

Delft University of Technology

Comparison of Strategic Conflict Prevention Methods for Departure Planning in Drone
Delivery

Vlaskin, Sasha; Sunil, Emmanuel; Nieuwenhuisen, Dennis; Ellerbroek, Joost; Hoekstra, Jacco

DOI
10.1109/DASC62030.2024.10749661
Publication date
2024
Document Version
Final published version
Published in
DASC 2024 - Digital Avionics Systems Conference, Proceedings

Citation (APA)
Vlaskin, S., Sunil, E., Nieuwenhuisen, D., Ellerbroek, J., & Hoekstra, J. (2024). Comparison of Strategic
Conflict Prevention Methods for Departure Planning in Drone Delivery. In DASC 2024 - Digital Avionics
Systems Conference, Proceedings (AIAA/IEEE Digital Avionics Systems Conference - Proceedings). IEEE.
https://doi.org/10.1109/DASC62030.2024.10749661
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/DASC62030.2024.10749661
https://doi.org/10.1109/DASC62030.2024.10749661

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

DASC 2024 San Diego, California, USA

Comparison of Strategic Conflict Prevention Methods
for Departure Planning in Drone Delivery

Sasha Vlaskin, Emmanuel Sunil, Dennis Nieuwenhuisen
Aircraft Operations, Air Traffic Management and Airports

Netherlands Aerospace Centre
Amsterdam, the Netherlands

{sasha.vlaskin, emmanuel.sunil, dennis.nieuwenhuisen}@nlr.nl

Joost Ellerbroek, Jacco Hoekstra
CNS/ATM, Control and Simulation, Control and Operations

TU Delft
Delft, the Netherlands

{j.ellerbroek, j.m.hoekstra}@tudelft.nl

Abstract—U-Space drone operations are expected to be a driver
for further urban development, especially through use cases
such as medical and commercial parcel delivery. In particular,
package delivery using small drones shows great promise, with
e-commerce giants such as Amazon deploying limited-scale drone
delivery trials in rural areas. As the technology matures, large-
scale operations will take place in constrained urban areas,
leading to high airborne traffic densities. It is necessary to
develop a robust automated separation management system that
actively ensures safe separation of drones both in the air and
on the ground. This paper focuses on the Strategic element,
more specifically on pre-departure planning. The aim of this is
to reduce the chance of conflicts around vertiports, where spatial
and environmental constraints make tactical resolutions difficult.
This work focuses on two scenarios: a single pad for both takeoffs
and landings (in a spatially constrained urban area) and 4 takeoff-
landing pad pairs (for a distribution center). Several methods are
compared for this takeoff sequencing task, coupled with a conflict
detection algorithm: A First-Come First-Served method that
applied delay to conflicting flights, a Mixed-Integer Programming
approach, a Genetic Algorithm, Particle Swarm Algorithm and
Simulated Annealing were used. For a single-pad approach, first-
come first-served works best in terms of computation time and
total deployment time (or makespan). For the multi-pad approach
however, changing the flight sequence through metaheurisitic
methods and mixed-integer linear programming show a reduction
in total deployment time.

Keywords—drones, delivery, planning, BlueSky, U-Space,
UTM, Strategic Deconfliction

I. INTRODUCTION

The consumer and commercial drone markets are expected
to grow significantly in the coming decades, with some 7
million total drones expected to fly within EU airspace alone
by the year 2050 [1]. Drone delivery is expected to be a large
driver for this, with companies such as Amazon with its Prime
Air [2] Concept and Google with their hybrid eVTOL Wing
drones investing heavily in the sector. In order to have an
economically viable solution, high throughput and therefore
high traffic densities will be required, as forecasts indicate that
thousands of simultaneous deliveries could occur. In order to

support this growth in a structured fashion, all facets of U-
Space [3] need to be thought out and implemented. One of
these main concerns is the set of methods used to keep drones
at a safe distance from each other, or what is referred to as
Separation Management. Significant research contributions to
the field have been made in aspects such as Airspace Design
[4], Strategic Deconfliction, Tactical CD&R [5] and collision
avoidance [6]. Nevertheless, a systems approach taking all
layers into account can be beneficial.

This paper is a part of the effort to design such an inte-
grated separation management system, and focuses on the pre-
flight aspect of drone delivery. More specifically, this paper
deals with the comparison of conflict-free takeoff scheduling
methods for hybrid drone delivery in a constrained urban
environment, but without a discretized route network. Two pad
layouts are considered in this study. Firstly, a single pad layout
for constrained environments where expansive takeoff/landing
structures are not possible. Here, takeoffs and landings occur
on the same pad, and therefore all potential conflict at the pad
are considered. Secondly, a multi-pad structure is used, with 4
(takeoff and landing) pad pairs, representing a more complex
structure optimised for higher throughput.

The main goal is therefore to provide a conflict-free takeoff
schedule, a task for which meta-heuristic approaches such
as Simulated Annealing, Particle Swarm Optimisation and
a Genetic Algorithm approach are compared to a Mixed-
Integer Programming approach and a First-Come First-Served
delay approach. The resulting schedules are then compared
in terms of resulting conflicts, losses of separation, and total
deployment time, or makespan. For this, the BlueSky [7] Air
Traffic Management simulator is used.

First, the optimisation problem and required methodology
behind the sequencing methods will be discussed. This is
followed by a detailed description of the simulated urban
environment, mission profiles, the assumptions made, and the
experiment setup. Subsequently, the outcomes of the fast-time

20
24

 A
IA

A
DA

TC
/I

EE
E

43
rd

 D
ig

ita
l A

vi
on

ic
s S

ys
te

m
s C

on
fe

re
nc

e
(D

AS
C)

 |
 9

79
-8

-3
50

3-
49

61
-0

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

DA
SC

62
03

0.
20

24
.1

07
49

66
1

Authorized licensed use limited to: TU Delft Library. Downloaded on February 04,2025 at 08:12:54 UTC from IEEE Xplore. Restrictions apply.

DASC 2024 San Diego, California, USA

simulations will are presented and analysed. The paper ends
with the main conclusions of this study and recommendations
for future work.

II. METHODOLOGY

This section will cover the Problem Definition, Sequencing
Methods used, followed Urban Environment setup, Scenario
Design and generation for verification of the solutions obtained
in the BlueSky ATC simulator [7].

A. Optimization Problem Definition

The optimization’s goal is to generate a conflict-free takeoff
sequence from a single input: a vector of flight times of queued
drones. The optimizer’s output is limited to the takeoff times.
This output is used along with known climb and loiter times
(derived from drone performance) to determine the conflict
count of a given solution. Since equal priority (or ready at t=0
flights are limited), a Queue Length is the maximum length of
an input vector, or the length of the block of flights that can
be freely sequenced. For instance, a queue length of 25 would
mean 25 flights can be freely sequenced, and a scenario of 100
flights would be broken down in 4 sequenced blocks with this
queue length. Conflicts here are defined as scheduling conflicts
- that is, a loss of separation near the pad that is predicted given
current scheduling.

B. Sequencing Methods

1) Evenly Spaced Takeoffs: Evenly spacing the takeoffs
was attempted as a sanity check. Due to the takeoff-landing
coupling for the single pad scenario, this is deemed infeasible
since it yields excessive conflicts.

2) First-Come First-Served: This is the simplest method
that takes conflicts into account. It does not change the
sequence flights, so it uses a first-come-first-served approach.
This is described by Algorithm 1.

Algorithm 1 First-Come First-Served Approach

initialize takeoff time array ttakeoff
for all flights do

tnext = max(ttakeoff) + 60
perform initial ConflictProbe
while conflicts are present do

tnext = tnext + 15
perform ConflictProbe

end while
append tnext to ttakeoff

end for

Thus, a takeoff is initially scheduled 60 seconds after the
previous flight. The resulting schedule is checked for conflicts,
and if any are present, the flight is delayed by additional 15
seconds until it is conflict-free.

3) Mixed-Integer Linear Programming: A mixed integer
linear programming approach was also used. The constraints
formulated ensure that all landings and takeoffs are sufficiently
spaced in order to avoid scheduling conflicts. Generating the
constraints requires n(n−1)

2 unique pairs for potential conflicts.
For every conflict pair, we have the takeoff times ti, tj such
that

ti, tj ∈ R ∩ (0, 80000) (1)

and binary variables bk such that

b ∈ R ∩ (0, 1) (2)

which are used to formulate the disjunctive constraints needed
to have absolute value constraints (since the flight order does
not matter). A big-M is also utilised here, meaning we use a
value of M as 100,000 as a large penalty. The values of 80,000
and 100,000 were made on the basis that the typical makespan,
or total duration, was found not exceed 80,000 seconds for
100-drone scenarios. Since the values are bounded to this as
a maximum, this helps to narrow the search space. The first
constraint, which ensures the difference between takeoff times
ti and tj is of at least the buffer time Bt is defined as follows
for every possible pair of drones:

ti − tj ≥ Bt − bk ·M

ti − tj ≤ −Bt + (1− bk) ·M

This formulation is used here as the absolute value is
needed, and disjunctive constraints such as these linearize
the problem. Likewise for takeoff-landing conflicts, a similar
constraint form is used, except order matters and 4 constraints
per pair are needed:

ti + treti − tj ≥ Bm − bk ·M

ti + treti − tj ≤ −Bm + (1− bk) ·M

ti − tj − tretj ≥ Bm − bk ·M

ti − tj − tretj ≤ −Bm + (1− bk) ·M

where tret is the time to return to the parcel center after
takeoff, incorporating climb, descent, loiter and flight times.

The final set of constraints is that for the landing-on-landing
conflict prevention. This is again 2 constraints, formalised as:

ti + 2 ∗ tfi − tj − 2 · tfj ≥ Bl − bk ·M

ti + 2 ∗ tfi − tj − 2 · tfj ≤ −Bl + (1− bk) ·M

where tf is the flight time of the drone in cruise, excluding
the takeoff, landing and loiter, since those are the same for
both drones. Note that these are only used for the single-pad

Authorized licensed use limited to: TU Delft Library. Downloaded on February 04,2025 at 08:12:54 UTC from IEEE Xplore. Restrictions apply.

DASC 2024 San Diego, California, USA

scenarios, where takeoff-on-landing conflicts can occur. In the
multi-pad scenarios, only the first 4 constraints are needed.

The objective to minimize is simply the sum of takeoff
times.

O =

n∑
0

ti (3)

In total, there are thus 8 · n(n−2)
2 constraints needed for a

sequence of n drones, meaning that for example, for the
longest sequencing queue length of 25 used we have 8 x 300
= 2400 constraints.

4) Genetic Algorithm: Genetic Algorithms are a family of
bio-inspired optimisation algorithms which attempt to mimic
nature by having solutions ‘evolve’ through natural selection
after mutations [8]. The hyper-parameters for the algorithm
use are seen in Table I. A cost function and hyper-parameters
such as the number of generations, number of parents mating
and others are needed. The fitness function used takes the form
seen in Equation 4

F = 1000− 30 · nconf − 0.01 · ttot (4)

where nconf is the total number of scheduling conflicts and ttot
is the makespan achieved, or the total time from first takeoff
to final landing at the origin pad. The hyper-parameters used
are provided in Table I.
TABLE I: Hyper-parameters Used in Genetic Algorithm Implemen-
tation

Parameter Value

Number of Generations 2000

Number of Genes Equivalent to Queue Length

Solutions per Population 20

N. of Parents Mating 10

Mutation Percentage [%] 77

Keep Elitism 4

Mutation Type random

5) Particle Swarm Optimisation: Particle Swarm Optimi-
sation (PSO) [9] is another meta-heuristic algorithm, inspired
by the social behaviour of birds flocking. It relies on parti-
cles, randomly initialised within the search space, exhibiting
swarming behaviour to find the optimal solution. Equation 5
describes how the particle positions are updated.

Velocityi(t+ 1) = w · Velocityi(t) + c1 · r1·
(Personal Besti − Positioni(t)) + c2 · r2

·(Global Best − Positioni(t))
(5)

Positioni(t+ 1) = Positioni(t) + Velocityi(t+ 1) (6)

The position update equations include the hyper-parameters
c1 and c2, which are the acceleration constants used in the
velocity update phase of the algorithm. Finally, r1 and r2 are
binary random variables. These hyper-parameters here dictate
how the particles move through the search space.

The position, per particle, is then updated through Equation
6. This approach was expected to have similar solutions to the
Genetic Algorithm and the Simulated Annealing implementa-
tion: however, the computation times were longer due the need
to compute the cost per particle. The cost function used was
as follows:

C = nconf + 0.009 · ttot (7)

where nconf is the total number of conflicts and ttot is the
makespan. The hyper-parameters used for the implementation
of this method are far fewer than those required for the Genetic
Algorithm, therefore tuning them proved easier. These are seen
in Table II.

TABLE II: PSO Hyper-parameters

Parameter Value Explanation

c1 1.3 Kept high for faster runtime

c2 1.3 Same as c1

w 0.9 Inertia parameter

6) Simulated Annealing: Simulated Annealing [10] is a
method inspired by metallurgy. A high ‘temperature‘ relates
to a large magnitude of the movement of the ‘molecules’ used
at the start of the process to allow for the system to explore a
wide range of solutions. As the temperature drops, the system
becomes less likely to accept solutions with a higher cost, and
therefore prioritises exploitation. The only hyper-parameter
needed to initialize a method instance is the maximum number
of iterations. This was set to 1000 for this work. More
specifically, the Dual Annealing [11] implementation was used
in this work. The cost function for this approach is given as
follows:

C = nconf + 0.001 · ttot (8)

where nconf is again the total number of conflicts and ttot is
the makespan.

III. EXPERIMENT SETUP

Several sequencing methods have been compared in this
paper. Sequences of 25, 50 and 100 flights were considered. In
total, 5 different origin-destination pair datasets were generated
for each sequence length (based on OSM [12] addresses).
The planning algorithms at hand were run for planning queue
lengths of 5, 10 and 25 flights whose sequence can be changed.
This was done for a fully deterministic system (with simulation
takeoff times unperturbed), a low uncertainty delay scenario,
and a higher uncertainty delay scenario. Each combination was

Authorized licensed use limited to: TU Delft Library. Downloaded on February 04,2025 at 08:12:54 UTC from IEEE Xplore. Restrictions apply.

DASC 2024 San Diego, California, USA

run for the 5 different scenarios for the given total number of
drones.

A. Urban Environment Modelling and Mission Profile

In order to accurately represent the constraints that urban
operations pose on drone operations, the urban environment
needs to be defined. For this paper, the urban area of Ams-
terdam is simulated. To achieve this, the OpenStreetMap [12]
Overpass [13] API is used is used to import all potential deliv-
ery point coordinates and relevant geo-data. Since the drones
are assumed to operate between 50 and 100 meters above
ground level (AGL) as per the U-Space concept [14], a safety
margin of 20 meters is given. Thus, geofences are defined
for all buildings taller than 30 meters, and all parcel center
locations within the simulation environment are considered.
The simulation area itself, including geofences, is visualised
in Figure 1.

Figure 1. Amsterdam Simulation Area, with the Distribution Center indicated
by an orange chevron, Simulation Bounds marked in blue and geofences in
red. Data obtained from OSM [12]

For the route generation, unlike projects such as Metropolis
II [15], this work assumes that street networks are not to be
used as reference. Instead, the most direct route is planned,
and all of the aforementioned geofences are considered and
avoided using a method inspired by D. Rein-Weston’s Branch-
ing Planner [16] such that minimal waypoints are added. The
output is seen in Figure 2, where the geofence itself (in this
case Schiphol Airport) is seen in cyan and the modified route
in pink, with the destination being marked at the bottom of
the figure with a label.

B. Airspace Design and Mission Profile

The airspace design featured two vertical layers: the inbound
layer and the outbound layer, utilising two discrete altitude
values for cruise. The outbound layer was set to 100 meters,
and inbound to 50, in conformity with the expected Very-

Figure 2. Geofence Route Solution around Amsterdam Schiphol Airport

Low-Level airspace bounds and in compliance with U-Space
legislation [14]. A flight would take place as follows:

1) Drone is loaded with payload, checked, and begins
vertical climb to the outbound layer at 100 meters height
above ground level (AGL)

2) Drone transitions to fixed-wing and accelerates to cruise,
flying all pre-programmed waypoints to its destination

3) Drone slows down just short of the destination, transi-
tioning to hover.

4) Drone descends to delivery height.
5) Drone loiters at delivery location for 10 seconds until

delivery is completed
6) Drone proceeds to climb again, this time to 50m AGL.

Then it transitions to cruise and flies back to the distri-
bution center.

7) The drone is cleared off the pad within 60 seconds of
landing.

The mission profile is visualised in Figure 3.

Figure 3. Visualisation of Mission Profile Used

The Origin-Destination pairs, and corresponding routes,

Authorized licensed use limited to: TU Delft Library. Downloaded on February 04,2025 at 08:12:54 UTC from IEEE Xplore. Restrictions apply.

DASC 2024 San Diego, California, USA

are generated before the flight sequencing takes place by
sampling from the delivery location database, obtained from
OpenStreetMap [12]. For every number of flights, 5 random
origin-destination pair sets are selected, with pre-computed
geofence-free routes.

C. Pad Layout

There are two pad layout used in this study. There are:

1) Single Multi-mode pad: The first layout studied is a
singular pad, used for both takeoffs and landings. This
layout is used to simulate a heavily spatially constrained
operation, such as a shop near the city center or a
restaurant using drone delivery. For this, it is expected
that the single pad resource will be the greatest constraint
to operations.

2) Multi-pad setup: For less constrained zones, such as
parcel fulfilment centers or drone vertiports, where more
pads can be placed, a layout of 4 pad pairs (one takeoff
and one landing) is proposed. This pad layout can be
visualised in Figure 4.

Figure 4. Multi-pad layout

Before the optimisation occurs, the flight queues are split by
heading. Since there are 4 pads with a Northward orientation
for the upper pad, the assignment is done to Pad 1 if the
outbound flight heading is in the ranges (315,360) and (0,45),
Pad 2 if the heading is (45,135), Pad 3 with (135,225) and
finally Pad 4 with (225, 315) degrees.

D. Independent Variables

• Sequencing Method: the method used to strategically de-
conflict the routes, this can be First-Come First-Served
Delay (FC), Mixed Integer Programming (MIP), Genetic
Algorithm (GA), Particle Swarm Optimisation (PSO),
Simulated Annealing (SA)

• Number of Drones to Plan: 25, 50 and 100 were used.
• Length of Planning Queue: 5, 10 and 25 were used.

E. Dependent Variables

The dependent variables for the set of experiments are
summarised here.

• Makespan: the makespan is the total time it takes for all
drones in a given scenario to make their deliveries and
return. This is also the total scenario duration, from first
takeoff to final landing.

• Number of Conflicts at Pad: the number of conflicts at
pad is simply the number of conflicts that occurs when a
drone is taking off or landing. These are due to scheduling
errors.

F. Control Variables

The control variables for the experiments were as follows:
• Pad Blocking Time: the time (assumed equal for takeoff

and landing) that the pad is blocked for at each takeoff
and landing. The blocking time here is 60 seconds.

• Number of Pads and Positions: A single mixed-use land-
ing and takeoff pad is used for the main experimental
runs

• Routing method used: this dictated how the routes were
generated

• Pad Layout used: single or multi-pad

IV. RESULTS AND DISCUSSION

The schedules resulting from each of the algorithms were
tested with a Conflict Detection algorithm that checks for
planning conflicts. This algorithm is therefore present in the
cost/objective functions for the methods where that is required,
namely the metaheuristic methods. Subsequently, these sched-
ules were outputted to scenario files for the BlueSky Open
ATM Simulator [7] and validated for conflicts at the pad,
LoS and the makespans (total duration from first deployment
to last landing of the drones). The sequence queue length is
introduced as a means of limiting the size of the input vectors
for the meta-heuristic algorithms. Thus, for 100 flights to plan,
a queue length of 25 would mean that 4 blocks of sequenced
flights occur after each other - the optimisation algorithm is run
independently on the 4 resulting 25-flight blocks. The ranges of
values used for this were 5, 10 and 25. In the plots, Simulated
Annealing is referred to as “SA”, First-Come First-Served as
“FC”, Particle Swarm Optimisation as “PSO”, Mixed-Integer
Programming as “MIP” and finally the Genetic Algorithm as
“GA”.

A. Varying Number of Drones to Plan: Single Pad

First, the total conflicts and makespans for a total demand
of 100 fligths are plotted in Figures 5, 6. The queue lengths
of 5 and 10 are omitted here as they exhibit worse results in
both conflict counts and makespans.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 04,2025 at 08:12:54 UTC from IEEE Xplore. Restrictions apply.

DASC 2024 San Diego, California, USA

Figure 5. Conflicts for a QL of 25

Figure 6. Makespans for a QL of 25

Out of the methods with few to no conflicts, Simulated
Annealing and the First-Come First-Served algorithm seem to
perform best for minimising the makespan (or the time from
first takeoff to last landing). The influence of the Queue Length
is unclear from these plots - some results see improvement
and others show a decrease in performance, thus another
visualisation method is necessary.

B. Varying the Queue Length: Single Pad

It is seen in the previous analysis that increasing the
sequencing queue length does not always yield better results.
Therefore, it is useful to visualise the Makespans and Total

Conflicts as a function of this. Plotting the outputs with the
Queue Length varied yields Figure 7, where the makespans
outputs are plotted for Queue Lengths of 5, 10 and 25.

Figure 7. Makespans at varied Queue Length, for ndrones = 100. PSO
performs best, followed by FC and SA

Here it is seen that while avoiding conflicts, the Genetic
Algorithm is unable to ensure better packing (and therefore
shorter makespans). Particle Swarm optimisation seems to out-
perform Simulated Annealing slightly in terms of makespan.
However, the PSO implementation proves to be ineffective at

Figure 8. Total Conflicts for different Queue Lengths: SA, FC and GA perform
well

scheduling conflict prevention for a queue length of 25, as seen
in Figure 8

Authorized licensed use limited to: TU Delft Library. Downloaded on February 04,2025 at 08:12:54 UTC from IEEE Xplore. Restrictions apply.

DASC 2024 San Diego, California, USA

C. Varying Number of Drones: Multi-Pad

For the multi-pad scenario, the number of drones is varied
at QL=25. The results are seen in Figure 9.

Figure 9. Makespans for a QL of 25 (multi)

Notably, for all optimizers, the multi-pad implementation
yields zero scheduling conflicts.

D. Varying the Queue Lengths: Multi-Pad

The same analysis for varied queue length is performed for
the multipad setup. This yields Figure 10.

Figure 10. Makespans at varied Queue Length (multi), for ndrones = 100.
MIP performs well

Notably MIP now performs best in terms of makespan,
or total deployment time. GA and FC converge to identical
solutions.

E. Computation Times

The time to compute the takeoff sequences are an important
consideration when implementation in a real-world scenario is
concerned. In terms of these, the single and multipad scenarios
for 100-drone queues are given. These are seen in Figure 11
and Figure 12.

Figure 11. Computation Times (single), QL=25: ES, FC and SA perform well

Figure 12. Computation Times (multi), QL=25: PSO performs worst with MIP
being fastest

The optimisations were CPU-bound, and a Ryzen 3 3100
with 16 GB of RAM was used. For the single-pad scenario,
the MIP and PSO perform the worst, with SA showing the
lowest computation time of the metaheuristic methods. For the
multi-pad layout, PSO takes the longest for the computation,
with MIP and FC being the fastest.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 04,2025 at 08:12:54 UTC from IEEE Xplore. Restrictions apply.

DASC 2024 San Diego, California, USA

F. Discussion

From these experiments, it has been shown that multiple
methods can be used to plan delivery traffic for urban drone
parcel delivery. Despite extensive attempts to improve the
fitness function formulation or the hyper-parameters for the
Genetic Algorithm, the result could not be improved further for
the Single-Pad case, and while free of conflicts, the schedule
is still far from optimal. Simulated Annealing and Particle
Swarm Optimisation show similar results for the makespans
(time from first takeoff to last landing), however only simulated
annealing yields schedules which are free of conflicts.

Compared to the First-Come First-Served Delay method,
Simulated Annealing performs adequately at a queue length
of 10. However, for a single-pad problem, the results show a
clear advantage in favour of the First-Come First-Served Delay
method. This is because the dimensionality of the problem (and
optimisation time) grow as we increase the sequencing queue
length. The multi-pad layout however sees an improvement
over First-Come First-Served when the MIP is used, especially
for longer flight queues. This means that for a constrained
single-pad case, sequencing shows no improvement, but that
for a multi-pad

A point of importance is that this work investigates schedul-
ing methods specifically without taking the impact on the other
layers into account. Further work will be done to quantify the
interactions between this strategic layer and the Tactical and
Collision avoidance layers, in order to produce an uncertainty-
robust system.

In the multi-pad scenario, MIP works fastest with less
constraints and sufficient resources. Interestingly, Simulated
Annealing is also bested by the Genetic Algorithm.

V. CONCLUSION AND RECOMMENDATIONS

The objective of the study was to investigate which strategic
planning methods could help drone delivery in an urban
airspace through conflict-free departure planning. It is con-
cluded that:

• For single-pad operations, sequencing provides no signif-
icant advantage over first-come first-served approaches.
This is due to the takeoff-landing coupling, and a diffi-
culty in removing mixed (takeoff-landing) conflicts.

• For multi-pad operations, the best sequences are provided
by the MIP approach, which also shows a shorter com-
putation time.

• Simulated annealing performs better than the rest of
the meta-heuristic methods in terms of total delivery
time/makespan, while maintaining little to no scheduling
conflicts.

• Out of the meta-heuristic algorithms, Simulated Anneal-
ing is the simplest to implement, needing the least hyper-
parameter choices. This means that there is less tuning

required, with only the objective function remaining a
factor. Flexibility can be achieved as well, by instance
by taking the First-Come First-Served solutions as input,
since they use the same conflict detection algorithm.

It is recommended that:
• Further research be performed in determining the optimal

pad configurations for drone delivery
• The in-flight conflicts and traffic from other parcel centers

need to be a focal point for further work
• When space permits, separate takeoff and landing pads

should be used.
• A dynamic re-scheduling tool is needed in case uncer-

tainties arise and the airspace complexity grows. Such a
tool could also reconfigure airspace when needed.

This paper provides some insights into what scheduling
methods can be used in UTM applications, more specifically
drone delivery. Further research is needed to investigate how
scheduling can be dynamically altered in order to deal with
uncertainties arising in flight such that the schedule remains
robust.

REFERENCES

[1] SESAR Joint Undertaking, “European drones outlook study: unlocking
the value for europe.,” 2017.

[2] Amazon, Inc., “Amazon Prime Air Website,”
[3] Single European Sky ATM Research 3 Joint Undertaking, U-space –

Blueprint. Publications Office, 2017.
[4] Sunil, Emmanuel; Hoekstra, Jacco; Ellerbroek, Joost; Bussink, F; Vi-

dosavljevic, A; Nieuwenhuisen, D, “The influence of traffic structure
on airspace capacity,” 7th International Conference on Research in Air
Transportation.

[5] M. Ribeiro, J. Hoekstra, J. Ellerbroek, “Determining Optimal Conflict
Avoidance Manoeuvres At High Densities With Reinforcement Learn-
ing,” 2020.

[6] F. Schimpf, S. Notter, A. Ahmad, and W. Fichter, “Attention-based
spatial encoding for multi agent coordination,” 01 2023.

[7] J. M. Hoekstra and J. Ellerbroek, “Bluesky ATC simulator project:
an open data and open source approach,” in Proceedings of the 7th
international conference on research in air transportation, vol. 131,
p. 132, FAA/Eurocontrol USA/Europe, 2016.

[8] J. H. Holland, Adaptation in Natural and Artificial Systems. University
of Michigan Press, Ann Arbor, 1975.

[9] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-
ings of IEEE International Conference on Neural Networks (ICNN),
vol. 4, (Perth, Australia), pp. 1942–1948, IEEE, 1995.

[10] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[11] D. J. Wales and J. P. Doye, “Global optimization by basin-hopping
and the lowest eigenmode of the hamiltonian,” Physical Review Letters,
vol. 78, no. 9, pp. 1791–1794, 1997.

[12] OpenStreetMap contributors, “Planet dump retrieved from
https://planet.osm.org .” https://www.openstreetmap.org, 2017.

[13] OpenStreetMap Wiki, “Overpass API — OpenStreetMap Wiki,” 2023.
[Online; accessed 2-November-2023].

[14] L. Bajzikova, S. bernard, D. Bouvier, H. Drevillon, A. Hourclats, M.
Carrazs, “Military and U-Space: Guidelines (D1 U-Space evaluation),”
p. 174, 5 2023.

[15] Metropolis 2 Consortium, “Metropolis 2 final project results report,”
Multidisciplinary Digital Publishing Institute, 2022.

[16] D. Rein-Weston, “Four-Dimensional Trajectory Planning in Air Traffic
Management: Feasibility of a Heuristic Branching Method,”

Authorized licensed use limited to: TU Delft Library. Downloaded on February 04,2025 at 08:12:54 UTC from IEEE Xplore. Restrictions apply.

