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Plasticity Detection and Quantification in Monopile Support Structures Due
to Axial Impact Loading

P.C. Meijers1,�, A. Tsouvalas1, and A.V. Metrikine1

1Dept. of Hydraulic Engineering, Delft University of Technology, the Netherlands

Abstract. Recent developments in the construction of offshore wind turbines have created the need for a method
to detect whether a monopile foundation is plastically deformed during the installation procedure. Since mea-
surements at the pile head are difficult to perform, a method based on measurements at a certain distance below
the pile head is proposed in this work for quantification of the amount of plasticity. By considering a one-
dimensional rod model with an elastic-perfectly plastic constitutive relation, it is shown that the occurrence
of plastic deformation caused by an impact load can be detected from these measurements. Furthermore, this
plastic deformation can be quantified by the same measurement with the help of an energy balance. The effec-
tiveness of the proposed method is demonstrated via a numerical example.

1 Introduction

In recent years, the number of offshore wind farms
has considerably increased to meet the demand for en-
ergy from renewable resources. The most commonly
used foundation concept in offshore wind is a steel
monopile [1]. Steel monopiles are thin-walled cylindri-
cal structures that are normally driven into the seabed with
a hydraulic impact hammer. Each hammer blow induces
stress waves in the pile which help the latter to gradually
progress into the soil.

As soon as the pile reaches the desired penetration
depth, the wind turbine is installed on top of the support
structure. Until recently, grouted connections were used
between the foundation pile and the superstructure, how-
ever, bolted connections have become increasingly popu-
lar in recent years [1]. Compared to a grouted connection,
a bolted connection is more sensitive to material damage
inflicted by the pile driving process since the wind turbine
is directly connected to the pile head. In addition, material
damage in the pile reduces the service life of the support
structure. A method to detect and quantify the damage
caused by the pile driving process is therefore essential in
order to assess the structural health of a monopile.

Measuring forces and deformations directly at the pile
head is a cumbersome task not only due to the high stress
levels expected at this critical location, but, additionally,
due to the practical implementation of the sensors very
close to the pile head. Furthermore, sensors at this location
need careful installation to withstand high strains, which
is difficult given the hard conditions at sea and the tight
working schedules. Thus, a plasticity detection method
based on acceleration or strain measurements a few meters
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Figure 1: Sketch of the pile driving process (left) and the
mathematical one-dimensional model (right).

below the pile head seems more feasible. Currently, sen-
sors at this location are routinely used for the analysis of
the driving process [2]. Given that, the proposed method
of quantification of plasticity fits well within the current
practice of the offshore industry. This work focuses on us-
ing the measurement data from these sensors to detect and
quantify plastic deformations inflicted by the pile driving
process.

2 Model

A sketch of the pile driving process is shown in Figure 1.
The monopile is modelled by the one-dimensional rod
theory [4], which includes the Rayleigh-Love correction
term [5] to account for stress wave dispersion expected for
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Figure 2: The hammer model of Deeks and Randolph. [3]

piles of large diameter. The model relates the axial dis-
placement u(x, t) and the axial stress σ(x, t) as follows:

ρ
∂2u
∂t2 =

∂σ

∂x
, (1a)

ε =
∂u
∂x
, (1b)

σ = E
(
ε − εp

)
+ ν2r2

g

∂2σ

∂x2︸����︷︷����︸
RL-correction

, (1c)

in which ρ, E and ν are the density, Young’s modulus
and Poisson’s ratio, respectively. The radius of gyration
of the cross-section is denoted by rg and the total axial
strain by ε. To account for plastic deformation in the equa-
tions above, auxiliary relations for the plastic axial strain,
εp(x, t), are needed. Assuming perfect plasticity, these re-
lations read [6]:

∂εp

∂t
= γ sign (σ) , (2a)

f (σ) = |σ| − σy ≤ 0, (2b)
γ ≥ 0, f (σ) ≤ 0, γ f (σ) = 0, (2c)

γ
∂ f (σ)
∂t

= 0 if f (σ) = 0, (2d)

where γ is the magnitude of the plastic flow rate, f (σ) the
yield function and σy the yield stress of the material.

The hammer force is described in this model by a time
signal, which can be generated by a hammer model as
shown in Figure 2 [3]. The time signal and the corre-
sponding amplitude spectrum of the exerted hammer force
obtain by a linear pile model are presented in Figure 3 with
the dashed-dotted line. The input energy of the hammer is
governed by the impact velocity of the ram v0.

3 Detection

To show the effect of the non-linear material behaviour
on the shape of the stress wave, simulated time signals
of strain measurements at x = a are considered. The
measurement location is indicated in Figure 1 and it is
assumed that no plastic deformation occurs at this cross-
section. Figure 3 shows the strain signals of an elastic and
an elasto-plastic model of the pile. Both cases are sim-
ulated with the same force signal as input. In the elastic
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Figure 3: Simulated strain signals at x = a for an elastic
and an elasto-plastic pile.

case, the time signal and the amplitude spectrum have the
same shape as the input signal. However, a plateau and an
elongation of the peak value in the strain time signal are
seen for the elasto-plastic case. Furthermore, a shift in fre-
quency content compared to the elastic case is observed.
This shift is caused by the non-linear material behaviour.
Thus, by comparing the measured strain signal with the
expected strain computed on the basis of the elastic model
of the structure, one can reach some preliminary conclu-
sions regarding plastic deformation at the pile head.

4 Quantification

In order to quantify the plastic deformation, the energy
balance is considered

E0 = Ew + Ep + Eloss, (3)

where E0 is the input energy of the hammer, Ew the wave
energy that passed through the considered cross-section,
Ep the energy lost in plastically deforming the material
and Eloss denotes the losses in sound radiation and material
damping. Each contribution to the energy balance is now
further discussed.

The input energy, E0, is determined by the aforemen-
tioned hammer model [3] or by scaling the linear response
of a low energy impact. The energy that passed through
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in which ρ, E and ν are the density, Young’s modulus
and Poisson’s ratio, respectively. The radius of gyration
of the cross-section is denoted by rg and the total axial
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εp(x, t), are needed. Assuming perfect plasticity, these re-
lations read [6]:
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where γ is the magnitude of the plastic flow rate, f (σ) the
yield function and σy the yield stress of the material.

The hammer force is described in this model by a time
signal, which can be generated by a hammer model as
shown in Figure 2 [3]. The time signal and the corre-
sponding amplitude spectrum of the exerted hammer force
obtain by a linear pile model are presented in Figure 3 with
the dashed-dotted line. The input energy of the hammer is
governed by the impact velocity of the ram v0.

3 Detection

To show the effect of the non-linear material behaviour
on the shape of the stress wave, simulated time signals
of strain measurements at x = a are considered. The
measurement location is indicated in Figure 1 and it is
assumed that no plastic deformation occurs at this cross-
section. Figure 3 shows the strain signals of an elastic and
an elasto-plastic model of the pile. Both cases are sim-
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Figure 3: Simulated strain signals at x = a for an elastic
and an elasto-plastic pile.

case, the time signal and the amplitude spectrum have the
same shape as the input signal. However, a plateau and an
elongation of the peak value in the strain time signal are
seen for the elasto-plastic case. Furthermore, a shift in fre-
quency content compared to the elastic case is observed.
This shift is caused by the non-linear material behaviour.
Thus, by comparing the measured strain signal with the
expected strain computed on the basis of the elastic model
of the structure, one can reach some preliminary conclu-
sions regarding plastic deformation at the pile head.

4 Quantification

In order to quantify the plastic deformation, the energy
balance is considered

E0 = Ew + Ep + Eloss, (3)

where E0 is the input energy of the hammer, Ew the wave
energy that passed through the considered cross-section,
Ep the energy lost in plastically deforming the material
and Eloss denotes the losses in sound radiation and material
damping. Each contribution to the energy balance is now
further discussed.

The input energy, E0, is determined by the aforemen-
tioned hammer model [3] or by scaling the linear response
of a low energy impact. The energy that passed through
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Figure 4: The modelled set-up of the experiment of Kolsky
and Douch. [7]

the cross-section, Ew, is defined as the integral of the en-
ergy flux over time,

Ew =
∫ t=t1

t=t0
Fv dt,

which can be rewritten in terms of axial strain ε, using the
relations F = Aσ, σ = Eε and v = σ√

Eρ resulting in

Ew =
AE2

√
Eρ

∫ t=t1

t=t0
ε2 dt, (4)

in which A is the area of the cross-section. The plastic
work, Ep, is defined as the area under the stress-plastic
strain diagram integrated over the distance between the
impact and the sensor location,

Ep = A
∫ x=a

x=0

∫ ε=εp

ε=0
σy dε dx = Aσy

∫ x=a

x=0
εp dx.

The evaluation of the integral of εp over x gives the total
plastic deformation up. This results in the final expression

Ep = Aσyup. (5)

Provided that the other losses in the pile, Eloss, are negli-
gibly small, the permanent axial displacement, up, can be
computed with

up =
E0 − Ew

Aσy
. (6)

This equation gives a simple relation to quantify the plastic
deformation caused by an impact load based on a strain
measurement at a certain distance from the impact point.
Naturally, it is expected that this expression will give an
upper bound estimation of the expected plastic strain due
to the fact that Eloss is assumed equal to zero.

5 Numerical example

As an example of the proposed method, the experiments
of Kolsky and Douch [7] are considered. In their paper, a
cylindrical copper specimen of length L0 is impacted with
initial velocity v0 onto a stationary cylindrical copper rod
with length L1 as shown in Figure 4. Both the specimen
and the rod have the same diameter. Dimensions and ma-
terial properties are listed in Table 1. From the initial ve-
locity v0 = 14.02 m/s (= 46 ft/s), it follows that the initial
energy E0 = 1/2mv20 = 36.8 J.

Since only the shape of the resulting stress wave is re-
ported in [7], the stress wave propagation is simulated us-
ing the model introduced in Section 2. Equations 1 are

Table 1: Parameters used for the simulation of the experi-
ment of Kolsky and Douch. [7]

Parameter Value
L0 0.1524 m
L1 1.2192 m
R 9.525 mm
a 0.5476 m
E 129.8 GPa
ν 0.34
ρ 8960 kg/m3

σy 210 MPa
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Figure 5: Simulated strain signals at x = 0.548 m for the
elastic and the elasto-plastic rod.

spatially discretised with the Finite Element Method in
FEniCS [8] and an explicit Newmark scheme [9] is used
for the time integration. The spatial resolution and time
step are ∆x = 2.74 · 10−3 m and ∆t = 1.0 · 10−7 s, respec-
tively. Equations 2 are satisfied with the help of a return
mapping algorithm [6].

Axial strain signals for the elastic and the elasto-plastic
simulation at x = 0.548 m are shown in Figure 5. Just
as reported in [7], a plateau and a tail are present in the
shape of the stress wave for the elasto-plastic case, which
indicates that plastic deformation occurred. By integrating
the square of the strain signal, the energy that passed the
cross-section is determined: Ew ≈ 29.0 J. With the help of
Equation 6, the permanent deformation computed equals
up = 0.130 mm.
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Figure 6: Plastic axial strain along the length of the rod.
The shaded grey area is the length of the impact speci-
men L0.

From the simulation, the permanent deformation can
also be determined by integrating the plastic strain along
the length of the rod up to the location of the sensor. The
plastic strain profile is presented in Figure 6. Integrating
the plastic strain results in up =

∫
εp dx = 0.131 mm,

which is in good agreement with the value found using the
wave energy. This simple example shows how the plastic
deformation can be quantified with the proposed method.

6 Conclusions and future work

By considering a one-dimensional rod model with an
elastic-perfectly plastic constitutive relation, it is shown
that the occurrence of plastic deformation caused by an
impact load can be detected from a local measurement a
certain distance from the impact point, since the shape of
the stress wave is changed by the physically non-linear
behaviour of the system. Furthermore, the plastic defor-
mation can be quantified by the same measurement with
the help of an energy balance, relating the input energy
and the wave energy to the amount of permanent axial dis-
placement. A numerical example simulating an impact ex-
periment shows the effectiveness of the proposed plasticity
detection and quantification method.

Future work will focus on generalising the constitu-
tive relation to incorporate hardening behaviour and on im-

proving the modelling of the monopile with a cylindrically
symmetrical shell theory which will also include hammer-
pile interaction.
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