48) 

Finally, the stress vector { }σ  is obtained by adding the mean principal stress, p, to the first 
three rows of {τ} in accordance with eq. (1.39).The derivation of p will follow later. 
 
1.7. Formation of the tangent stiffness matrix 
 
The basic tangent stiffness matrix can be developed from the equations developed so far. If 
the tangent shear modulus of the ith shear spring is given as )(

tan
iG  , the relationship between 

shear stress increment and shear strain increment is 
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{ } { })()(

tan
)( iii dGd γτ =                                                     (1.49) 

 
For the total soil mass, substitution of eq. (1.48) for global deviatoric stress increment will 
lead to 

 

}{][1}{ )(

1

1)()(
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i
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i

ii dTG
n

d γτ σ∑
=

−=                                           (1.50)                               

Inserting eq. (1.43) in this equation and using the relationship in eq. (1.34) in this equation 
yields, 
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Since the volumetric strain { }vdε  doesn’t change with coordinate transformation and since 
the product }]{[ vdN ε  becomes a zero matrix, combination of eq. (1.36) and eq. (1.51) gives: 
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                             (1.52) 

 
The shear stress increment and the shear strain increment vectors can be related to 
eachother through the overall tangent shear stiffness matrix [G] as: 
 

}]{[}{ γτ dGd =                                                         (1.53) 
 
 Referring to eqs (1.52) and (1.53), the overall tangent shear stiffness matrix can be given as:                
    

]][[][1][ )(

1

)()(
tan

i
n

i

Tii TNTG
n

G εε∑
=

=                                            (1.54) 

 
For isotropic elastic material the shear stiffness matrix is given by: 
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The incremental isotropic effective stress-strain relation is described by: 
 

{ }'{ } [ ]
3

vddp I B Iε
=                                                      (1.56) 

 
in which the isotropic vector {I}, the volumetric strain εv and the mean effective stress p’ 
have been defined by (1.37) and (1.40). Elaboration of eq. (1.56) in matrix form gives: 
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⎩ ⎭

                             (1.57) 

 
Where B is the tangent bulk modulus for compression (or swelling) and is given in terms of 
incremental values of effective stress and volumetric strain as: 

 

vd
dpB
ε

'
=                                                                  (1.58) 

Next, substituting eqs.(1.53) and (1.56) in eq.(1.39) gives:                                     
 

{ }{ '} '{ } { } [ ]{ } [ ] [ ]{ }
3

vdd dp I d G d B I K dεσ τ γ ε= + = + =                         (1.59) 

Hence the tangential stiffness matrix [K] relates the incremental effective stress vector {dσ’} 
with incremental strain {dε}.The overall tangent stiffness matrix [K] is then given by the 
sum of the shear stiffness matrix [G] and the overall tangent compression (or swelling) 
stiffness matrix [B].  

 
                                      [K] = [G]  +  [B]                                                       (1.60) 
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1.8. Distribution of constituent springs 
 
The multi-spring model presented here deals with only isotropic behavior. Thus, the 
distribution of the springs on the virtual planes and the distribution of the planes themselves 
should also be isotropic. Regular orientation of springs on each virtual plane can be achieved 
by simply distributing them evenly with a constant angle θ between them. 
For even distribution of the virtual planes, their orientation is determined with the aid of an 
icosahedron which consists of twenty facets and twelve apices. Vectors directed from the 
center of an icosahedron to its apices coincide with the normal vectors of the planes ( )(in in 
Figure 1.). In this model, the total number of the virtual planes is increased by using the 
center of gravity of the planes together with the apices. Thus, 32 planes, 12 based on the 
apices and 20 on the additional points will be used. By distributing 6 single-degree-of-
freedoms shear mechanisms on each of them, 192 one-dimensional shear mechanisms will 
be employed. Note that the actual calculation is required for only half of them, considering 
the symmetry of the icosahedron with regard to the xy plane. 

 

 
Fig 1.7. An icosahedron 

 
If prepared planes and shear mechanisms on each plane are numbered from 1 … j…. np and 
1 …. k …… ns respectively, constituent springs are to be numbered 1 … i …. n, then the 
following formula should be met. 

 
knji s +−= )1(                                                           (1.61) 

1.9. One dimensional stress-strain relationship  
 

The three-dimensional stresses and strains are decomposed into stresses and strains of 
single-degree of freedom with the help of the multiple mechanism model. Hence the 
behavior of each one-dimensional shear mechanism is a crucial part of the behavior in three-
dimensional model.  

 
 



 - 17 -

1.9.1. Masing’s rule 
 

A shear stress-strain relationship of the constituent one-dimensional shear mechanism is 
formulated based on the extended Masing’s rule along with several modifications and a 
hyperbolic skeleton curve. 

 
The extended Masing’s rule outlines the following four basic main points: 

 
1. For initial loading, a stress-strain relationship is prescribed by a skeleton curve 

(backbone curve) ( Masing ,1926) 
2. When reloading or unloading occurs from the initial loading, the stress-strain 

relationship forms a loop which is obtained by enlarging the skeleton curve by 
variable factors in size.( Pyke, 1977) 

3. If the previous maximum shear strain is exceeded, a stress-strain relationship 
follows a skeleton curve again. (Finn et. al.,1977, Jennings, 1977) 

4. If a hysteresis loop intersects a previous loading or unloading curve, a stress-
strain relationship follows that previous curve (Finn et. al. , 1977) 

 

 
 

Figure 1.8. Stress ratio-strain relationship using the modified Masing’s rule 
 

The information about the recent reversal point is necessary in the extended Masing’s rule 
for choosing the hysteresis loop to be followed when the strain amplitude is subsequently 
increased. Hence this rule requires memorization of all loading reversal points when cyclic 
strain amplitude is diminished with the number of loading cycles. However, this requires 
immense amount of computer memory in three-dimensions rendering this method to be 
impractical. 

 
The proposed model simplifies the problem of huge memory requirement by creating 
hysteresis loops connecting only two points: the point of the most recent reversal point and 
the point of the maximum ever-experienced shear stress ratio. 
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The skeleton curve in this model which is shown by curve 0-1 in Fig. 1.8 is given by the 
hyperbolic relationship of Hardin and Drenevich (1972b). This hyperbolic relationship is for 
each spring  is given by: 
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Dividing both sides of this equation by the mean effective stress  p’  leads to: 
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The ratio of shear stress to mean effective stress gives the stress ratio R. 
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Hence eq. (1.63) can also be written as: 
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Note that the absolute value of shear strain is taken in the denominator in eq. (1.65) to keep 
the positive sign in front of it valid for all ranges of shear strain.  

 
For each constituent spring, the non-dimensional stiffness parameter kmax and the reference 
shear strain γr can be defined as:   
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Substituting the expression for the mean stress p’ from eq. (1.64) in this equation, the 
relationship between these two parameters can be established. 
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Hence, the equation of the skeleton curve for each spring becomes: 
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in which the superscript i indicates that the quantities belong to constituent springs. The 
graph of R(i) versus γ(i) can be plotted as shown in Fig. 1.9. From the graph, it can be seen 
that at γ = 0, the slope of the tangent curve is kmax. At the point where this tangent line 
intersects the horizontal line at R = Rmax, the value of γ will be equal to γr. 

 
Figure 1.9  The skeleton curve on R versus γ space. 

 
Normalizing both sides of eq. (1.68) by Rmax gives : 
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From eq. (1.69), it can be observed that the stress ratio R will be equal to half of the 
maximum value Rmax when the shear strain is equal to γr. This is the equation of the skeleton 
curve under normalized space. The skeleton curve looks like: 

 

 
Figure 1.10.  The skeleton curve on the normalized space. 
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The slope of the skeleton curve at any point can be obtained by taking the derivative of eq. 
(1.69) 

2)()(

max

)(

1

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

r

i

r

i

i

R
R

γ
γ

γ
γ

                                                       (1.70) 

The slope of the skeleton curve at different levels of shear strain can be assessed. When the 
shear strain is zero, the slope of the tangent skeleton curve is equal to one. This tangent line 
also intersects the horizontal line at R = Rmax, when the value of γ is equal to γr. As the level 
of shear strain goes to infinity, the slope of the curve will be zero. 
 
1.9.2. Determination of spring parameters: 
 
Defining the spring parameters kmax, 

( )
max

iG  and ( )
max

iτ  and identifying their relationship with 
global quantities at this stage is important. In this subsection, these issues will be addressed. 
The stiffness parameter kmax can be given as a function of the overall maximum shear 
modulus of an element, maxG  and mean effective stress p’. Combination of eqs. (1.54) and 
(1.66) gives: 
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For isotropy of the model, the spring stiffness kmax should have the same value for all the 
springs. Hence the above equation becomes: 
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For icosahedron distribution of springs, the matrix in the bracket can be computed as: 
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The shear stiffness matrix [G] was given by eq. (1.55). Substitution of the expressions in 
eqs.(1.54) and (1.73) in eq. (1.72) and using eq. (1.66), the following relationships between 
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the overall tangent shear modulus of the soil Gmax, the effective stress and the stiffness of 
each spring kmax  can be established: 
 

'
5 max

max p
Gk =                                                         (1.74) 

In addition, for icosahedral distribution of planes, comparison of eqs. (1.54),(1.55) and (1.72) 
along with the calculated matrix expression in eq. (1.73) leads to the relationship between the 
maximum shear stiffness of the soil element maxG  and that of the individual springs )(

max
iG  as: 
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maxmax 5
1 iGG =                                                     (1.75) 

With the help of eq. (1.48), the shear strengths of the soil element in torsion shear test and 
that of the springs in icosahedral manner can be related.  
 

 
Figure 1. 11. Stress directions in isotropic torsion shear test. 

 
The deviatoric stress vector in torsion shear test for the shear component applied in xy, yz 
and zx directions respectively are given by:  
                                                    

{ }T
xyzyx ppp 00}{ τσσστ −−−=                               (1.76a) 

{ }T
yzzyx ppp 00}{ τσσστ −−−=                               (1.76b) 

{ }T
zxzyx ppp τσσστ 00}{ −−−=                               (1.76c) 

The expression of the shear stress level in the springs  ( )iτ  in terms of the maximum 
attainable shear stress in the springs ( )

max
iτ  can be derived utilizing eqs. (1.63), (1.64) and 

(1.66). The derivation leads to the following relationship. 
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The deviatoric stresses in the springs and that of the soil element in the isotropic torsion 
shear test can be related using eq. (1.48). Substituting the expression of ( )iτ  from eq. (1.77) 
in eq. (1.48), an equation relating the maximum deviatoric stresses in the isotropic torsion 
shear test and in the springs can be obtained as: 
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Where,  
 
                          ( ) ( )

max max{ } {0 0 0 0 1 0}i i Tτ τ=                                          (1.79)                
 
If it is assumed that the ultimate stress of the overall element is mobilized when all of the 
springs take their own ultimate stresses, the term ( )

max{ }iτ  can be taken out of the summation. 
The expression for the shear strains in the springs ( ( )iγ ) was given by eq. (1.43). Substituting 
this expression in eq. (1.78), 
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By applying a global shear strain in one direction, a simple shear test for each of the 
directions xy, yz and zx is simulated. Computing the term in the bracket of eq. (1.80) for all 
springs, the relationship between the shear strength of in torsion shear test and icosahedral 
distribution can be established. Depending on the level of shear strain applied in different 
directions in the torsion shear test, the ratio of the shear stress in the torsion shear test maxτ  
and that of the springs ( )

max
iτ  vary in the manner shown in the following graph. 

 

 
Fig. 1.12. Variation of )(

max

max
iτ

τ  along with the shear strain level in isotropic torsion shear test. 
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The graph shows that the ratio )(
max

max
iτ

τ  converges to a certain value as the strain level increases. 

This happens when the shear strain level in the springs { } { }( )[ ]T i
xyzn Tε ε  is large as compared 

to the reference shear strain rγ . In that case, the relationship in eq. (1.80), can be 
approximated as: 
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Substituting the values of the stress vectors in each direction given by eq. (1.76) from torsion 
shear test and that of the spring from eq. (1.79) in eq. (1.81), the shear strengths of the soil 
element and that of the springs can be related. 
 
Torsional shear applied in xy direction 
 
For shear strain applied in xy direction, eq. (1.81) can be more elaborated as: 
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Where max/xyτ  is the maximum value of stress τxy in torsion shear test. In eq. (1.82), the term 
in the bracket can be computed for all the springs giving: 
 

{ } { }
{ } { }

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−

−

−

=∑
=

−

0201.00072.00000.00000.00000.00000.0
0000.00201.00305.00000.00000.00000.0
0000.03749.00000.00000.00104.00104.0
0000.00000.00201.00000.00000.00000.0
0000.00000.02507.00000.00000.00000.0
0000.00000.02708.00000.00000.00000.0

][

][
][

192
1

)(

)(192

1

1)(

xyz
iT

xyz
iT

i

i

Tn

Tn
T

ε

ε

ε

ε
σ

 (1.83) 
 

Thus, eq. (1.82) can also be written as: 
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Simplification of this equation leads to: 
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Relating the corresponding elements on either side of eq. (1.85), the shear strength of the 
soil when the shear applied in xy direction is given by: 
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Torsional shear applied in yz direction 
 
For shear strain applied in xy direction, eq. (1.81) can be more elaborated as: 
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Where max/yzτ  is the maximum value of stress τyz in torsion shear test. The computation of 
term in the bracket around all the springs gives: 
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 (1.88) 
Substitution of the result obtained in eq. (1.89) into eq. (1.88) leads to: 
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Simplification of this equation gives: 
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Relating the corresponding elements on either side of eq. (1.90), the shear strength of the 
soil when the shear applied in yz direction is given by: 
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Torsional shear applied in zx direction 
 
For shear strain applied in zx direction, eq. (1.82) can be more elaborated as: 
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Where max/zxτ  is the maximum value of stress τzx in torsion shear test. The term in the 
bracket can be computed for all the springs. 
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Substitution of this into eq. (1.93) results in: 
 

)(
max

0
1
0
0
0
0

0000.03776.00000.00000.00000.00000.0
0000.00000.00844.00000.00000.00000.0
0000.00270.00000.00000.00000.00000.0
0000.00000.00291.00625.00000.00000.0
0000.00000.00025.00000.00312.00312.0
0000.00000.00265.00000.00312.00312.0

0
0

i

zx

z

y

x

p
p
p

τ

τ

σ

σ
σ

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−
−−
−−

=

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

−

−
−

 (1.94) 

 
Simplification of this equation leads to: 
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Relating the corresponding elements on either side of eq. (1.86), the shear strength of the 
soil when the shear applied in zx direction in terms of the shear strength of the springs is 
given by: 
 

)(
maxmax 378.0 iττ ≈                                                              (1.96) 

 
The relationship p = (σx+σy+σz)/3 remains valid for all directions. This can be checked by 
adding the first three rows of eqs. (1.85), (1.90) and (1.95) which should result in zero.  
 
Eqs. (1.85) , (1.90) and (1.95) concern deviatoric stresses. Instead of producing a global shear 
stress corresponding to the applied global shear strain, also other terms are non-zero, namely 
eq. (1.90) for γyz gives normal stress errors and eqs. (1.85) and (1.95) for γxy and γzx give shear 
stress errors. The relative errors in the deviatoric stress vector in each direction relative to 
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the deviatoric stress in the direction of the applied global strain can be summarized in the 
following table. 
 

Table 1.2. Relative values of  deviatoric stresses in torsion shear test relative 
to those applied global in the direction of  global shear strain. 

Global shear strain direction Deviatoric 
strain in 

torsion shear 
test 

XY YZ ZX 

σxx-p’ 0 0.0673 0 
σyy-p’ 0 -0.0615 0 
σzz-p’ 0 -0.0057 0 

τxy 1 0 -0.0716 
τyz 0.0536 1 0 
τzx -0.0192 0 1 

 
As can be seen from the table, there is an error associated to every direction. This error 
would affect the performance of the model to simulate real case or laboratory observations. 
 
1.9.3. Mean stress dependency of parameters 
 
With the help of eqs. (1.66) and (1.91), the reference strain γr is given as a function of the 
overall shear strength, maxτ , as: 
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τγ ≈                                                             (1.97) 

 
The parameters kmax given in eq. (1.74) and γr given in eq. (1.97) are functions of the mean 
effective stress. The common assumption for cohesionless materials states that shear 
modulus Gmax at small strain is proportional to square root of mean effective stress 'p . This 
dependence can be expressed by: 
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Where '

op  is a reference mean effective stress and max,oG  is the corresponding small-strain 

shear modulus at '
op . Thus, if kmax given by eq. (1.74) is defined in terms of kmax,o at the 

reference mean effective stress, '
op ,then  kmax at a given mean effective stress, 'p , satisfies: 
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  A similar equation can also be written for rγ  using eqs. (1.97) and (1.99). 
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where or ,γ  and omax,τ  respectively are rγ  and maxτ at '' op p= . For cohesionless materials the 
maximum global shear stress τmax is proportional to the mean effective stress p’ through the 
expression involving a function of φmax and θ, by: 
 

                                        max max' ( , )p fτ φ θ=                                                         (1.101) 
 

In which, φmax is the maximum friction angle and θ is Lode angle in π-plane. The function is 
constant for every mean effective stress. Hence eq. (1.100) can be written as: 
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1.9.4. Hysteresis loop 

 
The equation of the skeleton curve for regular loading is given by eq. (1.68). When irregular 
or asymmetric loading is applied, the origin of the skeleton curve might need to be shifted so 
as to reproduce cumulative strain on one side. For this reason, and for the sake of generality 
and flexibility of the model, the origin of the skeleton curve is made movable by introducing 
a parameter )(i

oγ .  
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By introducing the parameter )(i
oγ , the skeleton curve starts from a different point than the 

origin as shown in fig 1.13. 
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Figure 1.13. The skeleton curve on the normalized space. 
 

The original Masing’s rules states that the hysteresis loop is given as the hyperbolic curve 
which has doubled size of the skeleton curve and passes through the most recent reversal 
point ),( )()( i

rev
i

rev Rγ . In that case, the curve which is shown in  fig 1.14 is given by the equation 
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Figure 1.14. The skeleton curve on the normalized space. 
 

When )()( i
a

i RR = , the difference )()( i
rev

i γγ −  in this model is equal to twice the value of the 
strain amplitude )(i

aγ  as illustrated in fig. 1.14. Hence eq. (1.104) becomes  
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2
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a RRwhere −  is the stress ratio amplitude. 

 
From this , the expression for strain amplitude  can be derived as: 
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Eq. (1.104) can also be written in another form by adding two terms which add up to zero, 
namely: 
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Now we consider eq. (1.107) in more detail. The second term in eq. (1.107) expresses the 
line connecting both ends of a loop and the last terms in the parentheses represent deviation 
of a loop from that line as can be proved below by referring to Fig. 1.15.  
 

 
Figure 1.15. Illustration of skeleton curve and Masing curve for 

)()()()( i
a

i
rev

i
a

i
rev andRR γγ −=−=  

 
The corner points are on the skeleton curve. Hence, the coordinates satisfy the skeleton 
curve equation given by eq. (1.68). The respective equations for the right and left corner 
points are given by: 
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The slope of the line connecting these corner points is given as ratio between vertical 
increment and horizontal increment of any two points. Taking the two corner points, the 
slope is given by : 
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If ),( )()( ii Rγ  represents a coordinate of any point on this line and if the reversal point is 
),( )()( i

rev
i

rev Rγ , then the following equation can be written: 
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Then eq. (1.110) can be written as: 
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This equation is identical to eq. (1.107) without the terms in the parenthesis. Hence, it can be 
concluded that the first two terms of eq. (1.107) represent the equation of the diagonal line 
connecting the left hand side and the right hand side corners of figure 1.15 if . 
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By substituting these values in eq. (1.111), it can be checked that the resulting expression 
equals the expression of the skeleton curve given by eq. (1.65). 
 
The resulting lines for eq. (1.111) can also be illustrated in figure below for two Masing 
curves with the same reversal point but different strain amplitude. 
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Fig. 1.15b. inclined line with slope : x
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For an arbitrary reversal point ),( )()( i

rev
i

rev Rγ , part of eq. (1.107) excluding the terms in the 
parenthesis represent a line through both this reversal point and point on the corresponding 
Masing’s curve representing the other end point of a closed loop with double amplitude )(i

aγ . 
From this , it can be clearly observed that the terms in the parenthesis represent the 
difference of shear stress ratio obtained by eqs. (1.107) and (1.111). This difference is 
denoted by line ac  in fig. (1.15). In a physical sense, the diagonal line stands for the 
deformation associated with secant modulus, while the deviation is related to energy 
dissipation. 
 
The combination of the original Masing’s rule and a hyperbolic skeleton curve yield 
exaggerated damping ratio. In this model, the damping ratio is reduced by multiplying the 
area of the hysteresis loop by an arbitrary factor η. Therefore, the damping ratio can be 
reduced to an arbitrary level by scaling the terms in the parenthesis of eq. (1.83) with a factor 
η. 
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The Masing curves before and after applying the reduction factor are shown in the figure 
below in which point b is located on a reduced curve. 

 

 
Figure 1.16. Modification of damping ratio 

 
When irregular loading with )()( i

a
i

rev γγ ≠  and )()( i
a

i
rev RR ≠  is concerned, the above equation is 

not sufficient to portray a closed loop. For example, if unloading occurs at point 3 in fig. 
(1.17), eqs. (1.106) and (1.107) would offer the path from point 3 to point 4 in fig. (1.17), 
while the path connecting point 3 with the point of previously maximum stress ratio on the 
skeleton curve is desired. This is because those equations give γa for this unloading in place 
of γa’ in fig.1.17. Consequently, the loop is obtained by shifting the bold dotted curve in fig. 
1.17 by 2γa-2γa’. This fact means that the calculation of γa in terms of the stress ratio by eq. 
(1.106) is not appropriate when loading reversal at second-order loops (loops which are 
originating from curves other than the skeleton curve) is concerned. The same goes for a 
loading reversal at loops originating from the skeleton curve in case of η ≠ 1. Indicating the 
maximum shear strain amplitude which is going to occur by )(

max
iγ  , the amplitude of strain 

illustrated in fig. 1.17 as γa’  is given in the following by: 
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a γγγ −=                                                   (1.114) 

In this equation, the sign of )(
max
iγ   will depend on the type of curve which is going to occur 

from the point of reversal considered. If the curve which is going to occur is unloading 
curve, )(

max
iγ  will take negative value otherwise it will be positive. 

 

 
Figure 1.17. Hysteresis loops without modifying the strain amplitude. 
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At this stage it may be noted that the Masing’s rule requires that the maximum reversal point 
is located on the skeleton curve, in which its coordinate is indicated by ),( *

max
)(

max Riγ . 
However, in the following formulation, instead of a scaling factor C(i) is introduced while the 
previously maximum stress ratio *

maxR  is replaced by )(
max

iR , the strength parameter that was 
defined in eq. (1.64). The scaling factor will also ensure that any reversal point ),( )()( i

rev
i

rev Rγ  is 
connected to the point of maximum stress ratio ),( )(

max
)(

max
ii Rγ or ),( )(

max
)(

max
ii R−−γ . Then the 

scaling factor C(i) is defined, while modifying eq. (1.105), by 
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In which,                                      
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By the introduction of C(i), eq. (1.107) will be written as: 
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The whole part of the equations involved in the hysteresis loop will be summarized with the 
following graph: 

 
Fig. 1.18.  Skeleton, Masing and hysteresis curves. 
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• For the initial loading shown by curve ab in fig. 1.18 , the curve is governed by the 
equation of the skeleton curve given by eq. (1.68). The maximum values of )(iγ and 

)(iR will be taken to be the values of )(
max

iR  and )(
max

iγ respectively. The parameters 

maxk  and rγ , which will be used for calculation of the stress ratio )(iR  from )(iγ  
should be given at the beginning. 

 
• When unloading starts, the consequent part of the curve will be a Masing curve 

governed by eq. (1.117). This part is described by the curve bc in the figure. This 
curve heads to point g which is the reflection of the point where the skeleton curve 
ended. Here the reversal point will be the point where the skeleton curve ended and 
the values of )(i

revR  and )(i
revγ  will be the values )(

max
iR  and )(

max
iγ  obtained from the 

skeleton curve. 
 
Other variables which will be used in this equation are the amplitude of shear strain 

)(i
aγ  calculated by eq. (1.114) the scaling factor )(iC  calculated by eq. (1.116).  The 

reduction factor η should be given at the beginning. For the unloading part of the 
Masing curve, )(i

aγ  is always equal to )(
max

iγ−  and for the re-loading part it will be 
equal to )(

max
iγ . The value of )(iC  is always 1 for the Masing curve. 

 
• If re-loading occurs before the curve reaches point g, it will be a hysteresis curve 

governed by eq. (1.117). The only change with the Masing curve is that the values of 
)(i

revR  and )(i
revγ  will no more be the values )(

max
iR  and )(

max
iγ . The hysteresis curves are 

also directed towards the point of maximum stress ratio or its reflection. 
 

The effect of the three parameters maxk  , rγ   and η on the value of stress ratio )(iR  will 
be shown in the graphs below. The ordinate of the graphs represent the value of stress 
ratio. 
 

  
                                (a)                                                                        (b) 
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                                (c)                                                                         (d) 

 
     (e)                                                                         (f) 

 
Fig. 1.19.(a)-(f) effect of the parameters maxk  , rγ   and η on normalized stress ratio )(iR . 

 
Figures 1.19. (a) and (b) represent normalized stress ratio- normalized strain graphs for 
different values of maxk ;keeping the other two parameters constant. The graphs show that 
the spring stiffness maxk  is directly proportional to the stress ratio because both graphs with 
normalized qantities are identical in accordance with rkR γmax

*
max = . Comparing (a) and (c) 

or (b) and (d), the effect of reference shear strain rγ  on normalized stress ratio *
max

)( / RR i  
can be noticed. From the graphs, it can be again observed that with increasing rγ  the 
normalized stress ratio increases in accordance with eq. (1.103) due to the effect of 
normalized strain ratio r

i γγ /)( . The effect of the reduction factor η can be observed by 
comparing the graphs (c) and (e) or (d) and (f). Larger value of reduction factor means wider 
Masing or hysteresis curves. 
 
In eq. (1.117), the term in the parentheses along with the reduction factor for the damping 
ratio η gives the deviation of the hysteresis loop from the diagonal line in fig. 1.16. This 
deviation will be denoted by R~  and will be given by the equation: 
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Then the area inside the hysteresis loop can be given by: 
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The factor two is introduced because the area should be calculated for the hysteresis loop on 
both sides of the diagonal. The hysteresis curve is bounded by curves governed by eq. (1.80). 
Thus, the following relations can be written for the curve on the top of the diagonal: 
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By substituting these values, eq. (1.118) can be simplified into: 
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In this case, for any value of )(iγ , the expression )()( i

a
i γγ +  is always positive. Thus, the 

absolute value in the expression for R’ can be removed without bringing any change in the 
final outcome. Now, the area inside the hysteresis loop can be explicitly expressed as: 
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The integration will finally result in the area inside the hysteresis loop to be given by: 
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The elastic work done W is given by: 
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The damping ratio h is given by the formula: 
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Thus, damping ratio h can be plotted against the amplitude of strain γa/γr for various values 
of η as: 

 

 
Figure 1.20. Damping ratio for various values of η. 

 
1.9.5. Modeling of hardening due to shear loading 

 
Sand exhibits gradual hardening when subjected to drained cyclic loading. The hardening can 
be attributed to a densification and influence of shear history. The effects of shear history on 
hardening of sand means that sand which has experienced some extent of shearing exhibits 
harder response than virgin sand at the same density does. In order to model this hardening 
phenomenon, a correlation between stress amplitude for a constant strain amplitude and 
accumulated volumetric strain was experimentally investigated by Shahnazari and Towhata 
(2000) leading to the linear relationship in the fig. 1.21 below. In the figure, the maximum 
shear stress in each cycle normalized by the maximum shear stress in the initial loading for a 
given constant strain amplitudes versus the volumetric strain. 
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Figure 1.21.Correlation between shear stress amplitude and volumetric strain. 

 
The linear relationship suggested the following equation: 

                              
RHR vp )1(' ε+=                                                    (1.126) 

 
in which R is the stress ratio amplitude before hardening is considered and R’ is the value 
after modification for hardening and Hp is a coefficient which corresponds to the gradient of 
the line in the fig. 1.21 above. Hence, in this model, the hardening effect is reproduced by 
multiplying the shear stress of each shear mechanism by a factor of )1( vpH ε+ . 

 
1.9.6. Tangent shear stiffness 

 
The tangential stiffness of each one-dimensional stress-strain relationship )(

tan
iG  is required in 

order to form the overall tangent stiffness matrix. Its expression can be obtained from eq. 
(1.49). If the effect of hardening is included, 
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 When p’  is constant, the tangent stiffness of  the one-dimensional relationship is given as: 
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The expression of R(i) for the skeleton curve is given by eq. (1.103). Substitution of this 
equation in eq. (1.128) and after some algebraic manipulation we will get: 
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For the hysteresis loops, the expression of R(i)  is given by eq. (1.117). Similarly, the 
expression of the tangent shear stiffness when p’ is constant can be derived as: 
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When the effective principal stress p’ is not constant, the tangent stiffness matrix is obtained 
by the following equation: 
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Sand exhibits an elastic response when subjected to small unloading or reloading. Thus, an 
equivalent elastic shear stiffness )(i

eqG  can be defined to be the tangent stiffness which 
appears immediately after loading reversals. Its expression can be derived by inserting the 
value γ = γrev in eq. (1.130). 
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 1.10. Dilatancy and isotropic compression/swelling 
 
1.10.1. Modeling of stress-dilatancy relationship 
 
The two-dimensional Towhata-Iai model uses a correlation between excess pore water 
pressure and shear work done to sand to calculate the development of excess pore water 
pressure. This assumption renders the model to be used only for undrained conditions. 
However, the present three dimensional model enables modeling of volumetric change with 
a stress-dilatancy relation which will be applicable for general drainage conditions. 
 
The total volumetric strain increment, vdε  , is assumed to consist of two components; 
dilatancy component , d

vdε , induced by plastic shear strain increment  and consolidation 
component c

vdε  induced by the change in p’. 
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c
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vv ddd εεε +=                                                            (1.133) 

 
The volume change under drained condition is related to variation of excess pore water 
pressure under undrained condition via a consolidation curve, based on a postulation that 
undrained condition is equivalent to constant volume condition. 
 
Since dilatancy is closely related to shear deformation, this model applies a stress-dilatancy 
relation to all the constituent shear mechanisms. The plastic shear strain increment )(, ipdγ  
of each one-dimensional shear mechanism is given by: 
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in which )(idγ  is the total shear strain increment and )(, iedγ  is the elastic shear increment 
calculated by the following formula: 
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The ratio between d

vdε  and )(, ipdγ  is termed as dilatancy ratio. A linear relationship 
between the stress ratio and dilatancy ratio as shown in the figure below will be employed in 
this model. The ratio between the stress ratio and dilatancy ratio is called stress-dilatancy 
relationship.        

 

 
Figure 1.22. Stress dilatancy diagram. 

 
The following equations can be written from the linear stress-dilatancy relationship. 

 
For loading in positive direction or )(, ipdγ >0 
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For loading in negative direction or )(, ipdγ <0 
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Here, )(i
dN  and )(i

ptR  are constants as shown in the fig. 1.22 above. Their values can be 
determined directly by performing a drained torsion shear from isotropic consolidation test 
if those parameters are assumed to be identical for all shear mechanisms.  

 
A value of  )(i

ptR  varies for initial and subsequent loading cycles in a cyclic problem. Thus, 

the present model employs )(
,

i
iptR  and )(

,
i

sptR  for the initial and subsequent loadings 
respectively. In this model, a threshold strain parameter γth is introduced for all of the shear 
mechanisms. If loading in one direction generates a plastic shear strain which exceeds γth 
measured from a point of the last loading reversal, )(

,
i

iptR  is switched to )(
,

i
sptR  after the next 

loading reversal. Otherwise, the loading in this direction is considered to be still minor and 
the initial stress-dilatancy relation is kept unchanged even after the next loading reversal. 
 
The dilatancy-induced volumetric strain of a soil element is calculated from the average of 
contributions from all the shear mechanisms. 
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1.10.2. Stiffness matrix with dilatancy 
 
In section 1.9.6, the stiffness matrix without the contribution from dilatancy was derived. 
The stiffness matrix under existence of dilatancy can also be derived using eqs. (1.134), 
(1.135) and (1.43).  
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If   the plastic shear strain is approximated to be equal to the total shear strain, then the 
plastic shear strain will be given by: 
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From eqs. (1.136) and (1.137), the increment of volumetric strain due to dilatancy can be 
given as: 
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Using eqs. (1.138), (1.139) and (1.140) and considering the hardening effect, the volumetric 
strain vector due to dilatancy for the overall soil element, d

vdε , can be obtained as: 
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In which , 
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 Rearranging the above equation, 
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The total strain vector is given by the following equation: 
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If [C] is the inverse of the tangential stiffness matrix, then the total strain vector can also be 
given as: 
 

{ } { } { }[ ] [ ]d C d D dε σ ε= +                                                  (1.147) 
 

by inverting and re-arranging the terms this equation, 
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where [I] is the unit matrix and thus the stiffness matrix with dilatancy, [K’], is 
 

                     [K’] = [K]([I]-[D])                                                    (1.149) 
 

The previous assumption of approximating the plastic shear strain increment )(, ipdγ  by the 
total shear strain increment )(idγ  leads to the expression for  { }d

vdε  to be given by: 
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The first term of eq. (1.150) is associated with shear stress vector normalized by mean 
effective stress p’ in the original xyz coordinate system. Thus, this term becomes 
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When loading in positive direction in isotropic torsion shear mode is considered, 
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Hence the product { }τε Td }{  gives, 
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The second term in eq. (1.150) is numerically calculated for extended icosahedral distribution 
with n=192.  
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Then eq. (1.150) will become, 
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If the aforementioned assumption of approximating the plastic shear strain increment by the 
total shear strain increment is again applied in eq. (1.136) and (1.137), the stress-dilatancy 
equation of an overall element undergoing isotropic torsion shear is derived as: 
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For loading in negative direction, 
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1.10.3. Modeling of isotropic compression and swelling 
 
Isotropic compression and swelling are modeled using the conventional linear ε-logp’ curve 
as shown in fig. (1.23) . The expression of the volumetric strain due to isotropic 
compression and swelling  can be given as: 
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Where Cc and eo are compression index of sand and initial void ratio respectively, and β is 
constant. The bulk modulus of sand can be derived from Cc as: 
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The bulk modulus is dependent on the level of mean effective stress. The bulk modulus of 
the sand skeleton is given as Bo at reference mean effective principal stress, ''op  , namely 
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By relating eqs. (1.159) and (1.160), the bulk modulus B at mean effective principal stress, p’ , 
is given by: 

     

o
o p

pBB
'
'

=                                                        (1.161) 

Then eq. (1.158) becomes: 
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If  ( '

yp , c
yv,ε ) represents the point of isotropic compression yield stress as shown in fig. 1.23, 

the value of the constant β can be obtained as: 
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Figure 1.23. Bilinear elasto-plastic isotropic compression curve. 

 
Two different values for Bo should be prepared in order to describe normal isotropic 
compression (N.C.) and over-consolidated isotropic consolidation (O.C.). Those are referred 
to in the present model as Bc,o and Bs,o  respectively. These parameters respectively 
correspond to compression and swelling indices in the ε-logp’ plot.                                 
Taking the derivative of both sides of eq. (1.126) with respect to p’ gives: 
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Substitution of the value of p’ from eq. (1.162) in eq. (1.164) leads to the relation: 
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Under undrained condition where 0=vdε , eq. (1.133) leads to: 
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The mean effective stress can be derived from eqs. (1.162) and (1.163). 
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The variation of effective stress under undrained condition is reproduced via the isotropic 
compression model by first calculating virtual dilatancy, d

vdε , and subsequently calculating 
increment of mean effective stress from stress-dilatancy relation as follows. 
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1.11. Overview of material and state parameters of the model 
 
The material parameters describe the properties of the material for which the analysis is to 
be executed. Thus, their values are constant throughout the computation process.  The state 
parameters are variable quantities in the model which should be updated each time as the 
computation progresses. The material and state parameters which are necessary for the 
model are summarized in the following table. 
 
A. Material parameters 

 
There are thirteen parameters which will have constant value throughout the analysis process. 
They are listed in the following table along with the equation number in which the parameter 
is involved. 

 
       Table 1.3. Material parameters of the model. 

Parameters 
symbol Description Equation 

number  
kmax,o Spring stiffness at initial mean effective stress 1.99 
γr,o Reference shear strain at initial mean effective stress 1.102 
η Reduction factor for damping ratio 1.117 

Bc,o Bulk modulus of compression at mean effective stress 1.165 
Bs,o Bulk modulus of swelling at mean effective stress 1.165 

op'  Reference mean effective stress 1.98 ,1.99  
1.102 ,1.161 

Rpt,i 
Stress ratio at phase transformation point for initial 

loading 
1.136, 
1.137 

Rpt,s 
Stress ratio at phase transformation point for subsequent 

loading 
1.136, 
1.137 

Nd 
Slope of the curve of stress ratio versus dilatancy ratio 

diagram 
1.136 
 ,1.137 

Hp Factor to consider hardening effect 1.126 
γth Threshold value for transfer of stress-dilatancy relation 1.136,1.137 

NN Coefficient of stress dependency of bulk modulus (=1) 1.161 
MM Coefficient of stress dependency of kmax and γr (=0.5) 1.99 , 1.100 
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B. State parameters of the model 
    
The parameters which should be updated during the computation process are listed in the 
following table. 
 
   Table 1.4. State parameters of the model. 

Parameters 
symbol Description The quantity 

belongs to: 
Equation 
number  

d
vε  

Total volumetric strain due to 
dilatancy global 1.133,1.141 

c
yv,ε  

Volumetric strain due to 
consolidation at yield stress global 1.165,1.167 

'
yp  Yield stress global 1.165,1.167 
'p  Mean stress at the previous step Plane 1.167 

wp Total plastic shear work Spring - 
p’ Normal stress to each plane plane 1.167 

Gmax Shear stiffness Spring 1.72 
γmax Maximum shear strain in the past Spring 1.114 

γrev Shear strain at reversal point Spring 1.117 

γ1 
Shear strain at the end of previous 

step Spring - 

Rmax 
Maximum stress ratio attained in the 

past Spring 1.116 

Rrev Stress ratio at reversal point Spring 1.117 
R Stress ratio Spring 1.64,1.68,1.117

C(i) Scaling factor Spring 1.116 
γa Amplitude of shear strain. spring 1.68,1.114,1.117
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CHAPTER TWO 
ANALYSIS PROCESS 

 
2.1. Flow of analysis 

 
Based on the constitutive model described in chapter one, the flow of the analysis for 
liquefaction analyis can be given. Since the finite element procedure adopted is a 
displacement based finite element procedure, only the strain controlled flow of analysis is 
relevant for understanding the source code. The flow diagram for the strain controlled 
analysis is shown in the flow chart below. 

 

 
Fig. 2.1. Flow of calculation for strain controlled case 

 
Depending on this flow of analysis, the source code for the 3-D liquefaction analysis will 
follow the following task orders. 
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1. The prescribed value of strain increment, the material parameters, the status 
parameters and the initial mean effective stress will be read. 

2. The shear component of strain for each spring will be computed from the given 
strain using coordinate transformation.  

3. From Masing’s rule, the stress ratio of each spring will be determined 
4. Using stress-dilatancy relationships, the volumetric strain increment due to dilatancy 

will be computed. 
5. The volumetric strain increment due to isotropic compression and swelling will be 

reproduced from the “virtual” dilatancy. 
6. The mean effective stress will be computed from isotropic compression and swelling 

curve. 
7. The volumetric strain along with the hardening rule and the mean effective stress will 

be used to compute the shear stress in each spring. 
8. The total deviatoric shear stress in the soil element will be calculated from shear 

stresses in each spring by coordinate transformation. 
9. The tangent shear modulus and the bulk modulus will be calculated from the shear 

stress of each spring and from the mean effective stress respectively. 
10. The tangent shear modulus and the bulk modulus will finally be used to compute the 

tangent stiffness matrix and the effective stresses in the soil. 
 
 

2.2. Review of the source code 
 
The source code to be reviewed in this report is used at integration point level. The 
matrix manipulation facilities to assemble the computed quantities for the whole soil 
mass are obtained by linking the user supplied subroutine with DIANA environment. 
 

      2.2.1. List of quantities used in the program. 
 

• BETA: the angle ζ which determines the orientation of each spring on the plane. 
• BULK: compression (or swelling) stiffness matrix.[B] 
• BULK0: bulk modulus of compression, Bc,o 
• BULKS: current bulk modulus 
• BULKS0: bulk modulus of swelling ,Bs,o 
• COOR (NPLANE*2): the angles θ and φ of the normal vectors for planes in 

icosahedral distribution. 
• COORD(3) : coordinates of integration point 
• COR(SPRING): correction factor C 
• DEPS(NSTR)[Intent: in] : total strain increment (xx,yy,zz,xy,yz,zx) 
• DEV: incremental volumetric strain. 
• DEVC: incremental volumetric strain due to consolidation, c

vdε . 
• DEVD: incremental volumetric strain due to dilatancy, d

vdε . 
• DMODE(SPRING): User indicator 
• DPEPS: incremental plastic shear strain of each spring, )(, ipdγ . 
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• DPSIG(NPLANE): incremental mean effective stress, dp’. 
• DPWORK: incremental plastic shear work. 
• DTIME : time increment 
• ELEMEN : current element number 
• EPS0(NSTR)[Intent:in] : strain vector at the start of the increment 
• EVCSUM: volumetric strain due to consolidation. 
• EVDSUM: volumetric strain due to dilatancy. 
• EVSUM: total volumetric strain. 
• EVY: value of consolidation strain at the yield point. 
• G(SPRING,1): the shear strain of each spring at previous step. 
• G(SPRING,2): the shear strain of each spring at the current step. 
• GAMP(SPRING): amplitude of shear strain. 
• GLAST(3): carries the last three diagonal elements of the stiffness matrix. 
• GMAX(SPRING): the maximum tangential shear stiffness. 
• GORI(SPRING): factor for the shift of skeleton curve when the maximum stress ratio 

in the past is exceeded. 
• GR: reference shear strain, γr. 
• GR0: reference shear strain γr,o 
• GREV(SPRING): shear strain at the recent reversal point, γrev. 
• GTH: threshold shear strain = 0.0001 
• GTYPE=1: parameter. 
• HP: a parameter used to compute the factor for hardening effects ,Hp. 
• HPEV: factor to account for hardening effect, 1+εvHp. 
• I: simple counter. 
• IDEVD:  incremental volumetric strain of each spring, )(, id

vdε  
• IEPS(NSTR): strain vector at the current step. 
• INTPT : current integration point number. 
• ISIG(NSTR): shear stress vector of each spring, )(iτ . 
• ISTIFF(NSTR,NSTR): tangential stiffness matrix of each spring. 
• ITER : current iteration number 
• J: simple counter 
• K: simple counter 
• KEQU: equivalent elastic shear stiffness. 
• KMAX: the stiffness of each spring at small strain. 
• KMAX0: initial stiffness of each spring, kmax,o 
• KTAN(SPRING): tangent stiffness matrix each spring. 
• L: simple counter. 
• LTDEPS=E-4: minimum possible total initial strain. 
• LTDGAM=E-14: minimum allowable value for the difference between shear strains 

at consecutive steps.  
• LTDPEP=E-14: minimum possible value for plastic shear strain. 
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• LTEVCS: minimum possible value of volumetric strain due to consolidation. 
• LTGTAN=E4: minimum possible value for GLAST. 
• LTMEAN=E-4: the minimum possible mean effective stress. 
• LTPSIG=E-4: the minimum possible mean effective stress. 
• LTRATI=E-3: threshold value for the rate of stress dependency. 
• LTSTP=100: maximum possible number of steps. 
• M: simple counter. 
• MAXSTP: maximum number of steps 
• MEPS: mean effective isotropic stress. 
• MEPSO: initial effective isotropic stress 'oσ  
• MM: the rate of stress dependency. 
• MMODE(SPRING): User indicator 
• N: simple counter. 
• NDI(3): vector containing the values of the gradient of stress-dilatancy relationship. 
• NINDIC[Intent :in] : number of status indicators 
• NDIV=6: number of springs on each plane in icosahedral distribution. 
• NDN: a gradient of stress-dilatancy relationships for each mechanism,Nd 
• NDS(3): vector containing the values of the gradient of stress-dilatancy relationship. 
• NN: the rate of stress dependency. 
• NOWSTP: current step number. 
• NPLANE=32: total number of planes for 3-D modeling. 
• NSTATE [Intent : in]: number of user indicators. 
• NSTR [Intent :in]: number of stress components. 
• NUSRVL : number of user parameters to be defined. 
• OFFSET=40: parameter. 
• PAI: set to the value of π. 
• PHI: the angle φ of the normals to each plane. 
• PLN0: current plane number 
• PSIG(NPLANE): mean effective stress vector. 
• PTAN(SPRING): overall tangent compression (or swelling) stiffness matrix. 
• PWORK: cumulative plastic shear work. 
• R(SPRING,1): stress ratio at the previous step. 
• R(SPRING,2): stress ratio at the current step. 
• RMAX(SPRING): maximum stress ratio. 
• RPT(1): stress ratio, Rpt,i 
• RPT(2): stress ratio, Rpt,s 
• RREV(SPRING): stress ratio at recent reversal point. 
• SE (NSTR,NSTR) : elastic stiffness matrix. 
• SIGMA(NSTR): stress vector. 
• SIG(NSTR): vector containing total shear stress vector imposed to the soil. 
• SIGMA: stress vector. 
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• SIGMAB(NSTR)[Intent : in/out] : vector containing total normal stress. 
• SIGY: the value of mean effective stress at the yield point. 
• SPN0: the spring number. 
• SPRING (=192): the total number of springs in 3-D icosahedral distribution. 
• STIFF(NSTR,NSTR) [Intent: in/out] : current tangent stiffness 
• THETA: the angle θ of the normal lines to each plane. 
• TIME0 : time 
• USRIND(NINDIC)[Intent : in/out]: user supplied status indicators 
• USRSTA(NSTATE) : user state variables at start of the increment. 
• USRVAL(NUSRVL)[Intent : in] : user-supplied material parameters. 
• WIDTH=9: parameter 
• XDEPS(NSTR): incremental strain vector per each step 
• XEPS0(NSTR): accumulated strain vector from previous step 
• YETA: factor to control damping ratio η 

 
2.2.2. Subroutines used in the program. 

 
• SPLOCA (COOR) : gives the angles θ and φ of the normal vectors for planes in 

icosahedral distribution. 
• TRANSMAT (THETA, PHI, BETA, TA, TB, TC): establishes the 

transformation matrix. 
• TRANSFER (CASE, THETA, PHI,BETA,ISIG): transfers strains and stresses 

from one coordinate system to another. 
• RENEW (KMAX,GR,MM,PSIG(PLNO),MEPSO,KMAXO,GRO): determines 

the current values of the spring stiffness and reference shear strain. 
• SPMAT (THETA,PHI,BETA,ISTIFF): computes the matrix product 

[Tε]T[N][Tε]. 
• MASING (PSIG(PLNO),KMAX,GR,YETA,GORI(SPNO)) : establishes the 1-

D shear stress-strain relationships using Masing’s rule. 
• DILATANCY( IDEVD, DPEPS, DMODE(SPNO), G(SPNO,1), 

                  G(SPNO,2), R(SPNO,1), R(SPNO,2), NDI, NDS, 
                  KEQU , GTH, RPT, LTDPEP, GREV(SPNO) , 

RREV(SPNO) ,  HPEV,  PSIG(PLNO) )) : calculates the volumetric strain due    
to dilatancy. 

• SUBSIG(MEPS, MEPSO, BULKSO, BULKO, EVCSUM, EVY, SIGY, SIGI, 
DEVC, BULK, NN, LTRATI): computes the mean effective principal stress 
from the component of volumetric strain     due to consolidation. 

• ZEROM (STIFF): forms the pattern of the elastic stiffness matrix. 
• EXTHD (R, KTAN, KMAX, GAM(2), GR, MEAN, JUDGE, GREV, 

RREV, COR, GAMP, YETA ): calculates the stress ratio and tangent stiffness      
matrix for regular and general loading patterns. 

• CORRECT (GAMP, COR, GREV, GTMAX, RTMAX, RREV, GR, KMAX, 1): 
determines the strain amplitude and the correction factor for regular as well as 
for general loading patterns. 
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• EQUIV (KEQU,KMAX,COR,YETA,GAMP,GR,MEAN,MMODE): computes 
the equivalent elastic shear stiffness. 

 
The inter-relation of the main source code USRLIQ, the subroutines and the DIANA 
environment can be summarized as in fig below. Some of the subroutines also require 
other subroutines to accomplish their tasks. 
 

 
Fig. 2.2. Structure of the main source code 

 
2.2.3. Detailed overview of the subroutines. 

 
The subroutines outlined above will be explained in detail in the next section by referring 
back the theoretical background given in chapter one. 

 
1. SPLOCA (COOR):  

 
For even distribution of virtual planes so as to have an isotropic model, an icosahedron 
is proven to be the best option for the multi-spring model (Nishimura 2002).  A plane 
can be uniquely described by a (normal) line and a point on the plane. In this model, 32 
planes will be used. These planes are described by perpendicular lines originating from 
the center of the icosahedron towards the center of gravity of the facets and apices will 
be used. Hence, there will also be 32 normal lines. These normal lines can be uniquely 
described by two angles θ and φ in space as shown in fig 1.2a. The aim of this 
subroutine is to give the values of θ and φ for each normal line. 
 
A double precision array COOR(64) is used to store these values. This array contains 64 
elements: 32 of which belong to the value of θ and the rest 32 for the values of φ. 
 
COOR (1) up to COOR (32) stores the values of θ for line 1 up to line 32. 
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COOR (33) up to COOR (64) stores the values of φ for line 1 up to line 32. 
 
The values of θ and φ are given in appendix A. There is agreement between the values 
given in the source code and in the original model. 

 
 

2. TRANSMAT (THETA, PHI, BETA, TA, TB, TC): 
 
In this multiple mechanism model, the strain imposed to the soil should be distributed to 
each spring. For this, the transformation matrices given in eqs. (1.15) ,(1.17) and (1.19) 
are necessary. This subroutine establishes the transformation matrix for each rotation 
operation of strain. The statements used in the program are: 
 

    DOUBLE PRECISION THETA, PHI, BETA, TA(6,6), TB(6,6), TC(6,6) 
      DOUBLE PRECISION CTHETA, STHETA, CPHI, SPHI, CBETA, SBETA 
CC 
      CTHETA=DCOS(THETA) ; STHETA=DSIN(THETA) 
      CPHI  =DCOS(PHI)   ; SPHI  =DSIN(PHI) 
      CBETA =DCOS(BETA)  ; SBETA =DSIN(BETA) 
      TA(1,1)=CTHETA*CTHETA;TA(1,2)=STHETA*STHETA;TA(1,3)=0.D0 
      TA(1,4)=CTHETA*STHETA;TA(1,5)=0.D0;TA(1,6)=0.D0 
CC 
      TA(2,1)=STHETA*STHETA;TA(2,2)=CTHETA*CTHETA;TA(2,3)=0.D0 
      TA(2,4)=(-1.D0)*CTHETA*STHETA;TA(2,5)=0.D0;TA(2,6)=0.D0 
CC 
      TA(3,1)=0.D0;TA(3,2)=0.D0;TA(3,3)=1.D0 
      TA(3,4)=0.D0;TA(3,5)=0.D0;TA(3,6)=0.D0 
CC 
      TA(4,1)=(-2.D0)*CTHETA*STHETA;TA(4,2)=2.D0*CTHETA*STHETA 
      TA(4,3)=0.D0;TA(4,4)=CTHETA*CTHETA-STHETA*STHETA 
      TA(4,5)=0.D0;TA(4,6)=0.D0 
CC 
      TA(5,1)=0.D0;TA(5,2)=0.D0;TA(5,3)=0.D0 
      TA(5,4)=0.D0;TA(5,5)=CTHETA;TA(5,6)=-1.D0*STHETA 
CC 
      TA(6,1)=0.D0;TA(6,2)=0.D0;TA(6,3)=0.D0 
      TA(6,4)=0.D0;TA(6,5)=STHETA;TA(6,6)=CTHETA 
      TB(1,1)=CPHI*CPHI;TB(1,2)=0.D0;TB(1,3)=SPHI*SPHI 
      TB(1,4)=0.D0;TB(1,5)=0.D0;TB(1,6)=(-1.D0)*CPHI*SPHI 
CC 
      TB(2,1)=0.D0;TB(2,2)=1.D0;TB(2,3)=0.D0 
      TB(2,4)=0.D0;TB(2,5)=0.D0;TB(2,6)=0.D0 
CC 
      TB(3,1)=SPHI*SPHI;TB(3,2)=0.D0;TB(3,3)=CPHI*CPHI 
      TB(3,4)=0.D0;TB(3,5)=0.D0;TB(3,6)=CPHI*SPHI 
CC 
      TB(4,1)=0.D0;TB(4,2)=0.D0;TB(4,3)=0.D0 
      TB(4,4)=CPHI;TB(4,5)=(-1.D0)*SPHI;TB(4,6)=0.D0 
CC 
      TB(5,1)=0.D0;TB(5,2)=0.D0;TB(5,3)=0.D0 
      TB(5,4)=SPHI;TB(5,5)=CPHI;TB(5,6)=0.D0 
CC 
      TB(6,1)=2.D0*CPHI*SPHI;TB(6,2)=0.D0 
      TB(6,3)=(-2.D0)*CPHI*SPHI;TB(6,4)=0.D0 
      TB(6,5)=0.D0;TB(6,6)=CPHI*CPHI-SPHI*SPHI 
      TC(1,1)=CBETA*CBETA;TC(1,2)=SBETA*SBETA;TC(1,3)=0.D0 
      TC(1,4)=CBETA*SBETA;TC(1,5)=0.D0;TC(1,6)=0.D0 
CC 
      TC(2,1)=SBETA*SBETA;TC(2,2)=CBETA*CBETA;TC(2,3)=0.D0 
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      TC(2,4)=(-1.D0)*CBETA*SBETA;TC(2,5)=0.D0;TC(2,6)=0.D0 
CC 
      TC(3,1)=0.D0;TC(3,2)=0.D0;TC(3,3)=1.D0 
      TC(3,4)=0.D0;TC(3,5)=0.D0;TC(3,6)=0.D0 
CC 
      TC(4,1)=(-2.D0)*CBETA*SBETA;TC(4,2)=2.D0*CBETA*SBETA; 

TC(4,3)=0.D0;TC(4,4)=CBETA*CBETA-SBETA*SBETA;        
TC(4,5)=0.D0;TC(4,6)=0.D0 

CC 
      TC(5,1)=0.D0;TC(5,2)=0.D0;TC(5,3)=0.D0 
      TC(5,4)=0.D0;TC(5,5)=CBETA;TC(5,6)=-1.D0*SBETA 
CC 
      TC(6,1)=0.D0;TC(6,2)=0.D0;TC(6,3)=0.D0 
      TC(6,4)=0.D0;TC(6,5)=SBETA;TC(6,6)=CBETA 
CC 

 
Here, TA, TB and TC represent [Tε,θ], [Tε,φ] and [Tε,ζ] respectively with THETA ,PHI and 
BETA representing θ, φ and ζ respectively in eqs. (1.15), (1.17) and (1.19). The 
expressions given here are consistent with the theory. 
 

3. SPMAT (THETA,PHI,BETA,ISTIFF): 
 
The product [Tε]T[N][Tε] appears in many parts for the computation of the stiffness 
matrices. This subroutine computes the value of this expression. Before looking into the 
Fortran format to accomplish this task, the mathematical simplification of the matrix 
product will be reviewed.  
 
Writing the matrices in index format, will result in [Tε]ij and Nkl. From the definition of 
matrix N, Nkl = 0, if k≠5 or l≠5. Hence, the expansion of the product [Nki][Tε]ij will 
yield: 
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In this subroutine, the expression to compute [Tε] is : 
 

DO 100 I=1,6 
        DO 200 J=1,6 
          TEMP1(I,J)=0.D0 
          TEMP2(I,J)=0.D0 
          STIFF(I,J)=0.D0 
  200   CONTINUE 
  100 CONTINUE 
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CC 
      CALL TRANSMAT(THETA, PHI, BETA, TA, TB, TC) 
CC 
      DO 1100 I=1,6 
        DO 1200 J=1,6 
          DO 1300 K=1,6 
            TEMP1(I,J)=TEMP1(I,J)+TB(I,K)*TA(K,J) 
 1300     CONTINUE 
 1200   CONTINUE 
 1100 CONTINUE 
CC 
      DO 1400 I=1,6 
        DO 1500 J=1,6 
          DO 1600 K=1,6 
            TEMP2(I,J)=TEMP2(I,J)+TC(I,K)*TEMP1(K,J) 
 1600     CONTINUE 
 1500   CONTINUE 
 1400 CONTINUE 
CC 

 
To have a complete product, the other term jijki TTN 5][]][[ εε = should also be 
calculated as follows: 
 

DO 1700 I=1,6 
        DO 1800 J=1,6 
          TEMP1(I,J)=0.D0 
 1800   CONTINUE 
 1700 CONTINUE 
CC 
      DO 1900 I=1,6 
        TEMP1(5,I)=TEMP2(5,I) 
 1900 CONTINUE 

 
Here TEMP2(I,J) represents [Tε] and the final product is written in the program as: 
 

            DO 2000 I=1,6 
        DO 2100 J=1,6 
          DO 2200 K=1,6 
            STIFF(I,J)=STIFF(I,J)+TEMP2(K,I)*TEMP1(K,J) 
 2200     CONTINUE 
 2100   CONTINUE 
 2000 CONTINUE 

 
 

4. TRANSFER (CASE, THETA, PHI,BETA,ISIG): 
 
This subroutine transfers stress and strain quantities from the original coordinate system 
to the new coordinate system or the other way round by multiplying the quantities with 
the right transformation matrix. The total transformation matrices for strain and stress 
are obtained by the products of the transformation matrices for each rotation angles θ, φ 
and ζ according to eqs. (1.20) and (1.35).  
 
In this subroutine, three cases will be selected for the product.  
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TCASE = 1 : to multiply global strain vector with the overall transformation matrix for 
strain to get the strain vector in the rotated coordinate system[eq.(1.9).]. 
TCASE = 2 : to calculate the stress vector in the global coordinate system from strain 
vector in the springs according to eq.(1.23). 
TCASE = 3 : to transfer stress vector from xyz to ''''''''' zyx  coordinate system. 
 
When stress quantities are transferred from the xyz coordinate system to the new system, 
the angles should be reversed and therefore have opposite sign in which the overall 
transformation matrix will be calculated when TCASE = 3. The angles are defined for 
the three cases as follows in the subroutine. 
 

IF(TCASE.EQ.3) THEN 
        THETA=(-1.D0)*ITHETA 
        PHI  =(-1.D0)*IPHI 
        BETA =(-1.D0)*IBETA 
      ELSE 
        THETA=ITHETA 
        PHI  =IPHI 
        BETA =IBETA 
      END IF 

 
The first case which transforms the strain quantity TMAT(J) is: 
 

CASE(1) 
          DO 1100 I=1,6 
            DO 1200 J=1,6 
              TEMP1(I)=TEMP1(I)+TA(I,J)*TMAT(J) 
 1200       CONTINUE 
 1100     CONTINUE 
          DO 1300 I=1,6 
            DO 1400 J=1,6 
              TEMP2(I)=TEMP2(I)+TB(I,J)*TEMP1(J) 
 1400       CONTINUE 
 1300     CONTINUE 
          DO 1500 I=1,6 
            TMAT(I)=0.D0 
 1500     CONTINUE 
          DO 1600 I=1,6 
            DO 1700 J=1,6 
              TMAT(I)=TMAT(I)+TC(I,J)*TEMP2(J) 
 1700       CONTINUE 
 1600     CONTINUE 

 
In compact form, the above statements compute the product [TC]*[TB]*[TA]*[TMAT] 
which gives [Tε]*[TMAT]. Under Case 2, the following statements can be found. 
 

CASE(2) 
          DO 2100 I=1,6 
            DO 2200 J=1,6 
              TEMP1(I)=TEMP1(I)+TC(J,I)*TMAT(J) 
 2200       CONTINUE 
 2100     CONTINUE 
          DO 2300 I=1,6 
            DO 2400 J=1,6 
              TEMP2(I)=TEMP2(I)+TB(J,I)*TEMP1(J) 
 2400       CONTINUE 
 2300     CONTINUE 
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          DO 2500 I=1,6 
             TMAT(I)=0.D0 
 2500     CONTINUE 
          DO 2600 I=1,6 
            DO 2700 J=1,6 
              TMAT(I)=TMAT(I)+TA(J,I)*TEMP2(J) 
 2700       CONTINUE 
 2600     CONTINUE 

 
These statements aim to get the result of the product [TA]T*[TB]T*[TC]T*[TMAT] 
which is [Tσ]-1

*[TMAT]. The third case which is aimed to decompose the stress 
components from the soil into each spring in the original coordinate system is written as 
follows. 
 

CASE(3) 
          DO 3100 I=1,6 
            DO 3200 J=1,6 
              TEMP1(I)=TEMP1(I)+TA(J,I)*TMAT(J) 
 3200       CONTINUE 
 3100     CONTINUE 
          DO 3300 I=1,6 
            DO 3400 J=1,6 
              TEMP2(I)=TEMP2(I)+TB(J,I)*TEMP1(J) 
 3400       CONTINUE 
 3300     CONTINUE 
          DO 3500 I=1,6 
             TMAT(I)=0.D0 
 3500     CONTINUE 
          DO 3600 I=1,6 
            DO 3700 J=1,6 
              TMAT(I)=TMAT(I)+TC(J,I)*TEMP2(J) 
 3700       CONTINUE 
 3600     CONTINUE 

 
The outcome of these statements being [TC]T*[TB]T*[TA]T*[TMAT] which is the 
overall transformation matrix from ''''''''' zyx  to the original xyz coordinate system. 
Here it is worth noticing that the angles of rotations will be in reverse order. 
 

5. RENEW (KMAX, GR, MM, PSIG (PLNO),MEPSO,KMAXO,GRO): 
 
The magnitude of effective stress has a significant role in establishing stress-strain 
relationships of sand. Thus, this subroutine determines the current values of spring 
stiffness and reference shear strain. The Fortran expression used in the source code to 
calculate these values is: 
 

KMAX=KMAXO*(MEPS/MEPSO)**(DABS(MM)-1.D0) 
        IF(MM.GT.0.D0) THEN 
          GR=GRO*(MEPS/MEPSO)**(1.D0-MM) 
        ELSE IF(MM.LE.0.D0) THEN 
          GR=GRO*(MEPS/MEPSO)**(-1.D0*DABS(MM)) 
        END IF 

 
If the value of MM is defined to be 0.5 as an input, this expression will be in good 
agreement with the equations given in the model [eqs.(1.99) and (1.100)]. However, the 
expression in the source code will be applicable for any values of MM as the rate of stress 
dependency may vary for various soil types. 
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6. ZEROM (STIFF): 

 
In the liquefaction analysis, the shear stiffness matrix is often involved at different stages 
of computation. This matrix will always have the same pattern for isotropic elastic 
materials as shown eq.(1.55). Due to numerical instabilities, some of the elements in the 
matrix which should be zero may attain non-zero values. Pre-establishment of the matrix 
pattern in a subroutine will ensure that the off-diagonal deviatoric elements will only 
have a zero value. The objective of this subroutine will be defining the pattern of the 
stiffness matrix. 
 

 
In the subroutine, the statements to form this are: 
 

DO 100 I=1,3 
        DO 200 J=1,3 
          MAT(I,J+3)=0.D0 
          MAT(I+3,J)=0.D0 
  200   CONTINUE 
  100 CONTINUE 
      MAT(4,5)=0.D0 ; MAT(4,6)=0.D0 
      MAT(5,4)=0.D0 ; MAT(5,6)=0.D0 
      MAT(6,4)=0.D0 ; MAT(6,5)=0.D0 

 
7. EQUIV (KEQU,KMAX,COR,YETA,GAMP,GR,MEAN,MMODE): 

 
Sand exhibits elastic response when subjected to small unloading or reloading and an 
equivalent elastic stiffness )(i

eqG  was defined by stiffness in this elastic region as given in 
eq. (1.132). In this model, the elastic shear strain is calculated based on this stiffness. 
 
Two cases should be defined to calculate the elastic shear stiffness i.e. when η = 1 and 
when η ≠ 1. When η = 1, )(i

eqG  is simply equal to p’kmax otherwise the expression given in 
eq. (1.132) will be stipulated. In the subroutine, this case happens when ECASE = 1. The 
Fortran statements for this task are: 
 
      IF(ECASE.EQ.1) THEN 
        KEQU=MEAN*KMAX 
      ELSE 
        KEQU=MEAN*KMAX*COR*((1.D0-YETA)/(1.D0+GAMP/GR)+YETA) 
      END IF 

 
8. CORRECT (GAMP, COR, GREV, GTMAX, RTMAX, RREV, GR, KMAX, 1): 

 
The correction factor C and the shear strain amplitude γa are important quantities in the 
formation of the hysteretic loops. This subroutine aims in computing these values. Three 
cases (CCASE) will be defined in the subroutine to write the equations. 
 
CCASE = 1, formulation for regular loading in which C = 1 and γa = |γmax| 
CCASE = 2, formulation for general loading and when p’ is constant in which C and γa     
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          will be given by eqs. (1.116) and (1.114) respectively.  
CCASE = 3, formulation for general loading and when p’ is constant in which C and γa    
will be given by eqs. (1.116) and (1.114) respectively. 
 
The Fortran statements which are written in the subroutine for this task are: 
 

IF(CCASE.EQ.1) THEN 
        GAMP=DABS(GMAX) 
        COR=1.D0 
      ELSE IF(CCASE.EQ.2.OR.CCASE.EQ.3) THEN 
        GAMP=0.5D0*DABS(GMAX-GREV) 
        COR=DABS(RMAX-RREV)*(1.D0+GAMP/GR)/(2.D0*KMAX*GAMP) 
      END IF 

 
9. EXTHD (R, KTAN, KMAX, GAM(2), GR, MEAN, JUDGE, GREV, 

RREV, COR, GAMP, YETA ): 
 
Calculation of the stress ratio R and the tangent shear stiffness of each spring )(

tan
iG  is 

mandatory for each hysteretic loop . This subroutine calculates these values. Three cases 
(MCASE) will be defined. 
 
MCASE = 1- calculates R and )(

tan
iG  for skeleton curve as per eqs. (1.68) and (1.129).  

MCASE = 2- calculates R and )(
tan
iG  for unloading hysteretic loops as per eqs. (1.117) and 

(1.130). 
MCASE = 3- calculates R and )(

tan
iG  for re-loading hysteretic loops as per eqs. (1.117) and 

(1.130). 
 
The fortran statements for these computations are: 
 

IF(MCASE.EQ.1) THEN 
        R=(KMAX*GAM/(1.D0+DABS(GAM)/GR)) 
        KTAN=KMAX*MEAN/(1.D0+DABS(GAM)/GR)**2.D0 
      ELSE IF(MCASE.EQ.2.OR.MCASE.EQ.3) THEN 
        R=RREV+COR*KMAX*(GAM-GREV)/(1.D0+GAMP/GR)+ 
     $    YETA*(COR*KMAX*(GAM-GREV)/ 
     $    (1.D0+DABS(GAM-GREV)/(2.D0*GR))- 
     $    COR*KMAX*(GAM-GREV)/(1.D0+GAMP/GR)) 
        KTAN=KMAX*MEAN*COR*((1.D0-YETA)/(1.D0+GAMP/GR)+ 
     $       YETA/(1.D0+DABS(GAM-GREV)/(2.D0*GR))**2.D0) 

          END IF 
 

These Fortran statements are in good agreement with the expression given in chapter 
one. 
 

10. MASING (PSIG (PLNO), KMAX, GR, YETA, GORI (SPNO)) :  
 
Establishing the shear-stress strain relationship is one of the core components of the 
whole model. This relationship in the model is formulated using Masing’s rule along with 
a few details. 
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The following four stages of the curve of stress ratio strain relationship are important to 
notice. The shear strains in the previous iteration (γ1) and current iteration  (γ2) are given 
by  GAM(1) and GAM(2) respectively. Their difference GAM(2) - GAM(1) is represented 
by DGAM. 
 

1. Loading from the origin along the skeleton (back-bone curve) depicted by the 
curve a-b in the Fig. (1.18). If γ1 and γ2 are shear strains at the beginning and at 
the end of a curve, the condition for this case to occur is (γ2- γ1)* γ1 ≥0. In the 
subroutine, this case is identified by JUDGE = 1. 

 
                  IF(DGAM*(GAM(1)).GE.0.D0) THEN 
                  JUDGE = 1 
 

2. Unloading curves are depicted by the curves b-c and d-e in Fig. (1.18). It is 
important to notice that the unloading curve always connects the point of recent 
stress reversal to the point of maximum stress ratio. The condition for this case 
to occur is (γ2- γ1) <0.  In the subroutine, this case is assigned as: JUDGE = 2. 

 
ELSE IF(DGAM.LT.0.D0) THEN 
          JUDGE = 2 

3. Re-loading curve delineated by the curve c-d in Fig. (1.18). This curve also 
connects the recent reversal point with the point of maximum stress ratio. The 
condition for this case to occur is (γ2- γ1) ≥0.  This case is identified in the 
subroutine when JUDGE = 3 

 
ELSE IF(DGAM.GE.0.D0) THEN 
          JUDGE = 3 
 

4. The remaining case which should be enumerated here is the case when the 
calculated stress ratio exceeds the maximum stress ratio ever experienced in the 
soil. In such cases, the hysteresis loop follows again the skeleton curve. This 
condition occurs whenever R > Rmax.  

 
The steps followed in order to construct the hysteresis loops are as follows: 

 
1. The value of MMODE will be read from the previous step. MMODE is an integer which 

attains values from 1 to 4. Its value indicates where the previous iteration step ends 
on the hysteresis loop. This is done by assigning different values for MMODE. MMODE 
= 1, MMODE = 2 and MMODE = 3 will respectively indicate that the previous 
iteration step ended on the skeleton, unloading and reloading part of the curve .The 
process starts from MMODE = 1. 

2. For each value of MMODE , the value of JUDGE will be decided depending on the 
values of γ1 and γ2,. This helps to decide the type of curve as explained above. For all 
type of curves, γ1 and R values from previous calculation will be set to γrev and Rrev 
values. For initial loading, these values will have a value of zero. 

3. The stress ratio R and the tangent shear stiffness matrix will be calculated using the 
subroutine EXTHD; from which the new value shear strain γ2 will be calculated.  
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4. The values of Rmax and γmax will be set from the previous calculations. For the 
skeleton curve, Rmax and γmax will respectively be the value of R and γ2 calculated at 
the current step. For the hysteresis loops Rmax and γmax are taken to be the 
corresponding maximum values ever experienced.  

5. The value of MMODE for next iteration will be assigned so as to indicate the location 
of the current point where the computation ended up for the current iteration. 

 
When the maximum stress experienced in the soil is exceeded, the transfer from a 
hysteresis loop to a skeleton curve considered to occur  so that the calculated stress 
ratio never exceeds the limit determined by the skeleton curve. This adjustment is 
achieved by shifting the origin of the skeleton curve. When the stress ratio exceeds the 
maximum value in the past,. 

 

 
Fig. 2.2.  Adjustment of Masing’s curve when the stress ratio is exceeded 

 
The point at which the transfer occurs is the point at which the current loop crosses 
the value of Rmax. As shown in fig. , the curve will lead to new value of Rmax. However 
the maximum stress ratio limit should be determined by the skeleton curve equation 
given by eq. (1.68). Hence, the position of the skeleton curve should be adjusted by 
shifting its origin so that it passes through the transfer point. 

 
Since the current curve is on the hysteresis loop, the distance from the origin to the 
transfer point γtrans will be determined from eq. (1.117) by equating R to Rmax and 
determining the value of γ.  The procedure of determination of the value of γtrans. 
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Solving this equation, the value of )(i
transγ  will be given as: 
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The values given by eqs. (2.4) and (2.6) are the distance between the origin and the 
transfer point. Thus, the origin of the skeleton curve should be shifted back by a distance 
of )()(

max
i

trans
i γγ − . Then the skeleton curve will be continued. Here it has to be noted that 

the new calculated shear strain and stress ratio will respectively be the γmax and Rmax. 
 

These values of the scaling factor C(i) and the shear strain amplitude )(i
aγ  in eqs. (2.4) and 

(2.6)  are determined by eqs. (1.114) and (1.116) by replacing Rmax by the new value of R 
and γmax by the new value of shear strain γ. However, the new value of R is not yet 
determined. Hence it is better to devide the case into two parts: part of the curve till the 
stress ratio reaches the previous Rmax value and the remaining part. 
 
 
11.DILATANCY(IDEVD,DPEPS,DMODE(SPNO),G(SPNO,1),G(SPNO,2),  
R(SPNO,1), R(SPNO,2), NDI, NDS, KEQU , GTH, RPT, LTDPEP, GREV(SPNO) , 
RREV(SPNO) ,  HPEV,  PSIG(PLNO) )) : 
 
In contrast to the 2D Towhata-Iai model which suits only for undrained conditions, this 
model utilizes stress-dilatancy relations to deal with drained analysis as well. This 
subroutine calculates the contribution of volumetric strain due to dilatancy. 
 
The following sequence of operations will be performed in this subroutine to calculate 
the volumetric strain due to dilatancy. 
 
1. Calculate the incremental plastic shear strain DPEPS and the plastic shear strain 
increment measured from the last reversal point PEPS  according to eq. (1.134)  and the 
current value of stress ratio RHPEV as: 
 
           DPEPS=G2-G1-(R2-R1)*MEAN/KEQU 
      PEPS =G2-GREV-(R2-RREV)*MEAN/KEQU 
      RHPEV=HPEV*R2 
 
2. Choose between “initial” and “subsequent”  stress dilatancy relationship by comparing 
the values of PEPS and GTH. 
 
If the value of PEPS is between GTH and –GTH, then the “initial” stress dilatancy 
relationship will be considered and the initial value of )(i

ptR , RPT(1), will be used in the 
stress dilatancy relationship given in eq. (136) and (137). Otherwise, RPT(2) will be used 
to calculate the volumetric strain increment due to dilatancy IDEVD. 
 
3. Depending on the value of DMODE from the previous step, set the value of DMODE for 
the current step. This value of DMODE helps to make a selection whether the strain level is: 
 

                         - on the initial loading curve or on the subsequent loading curve 
                         - the loading is in the positive direction or on the negative direction. 

 
Thus there are four combinations which will be assigned with four DMODE values. 
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DMODE = 0 for initial loading in both negative and positive direction. 
DMODE = 1 for initial loading in the positive direction or subsequent loading in the 
negative direction. 
DMODE = 2 for initial loading in the negative direction or subsequent loading in the 
positive direction. 
DMODE = 3 for subsequent loading in both negative and positive direction. 
 
4. Choose which value of )(i

ptR  should be used to calculate IDEVD from the value of 
DMODE of the current step. 
 
       DMODE = 0 - RPTI(1)=RPT(1);RPTI(2)=RPT(1) 
       DMODE = 1- RPTI(1)=RPT(1);RPTI(2)=RPT(2) 
       DMODE = 2 - RPTI(1)=RPT(2);RPTI(2)=RPT(1) 
       DMODE = 3 - RPTI(1)=RPT(2);RPTI(2)=RPT(2) 
 
5. Set new values of DMODE depending on the direction of loading. 
 
    For loading in the positive direction: 
 
                IF(G2.GE.G1) THEN 
                       DMODE=DMODE+10 
    For loading in the negative direction: 
 
                 ELSE 
                       DMODE=DMODE+20 
This new value of DMODE will be assigned to (USRIND((SPNO-1)*2+2) value to be used 
as an input DMODE value for the next step. 
 
6. Depending on the new value of DMODE, calculate the incremental strain due to 
dilatancy IDEVD. 
 
For initial loading: 
 
         IF(DMODE.LT.20) THEN 
                 IDEVD=(RPTI(1)-RHPEV)*DPEPS/NDN 
For subsequent loading: 
 
        ELSE IF(DMODE.GE.20) THEN 
                IDEVD=(-RPTI(2)-RHPEV)*DPEPS/NDN 

 
In any case, if the absolute value of IDEVD value should not be less than the minimum 
allowable value LTDPEP. 
 
This sequence of operations will be performed for all the springs at each increment of 
strains. 
 

     12. SUBSIG(MEPS, MEPSO, BULKSO, BULKO, EVCSUM, EVY, SIGY, SIGI, 
DEVC, BULK, NN, LTRATI): 
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This subroutine computes the mean effective principal stress by using eq. (1.167) and 
the updated bulk modulus using eq. (1.161). Two conditions must be considered for 
the normally consolidated part and for the over consolidated part as shown in Fig. 
(1.17). however in this program an over-consolidation ratio value of 1 is assumed. 
Hence the initial stress will be equal to the preconsolidation stress. In this case, the 
bulk modulus of compression can be used for the loading part and the bulk modulus 
of swelling can be used for unloading part. 
 
When p’ < 'yp , the bulk modulus for compression Bc,o will be used and the coordinate 

of the yield point ),'( ,
y

cvyp ε will be taken from USRSTA (3) and USRSTA(4) values. 
Hence, the Fortran statements for this case are: 
 

          SIG=SIGY*DEXP(KKS0/SIG0*(EV-EVY)) 
          KK=KKS0*(SIG/SIG0)**(NN) 
            IF((SIG.GT.SIGY) .AND. 
     $         (SIGI*DEXP(KK0/SIG0*(EV-0.D0)).GT.SIGY)) THEN 
              SIG=SIGI*DEXP(KK0/SIG0*(EV-0.D0)) 
              KK=KK0*(SIG/SIG0)**(NN) 
              SIGY=SIG 
              EVY=EV 
            END IF 
 

When  p’ > 'yp  and the origin of the curve given in Fig. 1.17 will be considered as a 
yield point. Hence, the Fortran statements for this case are: 

 
          SIG=SIGI*DEXP(KK0/SIG0*(EV-0.D0)) 
          KK=KK0*(SIG/SIG0)**(NN) 
          SIGY=SIG 
          EVY=EV 
 

In both conditions, the stress and strains after the computation are set to represent the 
yield coordinates ),'( ,

y
cvyp ε  for the next step. 

 
2.2.4. Review of the main source code 

 
The main source code is programmed for strain controlled analysis. For convenience, 
each line of this main source code is numbered to help the explanations of the source 
code in the subsequent parts with the same sequential order as it is written in the 
program. 
 

2.2.4.1. Definition of variables and parameters 
 
The first major task in the main subroutine is definition of the quantities used in the 
program. The quantities are defined according to their type. The parameters, variables 
or arrays defined can be integers or double precision reals. The definition runs from 
line 6 to line 49 of the main subroutine. 
 
Line 51 of the source code sets the value of π according to the formula: 
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                             PAI=DATAN(1.D0)*4.D0  

 
                             )0.1(arctan4=π  
 

 
2.2.4.2. User defined parameters 

 
There are thirteen values describing the properties of the soil for which 3D 
liquefaction analysis is to be executed to be defined by the user. These values are 
collected in the USERVAL (NUSRVL) array. NUSRVL representing the number of user 
defined parameters which is thirteen. The following table outlines these parameters. 
Table 1.3 or section 2.2.1 can be referred for the description of the parameters. 
 
          Table 2.2. User defined parameters  
 

Symbol in the 
source code 

Position in the 
USRVAL array 

Conventional 
symbol 

KMAXO USRVAL (1) kmax,o 
GRO USRVAL (2) γr,o 
YETA USRVAL (3) η 
BULKO USRVAL (4) Bc,o 
BULKSO USRVAL (5) Bs,o 
MEPSO USRVAL (6) op'  
NN USRVAL (7) n 
MM USRVAL (8) m 

RPT(1) USRVAL (9) Rpt,i 
RPT(2) USRVAL (10) Rpt,s 
NDN USRVAL (11) Nd 
HP USRVAL (12) Hp 
GTH USRVAL (13) γth 

 
 

2.2.4.3. Computation of incremental strains 
 
For this displacement controlled analysis, there will be a predefined strain vector at 
each integration point at the beginning of the calculation process. A method of 
incremental strains is adopted in the source code. The number of increments should 
be calculated first to calculate the value of the incremental strains at each step. The 
statements to calculate the number of increments MAXSTP in the source code are: 
 
68                  NOWSTP=0   
69 MAXSTP=1   
70 DO 1000 "I=1,NSTR" 
71 IF(INT(DABS(DEPS(I))/LTDEPS).GE.MAXSTP) THEN  
72  MAXSTP=INT(DABS(DEPS(I))/LTDEPS)   
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73  END IF  
74  1000 CONTINUE  
75 CC    
76  IF(MAXSTP.GE.LTSTP) THEN  
77  MAXSTP=LTSTP   
78  END IF 

 
The above statements dictate that the number of strain increments for each 
component of strain vector is calculated by dividing that strain component by LTSTP 
= 10-4. However, whenever these values are smaller than the minimum number of 
strain increments (= 1) or larger than the maximum number (=100), these values will 
be stipulated for MAXSTP. 
 
The strain increment for each strain vector component XDEPS(I) will then be 
computed by dividing the total strain increment applied DEPS(I) by the number of 
strain increments. 
 
    
80 DO 1100 "I=1,NSTR" 
81 XDEPS(I)=DEPS(I)/MAXSTP   
82 1100 CONTINUE    
 
Then the whole analysis process shown in Fig 2.1 will be carried out for each strain 
increment. The accumulated strain at the beginning of each step is calculated in the 
program as: 
 
87 DO 1200 "I=1,NSTR" 
88 XEPS0(I)=EPS0(I)+DEPS(I)*(NOWSTP-1)/MAXSTP  
89 1200 CONTINUE 
 

2.2.4.4. Assigning initial values 
 
To begin the analysis for each strain increment, some of the quantities are given initial 
values while the expression for others is given. 
 
   
91        DO 1300 "I=1,NSTR" 
92              DO 1400 "J=1,NSTR" 
93 "STIFF(I,J)=0.D0"   
94 1400 CONTINUE  
95 SIG(I)=0.D0   
96 SIGMAB(I)=SIGMA(I)   
97 1300 CONTINUE  
98 CC    
99 DEVD = 0.D0      
100 EVCSUM = 0.D0     
101 DPWORK = 0.D0      
102 MEPS = -1.D0*( SIGMA(1) +
 SIGMA(2) + SIGMA(3) )/3.D0  
103 EVSUM = -1.D0*( XEPS0(1) +
 XEPS0(2) + XEPS0(3) )  
104 DEV = -1.D0*( XDEPS(1) +
 XDEPS(2) + XDEPS(3) )  
105 HPEV =(EVSUM+DEV)*HP+1.D0 
 
It can be observed that, the stiffness matrix, stress vector, volumetric strain due to 
dilatancy and volumetric strain due to consolidation are nullified at the beginning. The 
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mean effective stress, the cumulative volumetric strain and the incremental volumetric 
strain are given by the following formulae. 
 
Line 102 : MEPS – mean effective stress as given by eq. (1.40). 
                      
Line 103 : EVSUM – cumulative volumetric strain as given by eq. (1.37).                         
 
Line 104 : DEV – incremental volumetric strain as given by eq. (1.37).  
                        
Line 105 : HPEV – factor for considering hardening as given by eq. (1.126). 
 

2.2.4.5. Initialization of the analysis process 
 
Before proceeding into the time dependent analysis, there is initialization analysis 
which is executed for each spring. This stage of analysis runs as long as the following 
criterion is met. 
 
108 IF(DTIME.EQ.0.D0 .AND. USRIND(385) .LE. USRIND(386)) 

 
This loop runs from line 108 to line 170 of the source code. Hence whenever DTIME ≠ 
0 or  USRIND(385) value is greater than USRIND(386), this loop of analysis is 
terminated to proceed to the next step. At the beginning of the program, there is a 
statement to add a unit value to USRIND(385)  . After one step of initialization, the 
value of USRIND(385) will be higher than that of USRIND(386) and the 
requirement USRIND(385).LE.USRIND(386) will be violated after one step which 
allows to proceed to the main analysis process. 
 
The computations which are made in this loop will be briefed line by line.   
 
110  BULKS=BULKSO*(MEPS/MEPSO)**NN 

 
This expression calculates the current value of the bulk modulus according to eq. 
(1.161) with the value of NN to be equal to 1. 
 
The next sequence of statements aim at computing the shear stresses, mean effective 
stresses and the overall tangent shear stiffness matrix for each spring on each plane. 
The subroutine SPLOCA gives the orientation of the normal lines to each plane. The 
spring number SPNO will be calculated according to eq. (1.61) in line 114. The angles 
THETA (θ) and PHI (φ) will be extracted from the subroutine SPLOCA in lines 115 and 
116. 
 
The angle BETA in line 117 gives the distribution of springs on each plane. Since, the 
springs are distributed evenly, only the half plane distribution of the six springs is 
required. The expression BETA=PAI*(J-1)/NDIV+0.5D0*PAI/NDIV states that the 
six springs are oriented with 300 interval between them and the first spring making an 
angle of 150 with the center line of the plane. The orientation of the springs is shown 
in the fig below. 
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Fig 2.1. Orientation of springs on half plane 

 
The next task will be determining the initial stresses components of the stress vector 
for each spring. 
 
    
118  DO 2200 "K=1,NSTR"    
119  ISIG(K)=-1.D0*SIGMA(K)     
120  2200 CONTINUE  

   
Since the mean effective stress for each plane is the same, the mean effective stress will 
be computed for each plane not for individual spring. The criteria to switch from 
springs on one plane to the next is IF(MOD(SPNO-1,NDIV).EQ.0). Then the 
statement CALL TRANSFER (3,THETA,PHI,BETA,ISIG) computes the total initial  
stress on the soil. Then the mean effective stress of each plane is taken to be the third 
component of the total stress because the other normal stress components will be zero 
due to the coordinate transformation. 
     
121 IF(MOD(SPNO-1,NDIV).EQ.0) THEN    
122 CALL TRANSFER(3, THETA, PHI,BETA, ISIG) 
123 PSIG(PLNO)=ISIG(3)      
124 END IF  
 
The minimum value of the initial effective stress should not be less than the minimum 
allowable value LTPSIG. 
 
125  IF(PSIG(PLNO).LE.LTPSIG) THEN   
126  PSIG(PLNO)=LTPSIG      
127  END IF  

 
The subsequent statements are aimed at constructing the overall tangent shear stiffness 
matrix for each spring. The subroutines RENEW and SPMAT will calculate the current 
kmax value and its product with [Tε]T[N][Tε] respectively. Then, the overall tangent 
shear stiffness matrix will be computed according to eq. (1.54). 
                   
130              DO 2300 L=1,NSTR    
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131              DO 2400 M=1,NSTR 
132      STIFF(L,M)=STIFF(L,M)+KMAX*PSIG(PLNO)*ISTIFF(L,M)/SPRING  
133              2400 CONTINUE  
134              2300 CONTINUE 
 
In which ISTIFF represents the matrix product [Tε]T[N][Tε]. This shear stiffness 
matrix will have the pattern shown in eq. (1.55). 
 
Then the last three diagonal elements of the overall tangent stiffness matrix is assigned 
to the array GLAST (3). For isotropy of the model, these values should be equal.  
 
Since the matrices [G] and [B] have the formats as shown in eqs. (1.55) and (1.57) 
respectively and since the last three diagonal elements of [G] are stored in the array 
GLAST(3), the remaining non-zero elements of both matrices will be the first three 
rows and columns of both. Hence, both matrices can be compressed into 3X3 matrix 
consisting of these non-zero elements. In the source code, these statements are written 
as: 
 
140                DO 2500 L=1,3 
141 DO 2600 M=1,3 
142  STIFF(L,M)=STIFF(L,M)+BULKS   
143 2600 CONTINUE  
144                2500 CONTINUE 
 
The next statements aim at determining the initial values of the status parameters and 
user indicators. The description of these parameters along with their initial values is 
given in the following table. 
 
Table 2.3. initial values of the user status parameters and the user indicators. 

USRSTA/ USRIND value 
Represented 

quantity 

 
Symbol of the 
quantity in the 
source code  

Initial 
value 

USRSTA(1) d
vε  EVDSUM 0 

USRSTA(2) 
c

yv,ε  EVY 0 
USRSTA(3) 

'
yp  SIGY op'  

USRSTA(4) ip '  SIGI op'  
USRSTA(5) wp PWORK 0 

USRSTA(6)  USRSTA(37) 1'p   32'p  PSIG(PLNO) op'  

USRSTA(38) GLAST (1) GLAST (1) 
GLAST 
(1) 

USRSTA(39) GLAST (2) GLAST (2) 
GLAST 
(2) 

USRSTA(40) GLAST (3) GLAST (3) 
GLAST 
(3) 

 USRIND((SPNO-1)*2 + 1) MMODE (SPNO) MMODE (SPNO) 1 
USRIND((SPNO-1)*2 + 2) DMODE (SPNO) DMODE (SPNO) 0 
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USRSTA((SPNO-1)*9 + 41) GORI (SPNO) GORI (SPNO) 0 
USRSTA((SPNO-1)*9 + 42) γmax GMAX(SPNO) 0 

 USRSTA((SPNO-1)*9 + 43) γrev GREV (SPNO) 0 
USRSTA((SPNO-1)*9 + 44) γ1 G (SPNO,1) 0 
USRSTA((SPNO-1)*9 + 45) Rmax RMAX (SPNO) 0 
USRSTA((SPNO-1)*9 + 46) Rrev RREV (SPNO) 0 
USRSTA((SPNO-1)*9 + 47) R R (SPNO,1) 0 
USRSTA((SPNO-1)*9 + 48) c COR(SPNO) 1 
USRSTA((SPNO-1)*9 + 49) γa GAMP(SPNO) 0 

 
2.2.4.6. The main analysis process 

 
When the condition for the initialization is violated, the main liquefaction analysis 
process follows. The analysis starts by setting the initial values of the status parameters 
and the user indicators. 
    
174 EVDSUM = USRSTA(1) 
175 EVY = USRSTA(2) 
176 SIGY = USRSTA(3) 
177 SIGI = USRSTA(4) 
178 PWORK = USRSTA(5) 
179 DO 5000 "PLNO=1,NPLANE"  
180 PSIG(PLNO)= USRSTA(5+PLNO)   
181 5000 CONTINUE   
182 GLAST(1)=USRSTA(38)    
183 GLAST(2)=USRSTA(39)    
184 GLAST(3)=USRSTA(40)    
185 DO 5100 "SPNO=1,SPRING"  
186 MMODE(SPNO) = USRIND((SPNO-1)*2+1)  
187 DMODE(SPNO) = USRIND((SPNO-1)*2+2)  
188 GORI(SPNO) = USRSTA((SPNO-1)*WIDTH+OFFSET+1 ) 
189 GMAX(SPNO) = USRSTA((SPNO-1)*WIDTH+OFFSET+2 ) 
190 GREV(SPNO) = USRSTA((SPNO-1)*WIDTH+OFFSET+3 ) 
191 G(SPNO,1) = USRSTA((SPNO-1)*WIDTH+OFFSET+4 ) 
192 RMAX(SPNO) = USRSTA((SPNO-1)*WIDTH+OFFSET+5 ) 
193 RREV(SPNO) = USRSTA((SPNO-1)*WIDTH+OFFSET+6 ) 
194 R(SPNO,1) = USRSTA((SPNO-1)*WIDTH+OFFSET+7 ) 
195    COR(SPNO) = USRSTA((SPNO-1)*WIDTH+OFFSET+8 ) 
196 GAMP(SPNO) = USRSTA((SPNO-1)*WIDTH+OFFSET+9 ) 
197            5100 CONTINUE   

 
The main analysis process will be explained with the same numerical order as given in Fig 
2.1.  

 
1. Input value of strains 

 
As explained in section 2.2.4.4, the strain increment vector XDEPS(I) will be given at the 
beginning of each step. From this the cumulative strain is computed as: 

 
212        IEPS(K)=-1.D0*(XEPS0(K)+XDEPS(K))  

 
2. shear strain of each spring 
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The cumulative strain increment at the beginning of the calculation step is decomposed into 
shear strains in each spring. Hence the transformation matrix will be called by the subroutine 
TRANSFER. 

 
211            CALL TRANSFER(1, THETA,PHI, BETA, IEPS) 

 
Then the fifth component of the decomposed strain represents the current one-dimensional 
shear strain of each spring. The one-dimensional shear strain in the previous step  G(SPNO,1) 
was stored in USRSTA ((SPNO-1)*9+44) and the corresponding value at the current step 
will be extracted from the strain vector as: 

 
212 G(SPNO,2)=IEPS(5) 

 
Here, G(SPNO,2) represents the value of shear strain at the current step γ2. 

 
3. Stress ratio of each spring 
 
Calculation of the shear stress ratio of each spring will be the next step. For this, the 
effective stress on each plane should be calculated first. The stress vector of the current step 
is taken as. 
 

208 ISIG(K)=-1.D0*SIGMA(K)  

 
This stress is decomposed for each sprig using the subroutine TRANSFER. 

 
214 CALL TRANSFER (3,THETA,PHI, BETA, ISIG) 

 
Note that each spring is aligned with the z’’’-axis of the new coordinate system. Thus, the 
effective stress of each one-dimensional spring will then be the stress component in that 
direction.  

 
213 PSIG(PLNO)=ISIG(3) 

 
The subroutine RENEW calculates the current values of spring stiffness and reference      shear 
strain. 
     220            CALL RENEW(KMAX,GR,MM,PSIG(PLNO),MEPSO,KMAXO,GRO)  
 
The previous value of the stress ratio was stored in USRSTA ((SPNO-1)*9+47) as 
R(SPNO,1). This value will be used as RREV in the MASING subroutine to calculate the 
current value of the stress ratio. 
 

221                R(SPNO,2)=R(SPNO,1)     
222                CALL MASING(PSIG(PLNO),KMAX,GR,YETA,GORI(SPNO), 
223                $ GMAX(SPNO),GREV(SPNO), G(SPNO,1), G(SPNO,2), 
224                $ GAMP(SPNO),COR(SPNO), RMAX(SPNO), RREV(SPNO),  
225                $ R(SPNO,2), KTAN(SPNO), KEQU, MMODE(SPNO))  

  
4. Volumetric strain due to dilatancy 
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The stress-dilatancy relation is used to determine the volumetric strain due to dialatancy. The 
subroutine DILATANCY calculates the incremental value of this quantity for each spring. 

       
227             CALL DILATANCY(IDEVD,DPEPS,DMODE(SPNO), G(SPNO,1), 
228             $ G(SPNO,2), R(SPNO,1), R(SPNO,2), NDI, NDS, 
229             $ KEQU,GTH,RPT,LTDPEP,GREV(SPNO), 
230             $ RREV(SPNO),HPEV,PSIG(PLNO) ) 
 

The total volumetric strain increment due to dilatancy DEVD is calculated according to  eq. 
(1.138) as: 

 
231 DEVD=DEVD+IDEVD/SPRING  

 
5. Volumetric strain due to consolidation 

 
The volumetric strain due to consolidation is derived from the total volumetric strain and 
the volumetric strain due to dilatancy as per eq. (1.133). 

 
         
246 DEVC =EVSUM - EVDSUM   
247 EVDSUM = EVDSUM + DEVD    
248 EVCSUM =(EVSUM+DEV)- EVDSUM 
249 DEVC = EVCSUM - DEVC 

 
If  the value of NN is different from one, then the volumetric strain due to consolidation 
can be given by: 

 
     
250            IF(DABS(NN-1.D0).GT.LTRATI) THEN     
251       LTEVCS=(MEPSO**NN)/BULKSO*1.D0/(1.D0-NN)*(LTMEAN**(1.D0-    
NN)-         
252          $ SIGI**(1.D0-NN))       
253          EVCSUM=MAX(EVCSUM,LTEVCS)      
254          END IF    

 
6. Mean effective stress 

 
After calculating the strain due to consolidation, the conventional ε- log p’ curve can be 
used to compute the effective stress according to eq. (1.131) for the next strain increment. 
The subroutine SUBSIG will be called to accomplish this task. The mean effective stress 
calculated at this strain increment, MEPS, will be added to the mean effective stress in the 
previous step to give the value of mean effective stress for the next step SIG. 

         
255 CALL SUBSIG(MEPS,MEPSO,BULKSO,BULKO,
 EVCSUM,EVY,SIGY, SIGI, 
256 $ DEVC, BULK, NN, LTRATI)    
257 MEPS=MAX(MEPS,LTMEAN)     
   
258 DO 6400 L=1,3       
259 SIG(L)=SIG(L)+MEPS      
260 6400 CONTINUE 

 
7. Shear stress of each spring 
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The shear stress of each spring considering the hardening effect is given by the product of 
the new stress ratio calculated by MASING subroutine and the mean effective stress. 

 
The one-dimensional shear stress of each spring which is expressed by eq. (1.47) is 
determined as: 
    

233 ISIG(5)=R(SPNO,2)*PSIG(PLNO)*HPEV   
234 ISIG(1)=0.D0      
235 ISIG(2)=0.D0      
236 ISIG(3)=0.D0      
237 ISIG(4)=0.D0      
238 ISIG(6)=0.D0 

 
8. Total shear stress  

 
The total shear stress in the soil is calculated according to eq. (1.48). 

 
239                  CALL TRANSFER(2, THETA,PHI,BETA,ISIG) 
240 DO 6300 L=1,NSTR    
241 SIG(L)=SIG(L)+ISIG(L)/SPRING     
242 6300 CONTINUE 

 
9.  Tangential shear stiffness matrix 

 
The tangential shear stiffness matrix for each spring is established by the subroutine EXTHD. 
To consider the hardening effect, this stiffness will be multiplied by the factor to consider 
this hardening effect. 

 
KTAN(SPNO)=KTAN(SPNO)*HPEV  

 
When the value of p’ is not constant the tangential shear stiffness matrix is given by eq. 
(1.131). In that case, the value of the parameter GTYPE will be 3. In eq. (1.131), the last two 
terms represent the tangential shear stiffness matrix computed so far, KTAN. The first term is 
calculated separately as PTAN and will be added to the value of KTAN afterwards. 

 
PTAN can be obtained by dividing the change in effective stress multiplied by stress ratio by 
the change in shear strain between two consecutive steps. The effective stress at the current 
strain increment and at the previous strain increment are ISIG(3) and PSIG(PLNO) 
respectively. The corresponding change in shear strain is G(SPNO,2)- G(SPNO,1). This 
change in shear strain should not be less than the minimum allowable value LTDGAM. In the 
program the statements for this computation are: 

 
  
277             IF(DABS(G(SPNO,2)-G(SPNO,1)).GE.LTDGAM) THEN 
278             PTAN(SPNO)=DPSIG(PLNO)*R(SPNO,2)*HPEV/  
279             $ (G(SPNO,2)-G(SPNO,1))" 
280             ELSE  
281             IF(G(SPNO,2)-G(SPNO,1).GE.0.D0) THEN 
282             PTAN(SPNO)=DPSIG(PLNO)*R(SPNO,2)*HPEV/LTDGAM  
283             ELSE  
284          PTAN(SPNO)=DPSIG(PLNO)*R(SPNO,2)*HPEV/(-1.D0*LTDGAM)  
285             END IF 
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286             END IF 
 

Then the tangential stiffness of each spring will then be the summation of KTAN and PTAN. 
 
287  IF(PTAN(SPNO).GE.0.D0) THEN 
288  KTAN(SPNO)=KTAN(SPNO)+PTAN(SPNO)  
289  END IF 

 
The total tangential shear stiffness of the soil is given by the  formula in eq. (1.54) and in the 
program, this is given as: 

 
292  DO 7300 "L=1,NSTR"   
293  DO 7400 "M=1,NSTR"   
294           STIFF(L,M)=STIFF(L,M)+KTAN(SPNO)*ISTIFF(L,M)/SPRING  
295  7400 CONTINUE    
296  7300 CONTINUE    
 

The last three diagonal elements of the tangential shear stiffness matrix represent the current 
shear modulus of the soil. These values which are stored in GLAST array are computed as the 
ratio between change in shear stress and change in volumetric strain. These values should be 
greater than or equal to the minimum allowable value LTGTAN.  

 
  
316 DO 8200 I=4,6 
317 IF(DABS(DEPS(I)).GE.LTDGAM) THEN  
318 GLAST(I-3)=(-1.D0*SIGMAB(I)-SIG(I))/DEPS(I)  
319 ELSE   
320 IF(DEPS(I).GE.LTDGAM) THEN  
321 GLAST(I-3)=(-1.D0*SIGMAB(I)-SIG(I))/LTDGAM  
322 ELSE   
323 GLAST(I-3)=(-1.D0*SIGMAB(I)-SIG(I))/(-
1.D0*LTDGAM)   
324 END IF  
325 END IF  
326 8200 CONTINUE 

 
The change in volumetric strain should not be less than the minimum allowable value 
LTDGAM. 

 
Any of the diagonal elements of the tangential shear stiffness matrix cannot be less than the 
value attained by the current shear modulus values which are store in the GLAST array. 

 
10.  Tangential stiffness matrix 

 
The tangential stiffness matrix with dilatancy [K’] is given by eq. (1.149). The tangential 
stiffness matrix without dilatancy effect [K] is given by eqs. (1.60). In this calculation process 
the stiffness matrices which do not include the effects of dilatancy are used. The dilatancy is 
calculated independently along the shear deformation and then added to the results obtained 
by using [K]. 
 
The tangential stiffness matrix will be given as the summation between the tangential shear 
stiffness matrix and the compression (or swelling) stiffness matrix. 
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327                       DO 7500 L=1,3 
328  DO 7600 M=1,3 
329  STIFF(L,M)=STIFF(L,M)+BULK   
330  7600 CONTINUE  
331  7500 CONTINUE 

 
The final pattern of the tangential stiffness matrix should have similar form as given by eq. 
(1.55). The subroutine ZEROM ensures this. 

 
332  CALL ZEROM(STIFF)  

 
The whole loop for a single strain increment will be tied by setting the new values of the 
status parameters , user indicators  and stress vectors to be ready for computations for the 
next strain increment. The same string of procedures will then follow for the next strain 
increment till the strain increments add up to the strain applied. 
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CHAPTER THREE 
INPUT DATA FOR ANALYSIS 

 
3.1. Input data file 
 
In the previous chapters, the multiple mechanism model and the source code are discussed. 
This chapter aims at briefing another component to execute a liquefaction analysis which is 
the input data file. The source code uses the input data file to read in the element and 
material properties and the initial values of some of the state parameters. This data file 
contains five main components and they will be briefly discussed in the next sections. A 
procedure to determine some of the material parameters will also be discussed. 
 
3.1.1. Element properties 
 
For the validation of the source code, an eight nodded single brick element shown in the fig. 
3.1 below will be used. In DIANA, this element is named as HX24L. For this element, the 
strain εxx and stress σxx are constant in x direction and vary linearly in y and z direction. The 
strain εyy and stress σyy are constant in y direction and vary linearly in x and z direction. The 
strain εzz and stress σzz are constant in z direction and vary linearly in x and y direction. The 
coordinates of the nodes of the element will be given in the data file as depicted in the figure 
3.1. In the data file this is given as: 
 
          'COORDINATES' 

1   0.000000E+00   0.000000E+00   0.000000E+00 
2   1.000000E+00   0.000000E+00   0.000000E+00 
3   0.000000E+00   1.000000E+00   0.000000E+00 
4   1.000000E+00   1.000000E+00   0.000000E+00 
5   0.000000E+00   0.000000E+00   1.000000E+00 
6   1.000000E+00   0.000000E+00   1.000000E+00 
7   0.000000E+00   1.000000E+00   1.000000E+00 
8   1.000000E+00   1.000000E+00   1.000000E+00 

(0,1,0)

(1,1,0)

(0,1,1)

(1,1,1)
(1,0,1)

(0,0,1)

(0,0,0)

6

Z

Y

X

1

8

4

3

75

2
(1,0,0)

 
Figure 3.1. An eight nodded brick element  
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The connectivity of the element should also be given. For the solid element considered, the 
node numbering sequence in DIANA will be governed by the right hand rule in a counter 
clockwise direction. Hence the type and connectivity of element 1 is specified as: 
 
          CONNECT 
             1 HX24L  1 2 4 3 5 6 8 7 
 
The material properties of the element should also be assigned. Since there is one element 
property in this analysis, that property should be assigned to the element. This is done as: 
 
               MATERI 
          / 1 / 1 
          DATA 
          / 1 / 1 
         'DATA' 
            1  NINTEG  1 1 1 
               NOCSHE 
               NUMINT GAUSS  GAUSS  GAUSS 
 
3.1.2. Material properties 
 
The properties of the soil for which the liquefaction analysis to be undergone will also be 
introduced. These data include the general properties of the soil such as the Young’s 
modulus, Poisson’s ratio and bulk modulus of water. The other data are the thirteen 
USERVAL values which are directly related to the liquefaction analysis. A user has to define 
these soil and spring parameters to carry-out the 3D liquefaction analysis using this model. 
The elaboration and determination of these parameters will follow in the next section. 
 
i. kmax,o [USRVAL (1)] 

 
kmax is the non-dimensional stiffness of each spring. kmax,o  corresponds to the initial 
stiffness of each spring at the mean effective stress '

op . Its value can be determined 
using the shear modulus of the sand oGmax, which is measured at '

opp =  by using eq. 
(1.99). The shear modulus of the sand can be determined from any standard test. 

 
ii. γr,o [USRVAL (2)] 

 
γr,o is the reference shear strain at initial mean effective stress '

op . It is also a parameter 
associated with the springs. If the shear strength of the sand is determined as τmax, the 
value of γr,o is determined by using eqs. (1.100). The value of  kmax,o obtained above will 
be used in this equation. 

 
iii. η [USRVAL (3)] 

 
This is the factor which controls the damping ratio of sand. Its value can be 
determined either from eq. (1.125) or from fig. 1.20 for a given values of shear strain 
amplitude, reference shear strain and damping ratio. The values of these three soil 
parameters can be determined from simple cyclic shear or torsion tests. 
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iv. Bc,o [USRVAL (4)] 
Bc,o  represent the bulk modulus of compression at reference mean effective stress '

op . 
Its value is obtained by performing consolidation tests. From these tests, a graph of 
volumetric strain versus p’ can be drawn. The slope of the resulting curve for the 
normally consolidated part at p’ = '

op  will give the value of Bc,o. 
 

v. Bs,o [USRVAL (5)] 
 

Bc,o  represent the bulk modulus of swelling at reference mean effective stress '
op . From 

consolidation tests, a graph of volumetric strain versus p’ can be drawn. The slope of 
the resulting curve for the over consolidated part at p’ = '

op  will give the value of Bs,o. 
 

vi. 
'
op  [USRVAL (6)] 

 
'
op  is the initial mean effective stress to be decided by the user. In most cases, a value 

is 100kPa used. 
 

vii. NN [USRVAL (7)] 
 

This parameter is the coefficient of stress dependency. In this model its value is set to 
0.5. 
 

viii. MM [USRVAL (8)] 
 

This parameter is the coefficient of stress dependency. In this model, its value is equal 
to 1.0. 

 
ix. Rpt,i [USRVAL (9)] 
 

Rpt,i is the stress ratio at phase transformation point in terms of each dilatancy 
mechanism for initial loading. Its value can be determined by drained cyclic simple 
shear tests. 

 
x. Rpt,s [USRVAL (10)] 

 
Rpt,s is the stress ratio at phase transformation point in terms of each dilatancy 
mechanism for the subsequent loadings. Its value can be determined by drained cyclic 
simple shear tests. 

 
xi. Nd [USRVAL (11)] 

 
Nd is the gradient of stress-dilatancy relationship as shown in fig. 1.22. Its value can be 
determined by drained simple shear tests. 
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xii. Hp [USRVAL (12)] 

 
Hp is a factor of hardening effects as shown in fig.1.21. Its value can be determined by 
drained simple shear tests. 

 
xiii. γth [USRVAL (13)] 

 
It is the threshold plastic strain introduced for the sake of numerical stability. In this 
model its value is given to be 0.0001. 

 
Along with the soil and spring parameters discussed above, in this part, the initial values of 
the USERSTA and USERIND are given. These values will be used for the initialization stage of 
the liquefaction analysis. The initial value of USERSTA is for all the springs is zero. There will 
be 1768 (=(192-1)*9+40+9) USERSTA values. The initial USERIND values for all the springs 
are zero. But for the sake of computational suitability as discussed in section 2.2.4.5 two 
more values of USERIND are given. These extra values ,USERIND(385) and USERIND(386) 
are zero and one respectively. 
 
3.1.3. Loading condition 
 
The loading consists of two stages given by CASE 1 and CASE 2 in the data file. The first 
stage of loading given under CASE 1 is the constant normal stress in the z-direction and the 
initial stresses at each node. The value of the constant normal stress is 98kN/m2 in the 
negative z-direction applied on the ZETA2 face of the cube. ZETA2 face is the face containing 
the nodes 5-6-8-7. In DIANA, z-direction is denoted by direction 3.  
 
The second stage of loading given under CASE 2 is the translational deformation of the 
upper face of the element. The nodes 5, 6, 7 and 8 will be deformed by 10-5 in x-direction.  
 
3.1.4. Support condition 
 
Nodes 1 through 8 are supported in x- and y-directions. Additionally, nodes 1 through 4 are 
supported in z-direction.  A tying is also applied for nodes 5 -8 so that they will have the 
same deformation in the z-direction. 
 

'SUPPORTS' 
/ 1-8 / TR 1 2 
/ 1-4 / TR 3 
'TYINGS' 
EQUAL TR 3 
/ 6-8 / 5 

 
3.1.5. Global directions 
 
The global direction to define the directions of loadings and supports. It will be given in 
matrix of three columns. The first ,second and third columns representing the x-, y- and z-
directions respectively. In this analysis, direction 1  described by a value of 1 in the first 
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column i.e x-direction and zero in the others. Which indicates that direction 1 is oriented 
along the positive x global direction.  Similarly, directions 2 and 3 are oriented in positive y 
and z global directions respectively. 
 
          'DIRECTIONS' 

1   1.00000E+00   0.00000E+00   0.00000E+00 
2   0.00000E+00   1.00000E+00   0.00000E+00 

              3   0.00000E+00   0.00000E+00   1.00000E+00 
 
3.2. Determination of the user defined parameters from laboratory tests 
 
The parameters which the user has to define are discussed in section 3.1.2. These users 
defined parameters can be completely determined from three set of tests: 
 
                  1. Cyclic simple shear (or torsion shear ) test 
                  2. Standard traixial test and 
                  3. Consolidation(or Oedometer) test 
 
Some of the data necessary for the calculations of the parameters are given in the appendix 
D and E. The determination of these parameters will be discussed briefly in the next 
sections. 
 
i. kmax,o [USRVAL (1)] 

 
kmax,o  is calculated by eq. (1.99) for given values of shear modulus G and initial mean effective 
stress. In this case, the initial mean effective stress is assumed to be 98kPa. The shear 
modulus at this mean effective stress level is determined by the formula: 
 

kPaEkPakPaG o 453.9
00001.000002.0
0953.0

max, =
−

−
=

∆
∆

=
γ
τ  

Then substituting these values in eq. (1.99) the value of kmax,o  can be determined. 
 

4862
98

453.9*5
'

5 max,
max, ===

kPa
kPaE

p
G

k
o

o
o  

 
ii.  γr,o [USRVAL (2)] 

 
The value of this parameter will be determined by eq. (1.100). In this equation, the 
parameters τmax, kmax,o  and  p'o will be used as an input. τmax is the shear strength of the sand 
obtained by standard triaxial test. From the result in appendix E, the values of cohesion C 
and friction angle φ are 0kPa and 300 respectively. Then the shear strength of the soil is 
calculated using Mohr-Coulomb equation for the reference normal stress as: 
 

kPac 58.5630tan980tanmax =+=+= φστ  
Then the reference shear strain is calculated as: 
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000315.0
98*4862
85.56*65.2

, =≈
kPa
kPa

orγ  

iii. η [USRVAL (3)] 
 
The reduction factor η is determined by using eq. (1.91) or fig. 1.11 for given values of 
damping ratio ,reference shear strain and shear strain amplitude. For a particular soil, these 
values can be obtained from simple shear test results. 
 
The reference shear strain can be taken from calculation above. For the data given in 
appendix D, the damping ratio h is calculated by the equation: 
 

W
Wh ∆

=
π4
1  

In which, ΔW is the area inside the hysteresis loop and W is the elastic energy. As shown in 
fig. 3.2, the hysteresis loop for the data is not a closed loop for each cycle. Hence, it should 

be adjusted to be a closed loop. For the ease of adjustment each hysteresis loop will be 
subdivided into four regions. 

 
                               Region 1 : R ≥ 0 , and dγ > 0 
                               Region 2 : R > 0 , and dγ < 0 
                               Region 3 : R < 0 , and dγ < 0 
                               Region 4 : R < 0 , and dγ > 0 
To form a closed loop, the last point of region 4 for each hysteresis loop should be 
connected to the first point of region 1. But this is not usually the case. Hence an adjustment 
will be made on the fourth region of the hysteresis loop so that these two points will connect 
to each other. After the adjustment is made for each loop, the damping ratio will be 
calculated from the total and elastic energies calculated for all the loops. 
 

 
Fig. 3.2. Stress ratio versus shear strain graphs. 
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Here the adjustment will be done only for the first loop.  First, the coordinates of the first 
point and the last point of the loop should be determined. The first point of the loop has 
coordinates of (γ, R) = (10-5, 0). This loop ends somewhere between after 108th and 109th  
cycle. The exact value where R = 0 should be determined by interpolation. The coordinates 
of the hysteresis loop for the 108th cycle is (γ, R) = (-3X10-5, -0.00609) and for the 109th

 cycle 
is (γ, R) = (-2X10-5, 0.001545). 

 
After interpolation, the coordinates of the last of point of the hysteresis loop is (γ, R) = (-
2.202X10-5, 0). Hence the value of γ deviates by 10-5

 - -2.202X10-5
 = 3.202X10-5

 from the 
starting point. A proportion of this deviation will be applied to all points of the curve in the 
region 4. After application of the adjustment the curve looks like: 
 

 
Fig. 3.3. A single hysteresis loop after adjustment 

 
Now the area inside the hysteresis loop shown in fig3.3 which is the total strain energy for a 
single loop can be computed by any appropriate method. Using trapezoidal rule, this area 
inside the hysteresis loop it ΔW = 4.6023E-05. The value of the elastic energy W for this 
loop is part of the shaded area shown in fig 3.4. Its area is computed to be 7.77E-06. 
. 



 - 86 -

 
Fig 3.4. Elastic strain energy 

 
Then the damping ratio is calculated to as: 

47.0
677.7
56023.4

4
1

4
1

=
−
−

=
∆

=
E
E

W
Wh

ππ
 

 
The value of γr,o is calculated to be 0.000315 and the value of γa = γmax is 0.00037. Substituting 
these values in eq. (1.125). 
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Hence the value of the reduction factor η is 0.8. 
 
iv. Bc,o [USRVAL (4)] 
 
The bulk modulus of swelling Bc,o is determined from consolidation curve. A data for 
consolidation curve is given in appendix D. The consolidation curve for this data can be 
drawn and shown below: 
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Fig. 3.5.  Void ratio versus logarithm of effective stress curve. 

 
An overconsolidation stress is the stress point at which the slop of the consolidation curve 
changes. From the graph, this value is determined to be around 250kPa. The parameter is 
Bc,o  the slope of this curve for the normally consolidated part i.e. p’ > op' . This slope is 
determined to be 6.88E3. Hence the value of Bc,o  is 6.88E3. 
 
v. Bs,o [USRVAL (4)] 
 
The bulk modulus of compression Bs,o  is also determined from consolidation curve. Its value 
is equal to the slope of this curve for the over consolidated part i.e. p’< op'  . The 
consolidation curve above suggests that this slope is 1.79E4 which is the value of Bs,o. 
 
vi. op'  [USRVAL (6)] 
The initial mean effective stress op'  in this case is fixed to the value of to 98kPa. 
 
vii. NN [USRVAL (7)] 
 
This parameter is the coefficient of stress dependency will have a value of 0.5. 
 
viii. MM [USRVAL (8)] 
 
In the model the value of this parameter is equal to 1.0. 
 
x. Rpt,i [USRVAL (9)] 
 
Rpt,i is the stress ratio at phase transformation point in terms of each dilatancy mechanism for 
initial loading. Its value can be determined from stress-dilatancy diagram. Rpt,i is the stress 
ratio when the value of dilatancy ratio is zero for initial loading. 
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xi. Rpt,s [USRVAL (10)] 
 
Rpt,s is the stress ratio at phase transformation point in terms of each dilatancy mechanism 
for the subsequent loadings. Its value can be determined stress-dilatancy diagrams. Rpt,s is the 
stress ratio when the value of dilatancy ratio is zero for subsequent loading. 
 
xii. Nd [USRVAL (11)] 
 
Nd   is the gradient of stress-dilatancy relationship as shown in fig. 1.22. Its value can be 
determined by drained simple shear tests. 
 
xxv. Hp [USRVAL (12)] 
 
Hp  is a factor of hardening effects as shown in fig.1.21 . Its value can be determined by 
drained simple shear tests. 
 
xxvi. γth [USRVAL (13)] 
 
It is the threshold plastic strain introduced for the sake of numerical stability. In this 
model its value is given to be 0.0001. 
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CHAPTER FOUR 

ANALYTICAL VALIDATION OF THE MODEL 
 

In this chapter, the consistency of the 3D liquefaction analysis using DIANA with analytical 
results will be checked. For this, a small prescribed elastic strain will be applied on a soil 
element and the resulting stresses will be calculated using the multiple spring model 
analytically. Later the results will be compared with results obtained DIANA under similar 
conditions. To have a similar model in both the analytical and DIANA analysis, there will be 
minor modifications in the main source code.  
 
At the end of the chapter, the clarification of the relationship between stresses and strains in 
torsion shear test and DIANA results will be discussed. Since the DIANA analysis uses an 
icosahedral distribution, the values given in Table 1.2 will be recalled for comparison. 
 
 
4.1. Shear applied in the xy direction 

 
To apply the multiple shear mechanism method for analysis of a simple shear model shown 
in fig. 4.1 below, the flow of analysis given in Fig 2.1 will be used. The analysis procedure 
will be explained in detail below. 

γxy

γxy

Y2' X2'

Y1'

X1'

Y

X

 
                                                               

Fig 4.1. The simple shear multiple-spring model [shear strain applied in xy direction]. 
 
The material and spring parameters which will be used for the analysis in both the analytical 
and DIANA computations are indicated in table 5.1. 
 

Table 5.1. Material and spring parameters 
Symbol Value 
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Dr [%] 22 
kmax,0 1728 

γr,0 0.0008 

η 0.4 
Bc,0 [kPa] 43200 
Bs,0 [kPa] 54000 

Hp 22 
Rpt,i 1.3 
Rpt,s 0.85 
Nd 1.3 

γth 0.0001 
p'0 [kPa] 100 

n 1 
m 0.5 

 
For the verification of the results, shear strain applied in two directions will be considered; in 
the xy and zx directions. 
 
4.1.1. Analytical calculation 

 
1. A prescribed value of strain will be given. 

  
The strain vector of the soil can be given by: 
 

T
zxyzxyyyyyxx }{}{ γγγεεεε =                                              (4.1) 

 
Particularly, for simple shear case at constant volume shown in fig 4.1 the strain vector can 
be written as: 
 

T
xy }00000{}{ γε =                                                    (4.2) 

 
Since the analysis will be displacement controlled one, the values of γxy should be given from 
the beginning. In this example, its value will be assumed to be 10-4. Hence the strain vector 
for this particular analysis will be: 
 

T}0010000{}{ 3−=ε                                                (4.3) 
 
2. The shear component of strain for each spring will be computed from the given 

strain using coordinate transformation.  
 
The one-dimensional shear strain of each spring will be determined from the strain of the 
overall soil element. For this the transformation matrices for each spring should be 
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determined. Referring to fig. 4.1, the transformation matrices between the global coordinate 
system xyz and the rotated coordinate system x’y’z’ for each spring can be computed. The 
rotation is made only around z-axes. Thus, the transformation matrix for strain [Tε] can be 
given by eq. (1.19). 
 
For this model, the coordinates will be rotated around the origin so that the x’-axis of the 
new coordinate system will be aligned with the springs. There will be six springs in total. For 
the spring orientation given in fig. 4.1, the transformation matrices for each spring can be 
obtained by substituting the corresponding values of ζ in eq. (1.19). The values of ζ are as 
given in fig. 2.1. The springs will be numbered from 1 – 6 and their transformation matrices 
will be: 
 
For spring no. 1, ζ= 15o 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

=

0.9659260.2588190000
0.2588190.9659260000

000.86602505.00.5-
000100
000.25-00.9330130.066987
000.2500.0669870.933013

][ 1
εT  

 
 

For spring no. 2, ζ= 45o 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

=

0.7071070.7071070000
0.7071070.7071070000

00000.11.0-
000100

000.50-00.5000000.500000
000.5000.5000000.500000

][ 2
εT  

 
 

For spring no. 3, ζ= 75o 
 

 
 

 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

=

0.2588190.9659260000
0.9659260.2588190000

000.86602505.00.5-
000100
000.25-00.0669870.933013
000.2500.9330130.066987

][ 3
εT
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For spring 4, ζ= 105o 
 
 
 
 
 
 
 
 

 
For spring no. 5, ζ= 135o 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−

−

=

0.7071070.7071070000
0.7071070.7071070000

00000.11.0
000100

000.5000.5000000.500000
000.5000.5000000.500000

][ 5
εT  

 
For spring no.6, ζ= 165o 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−

−

=

0.9659260.2588190000
0.2588190.9659260000

000.86602505.00.5
000100

000.2500.9330130.066987
000.2500.0669870.933013

][ 6
εT  

 
Multiplication of the strain vector by the transformation matrix of each spring gives the 
strain vector of each spring. The strain vector of each spring will be obtained by multiplying 
the strain vector of the soil by the corresponding strain transformation matrix. 
 

{ } Ti
zx

i
yz

i
xy

i
zz

i
yy

i
xx

ii T }{][}{ )()()()()()()()( γγγεεεεε ε ==                                   (4.6) 
 
This will result in the following: 
 

{ } TT }00866.0025.025.0{*10][}{ 31)1( −== −εε ε  
{ } TT }00005.05.0{*10][}{ 32)2( −== −εε ε  
{ } TT }00866.0025.025.0{*10][}{ 33)3( −−== −εε ε  
{ } TT }00866.0025.025.0{*10][}{ 34)4( −−−== −εε ε  
{ } TT }00005.05.0{*10][}{ 35)5( −== −εε ε  
{ } TT }00866.0025.025.0{*10][}{ 36)6( −== −εε ε  

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−−

−

=

0.2588190.9659260000
0.9659260.2588190000

000.86602505.00.5
000100
000.2500.0669870.933013
000.2500.9330130.066987

][ 4
εT
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The springs are assumed to carry only one dimensional shear strain. Hence, the shear 
components of the springs should be extracted from the total strain vector of the springs. 
The springs are oriented in a xy plane rotating along the z’ axis. Thus, the strain component 
in the springs will be γx’y’. Hence, one-dimensional strains in each spring will be: 
 
 

T}00866.0000{*10}{ 3)1( −=γ  
T}000000{*10}{ 3)2( −=γ  

T}00866.0000{*10}{ 3)3( −= −γ  
T}00866.0000{*10}{ 3)4( −= −γ  

T}000000{*10}{ 3)5( −=γ  
T}00866.0000{*10}{ 3)6( −=γ  

 
 
3. From Masing’s rule, the stress ratio of each spring will be determined 
 
The shear stiffness matrix of the soil element and that of each spring are related by eq. (1.56). 
Here it is assumed that the shear modulus of all the springs is the same. 
 

( )∑
=

=
n

i

iTi
i

TNT
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tan ]][[][][ εε                                            (4.7) 

 
For the skeleton curve, the value of the shear modulus of each spring can be determined 
from eq. (1.129). 
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For this simple shear case, the volumetric strain is zero and the value of the initial strain γo is 
zero. Hence the tangent shear modulus of each spring can be computed as: 
 

2
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2
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Substituting these values in eq. (4.7), the expression for shear stiffness matrix of the soil 
element can be obtained as: 
 

( ) 2

1

)()(
)(

tan /4

000.0000.0000.0000.0000.0000.0
000.0000.0000.0000.0000.0000.0
000.0000.09922.1000.05751.05751.0
000.0000.0000.0000.0000.0000.0
000.0000.05751.0000.04241.64241.6
000.0000.05751.0000.04241.64241.6

]][[][][ mkNETNT
n

GG
n

i

iTi
i
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Assuming there will be insignificant change in the mean effective stress, the bulk modulus of 
the soil element is equal to Bc,o =4.32E4kPa. Thus the bulk stiffness matrix is given by: 
 

2/4

000.0000.0000.0000.0000.0000.0
000.0000.0000.0000.0000.0000.0
000.0000.0000.0000.0000.0000.0
000.0000.0000.0320.4320.4320.4
000.0000.0000.0320.4320.4320.4
000.0000.0000.0320.4320.4320.4

][ mkNEB

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=                  (4.8) 

 
The tangential stiffness matrix which is the summation of the shear stiffness matrix and the 
bulk stiffness matrix is given by: 
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2/5

000.0000.0000.0000.0000.0000.0
000.0000.0000.0000.0000.0000.0
000.0000.01992.0000.00575.00575.0
000.0000.0000.04320.04320.04320.0
000.0000.00575.04320.00744.12104.0
000.0000.00575.04320.02104.00744.1

][][][ mkNEBGK
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−

−
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=+=  

 
Now the stress ratio of the each spring can be calculated. Here it is assumed that the 
relationship between the stress ratio and shear strain can be given by the back bone curve 
hence the following relationship can be used eq. (1.68) to calculate the stress ratio: 
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=                                                                          (4.9) 

The spring stiffness kmax, shear strain and the reference shear strain γr of each spring is given 
Table 4.1.  If the change in mean effective stress is also assumed to be insignificant, then the 
reference shear strain can be taken to be equal to the initial reference shear strain. Hence, the 
stress ratio of the springs can be calculated as: 
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4. Using stress-dilatancy relationships, the volumetric strain increment due to 
dilatancy will be computed. 

 
 
The volumetric strain increment due to dilatancy for loading is calculated from the following 
equation given by eq. (1.136) 
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)(,
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−==
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σ
τ                                            (4.10) 

 
The values of )(i

dN  and )(i
ptR  are given to be to be 2.0 and 1.65. The plastic shear strain is 

calculated by eq. (1.139) 
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)(i

eqG  is calculated using eq. (1.101) 
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For each spring the values of η and Hp is given in table 4.1 to be  0.4 and 22 respectively. 
For the backbone curve, the value of C is 1.0. Hence, the expression for the elastic shear 
stiffness )(i

eqG  can be simplified into: 
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Since the strain level is assumed to be on the skeleton curve, the amplitude of shear strain 
will be equal to the maximum shear strain.  
 

)(
max

)( ii
a γγ =                                                   (4.14) 
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000866.0)3(
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)5( == γγ a  
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Then the value of the elastic shear stiffness and the corresponding ratio term in eq. (4.11) 
can be computed as: 
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Then from eq. (4.11) ,the plastic shear strain increments are calculated as: 
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Now the volumetric strain due to dilatancy can be calculated using eq. (1.141). 
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)(i

ptR  will be negative for 0),( >ipdγ  and positive for 0),( <ipdγ . Since the loading is initial 

loading the value of )(
,

i
iptR  =1.3 , in accordance with Table 4.1 will be used. 
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The shear stresses in each spring will then be calculated from the product of the stress ratio 
of the particular spring as amended by the hardening effect according to eq. (1.126) and 
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mean effective stress of p’ = 100kPa. Here, for the applied small strain the mean effective 
stress will be assumed to be constant. 
 

kPaHpR vp 86.71)1(')1()1( =+= ετ  

kPaHpR vp 0)1(')2()2( =+= ετ  

kPaHpR vp 86.71)1(')3()3( −=+= ετ  

kPaHpR vp 86.71)1(')3()3( −=+= ετ  

kPaHpR vp 0)1(')5()5( =+= ετ  

kPaHpR vp 86.71)1(')6()6( =+= ετ  
 
Note that this is the only the fourth component of the stress vector of each spring. All the 
remaining components are zero. Hence the stress vector of each spring will then be given as: 
 

{ } { }kPa0086.71000)1( =τ  
{ } { }kPa000000)2( =τ  

{ } { }kPa0086.71000)3( −=τ  
{ } { }kPa0086.71000)4( −=τ  

{ } { }kPa000000)5( =τ  
{ } { }kPa0086.71000)6( =τ  

 
The global deviatoric stress will then be given by eq. (1.48). 
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After calculation, the deviatoric stress is obtained to be: 
 

{ }0049.41000}{ )( =i
xyzτ kPa 

 
Here, it has to be noted that only the magnitudes of the shear stress will be considered to 
determine the aggregate shear stress of the soil element. 
 
4.1.2. Analysis by DIANA: 
 
For the analysis using DIANA, the 3D soil element shown in fig. 4.1 will be used. The 
components of the data file which will be used for DIANA liquefaction analysis were 
explained in chapter 3. Some modifications will be made in the data file to create the model.  

 
To align the origin of the coordinate system with the center of the virtual plane, the 
coordinates of the nodes should be changed to: 
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'COORDINATES' 
1  -5.000000E-01   -5.000000E-01   -5.000000E-01 
2   5.000000E-01   -5.000000E-01   -5.000000E-01 
3  -5.000000E-01    5.000000E-01   -5.000000E-01 
4   5.000000E-01    5.000000E-01   -5.000000E-01 
5  -5.000000E-01   -5.000000E-01    5.000000E-01 
6   5.000000E-01   -5.000000E-01    5.000000E-01 
7  -5.000000E-01    5.000000E-01    5.000000E-01 
8   5.000000E-01    5.000000E-01    5.000000E-01 

 
A prescribed shear strain value of  γxy = 10-4 is used and the analysis is made. This will be 
entered in the LOAD  case 2.  
 
              CASE     2 
              DEFORM 
 
              / 3-4, 7-8 / TR 1 -1.0E-4 
 
The stress vector which is obtained by DIANA is: 
 

                                              { } 2/

0
0
49.41
97.90
97.90
97.90

mkN
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⎪
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⎪
⎪
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⎪
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⎪

⎨

⎧

=σ  

 
 
There is good agreement between the resulting shear stress between the analytical and 
DIANA deviatoric stresses are in good agreement.  
 
4.2.  Shear applied in the zx direction 

 
To analyze a similar multiple shear mechanism as shown in fig. 4.1 for a simple shear in zx 
direction, the same values of material and spring parameters as given in table 4.1 will be used. 
The calculation of the stress vector from a strain vector applied in zx direction will be 
discussed briefly step by step in the next sections. 

 
A prescribed value of strain will be given. 

  
For simple shear case shown in fig 4.2, the prescribed strain vector can be written as: 
 
 

T}1000000{}{ 3−=ε                                                (4.15) 
 
The shear component of strain for each spring will be computed from the given 
strain using coordinate transformation.  
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The one-dimensional shear strain of each spring will be determined by multiplying the strain 
of the overall soil element by the transformation matrix. In this case, the rotation is made 
only about y-axis. Thus, the transformation matrix for strain [Tε] can be given by eq. (1.18). 
 
For this model, the coordinates will be rotated around the y axis so that the x’-axis of the 
new coordinate system will be aligned with the springs. There will be six springs in total. For 
the spring orientation given in fig. 4.1, the transformation matrices for each spring can be 
obtained by substituting the corresponding values of φ in eq. (1.18). The values of φ are as 
given in fig. 2.1. The springs will be numbered from 1 – 6 and their transformation matrices 
will be: 
 
For spring no. 1, φ= 15o 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

=

0.866025005.005.0
00.9659260.258819000
00.2588190.965926000
25.0000.93301300.066987
000010 

0.25000.06698700.933013

][ 1
εT  

For spring no. 2, φ= 45o 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

=

000101
00.7071070.707107000
00.7071070.707107000
5.0005.005.0

000010
5.0005.000.5

][ 2
εT  

For spring no. 3, φ= 75o 
 

 

For spring 4, φ= 105o 
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⎢
⎢
⎢
⎢
⎢
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−

−
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0.8660250.96592605.005.0
00.2588190.965926000
00.9659260.258819000
25.0000.06698700.933013

000010
25.0000.93301300.066987

][ 3
εT
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⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
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⎡
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−

−
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0.866025005.005.0
00.2588190.965926000
00.9659260.258819000
25.0000.06698700.933013

000010
25.0000.93301300.066987

][ 4
εT
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For spring no. 5, φ= 135o 
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⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
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⎡

−
−
−−

−
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000101
00.7071070.707107000
00.7071070.707107000
5.0005.000

000010.5
5.0005.000.5

][ 5
εT  

 
For spring no.6, φ= 165o 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
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000010
25.0000.06698700.933013

][ 6
εT  

 
Multiplication of the strain vector by the transformation matrix of each spring gives the 
strain vector of each spring. The strain vector of each spring will be obtained by multiplying 
the strain vector of the soil by the corresponding strain transformation matrix. 
 
 
This will result in the following: 
 

{ } TT }866.000025.025.0{*10][}{ 31)1( −== −εε ε  
{ } TT }0005.005.0{*10][}{ 32)2( −== −εε ε  

{ } TT }866.00025.0025.0{*10][}{ 33)3( −−== −εε ε  
{ } TT }866.00025.0025.0{*10][}{ 34)4( −−== −εε ε  

{ } TT }0005.005.0{*10][}{ 35)5( −== −εε ε  
{ } TT }866.00025.0025.0{*10][}{ 36)6( −== −εε ε  

 
The springs are assumed to carry only one dimensional shear strain. Hence, the shear 
components of the springs should be extracted from the total strain vector of the springs. 
The springs are oriented in a xy plane rotating along the z’ axis. Thus, the strain component 
in the springs will be γx’z’. Hence, one-dimensional strains in each spring will be: 
 
 

T}866.000000{*10}{ 3)1( −=γ  
T}000000{*10}{ 3)2( −=γ  

T}866.000000{*10}{ 3)3( −= −γ  



 - 103 -

T}866.000000{*10}{ 3)4( −= −γ  
T}000000{*10}{ 3)5( −=γ  

T}866.000000{*10}{ 3)6( −=γ  
 
 
From Masing’s rule, the stress ratio of each spring will be determined 
 
 
For the skeleton curve, the value of the shear modulus of each spring can be determined 
from eq. (1.129). For this simple shear case, the volumetric strain is zero and the value of the 
initial strain γo is zero. Hence the tangent shear modulus of each spring can be computed as: 
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Now the stress ratio of the each spring can be calculated. Here it is assumed that the 
relationship between the stress ratio and shear strain can be given by the back bone curve 
and the relationship which is already used in eq. (4.9)  will be adopted here as well. 
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The spring stiffness, shear strain and the reference shear strain of each spring is given in 
Table 4.1 and previous computations. If the change in mean effective stress is also assumed 
to be insignificant, then the reference shear strain can be taken to be equal to the initial 
reference shear strain. Hence, the stress ratio of the springs can be calculated as: 
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 Using stress-dilatancy relationships, the volumetric strain increment due to 
dilatancy will be computed. 
 
 
The volumetric strain increment due to dilatancy for loading is calculated by using eq. (4.10). 
Before the calculation of the volumetric strain due to dilatancy, the plastic shear strain 
should be calculated first. The values of the input parameters in the calculations, )(i

dN  and 
)(i

ptR  ,will be taken from table 4.1. The plastic shear strain is calculated by eq. (4.11) which 

requires the value of equivalent shear stiffness. The equivalent shear stiffness )(i
eqG  for each 

spring is calculated using eq. (4.12). Substituting the right values of the reduction factor η 
and Hp from table 4.1 , a simplified version of this equation can be obtained as given in eq. 
(4.13). 
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The amplitude of shear strain for the back bone curve is half of the maximum shear strain 
which is given by eq. (4.14). Substituting the maximum shear strain of each spring in this 
equation, the amplitude of shear strain can be determined as: 
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Then the value of the elastic shear stiffness can be computed as: 
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Then from eq. (4.11) ,the plastic shear strain increments are calculated as: 
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Now the volumetric strain due to dilatancy can be calculated using eq. (1.141). 
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)(i

ptR  will be negative for 0),( >ipdγ  and positive for 0),( <ipdγ . Since the loading is initial 

loading the value of )(
,

i
iptR  =1.3 , in accordance with Table 4.1 will be used. 
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The shear stresses in each spring will then be calculated from the product of the stress ratio 
of the particular spring and mean effective stress. Here, for the applied small strain the mean 
effective stress will be assumed to be constant and equal to the initial mean effective stress. 
 

kPaHpR vp 86.71)1(')1()1( =+= ετ  

kPaHpR vp 0)1(')2()2( =+= ετ  

kPaHpR vp 86.71)1(')3()3( −=+= ετ  

kPaHpR vp 86.71)1(')3()3( −=+= ετ  

kPaHpR vp 0)1(')5()5( =+= ετ  

kPaHpR vp 86.71)1(')6()6( =+= ετ  
 
Note that this is the only the fourth component of the stress vector of each spring. All the 
remaining components are zero. Hence the stress vector of each spring will then be given as: 
 

{ } { }kPa86.7100000)1( =τ  
{ } { }kPa000000)2( =τ  

{ } { }kPa86.7100000)3( −=τ  
{ } { }kPa86.7100000)4( −=τ  

{ } { }kPa000000)5( =τ  
{ } { }kPa86.7100000)6( =τ  

 
The global deviatoric stress will then be given by eq. (1.47). 
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After calculation, the deviatoric stress is obtained to be: 
 

{ }49.4100000}{ )( =i
xyzτ  

 
Here, it has to be noted that only the magnitudes of the shear stress will be considered to 
determine the aggregate shear stress of the soil element. 
 
 
This is the resulting stress vector for the analysis. Similar analysis under the same conditions 
will be carried out by DIANA and the results will be compared with this one. 
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4.2.2. Analysis by DIANA: 
 
For the analysis using DIANA, the 3D soil element shown in fig. 4.1 will be used. The 
components of the data file which will be used for DIANA liquefaction analysis were 
explained in chapter 3. Some modifications will be made in the data file to create the model.  

 
To align the origin of the coordinate system with the center of the virtual plane, the 
coordinates of the nodes should be changed to: 

 
'COORDINATES' 

1  -5.000000E-01   -5.000000E-01   -5.000000E-01 
2   5.000000E-01   -5.000000E-01   -5.000000E-01 
3  -5.000000E-01    5.000000E-01   -5.000000E-01 
4   5.000000E-01    5.000000E-01   -5.000000E-01 
5  -5.000000E-01   -5.000000E-01    5.000000E-01 
6   5.000000E-01   -5.000000E-01    5.000000E-01 
7  -5.000000E-01    5.000000E-01    5.000000E-01 
8   5.000000E-01    5.000000E-01    5.000000E-01 

 
A prescribed shear strain value of  γxy = 10-4 is used and the analysis is made. This will be 
entered in the LOAD  case 2.  
 
              CASE     2 
              DEFORM 
              / 5-8 / TR 1 1.0E-4 
 
And all the nodes will be fixed in the three directions which is done through the following 
statement: 
 
                'SUPPORTS' 
                / 1-8 / TR 1 2 3 
 
In this case, the rotation of the springs is done only around y axis. Hence, the values of θ 
and ζ will be zero for all the springs while the value of φ changes according to the 
orientation of the spring.  
 
The results are shown for 20 load steps to the same strain level as the analytical solution is 
given below. 
 

                                            { } 2/

0
0
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⎧

=σ  

The shear stress values resulting from the analytical and DIANA are again in good 
agreement.  
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4.3. Clarification of the torsion shear-icosahedral distribution deviatoric stress  
relationship with DIANA analysis. 
 
To compare the relative values given in table 1.2 of chapter one with Diana results, a drained 
analysis is performed for different values of shear strain level. The resulting relative values 
for the deviatoric shear part are summarized in the table below: 
 
Table 4.2. Normal and shear stresses at different strain levels [Global shear strain direction 
zx] 
 

normalized 
strain in zx 

direction(%) 
σxx σyy σzz τxy τyz τxz p' τmax τxy/τmax τyz/τmax τzx/τmax 

12.5 -91.57 -85.97 -98.00 -0.472 -0.500 41.610 -91.847 -126.969 0.004 0.004 -0.328 
25 -91.42 -84.80 -98.00 -0.551 -0.789 45.420 -91.407 -126.361 0.004 0.006 -0.359 

37.5 -91.31 -84.30 -98.00 -0.520 -0.983 47.180 -91.203 -126.079 0.004 0.008 -0.374 
50 -91.20 -83.93 -98.00 -0.451 -1.122 48.300 -91.043 -125.858 0.004 0.009 -0.384 

62.5 -91.11 -83.62 -98.00 -0.366 -1.222 49.120 -90.910 -125.674 0.003 0.010 -0.391 
75 -91.04 -83.34 -98.00 -0.279 -1.298 49.770 -90.793 -125.513 0.002 0.010 -0.397 

87.5 -90.98 -83.09 -98.00 -0.194 -1.358 50.310 -90.690 -125.370 0.002 0.011 -0.401 
100 -90.94 -82.86 -98.00 -0.113 -1.405 50.780 -90.600 -125.245 0.001 0.011 -0.405 

112.5 -90.92 -82.64 -98.00 -0.037 -1.443 51.190 -90.520 -125.135 0.000 0.012 -0.409 
125 -90.90 -82.44 -98.00 0.034 -1.475 51.560 -90.447 -125.033 0.000 0.012 -0.412 
1000 -101.50 -91.53 -98.00 -2.907 -0.708 47.840 -97.010 -134.107 0.022 0.005 -0.357 
3000 -101.80 -91.78 -98.00 -2.749 -0.597 47.980 -97.193 -134.360 0.020 0.004 -0.357 

-0.061 -0.015 1.000     -0.061 -0.015 1.000 Relative value of shear stress with respect to 
shear stress in the direction of global shear 

strain for the last two strain levels -0.057 -0.012 1.000     -0.057 -0.012 1.000 

 
Table 4.3. Normal and shear stresses at different strain levels [Global shear strain direction 
yz] 
 

Normalized 
strain in yz 
direction(%) 

σxx σyy σzz τxy τyz τxz p' τmax τxy/τmax τyz/τmax τzx/τmax 

12.5 -84.19 -98.00 -90.60 0.000 41.480 0.000 -90.930 -125.702 0.000 -0.330 0.000 
25 -82.32 -98.00 -90.66 0.000 45.290 0.000 -90.327 -124.868 0.000 -0.363 0.000 

37.5 -97.74 -98.00 -97.79 0.000 5.926 0.000 -97.843 -135.259 0.000 -0.044 0.000 
50 -80.92 -98.00 -90.88 0.000 48.240 0.000 -89.933 -124.324 0.000 -0.388 0.000 

62.5 -80.48 -98.00 -90.89 0.000 49.070 0.000 -89.790 -124.126 0.000 -0.395 0.000 
75 -80.12 -98.00 -90.87 0.000 49.730 0.000 -89.663 -123.951 0.000 -0.401 0.000 

87.5 -79.80 -98.00 -90.84 0.000 50.270 0.000 -89.547 -123.789 0.000 -0.406 0.000 
100 -79.52 -98.00 -90.80 0.000 50.740 0.000 -89.440 -123.642 0.000 -0.410 0.000 

112.5 -79.27 -98.00 -90.75 0.000 51.140 0.000 -89.340 -123.504 0.000 -0.414 0.000 
125 -79.04 -98.00 -90.70 0.000 51.500 0.000 -89.247 -123.375 0.000 -0.417 0.000 
1000 -82.67 -98.00 -92.22 0.000 45.430 0.000 -90.963 -125.748 0.000 -0.361 0.000 
3000 -82.68 -98.00 -92.24 0.000 45.480 0.000 -90.973 -125.762 0.000 -0.362 0.000 
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0.000 1.000 0.000     0.000 1.000 0.000 Relative value of shear stress with respect to 
shear stress in the direction of global shear 

strain for the last two strain levels 0.000 1.000 0.000     0.000 1.000 0.000 

 
 
 
 
 
Table 4.4. Normal and shear stresses at different strain levels [Global shear strain direction 
xy] 
 

Normalized 
strain in xy 

direction(%) 
σxx σyy σzz τxy τyz τxz p' τmax τxy/τmax τyz/τmax τzx/τmax 

12.5 -98.00 -90.07 -85.45 41.070 0.382 -0.243 -91.173 -126.038 -0.326 -0.003 0.002 
25 -98.00 -89.90 -83.77 44.730 0.720 -0.333 -90.557 -125.186 -0.357 -0.006 0.003 

37.5 -98.00 -89.90 -83.77 44.730 0.720 -0.333 -90.557 -125.186 -0.357 -0.006 0.003 
50 -98.00 -90.04 -82.44 47.560 1.010 -0.391 -90.160 -124.637 -0.382 -0.008 0.003 

62.5 -98.00 -90.08 -82.08 48.380 1.078 -0.426 -90.053 -124.490 -0.389 -0.009 0.003 
75 -98.00 -90.13 -81.83 49.050 1.118 -0.475 -89.987 -124.398 -0.394 -0.009 0.004 

87.5 -98.00 -90.19 -81.66 49.630 1.140 -0.534 -89.950 -124.347 -0.399 -0.009 0.004 
100 -98.00 -90.25 -81.56 50.130 1.150 -0.601 -89.937 -124.328 -0.403 -0.009 0.005 

112.5 -98.00 -90.31 -81.50 50.590 1.151 -0.673 -89.937 -124.328 -0.407 -0.009 0.005 
125 -98.00 -90.38 -81.48 51.010 1.145 -0.749 -89.953 -124.351 -0.410 -0.009 0.006 
1000 -98.00 -93.10 -86.50 45.400 0.764 -1.040 -92.523 -127.904 -0.355 -0.006 0.008 
3000 -98.00 -93.10 -86.50 45.450 0.760 -1.034 -92.527 -127.909 -0.355 -0.006 0.008 

1.000 0.017 -0.023     1.000 0.017 -0.023 Relative value of shear stress with respect to shear 
stress in the direction of global shear strain for the 

last two strain levels 1.000 0.017 -0.023     1.000 0.017 -0.023 

 
 
The values written in bold in each table, show more or less similar trend as given in table 1.2 
in chapter one. But there is difference which can be attributed to the differences in the 
loading and boundary conditions between the DIANA analysis and when originally 
establishing table 1.2. in the DIANA analysis, there is a vertical loading and volumetric strain. 
Where as both these conditions were not assumed in chapter one. 
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CHAPTER FIVE 
VERIFICATION OF THE MODEL FOR DIFFERENT SOIL 

PARAMETERS 
 

In chapter two, the agreement between the source code for the 3-D liquefaction analysis and 
the theoretical background of the model was proved to be acceptable. In this chapter, the 
consistency of the analysis results with laboratory results and with another numerical analysis 
result will be checked. For this, 3-D liquefaction analysis will be carried out by DIANA on a 
soil element for different soil parameters.  
 
The analysis will be carried out with equal material and state parameters as the tests. The list 
of user defined parameters to be used for the analysis will be given in tables. 

 
               Table 5.1. Data for the drained analysis 

Symbol Value 
Dr [%] 75 57 38 22 
kmax,0 3072 2624 2176 1728 
γr,0 0.0008 
η 0.4 

Bc,0 [kPa] 76800 65600 54400 43200 
Bs,0 [kPa] 96000 82000 68000 54000 

Hp 22 
Rpt,i 1.3 
Rpt,s 0.85 
Nd 1.3 
γth 0.0001 

p'0 [kPa] 100 
n 1 
m 0.5 

 
5.1 DRAINED MONOTONIC ONE-WAY SIMPLE SHEAR 

 
Stress and strain components in simple shear for the monotonic one-way simple shear are 
illustrated in Fig. 5.1. The normal stress in z direction is kept constant and normal strains in 
x and y directions are always zero. In this case, strain-controlled analysis will be carried out 
and γxy and γyz are zero while γzx is controlled. The top nodes of the cube element will be 
deformed by a strain of 10-5 per step. 
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Fig 5.1. Stress-strain components in simple shear mode 

 
Shear stress versus shear strain graphs 

 
For monotonic loading the shear stress converges to a certain value. This state corresponds 
to critical state and the simulation by the analysis shows this phenomenon. The figures 
below show similar plot by Nishimura and also the comparison between his simulation and 
laboratory results. It can be noted that the computed results overestimate the observed ones. 
This is because the computed results retained larger mean effective principal stress p’ than 
sand test did. The larger p’ led to larger Gmax and consequently resulted in the overestimation 
of stress-strain relation.  
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Fig 5.2. Stress strain relationship result by DIANA 
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Fig 5.3. Computed stress strain relationship result by Nishimura (2002) 

 

 
Fig 5.4. Comparison of computed stress strain relationship result by Nishimura(2002) 

and laboratory observation by Shahnazari(2001). 
 

Referring to eq. (1.167), it can be deduced that this difference of the mean effective stress 
values between the simulation and the test arose from the difference between the values of 
the volumetric strain due to dilatancy. This effect can be reduced by two ways to have 
agreeable plots between the simulated and observed ones. They are: 

 
i. normalizing the shear stress by mean effective stress 

 
With the results of the analysis, the stress ratio (τ/p’)-strain graph can also be drawn. These 
graphs are shown below. Comparing the resulting graphs from DIANA with the observation 
results for Dr = 22% , a better agreement exists between the two. 
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Fig 5.5. Stress ratio strain relationship result by DIANA 

 

 
Fig 5.6. Comparison of computed stress ratio strain relationship result by Nishimura 

and laboratory observation. 
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Volumetric strain versus shear strain graphs 

 
The graphs below show that the volumetric strain versus the shear strain curve. Here, 
positive volumetric strain is positive dilatancy and negative volumetric strain represents 
contraction or negative dilatancy for the DIANA results. The reverse is true for the results 
by Nishimura and observed ones.  

 
The result from DIANA underestimates the contraction of sand as compared to the 
computed result by Nishimura or by laboratory tests. Due to this, there will be less swelling 
due to change in p’. The relationship between these two quantities for the observation is only 
given till shear strain reaches 0.03.  
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Fig 5.7. Volumetric change along with shearing result by DIANA 

 
Fig 5.8. Volumetric strain change along with shearing result by Nishimura and 

laboratory results. 
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5.2. DRAINED CYCLIC SIMPLE SHEAR 
 
This curve shows that volumetric change with shearing for different soil densities. The shear 
strain amplitude is kept constant at the value of 0.03. The volumetric strain progresses and 
converges at a certain value as expected. The shapes of the curves are also in good 
agreement with that of the computed results by Nishimura and laboratory observations. 

Dr= 22%

-0.04

-0.02

0.00

0.02

0.04

-0.06-0.05-0.04-0.03-0.02-0.010.00

Volumetric strain

Sh
ea

r 
str

ain

 
Dr=38%

-0.04

-0.02

0.00

0.02

0.04

-0.04-0.03-0.03-0.02-0.02-0.01-0.010.000.01

Volumetric strain

Sh
ea

r s
tra

in

Dr=57%

-0.04

-0.02

0.00

0.02

0.04

-0.016-0.014-0.012-0.010-0.008-0.006-0.004-0.0020.0000.0020.004

Volumetric strain

Sh
ea

r s
tra

in

 
Fig 5.9 Shear strain versus volumetric strain result by DIANA 

                                             

 
Fig 5.10 Shear strain versus volumetric strain result by Nishimura(2002) 
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Fig 5.11 Shear strain versus volumetric strain result from laboratory observation by 

Shahnazari (2001). 
 

Shear stress versus shear strain graphs 
 

These graphs show the calculated stress-strain relationships for three different densities. The 
skeleton curve and the hysteresis loops are well delineated in the graphs. As the number of 
cycle increases, the stress amplitude will also increase. This is the effect of hardening. In 
addition in both results by DIANA and Nishimura the effect of hardening is more 
pronounced for the soils with lower densities which is logical. 
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Fig 5.12. Shear strain versus volumetric strain result by DIANA. 
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Fig 5.13 Shear stress versus shear strain result by Nishimura (2002). 

 
5.3. UNDRAINED MONOTONIC SIMPLE SHEAR 

 
The stress-strain relationships for different soil densities are shown below. As expected, the 
soil with low density, complete flow occurs while the soil with the higher density has some 
shear resistance. This is also supported by laboratory observation as shown in the 
subsequent graph. 
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Fig.5.14. Shear stress strain relationship result by DIANA for undrained monotonic 

loading 
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Fig.5.15 Stress path by DIANA for undrained monotonic loading 
 

 
Fig.5.16. Deviatoric stress versus shear strain curves by Nishimura(2002) and 

Yoshimine (1996) 
 

5.4. UNDRAINED CYCLIC SIMPLE SHEAR 
 
Good agreement between the calculated results by DIANA and laboratory observation 
exists. In addition, the diagrams below suggest that the model is capable of predicting 
softening of loose sands and the cyclic mobility of dense sands. Abrupt softening is observed 
on the soils with less density. The number of cycles required to zero effective stress is 
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smaller for looser sands. All these features of the result are consistent with the laboratory 
observation. 
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Dr = 49%
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Fig.5.17. shear stress versus shear strain curves by DIANA 
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Fig.5.17. shear stress versus effective stress curves by DIANA 
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Fig.5.18. shear stress versus shear strain  and shear stress versus effective stress curves 

by Nishimura (2002) and Shahnazari (2001) 
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CHAPTER SIX 

CONCLUSION AND RECOMMENDATION 
 
6.1. CONCLUSION 
 

• Stress and strain vectors can be transformed between one coordinate system and 
another coordinate system. The inverse of transformation matrix for stress is equal 
to the transpose of strain transformation matrix. 

• An icosahedron is the best geometrical element to distribute the planes. Nishimuara 
(2002) suggests that there will be distribution of six springs on each plane. However, 
comparison of maximum deviatoric stresses and (1.95)) in isotropic torsion shear test 
and from icosahedral distribution shows some disagreements between the two (as 
described in eq. (1.85), (1.90)). The likely reason for the discrepancy is the 
distribution of the springs on each plane with respect to an arbitrary coordinate 
system on the planes. 

• The one-dimensional stress-strain relationships of the model give good prediction of 
the stress ratio. However, the stress dilatancy relationship results in an 
overestimation of contraction which there by affects the mean effective stress. The 
effect is also propagated into shear stress which is calculated from the product of 
mean effective stress and stress ratio. 

• There is good agreement between the analytical calculation of stresses for a simple 
shear case and Diana result. This indicates that the fortran program is written 
correctly in accordance with the theoretical background given in chapter one. 

• The comparison of shear stress-shear strain and volumetric strain-shear strain graphs 
from DIANA result and laboratory investigations show that there is a considerable 
differences. The main sources of these differences are: 

- anisotropic distribution of the springs on the virtual planes and 
- overestimation of contraction by the stress-dilatancy relationship 
- drawbacks in the MASING subroutine of the report for the case when the 

stress ratio in the past is exceeded. 
 
 
6.2. RECOMMENDATION 
 

• The stress-dilatancy relationship should be modified. The effect of the problem with 
the stress-dilatancy relationship is discussed in the stress-strain graphs in section 5.1. 

• The springs on each plane should be distributed isotropically so that orientation is 
unique. One way to achieve a unique distribution of springs will be discussed below. 

 
In chapter one, it is stated that the virtual planes are oriented perpendicular to the normal 
lines from the center of an icosahedron towards the corners and centroids of each face. 
Hence looking into an icosahedral element given in fig. 1.7, it can be noticed that each 
corner point is surrounded by five other corners. The lines connecting the corner point 
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under consideration and the surrounding corners are unique for that particular corner point. 
Hence, the springs on the planes at the corners can be oriented along those lines. Hence 
there will be five springs on the planes which have their normal line pointing towards the 
corner points of an icosahedron. 
 
The faces of an icosahedral element are equilateral triangles. Hence, the line directing from 
the centroids of each face towards each corner point and to the centers of each side are 
unique for each face. Thus six springs can be aligned along these directions: three towards 
the corners and three towards the bisectors of the sides. In this manner complete isotropy of 
the model can be achieved. 
 

     
(a) (b) 

Fig. 6.1 Distribution of springs (a) on the planes around the corner (b) on the planes at the 
centroid of each face. 
 

•  The MASING subroutine in the source-code should be modified for the case when 
the maximum stress ratio in the past is exceeded. Some suggestions are made in 
section 2.2.3 of the report. 
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Appendix A. Values of θ and φ for normal lines to each virtual plane. 
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Appendix B. Proof of transformation matrix properties using MAPLE program 
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Appendix C. Fortran 77 program for matrix computations of icosahedra distribution 
of springs 

     PROGRAM TRANS2 
      INTEGER            NPLANE,    NDIV 
      PARAMETER        ( NPLANE=32, NDIV=6 ) 
C 
      INTEGER          I, J, K, IPLANE, JDIV, SPNO 
      DOUBLE PRECISION PAI, G(6,6) 
      DOUBLE PRECISION COOR(NPLANE*2), ETHETA, EPHI, EBETA, 
     $                 N(6,6), DIR(6), MAG 
      DOUBLE PRECISION INTMAT(6,6), TRANS(6,6), EE(6) 
      DOUBLE PRECISION TA(6,6), TB(6,6), TC(6,6),  
     $                 TEM(6,6), TE(6,6), TSM(6,6), TS(6,6) 
CC.....................................................................
. 
      PAI=ATAN(1.D0)*4.D0 
CC.....................................................................
. 
CC    *****READING THE ORINETATION OF EACH SPRING FOR AN ICOSAHEDRAL 
DISTRIBUTION*****  
CC 
      CALL SPLOCA(COOR) 
CC 
            DO 600 I=1,6 
              DO 700 J=1,6 
                TRANS(I,J)=0.D0 
                G(I,J)=0.D0 
                TE(I,J)   =0.D0 
                TS(I,J)   =0.D0 
  700         CONTINUE 
  600       CONTINUE 
 
      DO 2000 IPLANE=1,NPLANE 
        DO 2100 JDIV=1,NDIV 
            SPNO=(IPLANE-1)*NDIV+JDIV 
            ETHETA=COOR(IPLANE) 
            EPHI  =COOR(IPLANE+32) 
            EBETA =PAI*(JDIV-1)/NDIV+0.5D0*PAI/NDIV             
CC 
CC      **** INITIALIZATION OF 
MATRICES*********************************************** 
            DO 100 I=1,6 
              DO 200 J=1,6 
                TEM(I,J)     =0.D0 
                TE(I,J)      =0.D0 
                INTMAT(I,J)  =0.D0 
                TSM(I,J)     =0.D0 
                TS(I,J)      =0.D0 
                DIR(I)       =0.D0 
CC                G(I,J)       =0.D0 
CC                TRANS(I,J)   =0.D0 
  200         CONTINUE 
  100       CONTINUE 
CC 
CC       ***** READING THE TRANSFORMATION MATRICES AFTER EACH ROTATION  
******** 
CC 
            CALL TRANSM(ETHETA, EPHI, EBETA, TA, TB, TC) 
CC 
CC       **** CALCULATION OF THE OVERALL ENGINEERING STRAIN 
TRANSFORMAION MATRIX ******** 
CC 
            DO 1100 I=1,6 
              DO 1200 J=1,6 
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                DO 1300 K=1,6 
                  TEM(I,J)=TEM(I,J)+TB(I,K)*TA(K,J) 
 1300           CONTINUE 
 1200         CONTINUE 
 1100       CONTINUE 
CC 
            DO 1400 I=1,6 
              DO 1500 J=1,6 
                DO 1600 K=1,6 
                  TE(I,J)=TE(I,J)+TC(I,K)*TEM(K,J) 
 1600           CONTINUE 
 1500         CONTINUE 
 1400       CONTINUE 
CC 
CC    ***** DEFINING THE SELECTOR MATRIX N 
*************************************** 
CC 
            DO 1700 I=1,6 
              DO 1800 J=1,6 
                N(I,J)=0.D0 
                N(5,5)=1.D0 
 1800         CONTINUE 
 1700       CONTINUE 
CC 
CC   *** DEFINING THE COEFFICIENT TO CALCULATE ONLY THE MAGNITUDES OF 
CC          STRESSES AND STRAINS AS PER EQ. 1.73 IN THE 
REPORT********************** 
           DO 6000, I=1, 6 
              EE(I)=0.D0 
              EE(6)=1.D0 
 6000      CONTINUE 
CC 
           DO 6100, I=1, 6 
             DO 6200 J=1, 6 
                DIR(I)=DIR(I)+TE(I,J)*EE(J)               
 6200        CONTINUE 
 6100      CONTINUE 
  
                IF (ABS(DIR(5)) .GT. 1E-10) THEN 
                MAG=DIR(5)/ABS(DIR(5)) 
                ELSE  
                MAG=0.D0 
                END IF 
        
CC 
CC    **** CALCULATION OF THE OVERALL STRESS TRANSFORMATION MATRIX 
*************** 
CC 
            CALL TRANSM(ETHETA, EPHI, EBETA, TA, TB, TC) 
CC 
            DO 3100 I=1,6 
              DO 3200 J=1,6 
                DO 3300 K=1,6 
                  TSM(I,J)=TSM(I,J)+TB(K,I)*TC(J,K) 
 3300           CONTINUE 
 3200         CONTINUE 
 3100       CONTINUE 
CC 
            DO 3400 I=1,6 
              DO 3500 J=1,6 
                DO 3600 K=1,6 
                  TS(I,J)=TS(I,J)+TA(K,I)*TSM(K,J) 
 3600           CONTINUE 
 3500         CONTINUE 
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 3400       CONTINUE  
CC 
CC      *** CALCULATION OF THE MATRIX PRODUCT 
transpose(TE)*N*TE****************** 
CC 
            DO 3700 I=1,6 
              DO 3800 J=1,6 
                DO 3900 K=1,6 
                  INTMAT(I,J)=INTMAT(I,J)+N(I,K)*TE(K,J) 
 3900           CONTINUE 
 3800         CONTINUE 
 3700       CONTINUE 
CC 
            DO 4000 I=1,6 
              DO 4100 J=1,6 
                DO 4200 K=1,6 
                  TRANS(I,J)=TRANS(I,J)+TS(I,K)*INTMAT(K,J) 
 4200           CONTINUE 
 4100         CONTINUE 
 4000       CONTINUE 
CC     **** PRINTING THE RESULTS 
************************************************ 
CC 
             WRITE(*,*) 'spring number= ', SPNO        
             DO 5200, I = 1, 6 
                 DO 5300, J = 1, 6 
                 G(I,J)=G(I,J)+TS(I,J)*MAG 
                 WRITE(*,*)I,J, G(I,J)  
 5300            CONTINUE 
 5200        CONTINUE 
 2100     CONTINUE 
 2000   CONTINUE 
             DO 6020, I = 1, 6 
                 DO 6010, J = 1, 6 
                   G(I,J)= G(I,J)/192.D0 
CC                   call primat(G(I,J), 6, 6, 'G =') 
 6010            CONTINUE 
 6020        CONTINUE 
CC        call primat(G(I,J), 6, 6, 'G =') 
      END
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Appendix D. Part of Simple shear data for determination of liquefaction parameters 
 

Number 
of steps 

Effective 
stress(kPa)

Shear 
strain 

Shear 
stress(kPa) Stress ratio 

1.00E+00 9.80E+01 1.00E-05 0.00E+00 0.00E+00 
2.00E+00 9.80E+01 2.00E-05 9.53E-01 9.72E-03 
3.00E+00 9.79E+01 3.00E-05 1.82E+00 1.86E-02 
4.00E+00 9.79E+01 4.00E-05 2.62E+00 2.68E-02 
5.00E+00 9.78E+01 5.00E-05 3.36E+00 3.44E-02 
6.00E+00 9.78E+01 6.00E-05 4.05E+00 4.14E-02 
7.00E+00 9.78E+01 7.00E-05 4.70E+00 4.81E-02 
8.00E+00 9.78E+01 8.00E-05 5.31E+00 5.43E-02 
9.00E+00 9.78E+01 9.00E-05 5.90E+00 6.03E-02 
1.00E+01 9.78E+01 1.00E-04 6.45E+00 6.60E-02 
1.10E+01 9.78E+01 1.10E-04 6.98E+00 7.14E-02 
1.20E+01 9.78E+01 1.20E-04 7.48E+00 7.65E-02 
1.30E+01 9.78E+01 1.30E-04 7.96E+00 8.14E-02 
1.40E+01 9.78E+01 1.40E-04 8.43E+00 8.62E-02 
1.50E+01 9.78E+01 1.50E-04 8.87E+00 9.07E-02 
1.60E+01 9.77E+01 1.60E-04 9.30E+00 9.52E-02 
1.70E+01 9.77E+01 1.70E-04 9.71E+00 9.94E-02 
1.80E+01 9.77E+01 1.80E-04 1.01E+01 1.03E-01 
1.90E+01 9.77E+01 1.90E-04 1.05E+01 1.07E-01 
2.00E+01 9.77E+01 2.00E-04 1.09E+01 1.12E-01 
2.10E+01 9.76E+01 2.10E-04 1.12E+01 1.15E-01 
2.20E+01 9.76E+01 2.20E-04 1.16E+01 1.19E-01 
2.30E+01 9.76E+01 2.30E-04 1.19E+01 1.22E-01 
2.40E+01 9.75E+01 2.40E-04 1.22E+01 1.25E-01 
2.50E+01 9.75E+01 2.50E-04 1.26E+01 1.29E-01 
2.60E+01 9.75E+01 2.60E-04 1.29E+01 1.32E-01 
2.70E+01 9.74E+01 2.70E-04 1.32E+01 1.36E-01 
2.80E+01 9.74E+01 2.80E-04 1.35E+01 1.39E-01 
2.90E+01 9.73E+01 2.90E-04 1.37E+01 1.41E-01 
3.00E+01 9.73E+01 3.00E-04 1.40E+01 1.44E-01 
3.10E+01 9.72E+01 3.10E-04 1.43E+01 1.47E-01 
3.20E+01 9.72E+01 3.20E-04 1.46E+01 1.50E-01 
3.30E+01 9.71E+01 3.30E-04 1.48E+01 1.52E-01 
3.40E+01 9.71E+01 3.40E-04 1.51E+01 1.56E-01 
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Appendix E. consolidation test data for determination of liquefaction parameters 
 

Vertical 
stress(kN) void ratio

57.4564 0.4748 
117.3067 0.4725 
191.5212 0.4673 
287.2818 0.4500 
406.9826 0.4200 
658.3541 0.3600 
957.6060 0.3000 
526.6833 0.3023 
220.2494 0.3150 
95.7606 0.3375 
227.4314 0.3285 
538.6534 0.3098 
1053.3666 0.2798 
1843.3916 0.1650 
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Appendix F. The source code for liquefaction analysis. 
 
1 SUBROUTINE USRLIQ( EPS0   , DEPS   , EPSVEL , NSTR , TIME0 ,  

2 $                   DTIME  , ELEMEN , INTPT  , COORD , SE ,  

3 $                   ITER   , USRVAL , NUSRVL , USRSTA , NSTATE ,  

4 $                   USRIND , NINDIC , SIGMA  , STIFF )  

5 CC........................................................ .. ....... .....  

6 IMPLICIT NONE    

7 INTEGER, PARAMETER          :: NPLANE=32, 

8 $                               NDIV=6,   

9 $                               SPRING=192,  

10 $                               OFFSET=40,  

11 $                               WIDTH=9   

12 INTEGER, PARAMETER          :: LTSTP =100 

13 DOUBLE PRECISION, PARAMETER :: LTDEPS=1.D-4 

14 DOUBLE PRECISION, PARAMETER :: LTMEAN=1.D-4, 

15 $                               LTPSIG=1.D-4,  

16 $                               LTDPEP=1.D-14,  

17 $                               LTRATI=1.D-3,  

18 $                               LTDGAM=1.D-10,  

19 $                               LTGTAN=1.D+4  

20 INTEGER, PARAMETER          :: GTYPE =1  

21 DOUBLE PRECISION               LTEVCS  

22 INTEGER          NSTR, NUSRVL, NSTATE, NINDIC, ELEME N, INTPT, ITER  

23 DOUBLE PRECISION EPS0(NSTR), DEPS(NSTR), EPSVEL(NSTR ), TIME0,   

24 $                 DTIME, COORD(3), SE(NSTR,NSTR), USR VA L(NUSRV L),  

25 $                 USRSTA(NSTATE), SIGMA(NSTR), STIFF( NS TR,NSTR )  

26 INTEGER          USRIND(NINDIC)  

27 INTEGER          I, J, K, L, M, N   

28 DOUBLE PRECISION PAI   

29 DOUBLE PRECISION KMAXO, GRO, YETA, BULKO, BULKSO, HP , GTH,   

30 $                 RPT(2), NDN, MEPSO, NN, MM, OPT(10) 

31 INTEGER          NOWSTP, MAXSTP  

32 DOUBLE PRECISION XDEPS(NSTR), XEPS0(NSTR) 

33 INTEGER          SPNO, PLNO   

34 DOUBLE PRECISION COOR(NPLANE*2), THETA, PHI, BETA 

35 DOUBLE PRECISION KMAX, GR, BULK, BULKS, 

36 $                 NDI(3), NDS(3),   

37 $                 KTAN(SPRING), KEQU, PTAN(SPRING), 

38 $                 ISTIFF(NSTR,NSTR), GLAST(3) 

39 DOUBLE PRECISION GORI(SPRING), GMAX(SPRING), 

40 $                 GREV(SPRING), G(SPRING,2), 

41 $                 COR(SPRING),  GAMP(SPRING), 

42 $                 IEPS(NSTR),   

43 $                 EVDSUM, DEVD, EVSUM, DEV, EVCSUM, D EV C,   

44 $                 EVY, HPEV, IDEVD, DPEPS, PWORK, DPW OR K   

45 DOUBLE PRECISION RMAX(SPRING), RREV(SPRING), R(SPRIN G, 2),   

46 $                 SIG(NSTR), ISIG(NSTR), SIGMAB(NSTR) ,    

47 $                 PSIG(NPLANE), DPSIG(NPLANE), 
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48 $                 MEPS, SIGY, SIGI   

49 INTEGER          MMODE(SPRING), DMODE(SPRING) 

50 CC........................................................ .. ....... .....  

51 PAI=DATAN(1.D0)*4.D0   

52 USRIND(385)=USRIND(385)+1   

53 CC........................................................ .. ....... .....  

54 KMAXO  = USRVAL(1)   

55 GRO    = USRVAL(2)    

56 YETA   = USRVAL(3)    

57 BULKO  = USRVAL(4)   

58 BULKSO = USRVAL(5)   

59 MEPSO  = USRVAL(6)   

60 NN     = USRVAL(7)    

61 MM     = USRVAL(8)    

62 RPT(1) = USRVAL(9)    

63 RPT(2) = USRVAL(10)   

64 NDN    = USRVAL(11)    

65 HP     = USRVAL(12)    

66 GTH    = USRVAL(13)    

67 CC........................................................ .. ....... .....  

68 NOWSTP=0    

69 MAXSTP=1    

70 DO 1000 I=1,NSTR    

71 IF(INT(DABS(DEPS(I))/LTDEPS).GE.MAXSTP) THEN 

72 MAXSTP=INT(DABS(DEPS(I))/LTDEPS)  

73 END IF     

74 1000 CONTINUE    

75 CC     

76 IF(MAXSTP.GE.LTSTP) THEN   

77 MAXSTP=LTSTP    

78 END IF     

79 CC     

80 DO 1100 I=1,NSTR    

81 XDEPS(I)=DEPS(I)/MAXSTP   

82 1100 CONTINUE    

83 CC     

84 DO 10000 NOWSTP=1,MAXSTP   

85 CC........................................................ .. ....... .....  

86 CC     

87 DO 1200 I=1,NSTR    

88 XEPS0(I)=EPS0(I)+DEPS(I)*(NOWSTP-1)/MAXSTP 

89 1200 CONTINUE    

90 CC     

91 DO 1300 I=1,NSTR    

92 DO 1400 J=1,NSTR    

93 STIFF(I,J)=0.D0    

94 1400   CONTINUE    

95 SIG(I)=0.D0    

96 SIGMAB(I)=SIGMA(I)    
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97 1300 CONTINUE    

98 CC     

99 DEVD   =  0.D0    

100 EVCSUM =  0.D0    

101 DPWORK =  0.D0    

102 MEPS   = -1.D0*( SIGMA(1) + SIGMA(2) + SIGMA(3) )/3. D0    

103 EVSUM  = -1.D0*( XEPS0(1) + XEPS0(2) + XEPS0(3) ) 

104 DEV    = -1.D0*( XDEPS(1) + XDEPS(2) + XDEPS(3) ) 

105 HPEV   =(EVSUM+DEV)*HP+1.D0  

106 CALL SPLOCA(COOR)   

107 CC........................................................ .. ....... .....  

108 IF( DTIME .EQ. 0.D0 .AND. USRIND(385) .LE. USRIND(38 6) ) THEN   

109 CC........................................................ .. ....... .....  

110 BULKS=BULKSO*(MEPS/MEPSO)**NN  

111 CC     

112 DO 2000 PLNO=1,NPLANE   

113 DO 2100 J=1,NDIV    

114 SPNO =(PLNO-1)*NDIV+J   

115 THETA=COOR(PLNO)    

116 PHI  =COOR(PLNO+32)   

117 BETA =PAI*(J-1)/NDIV+0.5D0*PAI/NDIV  

118 DO 2200 K=1,NSTR    

119 ISIG(K)=-1.D0*SIGMA(K)   

120 2200     CONTINUE    

121 IF(MOD(SPNO-1,NDIV).EQ.0) THEN  

122 CALL TRANSFER(3, THETA, PHI, BETA, ISIG) 

123 PSIG(PLNO)=ISIG(3)    

124 END IF     

125 IF(PSIG(PLNO).LE.LTPSIG) THEN  

126 PSIG(PLNO)=LTPSIG    

127 END IF     

128 CALL RENEW(KMAX,GR,MM,PSIG(PLNO),MEPSO,KMAXO,GRO )    

129 CALL SPMAT(THETA, PHI, BETA, ISTIFF)  

130 DO 2300 L=1,NSTR    

131 DO 2400 M=1,NSTR    

132 STIFF(L,M)=STIFF(L,M)+KMAX*PSIG(PLNO)*ISTIFF (L ,M)/SPR ING  

133 2400       CONTINUE    

134 2300     CONTINUE    

135 2100   CONTINUE    

136 2000 CONTINUE    

137 GLAST(1)=STIFF(4,4)    

138 GLAST(2)=STIFF(5,5)    

139 GLAST(3)=STIFF(6,6)    

140 DO 2500 L=1,3    

141 DO 2600 M=1,3    

142 STIFF(L,M)=STIFF(L,M)+BULKS   

143 2600   CONTINUE    

144 2500 CONTINUE    

145 CC     
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146 MEPS=MAX(MEPS,LTMEAN)   

147 USRSTA(1)=0.D0    

148 USRSTA(2)=0.D0    

149 USRSTA(3)=MEPS    

150 USRSTA(4)=MEPS    

151 USRSTA(5)=0.D0    

152 DO 2700 PLNO=1,NPLANE   

153 USRSTA(5+PLNO)=PSIG(PLNO)   

154 2700 CONTINUE    

155 USRSTA(38)=GLAST(1)   

156 USRSTA(39)=GLAST(2)   

157 USRSTA(40)=GLAST(3)   

158 DO 2800 SPNO=1,SPRING   

159 USRIND((SPNO-1)*2+1)=1   

160 USRIND((SPNO-1)*2+2)=0   

161 USRSTA((SPNO-1)*WIDTH+OFFSET+1 )=0.D0 

162 USRSTA((SPNO-1)*WIDTH+OFFSET+2 )=0.D0 

163 USRSTA((SPNO-1)*WIDTH+OFFSET+3 )=0.D0 

164 USRSTA((SPNO-1)*WIDTH+OFFSET+4 )=0.D0 

165 USRSTA((SPNO-1)*WIDTH+OFFSET+5 )=0.D0 

166 USRSTA((SPNO-1)*WIDTH+OFFSET+6 )=0.D0 

167 USRSTA((SPNO-1)*WIDTH+OFFSET+7 )=0.D0 

168 USRSTA((SPNO-1)*WIDTH+OFFSET+8 )=1.D0 

169 USRSTA((SPNO-1)*WIDTH+OFFSET+9 )=0.D0 

170 2800 CONTINUE    

171 CC........................................................ .. ....... .....  

172 ELSE     

173 CC........................................................ .. ....... .....  

174 EVDSUM  = USRSTA(1)   

175 EVY     = USRSTA(2)    

176 SIGY    = USRSTA(3)    

177 SIGI    = USRSTA(4)    

178 PWORK   = USRSTA(5)   

179 DO 5000 PLNO=1,NPLANE   

180 PSIG(PLNO)= USRSTA(5+PLNO)  

181 5000 CONTINUE    

182 GLAST(1)=USRSTA(38)   

183 GLAST(2)=USRSTA(39)   

184 GLAST(3)=USRSTA(40)   

185 DO 5100 SPNO=1,SPRING   

186 MMODE(SPNO) = USRIND((SPNO-1)*2+1)  

187 DMODE(SPNO) = USRIND((SPNO-1)*2+2)  

188 GORI(SPNO)  = USRSTA((SPNO-1)*WIDTH+OFFSET+1 ) 

189 GMAX(SPNO)  = USRSTA((SPNO-1)*WIDTH+OFFSET+2 ) 

190 GREV(SPNO)  = USRSTA((SPNO-1)*WIDTH+OFFSET+3 ) 

191 G(SPNO,1)   = USRSTA((SPNO-1)*WIDTH+OFFSET+4 ) 

192 RMAX(SPNO)  = USRSTA((SPNO-1)*WIDTH+OFFSET+5 ) 

193 RREV(SPNO)  = USRSTA((SPNO-1)*WIDTH+OFFSET+6 ) 

194 R(SPNO,1)   = USRSTA((SPNO-1)*WIDTH+OFFSET+7 ) 
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195 COR(SPNO)   = USRSTA((SPNO-1)*WIDTH+OFFSET+8 ) 

196 GAMP(SPNO)  = USRSTA((SPNO-1)*WIDTH+OFFSET+9 ) 

197 5100 CONTINUE    

198 NDI(1)=NDN;NDI(2)=NDN;NDI(3)=NDN  

199 NDS(1)=NDN;NDS(2)=NDN;NDS(3)=NDN  

200 CC     

201 DO 6000 PLNO=1,NPLANE   

202 DO 6100 J=1,NDIV    

203 SPNO =(PLNO-1)*NDIV+J   

204 THETA=COOR(PLNO)    

205 PHI  =COOR(PLNO+32)   

206 BETA =PAI*(J-1)/NDIV+0.5D0*PAI/NDIV  

207 DO 6200 K=1,NSTR    

208 ISIG(K)=-1.D0*SIGMA(K)   

209 IEPS(K)=-1.D0*(XEPS0(K)+XDEPS(K))  

210 6200     CONTINUE    

211 CALL TRANSFER(1, THETA, PHI, BETA, IEPS) 

212 G(SPNO,2)=IEPS(5)    

213 IF(MOD(SPNO-1,NDIV).EQ.0) THEN  

214 CALL TRANSFER(3, THETA, PHI, BETA, ISIG) 

215 PSIG(PLNO)=ISIG(3)    

216 END IF     

217 IF(PSIG(PLNO).LE.LTPSIG) THEN  

218 PSIG(PLNO)=LTPSIG    

219 END IF     

220 CALL RENEW(KMAX,GR,MM,PSIG(PLNO),MEPSO,KMAXO,GRO )    

221 R(SPNO,2)=R(SPNO,1)   

222 CALL MASING(PSIG(PLNO), KMAX, GR, YETA, GORI(SPN O) ,   

223 $                GMAX(SPNO), GREV(SPNO), G(SPNO,1), G (S PNO,2),   

224 $                GAMP(SPNO), COR(SPNO), RMAX(SPNO), R RE V(SPNO) ,  

225 $                R(SPNO,2), KTAN(SPNO), KEQU, MMODE(S PN O))   

226 CC     

227 CALL DILATANCY( IDEVD, DPEPS, DMODE(SPNO), G(SPN O, 1),   

228 $                    G(SPNO,2), R(SPNO,1), R(SPNO,2), N DI, NDS ,  

229 $                    KEQU, GTH, RPT, LTDPEP, GREV(SPN O) ,   

230 $                    RREV(SPNO), HPEV, PSIG(PLNO) ) 

231 DEVD=DEVD+IDEVD/SPRING   

232 DPWORK=DPWORK+DABS(R(SPNO,2)*PSIG(PLNO)*HPEV*DPE PS )/SPRIN G  

233 ISIG(5)=R(SPNO,2)*PSIG(PLNO)*HPEV  

234 ISIG(1)=0.D0    

235 ISIG(2)=0.D0    

236 ISIG(3)=0.D0    

237 ISIG(4)=0.D0    

238 ISIG(6)=0.D0    

239 CALL TRANSFER(2, THETA, PHI, BETA, ISIG) 

240 DO 6300 L=1,NSTR    

241 SIG(L)=SIG(L)+ISIG(L)/SPRING   

242 6300     CONTINUE    

243 6100   CONTINUE    
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244 6000 CONTINUE    

245 PWORK=PWORK+DPWORK   

246 DEVC   =  EVSUM  - EVDSUM   

247 EVDSUM =  EVDSUM + DEVD   

248 EVCSUM = (EVSUM  + DEV   ) - EVDSUM  

249 DEVC   =  EVCSUM - DEVC   

250 IF(DABS(NN-1.D0).GT.LTRATI) THEN  

251 LTEVCS=(MEPSO**NN)/BULKSO*1.D0/(1.D0-NN)*(LTMEAN** (1 .D0-NN) -  

252 $          SIGI**(1.D0-NN))   

253 EVCSUM=MAX(EVCSUM,LTEVCS)  

254 END IF     

255 CALL SUBSIG(MEPS, MEPSO, BULKSO, BULKO, EVCSUM, EVY, S IGY, SI GI,  

256 $            DEVC, BULK, NN, LTRATI)  

257 MEPS=MAX(MEPS,LTMEAN)   

258 DO 6400 L=1,3    

259 SIG(L)=SIG(L)+MEPS   

260 6400 CONTINUE    

261 DO 7000 PLNO=1,NPLANE   

262 DO 7100 J=1,NDIV    

263 SPNO =(PLNO-1)*NDIV+J   

264 THETA=COOR(PLNO)    

265 PHI  =COOR(PLNO+32)   

266 BETA =PAI*(J-1)/NDIV+0.5D0*PAI/NDIV  

267 KTAN(SPNO)=KTAN(SPNO)*HPEV  

268 IF(GTYPE.EQ.3) THEN   

269 DO 7200 K=1,NSTR    

270 ISIG(K)=SIG(K)    

271 7200       CONTINUE    

272 IF(MOD(SPNO-1,NDIV).EQ.0) THEN  

273 CALL TRANSFER(3, THETA, PHI, BETA, ISIG) 

274 DPSIG(PLNO)=ISIG(3)-PSIG(PLNO)  

275 PSIG(PLNO) =ISIG(3)    

276 END IF     

277 IF(DABS(G(SPNO,2)-G(SPNO,1)).GE.LTDGAM) THEN 

278 PTAN(SPNO)=DPSIG(PLNO)*R(SPNO,2)*HPEV/ 

279 $                   (G(SPNO,2)-G(SPNO,1))  

280 ELSE     

281 IF(G(SPNO,2)-G(SPNO,1).GE.0.D0) THEN  

282 PTAN(SPNO)=DPSIG(PLNO)*R(SPNO,2)*HPEV/LTDG AM    

283 ELSE     

284 PTAN(SPNO)=DPSIG(PLNO)*R(SPNO,2)*HPEV/(-1. D0 *LTDGAM )  

285 END IF     

286 END IF     

287 IF(PTAN(SPNO).GE.0.D0) THEN   

288 KTAN(SPNO)=KTAN(SPNO)+PTAN(SPNO)  

289 END IF     

290 END IF     

291 CALL SPMAT(THETA, PHI, BETA, ISTIFF)  

292 DO 7300 L=1,NSTR    
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293 DO 7400 M=1,NSTR    

294 STIFF(L,M)=STIFF(L,M)+KTAN(SPNO)*ISTIFF(L,M) /S PRING   

295 7400       CONTINUE    

296 7300     CONTINUE    

297 7100   CONTINUE    

298 7000 CONTINUE    

299 IF(GTYPE.EQ.1) THEN   

300 DO 8000 I=4,6    

301 IF(STIFF(I,I).LE.LTGTAN) THEN   

302 IF(GLAST(I-3).GE.LTGTAN) THEN  

303 STIFF(I,I)=GLAST(I-3)   

304 ELSE     

305 STIFF(I,I)=LTGTAN    

306 END IF     

307 END IF     

308 8000   CONTINUE    

309 ELSE IF(GTYPE.EQ.2) THEN   

310 DO 8100 I=4,6    

311 IF(STIFF(I,I).LE.LTGTAN) THEN   

312 STIFF(I,I)=LTGTAN    

313 END IF     

314 8100   CONTINUE    

315 END IF     

316 DO 8200 I=4,6    

317 IF(DABS(DEPS(I)).GE.LTDGAM) THEN  

318 GLAST(I-3)=(-1.D0*SIGMAB(I)-SIG(I))/DEPS(I) 

319 ELSE     

320 IF(DEPS(I).GE.LTDGAM) THEN   

321 GLAST(I-3)=(-1.D0*SIGMAB(I)-SIG(I))/LTDGAM 

322 ELSE     

323 GLAST(I-3)=(-1.D0*SIGMAB(I)-SIG(I))/(-1.D0*LTD GA M)   

324 END IF     

325 END IF     

326 8200 CONTINUE    

327 DO 7500 L=1,3    

328 DO 7600 M=1,3    

329 STIFF(L,M)=STIFF(L,M)+BULK   

330 7600   CONTINUE    

331 7500 CONTINUE    

332 CALL ZEROM(STIFF)    

333 USRSTA(1)  =  EVDSUM   

334 USRSTA(2)  =  EVY    

335 USRSTA(3)  =  SIGY    

336 USRSTA(5)  =  PWORK   

337 DO 7700 PLNO=1,NPLANE   

338 USRSTA(5+PLNO)=PSIG(PLNO)   

339 7700 CONTINUE    

340 USRSTA(38)=GLAST(1)   

341 USRSTA(39)=GLAST(2)   



 - 152 -

342 USRSTA(40)=GLAST(3)   

343 DO 7800 SPNO=1,SPRING   

344 USRIND((SPNO-1)*2+1)=MMODE(SPNO)  

345 USRIND((SPNO-1)*2+2)=DMODE(SPNO)  

346 USRSTA((SPNO-1)*WIDTH+OFFSET+ 1) = GORI(SPNO) 

347 USRSTA((SPNO-1)*WIDTH+OFFSET+ 2) = GMAX(SPNO) 

348 USRSTA((SPNO-1)*WIDTH+OFFSET+ 3) = GREV(SPNO) 

349 USRSTA((SPNO-1)*WIDTH+OFFSET+ 4) = G(SPNO,2) 

350 USRSTA((SPNO-1)*WIDTH+OFFSET+ 5) = RMAX(SPNO) 

351 USRSTA((SPNO-1)*WIDTH+OFFSET+ 6) = RREV(SPNO) 

352 USRSTA((SPNO-1)*WIDTH+OFFSET+ 7) = R(SPNO,2) 

353 USRSTA((SPNO-1)*WIDTH+OFFSET+ 8) = COR(SPNO) 

354 USRSTA((SPNO-1)*WIDTH+OFFSET+ 9) = GAMP(SPNO) 

355 7800 CONTINUE    

356 DO 7900 I=1,NSTR    

357 SIGMA(I)=-1.D0*SIG(I)   

358 7900 CONTINUE    

359 END IF     

360 10000 CONTINUE    

361 RETURN     

362 END     
 


