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A DICHOTOMY CONCERNING UNIFORM BOUNDEDNESS OF

RIESZ TRANSFORMS ON RIEMANNIAN MANIFOLDS

ALEX AMENTA AND LEONARDO TOLOMEO

Abstract. Given a sequence of complete Riemannian manifolds (Mn) of the

same dimension, we construct a complete Riemannian manifold M such that
for all p ∈ (1,∞) the Lp-norm of the Riesz transform on M dominates the Lp-

norm of the Riesz transform on Mn for all n. Thus we establish the following
dichotomy: given p and d, either there is a uniform Lp bound on the Riesz

transform over all complete d-dimensional Riemannian manifolds, or there

exists a complete Riemannian manifold with Riesz transform unbounded on
Lp.

1. Introduction

Given a Riemannian manifold M , one can consider the Riesz transform R :=
∇(−∆)

1
2 , where ∇ is the Riemannian gradient and ∆ is the (negative) Laplace–

Beltrami operator. In the Euclidean case M = Rn, this can be identified with the
vector of classical Riesz transforms (R1, . . . , Rn), as can be seen by writing R as a
Fourier multiplier (see [12, §5.1.4]).

It is easy to show that R is bounded from L2(M) to L2(M ;TM), and substan-
tially harder to determine whether R extends to a bounded map from Lp(M) to
Lp(M ;TM) for p 6= 2. We let

Rp(M) := sup
‖f‖Lp≤1

‖R(f)‖Lp

denote the (possibly infinite) Lp-norm of the Riesz transform on M . Various con-
ditions, often involving the heat kernel on M and its gradient, are known to imply
finiteness of Rp(M); see for example [2, 3, 4, 5, 6, 7, 8, 9, 13, 14]. These results
usually entail finiteness of Rp(M) for all p ∈ (1, 2), or for some range of p > 2. On
the other hand, there exist manifolds M for which Rp(M) is known to be infinite
for some (or all) p > 2: see [1, 5, 6, 7, 8, 13].

Remark 1.1. When M has finite volume we abuse notation and write Lp(M)
to denote the space of p-integrable functions with mean zero. This modification
ensures that (−∆)−1/2 is densely defined. When M has infinite volume, Lp(M)
denotes the usual Lebesgue space.
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The Euclidean case is now classical: for all p ∈ (1,∞) there is a constant Cp <∞
such that Rp(Rn) ≤ Cp < ∞ for all n ∈ N ([16]). This behaviour is expected to
persist for all complete Riemannian manifolds, at least for p < 2. More precisely, in
[9] it is conjectured that for all p ∈ (1, 2) there exists a constant Cp <∞ such that
Rp(M) ≤ Cp for all complete Riemannian manifolds M . Such uniform bounds have
been proven for all p ∈ (1,∞) under curvature assumptions; rather than provide
an overview of the vast literature on this topic we simply point to the recent paper
[10] and references therein.

One could weaken the conjecture slightly and guess that Rp(M) is finite for all
M , given p ∈ (1, 2). In this article we show that this can only hold if the bound is
uniform among all manifolds of a fixed dimension. This observation follows from
the following dichotomy.

Theorem 1.2. Fix d ∈ N and p ∈ (1,∞). Then the following dichotomy holds:
either

• there exists a constant Cp,d <∞ such that Rp(M) ≤ Cp,d for all complete
d-dimensional Riemannian manifolds M , or
• there exists a complete (d + 1)-dimensional Riemannian manifold M such

that Rp(M) =∞.

This follows from the following proposition, which we prove by an explicit con-
struction.

Proposition 1.3. Fix d ≥ 1, and let (Mn)n∈N be a sequence of complete d-
dimensional Riemannian manifolds. Then there exists a complete Riemannian
manifold M of dimension d+ 1 such that for all p ∈ (1,∞),

Rp(M) ≥ sup
n∈N

Rp(Mn).

The main implication of Theorem 1.2 is as follows: to construct a manifold M for
which Rp(M) =∞ for some p ∈ (1, 2), it suffices to construct a sequence (Mn)n∈N

of manifolds of equal dimension such that Rp(Mn)→∞ as n→∞. Thus one is led
to consider lower bounds for Lp-norms of Riesz transforms. These seem not to have
been considered in the literature, excluding of course the well-known computation
of the Lp-norm of the Hilbert transform (the Riesz transform on R) [15]. We hope
that our contribution will provoke further interest in such lower bounds.

2. Preliminary lemmas

We begin with some basic lemmas. The first says that the range of the Laplace-
Beltrami operator is dense in Lp, and the second relates the Riesz transform on a
manifold M with that on the M -cylinder M × R. These cylinders play a key role
in the proof of our main theorem.

Lemma 2.1. Let M be a complete Riemannian manifold. Then the set S :=
∆(C∞c (M)) is dense in Lp(M) for all p ∈ (1,∞) (recalling that we write Lp(M)
for the space of p-integrable mean zero functions when M has finite volume).

Proof. Let H ∈ Lp′(M) be such that 〈H,F 〉 = 0 for every F ∈ S. Then 〈H,∆G〉 =
0 for every test function G, so H is harmonic. By [17, Theorem 3], it follows that
H is constant, and the result follows. �
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Lemma 2.2. Let M be a complete Riemannian manifold. Then

Rp(M × R) ≥ Rp(M).

Proof. Consider the following modification of the Riesz transform on M × R:

R̃ := ∇M (−∆M×R)−
1
2 = ∇M (−∆M − ∂2

t )−
1
2 .

This is just the projection of R onto the first summand of the tangent bundle
T (M × R) = TM ⊕ TR, so we have that

(1) ‖R̃F‖Lp ≤ ‖RF‖Lp .

Let F ∈ C∞c (M × R), and for all λ > 0 consider the function

Fλ(x, t) := λ
1
pF (x, λt),

which satisfies ‖Fλ‖Lp(M×R) = ‖F‖Lp(M×R). Rescaling the operator R̃ in the vari-

able t, we define

R̃λ := ∇M (−∆M − λ2∂2
t )−

1
2 ,

so that

(2) ‖R̃Fλ‖Lp = ‖R̃λF‖Lp .

Now take f ∈ C∞c (M) ∩ D((−∆M )−
1
2 ) and ρ ∈ C∞c (R) such that ‖ρ‖Lp(R) = 1,

and consider the function F (x, t) = f(x)ρ(t). Since ∆M and ∂2
t commute, and the

function

Gλ(x, y) =

(
x

x+ λ2y

) 1
2

is bounded by 1 for (x, y) > 0, and Gλ → 1 pointwise as λ→ 0, we have

lim
λ→0

(−∆M − λ2∂2
t )−

1
2F = lim

λ→0
Gλ(−∆M ,−∂2

t )(−∆M )−
1
2 f ⊗ ρ = (−∆M )−

1
2 f ⊗ ρ

in L2, and thus also as distributions. Therefore R̃λF → Rf ⊗ ρ as distributions,
and so

lim inf
λ→0

‖R̃λF‖Lp(M×R) ≥ ‖Rf ⊗ ρ‖Lp(M×R) = ‖Rf‖Lp(M) .

Combining this with (2) and (1), and the fact that C∞c (M)∩D((−∆M )−
1
2 ) is dense

in Lp(M),1 yields Rp(M × R) ≥ Rp(M). �

3. Proof of the main theorem

In this section we carry out the construction that proves Proposition 1.3, which
implies Theorem 1.2.

Consider a sequence (Mn)n∈N of complete d-dimensional Riemannian manifolds.
We will connect the Mn-cylinders (Mn × R)n∈N along a Td-cylinder Td × R as
follows.2 For each n ∈ N fix a coordinate chart Un ⊂Mn× (−1/2, 1/2) and a small
ball Bn ⊂ Un. Similarly, for each n ∈ N choose a small coordinate chart U ′n ⊂ Tn×R
such that the charts (U ′n)n∈N are pairwise disjoint, and a small ball B′n ⊂ U ′n. For
each n ∈ N, glue the manifold (Mn×R) \Bn to (Tn×R) \B′n along the boundaries

1This follows from the inclusion D((−∆M )−
1
2 ) ⊇ D((−∆M )−1) ⊇ ∆M (C∞c (M)), which is

dense by Lemma 2.1. See also [11, Lemma 2.2]. Again, recall that Lp(M) denotes the correspond-

ing space of mean zero functions when M has finite volume.
2Of course, one could connect the Mn-cylinders to each other directly, without needing the

Td-cylinder. This would work just as well.
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Figure 1. Construction of M from (Mn)n∈N.

of Bn and B′n; this is possible since both these balls are ‘Euclidean’ balls sitting
inside coordinate charts. This results in a C0-Riemannian manifold (M, g′), which
is C∞ away from the set Σ = ∪n∂Bn on which we glued the manifolds together.
Mollify the metric to get a C∞-Riemannian manifold (M, g) such that g = g′ away
from the ε-neighbourhood of Σ for some very small ε. An artist’s impression of this
construction, with Mn = S1 for each n, is shown in Figure 1.

For each n ∈ N we have an inclusion map

in : Mn × (1,∞)→M

which is an isometry. From here on we fix n and just write i = in. Functions on
M can be pulled back to Mn × (1,∞); the pullback map is denoted i∗, so that for
f : M → R the function i∗f : Mn × (1,∞)→ R is defined by

i∗f(x, t) = f(i(x, t)).

On the other hand, for g : Mn×(1,∞)→ R we can define a pushforward i∗g : M → R
by setting i∗g(i(x, t)) := g(x, t) on i(Mn× (1,∞)) and extending by zero to the rest
of M . For a function g : Mn × R → R and for s ∈ R we let τsg : Mn × R → R be
the translated function τsg(x, t) := g(x, t− s). Similarly if g : Mn × (1,∞)→ R we
can define τsg : Mn × (1 + s,∞)→ R. These concepts apply equally well to vector
fields in place of functions.

We will need the following lemma, which relates the heat flow on Mn×R to the
one on M .

Lemma 3.1. Let F : Mn × R → R be smooth and compactly supported, and fix
σ > 0. Then for every (x, t) ∈Mn × R,

lim
s→+∞

(eσ∆M i∗τsF )(i(x, t+ s)) = (eσ∆Mn×RF )(x, t).
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Proof. Let Wx,t(σ) be a Brownian motion on Mn × R at time σ starting from the
point (x, t). Since the generator 1

2∆Mn×R satisfies 1
2 i∗ ◦ ∆M×R|i(Mn×(1,+∞)) =

1
2∆M |i(Mn×(1,+∞)), defining the stopping time

T (x, t) := inf {s : Wx,t(s) ∈Mn × (−∞, 1)} ,
we have that i(Wx,t(σ)) is a Brownian motion on M for σ < T (x, t). Therefore

there exists a Brownian motion W̃i(x,t)(σ) on M such that W̃ (σ) = i(W (σ)) for

σ < T ; if W is a Brownian motion on M , we can take for example

W̃i(x,t)(σ) =

{
i(Wx,t(σ)) if σ < T,

W i(Wx,t(T ))(σ − T ) if σ ≥ T.

We have that

(eσ∆M i∗τsF )(i(x, t+ s))

= E[(i∗τsF )(W̃i(x,t+s)(2σ))]

= E[(i∗τsF )(W̃i(x,t+s)(2σ))12σ<T ] + E[(i∗τsF )(W̃i(x,t+s)(2σ))12σ≥T ]

= E[(τsF )(Wx,t+s(2σ))12σ<T ] + E[(i∗τsF )(W̃i(x,t+s)(2σ))12σ≥T ]

= E[(τsF )(Wx,t+s(2σ))]

− E[(τsF )(Wx,t+s(2σ))12σ≥T ] + E[(i∗τsF )(W̃i(x,t+s)(2σ))12σ≥T ]

= (eσ∆Mn×RτsF )(x, t+ s)

− E[(τsF )(Wx,t+s(2σ))12σ≥T ] + E[(i∗τsF )(W̃i(x,t+s)(2σ))12σ≥T ].

Therefore∣∣(eσ∆M i∗τsF )(i(x, t+ s))− (eσ∆Mn×RτsF )(x, t+ s)
∣∣ ≤ 2 ‖F‖L∞ P(T (x, t+s) ≤ 2σ).

Since ∆Mn×R is translation invariant in the R coordinate, we have that

P(T (x, t+ s) ≤ 2σ) ≤ P
(
{Wx,t+s(σ

′) ∈Mn × (−∞, 1) for some σ′ ≤ 2σ + 1}
)

= P
(
{Wx,t(σ

′) ∈Mn × (−∞, 1− s) for some σ′ ≤ 2σ + 1}
)

and by continuity of Wx,t(·), this tends to 0 as s→∞. Thus we find that

lim
s→+∞

(
(eσ∆M i∗τsF )(i(x, t+ s))− (eσ∆Mn×RτsF )(x, t+ s)

)
= 0.

The conclusion follows from translation invariance of ∆Mn×R in R. �

We return to the proof of Proposition 1.3. Fix ε > 0, and choose F = ∆Mn×RH
for some H ∈ C∞c (Mn × R) with ‖F‖Lp = 1 such that

‖RMn×RF‖Lp ≥ (Rp(Mn)− ε) ∧ ε−1.

Such a function exists by Lemmas 2.1 and 2.2. We claim that

(3) lim
s→+∞

τ−si
∗RM (i∗τsF ) = RMn×RF

as distributions. Assuming (3) for the moment, we have

lim sup
s→∞

‖RM (i∗τsF )‖Lp(M) ≥ lim sup
s→∞

‖i∗RM (i∗τsF )‖Lp(Mn×R)

= lim sup
s→∞

‖τ−si∗RM (i∗τsF )‖Lp(Mn×R)

≥ ‖RMn×RF‖Lp(Mn×R) ≥ Rp(Mn)− ε,
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while for all s ∈ R

‖i∗τsF‖Lp(M) ≤ ‖τsF‖Lp(Mn×R) = ‖F‖Lp(Mn×R) ≤ 1.

The result follows, so it remains to prove (3).
For s sufficiently large, we have that

i∗τsF = i∗τs(∆Mn×RH) = i∗(∆Mn×RτsH) = ∆M i∗τsH,

therefore i∗τsF ∈ D(∆−1
M ) ⊆ D((−∆M )−

1
2 ), and hence

R(i∗τsF ) = ∇
(

(−∆)
− 1

2

M i∗τsF
)

as a distribution. To test the distributional convergence, let X be a smooth com-
pactly supported vector field in Mn × R. For large s we have that

〈τ−si∗RM (i∗τsF ), X〉 = 〈RM (i∗τsF ), i∗τsX〉

=
〈

(−∆)
− 1

2

M i∗τsF,div(i∗τsX)
〉

=
〈

(−∆)
− 1

2

M i∗τsF, i∗τs div(X)
〉
.

Therefore it is enough to show that for every G ∈ C∞c (Mn × R),

(4) lim
s→∞

〈
(−∆)

− 1
2

M i∗τsF, i∗τsG
〉

=
〈

(−∆)
− 1

2

Mn×RF,G
〉
.

By the well-known formula

(−∆)−
1
2 = π−

1
2

ˆ +∞

0

σ−
1
2 eσ∆ dσ,

(4) is equivalent to showing that

(5) lim
s→∞

ˆ +∞

0

σ−
1
2

〈
eσ∆M i∗τsF, i∗τsG

〉
dσ =

ˆ +∞

0

σ−
1
2

〈
eσ∆Mn×RF,G

〉
dσ.

Note that∣∣∣σ− 1
2

〈
eσ∆M i∗τsF, i∗τsG

〉∣∣∣ ≤ σ− 1
2 ‖i∗τsF‖L2 ‖i∗τsG‖L2 ≤ σ−

1
2 ‖F‖L2 ‖G‖L2

and∣∣∣σ− 1
2

〈
eσ∆M i∗τsF, i∗τsG

〉∣∣∣ =
∣∣∣σ− 3

2

〈
eσ∆Mσ∆M i∗τsH, i∗τsG

〉∣∣∣ . σ− 3
2 ‖H‖L2 ‖G‖L2 .

Since the function min(σ−
1
2 , σ−

3
2 ) is integrable, by dominated convergence (5) will

be proved if we show

(6) lim
s→∞

〈
eσ∆M i∗τsF, i∗τsG

〉
=
〈
eσ∆Mn×RF,G

〉
for every σ > 0. We show (6) by writing

lim
s→∞

〈
eσ∆M i∗τsF, i∗τsG

〉
= lim
s→∞

〈
τ−si

∗eσ∆M i∗τsF,G
〉

= lim
s→∞

ˆ +∞

1−s

ˆ
Mn

(eσ∆M i∗τsF )(i(x, t+ s))G(x, t) dx dt

=

ˆ
R

ˆ
Mn

(eσ∆Mn×RF )(x, t)G(x, t) dx dt

=
〈
eσ∆Mn×RF,G

〉
,
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using Lemma 3.1 and dominated convergence (by ‖F‖L∞ |G(x, t)|). This completes
the proof of Proposition 1.3, and hence establishes Theorem 1.2.
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