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Problem

by Jie HUANG

This thesis focuses on the construction and optimization of a prediction model for
the errors resulting from a model order reduction (MOR) procedure in oil reser-
voir simulation. MOR is a numerical technique that projects the physical based
model, which is also called the high-fidelity model (HFM), into a lower dimension
by using matrix decomposition, such that the computational speed can be greatly
increased. The reduced order model (ROM) is also known as surrogate model. Ob-
viously, error occurs during the projection process. We want to estimate this error
and predict it through building an error model, and to fortify the surrogate model
by adapting a parameter estimation. In this thesis, three statistical methods will
be adapted to our problem, including least absolute shrinkage and selection oper-
ator (LASSO) and two machine learning (ML) methods: long short term memory
(LSTM) and fully-connected recurrent neural network (RNN). The training data is
the error of the ROM, which is defined as the difference between the ROM values
and HFM values. Efforts have also been made to improve the performance of the
error model, including the pre-processing of the data, and several model optimiza-
tion techniques. The model order reduction method here is a non-intrusive subdo-
main POD-RBF algorithm, which treats subsurface oil-water flow data by adapting
domain decomposition (DD), radial basis function (RBF) and proper orthogonal de-
composition (POD). The high-fidelity model is generated by Matlab reservoir simu-
lation toolbox (MRST). The error is defined as the difference between the HFM data
and the ROM data. Through the comparison of several statistical models, this error
can be best predicted by an optimized traditional recurrent neural network.
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Chapter 1

Introduction

1.1 Research problem

Oil is one of the most important sources in modern industry, and predicting the
changes of an oil reservoir has always been of major interest. Owing to the un-
even distribution of an oil reservoir and the complex geological structure, this be-
comes a hard task. Fortunately, modern computational science has provided a way
of simulating the ongoing changes underground through a combination of several
prospected data. Theses simulations are physical based, usually include the data of
several key parameters in a large area, that are recorded continuously for decades.
Obviously, the physical models can be extremely large and highly non-linear and,
thus computational expensive. Naturally, research efforts have been made to ac-
celerate the computation by linearizing the model, and reducing the number of the
elements involved in the computation. One of the ideas is to apply model order
reduction (MOR)[4], which means to project the physical based model, also known
as the original high-fidelity model (HFM), into a lower dimension by using matrix
decomposition, such then there will be fewer elements joining the computation. The
reduced order model (ROM) is also called a surrogate model. However, error oc-
curs during the linearization (if adapted), interpolation and projection process, and
we wish to compensate for it. So the main concern of this thesis is to predict the
error by building an error model, fortify the surrogate model with this error model,
and to further estimate the accuracy of the fortified surrogate model by parameter
estimation.

The method for error modelling is building statistical error models that concern
little of the physics but much about the regular pattern of the previous data. It re-
quires an input and an output data set, and in our case these data sets are the ROM
errors at different time steps. The error is defined as the difference between a HFM
pressure or saturation value, and a ROM pressure or saturation value that has been
projected back into the full dimensional space. As the HFM values are always non-
linear with the physical parameters, in most cases the errors are also non-linear,
which is most suitable for statistical methods. The statistical methods require only
the input and output variables whether they are linear or not, and can also achieve
high accuracy, provided a sufficient large dataset. Therefore, statistical methods will
be adapted to predict the error of ROMs in my work, and furthermore to operate a
parameter estimation.

The error model should predict error for every meaningful point in a concerned
area, thus it conforms the definition of the regression problem in machine learn-
ing. Hence the first method we considered is "least absolute shrinkage and selection
operator” (LASSO)[38]. It is a regression analysis technique which performs vari-
able selection and regularization to enhance the prediction accuracy of the statistical
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model. Previous works have applied LASSO on constructing error models of surro-
gate models[6], thus LASSO is used as a comparison in this thesis. In the training
process of LASSO, data from all points and time steps are taken into one regres-
sion. It shows better result in the linear or weak-nonlinear cases. However, in most
situations, errors are distributed in non-linear way, thus limiting the capability of
LASSO.

Fortunately, the development of machine learning (ML) has provided some more
generic solutions. ML algorithms build mathematical models of given data, also
named as "training data", and proceed classifications or predictions without being
specifically programmed for certain task. Recurrent neural network (RNN) and long
short-term memory (LSTM) are two representative algorithms among ML methods
that will be used in our situation, and a fully connected multilayer perceptron (MLP)
technique is adapted. Previous work[6] have shown the feasibility of such algorithm
as random forest[36], and through my work, the capability of RNN, LSTM and MLP
will be presented.

A recurrent neural network (RNN) is a class of neural network that are especially
powerful for dealing with data in a sequence. MLP means a class of supervised mul-
tilayer fully connected neural network, here it refers to the two layer fully connected
RNN. In my work, this is used to train the data from a certain time step under differ-
ent parameters. It shows the common pattern of the error under different geometric
conditions, and by sampling from different timings, it could also show the error’s
changing trend as time goes. However, in order to predict the precise change on the
timeline, LSTM comes first on the table.

Long Short-Term Memory (LSTM) is a time-recurrent neural network (RNN), the
related research was first published in 1997[30]. LSTM is suitable for processing and
predicting important events with long intervals in time series[35] owing to its special
structure. It is used in this thesis to predict the future error under a certain control.

All these statistical methods have their own advantages and limitations for our
cases. And they have to be carefully investigated and adjusted for different data
cases. Thus different attempts have been made to optimize the valuable models in
different experiments, including pre-processing the training data, adjusting neural
network parameters and clustering the training set accordingly. Pre-processing in-
cludes cropping the data based on its current time step and parameter, transforming
the data with targetive function, domain decomposition[19] and normalliztion. Dif-
ferent optomization procedures[34] such as stochastic gradient descent and conju-
gate gradient descent, and several loss functions such as absolute loss and quadratic
loss are also taken into comparison. The parameter estimation is obtained by least
square method[20].

1.2 Data source

The training data is the error between HFM variables and ROM variables. In the
prediction problems, we try to predict the future error based on the previous expe-
rience, so the input of the training set would be the error at time step n, and the
output is the error at time step n + 1. According to the need in the oil industry,
pressure and saturation are the two most important measurable variables that can
represent the production of an oil well. Therefore, these two variables will be used
in the experiments in this thesis.
The high-fidelity model is generated by Matlab reservoir simulation toolbox (MRST),

and the model order reduction method here is a non-intrusive subdomain POD-RBF
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algorithm introduced by Cong Xiao et al[5]. It treats subsurface oil-water flow data
by adapting domain decomposition (DD), proper orthogonal decomposition (POD)
and radial basis function (RBF). The main idea of this method is to perform high-
fidelity training simulations, save ‘snapshots’ (also called state vectors) at time steps
from these simulations, and then obtain a set of basis functions from these snap-
shots[16]. RBF interpolation is a data-based response surface method, and has been
applied to reservoir problems[10] and fluid dynamics[24] successfully. Here it is
combined with a domain decomposition (DD) technique and constructed as differ-
ent local RBF interpolations according to local flow dynamics. The above procedure
is the complete construction of a surrogate model for oil reservoir problem, and the
non-ignorable error during the process is our major concern. Combination of this
ROM with our error model will create a reliable and fully non-intrusive model that
benefits the oil reservoir researchers.

1.3 Objective

The primary objective of this research is presented as follows:

To develop statistical models for predicting the errors caused by the order reduc-
tion of an oil reservoir simulation.

The primary objective can be further divided into following sub-objectives:

1.To develop an LSTM-based model that predicts the pressure and saturation
error of the next step under a fixed permeability condition.

2.To develop an RNN-based model that predicts the pressure and saturation er-
ror of a new permeability under a fixed time step.

3.To develop an LASSO-based model that predicts the pressure and saturation
error of the next time step.

4.To compare the aforementioned models and optimize the machine learning
models by pre-processing and clustering the data, and selecting suitable optimiz-
ers.

1.4 Outline of this thesis

This thesis proceeds as follows. In Chapter 2 and Chapter 3, we present the back-
ground knowledge of the statistical methodology and the model order reduction. In
Chapter 4, the development of the error model for reduced order model will be pre-
sented and compared, and this error model will be improved through pre-processing
the data and inserting an optimizer. In Chapter 5, the error model will be applied to
an application case through parameter estimation. In the last chapter, conclusions
and discussion of future research will be presented.






Chapter 2

Introduction to the Surrogate
Model

In this chapter, the background knowledge of the oil reservoir simulation and the
construction of its surrogate model will be introduced. The first section describes
the general way of forming an oil reservoir model, the equation that governs the oil
and water flow, and the conditions that we have adapted in our experiments. The
second section introduces the linearization and the process of order reduction of the
physical based model which is described by the discretized form of a transformed
governing equation.

2.1 Construction of the Physical Based Model

A simplified 2-dimensional reservoir model is represented as a horizontal layer
of multiple grid cells[1]. At some locations in the reservoir area some injection wells
are installed, while usually around them are some production wells. The decision
on the placement of the wells is based on the knowledge about the oil reservoir. For
every grid cell, permeability, porosity,initial saturation and initial pressure are de-
fined. In this thesis, permeability is used as a control variable, while the other initial
conditions are defined as constant. And the quantities of interest are the changing
pressure and saturation along with time.

The model we took into experiments is formed by Matlab Reservoir Simulation
Toolbox. It is a highly simplified model based on the assumptions that porosity is
constant over time, compressibility is isothermal, the displacement of oil by water is
immiscible and that there is no gravity affect[4].

A brief derivation of the equation that governs the oil-water flow is described
below, for more details the readers are referred to [2].

Under the assumption that fluid density does not change in space and time, by
combining the mass balance of each fluid and solid phase and Darcy’s law, the equa-
tion governing oil-water flow can be written as:

0 (¢S;) + V(f(Sw)v + ¢S;0:d) =0 2.1)

where S; represents the saturation of phase j, j=o for oil or w for water. v; stands
for the Darcys velocity at j fluid phase, 9;d for the velocity, with d = [d;, d,] for the
displacement. The relation between the j fluid phase velocity and the fluid pressure
is determined by Darcys Law:
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vj = —Ai(S))k(x)k(¢)Vp; (2.2)

where A;(S) is the phase mobility of fluid j, and k(x)k(¢) represents the permeability
of the rock.

We take the quantities of interest as pressure p and water saturation S. A fully-
implicit finite volume procedure is used to form a discrete representation of Eq.2.3.
Defining x = [p,, Sw| as the state vector and u as the well control (in this thesis the
permeability), the discrete system for the governing equation can be written as:

g(x™ X"ty = A(x™H, x") 4+ F(x™) + Q" u ) (2.3)

Here g is the residual that should be derived to 0, n and n + 1 are time steps, and
A, F and Q are the discretized accumulation, flux and source/sink terms.

2.2 Construction of the Surrogate Model

Traditionally, the discretized residual equation is solved by a full-order simulator,
and this can be computational expensive. So the following section will introduce a
promising surrogate simulator[5], whose error prediction is the major concern of this
thesis.

The surrogate model (or ROM) we applied here is a non-intrusive subdomain
POD-RBF algorithm. Generally, ROMs can be intrusive or nonintrusive. Intrusive
ROMs require participation of the HFM simulator’s source code, while the nonin-
trusive ROMs require only the HFM outputs, such as the derivative matrices created
during the pre-processing. The further "test’ runs (involving new sets of well con-
trols) are operated outside the HFM simulator. Here the ’training” and ’test” are to
describe the model order reduction process, and they are different from the training
and test runs in machine learning technique that we are going to mention in the next
section.

We now briefly introduce the subdomain POD-RBF formulation for oil-water
systems, more details are introduced in[5]. The general idea is to perform the order
reduction by doing proper orthogonal reduction (POD), then obtain the derivation
items in the derived residual equation at any given time around a single point by
interpolating radial basis function (RBF)

Before the model order reduction, the data is first employed a domain decom-
position process as shown in Fig.2.1. The 2D or 3D physical domain for a dynamic
model is denoted as (). The whole computational domain () is decomposed into
several subdomains Q)¢ accordingly, 4 € 1,2,...,S and on each subdomain the un-
knowns are calculated locally,e.g.local pressure and saturation variables. In each
subdomain 9, the local state vectors are used to construct its local POD basis func-
tions ¢ and the corresponding POD coefficient 1y *1 at the time step 1 + 1. For each
subdomain ()%, the reservoir dynamic model in the reduced subspace is modified to
represent the underlying dynamic system associated with this subdomain Q¢ and
its surrounding subdomains Q% by considering the dynamic interaction between
these subdomains, The well model represents the underlying dynamic system just
associated with this subdomain Q7 where the well is located in.

Suppose the current state is x", to determine x"*!, we derive Eq.2.4 around the
state (x'*1,x/, u'*1). This gives
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FIGURE 2.1: Illustration of domain decomposition in a 2-D case

agi+l

aui+l

) i+1 ) i+1 )
1+1+ag (xn+1_x1+1)+ag ‘ ( n 1)+

n+1 __
=8 dxitl

g (un-i-l o ui—‘rl) (24)
where g*1 = g(x™*1, 1%, 1) and gi*1 = g(x*1, i, u*1).

To reduce the dimension of

. Joitl
i+1 g
R™ = (2.5)

A proper orthogonal decomposition is employed for linear order reduction. We rep-
resent the state vector x by a reduced state z and a basis matrix ®:

x ~ &z (2.6)

where z € R! is a low-dimensional variable, then the ® matrix can be constructed by
proper orthogonal decomposition (POD). It representes the high-dimension space
by a set of orthogonal basis vectors, these are the singular vectors of the ‘snapshot’
matrices.

This gives
) ) A i+1 ) o) ri+1 ]
er—&-l (Zn+1 _ Zl+1) — _[( a;i )r(Zn _ Zl) + ( a%i-H )r(un—H _ uz—i—l)] (2.7)
where
; ; aArH—l QAT aQi+1 aQi+1
R, = ®TR" 1, ( = )y = @T[( o ) '(W)r = oT( e ) (28)
The gradient
. Joitl
R+ = aiiﬂ 2.9)

is obtained by a radial basis function (RBF) interpolation into traditional POD scheme.
R"1(zdn, 754n+1 3) denote a RBF interpolation function for the POD coefficient
Z3"+1 at the time level n + 1 for the subdomain QF from the set (Z%", Zs4m+1 ),
The vector u denotes the set of reduced parameter’s coefficient for the full physical
domain, which is the permeability k in our case. The RBF interpolation function is a
linear combination of M radial basis functions in the form of

M
Rd,n+1 (Zd,n/ st,nJrl, u) — Z wjd,n+1 %0 H (Zd,n, st,n+1, u) o (Zjd,n, std,n+1’ uj) H
j=1
(2.10)
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Here, w;*"*! is a weight coefficient vector. || (Z%", Zs"*+1 ) — (Z,", Z" 1, u;) H
is a scalar distance by L, norm. 6 is a series of radial basis functions based on
different centres (Z]‘fl’”, Z]S.d’”H, uj). The specific coefficient w;"*1 is determined as
such to guarantee that the interpolation function R%"*1 at the current data points
(z3n, 754741 41), matches the given data Z*¢"+1 exactly.

Among several radial basis functions, we chose the multiquadratic radial basis
function for our problem, its general form is

0(l) = V12 + 12

in which I stands for the scalar distance from the origin
dn 7sdn+1 q, dn+1
l: |(Z n’Zs n+ ’u)_(zj n,Z]'S n—+ ruj)|

After the whole order reduction process, the variables of the previous step v’ =
(x" — x') and the current step v’ ! = (x"*! — x'*1) will be collected for constructing
the error model, and the permeability u(u"™! — u'*1) (it does not change with the
time) will be a major influencing factor to be considered. When the variable is pres-
sure, v' and v/ ! are represented by p’ and p'*!, when the variable is saturation, they
are represented by s’ and s*1.



Chapter 3

Statistical Methodology

The model order reduction process introduces error during the projection and in-
terpolation operations. In order to fortify the ROM, we want to predict the error
as precisely as possible. For this purpose, three statistical methods are considered,
and three corresponding error models will be constructed, optimized and compared.
One is a linear regression analysis method called LASSO, the others are two machine
learning based methods, the traditional RNN and LSTM NN. In this chapter, back-
ground knowledge about these methods will be introduced.

3.1 LASSO

The first method I have applied is "Least absolute shrinkage and selection opera-
tor" (also LASSO). It is a commonly used linear regression technique[38], and have
been adapted for error modelling with the combination of a machine learning based
classification in [6].

Suppose a data set consists of N samples, each of them consists of p covariates.
Let x; := (x1,x2,. .., xp)T be the covariate vector at the state i and y; be the output.
Then the goal of LASSO is to solve

N 4
min B Y (yi—Bo—x/B)* ¢ subjectto Y [B;| <t. (3.1)
pob | N i=1 j=1

Here t is a parameter which determines the amount of regularisation. Let X be
the covariate matrix

Xij = (xi); 3.2)
and x; be the i th column of X, this expression can be written into
. 1 .
mln{Hy—[So—Xﬁﬂg} subject to [|B]]; < t. (3.3)
Bop (N

where
N Vp
1Blly = (Zlﬁ#’) (3.4)
i=1

is the standard ¢ norm.
Since

po=g—1'p, (3.5)
so that
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yi—po—xp=yi—(G—x"B)—x[p=(yi—7) — (xi—%)"B, (3.6)

Now Eq.3.3 can be written in the Lagrangian form,

min {11] ly — Xﬁ||§} subject to ||B]]1 < t. (3.7)

where the relationship between t and A depends on the data.

3.2 Recurrent Neural Network

In this study, two machine learning techniques have also been used in the experi-
ment. One is the recurrent neural network (RNN).

RNN is made to deal with sequential data, such as time series. In the traditional
neural networks, we assume that the inputs and outputs are independent from each
other. RNNs are called recurrent because they proceed the same task for every case
of a sequence, and the outputs depend on the previous computation steps. They
have memory cells to capture values that have already been calculated. The basic
RNN is constructed as a network of neurons (nodes) organized in an input layer, an
output later, and one or more hidden layers. Each neuron is connected with all the
other neurons in the next layer. Each connection has an real-time weight. Here is the
structure of a typical RNN:
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o
~

X
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FIGURE 3.1: A recurrent neural network and the unfolding in time of
the computation involved in its forward computation. Source: soy-
bean yield prediction, chapter: the full story, section: neural networks

The above figure shows a recurrent neural network being unfolded into a full
network. The governing formulas of the computation happening in a RNN are as
follows: x;is the input at step t. s; is the hidden state at step t. It is the memory of the
network. s; is computed based on its last hidden state and the input at the current
step: s¢ = f(Ux; + Ws;_1). s_1 is typically determined to be 0. o; is the output at
step t.

3.3 Long Short-Term Memory

The disadvantage of RNN is that as the time steps increase, it fails to derive context
from time steps which are much far behind. To solve this problem, long short-term
memory (LSTM) is designed. It is a special kind of RNN that able to learn long-term
dependencies.

The structure of an LSTM network is the same as an RNN, but the repeating
module is more complicated. Unlike in RNN which often has a single tanh layer,
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it consists of an input gate, a memory cell, a forget gate and an output gate, as in
Fig.3.2.

Tt

FIGURE 3.2: A LSTM module. Source: Wikipedia.

The LSTM cells store values for a time period by using an identity activation
function for the memory cell. In this case, the gradient does not vanish when an
LSTM network operates back-propagation.

The LSTM gates compute interactions using the logistic function. The input gate
controls the range of new value that can be taken into the cell, the forget gate controls
whether a value stays in the cell and the output gate determines if a value in the cell
can be used to compute the output activation of the LSTM unit. Each gate has its
own weight and bias. The weights of the connections between the gates are adjusted
during the training. This is achieved by minimizing J;:

8, = OE /ol (3.8)

in which J; is the error (it is not the error of ROM) at step t, E is the cost function,
and h; is the output at step t. The minimization is performed by gradient descent,
see Fig3.3.
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FIGURE 3.3: Minimize cost function by gradient descent. Source:

https:/ /www.imagenesmy.com

The selection of proper cost function and the gradient descent optimization method
is explained in the next chapter.
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Chapter 4

Error Modelling

This chapter describes the experimental results of statistical error models. The first
step is to acquire the dataset by means of simulations with both HFM and ROM, here
the same case as in [5] is used. Next, three regression models based on LASSO, RNN
and LSTM will be constructed and optimized for our interested variables (pressure
and saturation), their results will be reported and analyzed.

4.1 Data Acquisition

As mentioned in section 2.1, the derived governing equation is represented as
) gi+1

oxt

agi+l

+1 i+1 agiH +1 i+1
n+l _ i n+l i
= + (x X 4 S

g g 9yitl (Wt —u™h) @)

(x" —x') +
in which the variables of the previous step v’ = (x* — x') are collected as the input
set, and that of the current step v'*! = (x"*! — x'*1) are collected as the output set.
The permeability U = (u"*! — u*1) (that does not change with the time) and time
step t are two major influencing factors to be considered. When the variable is pres-
sure, v’ and v'*! are respectively denoted by p' and p'*!; and when the variable is
saturation, they are represented by s’ and s'*! As a regression problem, the variables
along with the permeability U will be considered in the global domain for a lasting
time.

The test model is based on a 2D synthetic model containing 9 wells on a 30 by 30
domain under 1000 different permeability conditions, and lasts for 200 time steps.
So there are totally 900*200*1000 data for each variable. The construction proceeds
as follows.

A 2D heterogeneous oil-water reservoir is considered with two-phase imcom-
pressible flow dynamics. The reservoir contains 8 producers and 1 injector, which
are labeled as P; to Ps, and I respectively in Fig.4.1. The colour bar labels the per-
meability state in the field.

Next, an ensemble of 1000 Gaussian-distributed realizations of log-permeability
is generated. We assume that the log-permeability fields are not conditioned to the
permeability values at the well locations. The log-permeability fields and the corre-
sponding porosity fields are described as the following:

(T/; =5 (4.2)

—[( i1 =i 2 ( [vi1—¥in| 2]

Cp(xinji;Yijo) = 0ge © & xy (4.3)

Xx _gp Xy _

2 4.4
=027t =0 (44)
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10

5 10 15 20 25 30

FIGURE 4.1: The well placement in the 2-D reservoir model

TABLE 4.1: Experiment settings using MRST for case 1

Description Value
Dimensions 30 x 30 x1
Grid cell size 10 x 10 x 10
Number of wells 8 producers, 1 injector
Fluid density 1014 kg/m3, 859 kg/m3
Fluid viscosity 0.4 mP-s,2 mP:-s
Initial pressure 30 MPa
Initial saturation S,=0.80, S;,=0.20
Connate water saturation  54,=0.20
Residual oil saturation S0r=0.20
Corey exponent, oil 4.0
Corey exponent, water 4.0
Injection rate 200m3/d
BHP 25MPa
History production time 5 year
Prediction time 10 year
Timestep 0.1 year
Measurement timestep 0.2 year

ef o1

¢ =025(55) (4.5)

Here, 0p is the standard deviation of log-permeability B; Cg is the covariance of
B; xi1,j1=(xi1,yj1) denotes the coordinates of a grid block; X (or x;) is the correlation
length in x (or y) direction; and L, (or L;) is the domain length in x (or y) direction.
The background log-permeability B, is taken as the average of the 1000 realizations.
The permeability field was parameterized using KL-expansion, resulting in 18 per-
meability patterns with [z = 18 corresponding independent coefficients, which are
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used as a low-dimensional representation of the 900 grid blocks” permeability val-
ues.

Having reduced the parameter space, the next step is to reduce the reservoir
model. The first step is to perform a set of training runs and take snapshots. Since
the required number of training runs is unknown, the following procedure is intro-
duced: (1) generate a sample coefficient vector by sampling from the set {—1,1},
(2) run a high fidelity model simulation with these parameters, (3) extract snapshots
and form the snapshot matrix, (4) compute a SVD of the snapshot matrix (5) repeat
steps (1) to (4) until changes in the singular values are insignificant. This produced
for this case a set of 15 training runs and 240 snapshots for pressure and satura-
tion each. For each subdomain, two separate eigenvalue problems for pressure and
saturation are solved using proper orthogonal decomposition.

Fig4.2, Fig4.3, Fig4.4, Fig4.5, Fig4.6 and Fig4.7 are the visual examples of the HFM
value, ROM value and error distribution of pressure and saturation at time step 25,
50 and 150, with three different permeability conditions.

time step 25 time step 50 time step150

HFM
pressure

ROM
pressure

error of
pressure

( A Sstands for a water injection well, @ stands for an oil production wel])

FIGURE 4.2: The pressure value of HFM and ROM and the pressure
error at permeability condition Ul

In the examples, saturation errors have shown a ringed shape, while on the in-
side and outside of this ring, the errors are extremely small. This is because the
saturation data is first small around the water injection well and larger around the
oil production wells, and as the extraction proceeds, the equilibrium between oil
phase and the gas phase breaks, the the saturation gradually decreases around the
oil production well. During the POD-RBF training, each step is based on the result
of its last step. Thus, the error of a current step is the accumulation of the error of
all the previous steps. According to the observation, on this 'ring’, the errors at the
outer edge are always positive, while at the inner edge they are negative. There-
fore, after the accumulation, the current errors inside the ring are offset with their
last step’s error and become very small, remaining only a ring of the same size as
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time step 25 time step 50 time step150

HFM
pressure

ROM
pressure

error of
pressure

5 10 15 20 2 0

5

: m i
5 10 15 20 2 )

( A Stands for a water injection well, @ stands for an oil production wel|)

10° s

FIGURE 4.3: The pressure value of HFM and ROM and the pressure
error at permeability condition U2

how much the saturation drop has diffused in one time step. This special shape has
caused some extra optimization in the error modelling, as will be described in the
next section.



4.1. Data Acquisition

17

HFM "
pressure =
ROM "N . -
pressure =
error of :
pressure :
( A stands for a water injection well, @ stands for an oil production well)
FIGURE 4.4: The pressure value of HFM and ROM and the pressure
error at permeability condition U3
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( A stands for a water injection well, @ stands for an oil production well)

FIGURE 4.5: The saturation value of HFM and ROM and the satura-
tion error at permeability condition U3



Chapter 4. Error Modelling

time step 25 time step 50 time step150
HFM ©ow -
saturation o g
ROM L 1B
saturation - -
error of = .
saturation E e
( A stands for a water injection well, @ stands for an oil production well)
FIGURE 4.6: The saturation value of HFM and ROM and the satura-
tion error at permeability condition U3
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FIGURE 4.7: The saturation value of HFM and ROM and the satura-
tion error at permeability condition U3
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4.2 Error Prediction

The following section shows the test result after training the original input and out-
put data, and the test result after transforming data with trigonometric function
f(X) = arctan(X). X is the input and output data of training and test.

The quality of test results are measured by cross-validated mean square error
(MSE) and the linear regression between the test data and the predicted data.

421 Error Prediction Based on LASSO

The regularized least-squares regression using LASSO requires all samples into the
experiment, of which 900*200*500 becomes the training set and the rest form the test
set. The goal is to predict future time steps’ value based on the previous time steps,
and all permeability conditions are taken into training. The following shows the
MSE and the coefficient fit process after training the data:

108 Cross-validated MSE of Lasso fit
7

MSE

Lambda

FIGURE 4.8: Cross-validated Mean square error after LASSO regres-
sion of pressure data

Trace Plot of coefficients fit by Lasso

degree of freedom

Lambda

FIGURE 4.9: Trace of the fitted coefficient that corresponds to a
Lambda set for pressure data

Here lambda is the penalty coefficient in

1
min { Iy~ XBI3 -+ A1l } 6)
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FIGURE 4.10: Cross-validated mean square error after LASSO regres-
sion of saturation data

Trace Plot of coefficients fit by Lasso
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FIGURE 4.11: Trace of the fitted coefficient that corresponds to a
Lambda set for saturation data

4.2.2 Error Prediction Based on LSTM

Based on the construction of LSTM network, we would train the data of one per-
meability at a time. This means the input and output data contain 900 geographic
information at each time step for exactly 199 time steps. Its outstanding ability of
predicting the next time step is just as obvious as its limitation: it needs a lot of in-
dependent training based on different permeability conditions (1) to learn the com-
monality of data under different u sets.

The loss function is defined as the quadratic loss function. If the target is T, then
a quadratic loss function is

Ax) = C(T —x)? A(x) = C(T — x)? (4.7)

for some constant C; the value of the constant makes no difference to a decision, and
can be ignored by setting it equal to 1. This loss function can enhance the weight of
extreme values, and this kind of values appear a lot in the early time steps.

The training set occupies 70 percent of the data, as the following 15 percent set to
be validation and the rest as test group. There are 50 neurons per hidden layer and
at each round one time steps of data will be sent for correlation. The optimization
method is conjugate gradient descent. Although stochastic gradient descent is most
popular among all the converging approaches in NN training, conjugate gradient
descent technique is more suitable in this error model. The reason is that, owing to
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the highly simplification of the governing equation, the original model shows weak
nonlinearity, as the ROM is a linear case, the results in the weak nonlinearity of the
error data. What’s more, the error data shows high convexity and sparsity, because
the ROM has an accuracy of over 90 percent (in general), and the error mainly oc-
curs around the wells, see Fig.4.7. This is a favourable case for conjugate gradient
method. Besides, in the subdomain POD-RBF process, each subdomain is trained
with its direct surroundings, this means its elements are closely related with those
of its neighbour domains, but unrelated with the further subdomains. A major short-
age of using conjugate gradient descent for machine learning problems is that, the
data is often non-convex and it always converges to a local optimal solution, but un-
der this circumstance, this problem is unlikely to happen. Experiments also proved
that conjugate gradient descent has achieved fast and accurate convergence.

The rest hyperparameters are not the main focus of this thesis, so the details are
given directly in the Tab.4.2:

TABLE 4.2: The hyperparameters in LSTM structure and experiment

Description Value

Size of samples 900

Number of samples 199

Training set 70%

Validation set 15%

Test set 15%

Batch size 900,1800

Loss function Mean squared error
Training algorithm conjugate gradient
Number of layers 2

Neurons per layer 900

Dropout rate in input 0

Dropout rate in recurrent connections  20%

Dropout rate in output 20%

Input time intervals 1,2

And the training results are presented in the form of least MSE and linear regres-
sion, as shown in Tab.4.3 and Tab.4.4.

TABLE 4.3: The result in LSTM training of pressure

Input intervals 1 2

MSE in Ul 52441260510.3609  73699422417.9125
MSE in U2 61072675774.1735  107206004385.5059
Regression of all in U1 0.81441 0.50721
Regression of all in U2  0.82974 0.61893

In order to give an intuitive idea of the training process and the result of not
only global data set but also the training, validation and test sets separately, here
are some examples. In the regression figures, values R measure the correlation be-
tween outputs and targets. An R value of 1 means a close relationship, 0 a random
relationship. The horizontal coordinate stands for the target values, and the vertical
coordinate stands for the predicted values. In the MSE figures, the horizontal coor-
dinate is the epoch number, and the vertical coordinate shows the converge process
of MSE.
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TABLE 4.4: The result in LSTM training of saturation

Input intervals 1 2
MSE in Ul 0.00074212  0.00104291
MSE in U2 0.00092031  0.00119702

Regression of allin U1 0.33167 0.30075
Regression of all in U2  0.44884 0.35771

408 Training: R=0.824! .10 Validation: R=0.82703

Output ~= 0.69*Target + 7.2e+04
Output ~= 0.69*Target + 7.7e+04

Target <108

L1058 All: R=0.81441
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0.51*Target + 1e+05
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Output ~= 0.67*Target + 7.6e+04

Target %108 Target 108

FIGURE 4.12: Regression of LSTM predicted pressure data at perme-
ability condition U1, input interval=1

The training set of LSTM NN has 200 samples of 900 elements, this is a small
size in NN training, and for the 2 layer case, could barely cause over-fitting. As
the above results demonstrated, when the time interval equals to 1, it gives better
prediction than when it is 2. The reason could be that: on one hand, the training is
under-fitting, that means when the time interval is 2, there are 500 iterations for one
epoch, only half times of when the time interval is 1, and it is not enough to learn
the data; on the other hand, the time dependence of data maybe not strong enough,
so the influence of under-fitting cannot be countervailed by importing more time
intervals in one batch.
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Best Validation Performance is 52441260510.3609 at epoch 998
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FIGURE 4.13: MSE of LSTM predicted pressure data at permeability
condition U1, input interval=1
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FIGURE 4.14: Regression of LSTM predicted saturation data at per-
meability condition U1, input interval=1

Best Validation Performance is 0.00074212 at epoch 510
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FIGURE 4.15: MSE of LSTM predicted saturation data at permeability
condition U1, input interval=1
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4.2.3 Error Prediction Based on RNN

The following are the predictions made by a tradition RNN and its full-connected
case. The full-connected NN is represented as multi-layer perceptron (MLP). It pre-
dicts the error model at a fixed timing when various of permeability conditions oc-
cur. The ideal error model would be able to predict the error at both new time step
and of new permeability, but in this thesis, this cannot be achieved at the same time,
hence the following models would focus on the prediction of new permeability con-
ditions. Again, The training set takes 70 percent of the data, 15 percent are set to be
validation and the rest as test group. The training method is conjugate gradient with
a quadratic loss function. The following table presents all the details in the structure
and experiment.

TABLE 4.5: The hyperparameters in RNN structure and experiment

Description Value

Size of samples 900

Number of samples 1000

Training set 70%

Validation set 15%

Test set 15%

Batch size 900

Loss function Mean squared error
Training algorithm conjugate gradient
Number of layers 2

Neurons per layer 500

Dropout rate in input 0

Dropout rate in recurrent connections 1 or 0

Dropout rate in output 0
Input series intervals 1
Time step 25, 50, 150

When the forget rate is 1, all previous information is lost. And when it is 0, the
system becomes fully connected, and all the previous parameters are preserved. In
this case, a RNN of same input and output sizes is no different from a fully con-
nected NN of multi perceptron layer, and we call it multilayer perceptron or MLP in
the following content as a distinguish. In Tab.4.6 and Tab.4.7 we present the linear
regression and least MSE of the test results. The time steps are indicated as T1, T2,
T3.

TABLE 4.6: The result in RNN and MLP training of pressure

Dropout rate 1 0

MSEin T1 58354850271.3609  46652505633.6624
MSE in T2 51016490007.1735  35288804315.8402
MSE in T3 50374629649.1735  19128638465.2276
Regression of allin T1 ~ 0.62338 0.78613
Regression of allin T2 0.69192 0.81177
Regression of all in T3  0.69263 0.97133

In order to give an intuitive idea of the training process and the result of train-
ing, validation and test data sets separately, Fig.4.16, Fig.4.17 Fig.4.18 and Fig.4.19
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TABLE 4.7: The result in RNN and MLP training of saturation

Input intervals 1 2

MSE in T1 0.000013925  1.6079x10~5
MSE in T2 0.000027604  0.000022741
MSE in T3 0.000826487  0.000323765
Regression of allin T1  0.48262 0.73444
Regression of all in T2  0.53528 0.78362
Regression of all in T3  0.58391 0.83477

are some examples. In the regression figures, R values measure the correlation be-
tween outputs and targets. When R value is 1, it means a close relationship, while
0 means a random relationship. The horizontal coordinate stands for the target val-
ues, and the vertical coordinate stands for the predicted values. In the MSE figures,
the horizontal coordinate is the epoch number, and the vertical coordinate shows the
converge process of MSE.:
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FIGURE 4.16: Regression of MLP predicted pressure data at time step
150
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Best Validation Performance is 19128638465.2276 at epoch 1000
3

10'
Train
Validation
—Test
e Best
a
0w 1012
E
=
=]
g
£
i}
o
ERL
2
[
3
o
0
&
o 1010
=
10°

o 100 200 300 400 500 600 70O BOO 900 1000
1000 Epochs

FIGURE 4.17: MSE of MLP predicted pressure data at time step 150
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FIGURE 4.18: Regression of MLP predicted pressure data at time step
150

Best Validation Performance is 0.00032376 at epoch 1000
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FIGURE 4.19: MSE of MLP predicted saturation data at time step 150
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4.3 Performance Evaluation

The results in the previous section 4.2 have shown that, LASSO learns to reproduce
the output with a fast convergence, which should not occur in real industry, due to
the non-linearity of the difference between a nonlinear HFM and a linear ROM. The
only good explaination is that, the HFM data itself shows high linearity, and this
could be the result of the highly simplified model.

As for the machine learning techniques, it turns out there is a huge disparity
between pressure and saturation. In both methods, pressure always gives better
result than saturation, and it even reaches a maximum of 97 percent correlation with
the test data. After analysing the original error data, we have noticed that this is
because of the different error location and distribution. The pressure is measured in
the production well, and its errors locate on most grids of the field through out all
time steps. The saturation is measured in the water injection well, which is the single
well in the centre (in this case). According to observation, the saturation error takes
longer time to spread’ to the edge of the field (see Fig.4.7), leaving many grids with
zero error. The large amount of zeros affect the machine learning training process
by misleading it to neglect the larger values, and assigning too much weight to the
blank parts. Besides, the saturation values have a small standard deviation, and 68.3
percent of the values are distributed in the range of one standard deviation, while
95 percent of them are distributed with two times standard deviation. Under this
circumstance, the values within two time’s standard deviation are given much more
weight than the out ranged ones. This also causes the penalty of some rare extreme
values.

Experiments on multiple neural network parameters have also been conducted.
It is surprising that for LSTM training, the result has better accuracy when the time
interval is one, compared to the situation when it is two. This may suggest that
the output values are time independent, or the sample number is so small that the
influence of increasing the epoch number is larger than the influence of enlarging
the epochs.

And by comparing all three methods, we are pity to find that only LASSO can
predict the error based on different permeability conditions and timings, but it only
functions for the linear cases and weak nonlinear cases, and the practical cases are
often highly nonlinear. LSTM predicts the future error of one given permeability
condition based on the trained samples of previous time step under the same per-
meability condition. When it meets a new permeability condition, its coefficients
becomes obsolescent and its usefulness becomes limited. The MLP training was
performed at one certain time step for many permeability conditions, and it gives
good predictions for predicting errors of a new permeability condition. But to ob-
serve the changes through out the whole timeline, it requires n times of trainings,
n represents the number of the time step. Considering the fact that in a MLP sys-
tem, the features in a matrix are extracted more effectively and are fully inherited
by the next state, more features are taken into training while less information is lost.
And since the data set here is not time dependent, the superiority of LSTM is pretty
weak. Thus even though MLP does not train the data as a sequence, its prediction
accuracy is even better. For now this seems to be the most promising method, and
further optimization will be concerned on the MLP training.
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4.4 Model Optimization

In this section, several ways of optimizing the MLP model will be presented, in-
cluding the preprocessing of the data, and the design of loss function and training
method. The purpose is to reduce the number of zeros in the saturation error, to
reduce the weight of the zero values while increasing the weight of non-zero values,
and to reduce the influence of weak correlated values.

441 Transformation

According to statistic, the saturation values have a small standard deviation, and
68.3 percent of the values are distributed in the range of one standard deviation,
while 95 percent of them are distributed with two standard deviation. Under such
circumstance, the values within two standard deviation are given much more weight
than the out ranged ones. However, it happens to be the out ranged values that mat-
ters the most. Therefore, we hope to raise the standard deviation by 'balancing’ the
values in the data set. A transformation by trigonometric function f(X) = arctan(X)
is adopted for preprocessing saturation data, where X represents the training and
test data. Through transforming, the difference of near zero values can be enhanced,
and the abnormal values are shrinked, leading to a fair weight decay, then the val-
ues are more likely to be preserved instead of being penalized. Some examples of
the transformed result are given by Fig.4.20, Fig.4.21, Fig.4.22 and Fig.4.23:
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FIGURE 4.20: Regression of LSTM predicted transformed saturation
data at permeability condition U2
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FIGURE 4.21:

FIGURE 4.22:

FIGURE 4.23:
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4.4.2 Domain Cropping

According to the results in section 4.2, the MLP outcomes of pressure error has
achieved satisfying results, and the remaining issue is to optimize the performance
of LSTM technique and the MLP method for saturation error. One obvious method
is to crop the domain for early timings of data, and attach the size with the changing
speed. This speed is closely related to the permeability condition. Larger perme-
ability means faster water flowing through, and leads to quick changes of the physic
model. As a consequence, the error spreads faster in the domain, and resulting in
a larger area with bigger values. Therefore, the cropping is operated in line with
the data set of the largest permeability. The cropping process operates as follows.
According to observation, the saturation error before time step 50 expends quickly,
after time step 70 it remains on the same area of the field. So cropping could help for
the saturation data before time step 50 in MLP training. Data before this time step is
partitioned into five groups with their furthest time steps set to 5, 10, 15, 25 and 45,
and each group is cropped into one size. As an example, below shows the process
of cropping a saturation data set at time step 25:
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step 25

The results after cropping have an obvious improvement, as in Fig.4.26 and
Fig.4.27:
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FIGURE 4.26: Regression of cropped MLP predicted saturation data
at time step 25

As a comparison, Fig.4.28 and Fig.4.29 present the uncropped results:
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Best Validation Performance is 2.0366e-05 at epoch 1000
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FIGURE 4.28: Regression of MLP predicted saturation data at time
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FIGURE 4.29: MSE of MLP predicted saturation data at time step 25
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4.4.3 Data clustering

Considering the significant influence of permeability condition of the features of the
data, we could apply a data clustering for the early time steps” data, and train each
data group independently. This decreases the interaction of unrelated data in the
correlation process. Here we operated a k-means clustering based on the different
permeability. A major advantage of this method is that, when new permeability
conditions are given, they could be assigned into a suitable cluster by calculate the
values’ distance with the means. The whole data set is divided into three groups.
k-means clustering partitions n values into k clusters and each value belongs to the
cluster with the closest mean. The process goes as follows, given an initial set of k
means 1y, ..., My, the algorithm proceeds by alternating between two steps:

First step: Allocate each value to the cluster whose mean has the least squared
Euclidean distance, this is intuitively the "nearest" mean, see Fig.4.34 and Fig.4.35.
This step can be represented by Eq.4.8:

s = Ly < flvp = m” |

1

< gy —m|? vj,1 < j <k} (4.8)

where each sample value x,is assigned to exactly one cluster s®,
Second step: Compute the new means to be the centres of the values in the new
clusters with Eq.4.9, see Fig.4.36.

(t+1) 1 ,
m; = ]S(t)] Z X; (4.9)

1 x]ESft)

The algorithm converges when the previous clusters stop changing, and new sam-
ples are then clustered into a cell based on the current parameters, see Fig.4.37.
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FIGURE 4.30: 1. Initial
"means” (in this case
k = 3) are randomly
generated within the
data domain (shown
in color). Source:
Wikipedia
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FIGURE 4.31: 2. k
clusters are created
by associating every
observation with
the nearest mean.
The partitions here
represent the Voronoi
diagram generated by
the means. Source:
Wikipedia

The data set is then divided into three groups based on the permeability condi-
tions. Different arrangement of permeability conditions may lead to different clus-
tering terms. As shown in Tab.4.8 is an example of it at time step 50.
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FIGURE 4.32: 3. The FIGURE 4.33: 4. Steps
centroid of each of the 2 and 3 are repeated
k clusters becomes the until convergence has
new mean. Source: been reached. Source:
Wikipedia Wikipedia

TABLE 4.8: The groups at time step 50

Groups number of values

1 508
2 289
3 203

This improves the training results on the training result, compared with a group
of unclustered data of the same size. For the current scale of data, there is little prob-
ability of data overfitting, thus the larger groups give better results than the small
groups, as the statistical methods deeply rely on the amount of its samples. How-
ever, the small groups are also able to yield satisfying result given enough training
samples. As shown in Fig.4.34,Fig.4.35 and Fig.4.36, Fig.4.37 is a comparison be-
tween the training of group one by k-means clustering and of a randomly clustered
group of the same size:
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FIGURE 4.34: MSE of MLP predicted saturation data at time step 50
in group 1
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Chapter 5

Case Study: Applying Error
Models to SAIGUP benchmark
case

In this chapter, an application of the learned error model to a reservoir problem
will be presented. This example uses a reservoir model with 13 wells based on the
SAIGUP benchmark case. Then the predicted error will be added to the ROM, and
a parameter estimation will be performed to estimate the accuracy of the ROM.

5.1 Application to Benchmark SAIGUP Model

We demonstrate the performance of LP-SD POD-RBE, through a modified version
of the SAIGUP benchmark case study containing 13 wells. In what follows, we con-
sider two history matching scenarios that involve: sparse well production data, e.g.,
fluid rate, watercut and bottom hole pressure (BHP), is assimilated; and both well
production data and seismic data, e.g., water saturation in each grid block, are si-
multaneously assimilated for calibrating the SAIGUP model with a large amount of
uncertain parameters. Again, MRST is used to run the full-order model simulations.

5.1.1 Description of model settings

The first layer of SAIGUP model contains 3895 active grid cells and 905 inactive grid
cell. The realistic geological properties, such as faults, are preserved. The reservoir
model describes a waterflooding system in which six production wells and seven
injection wells are placed and labeled from P; to Ps, and I; to I7, they are almost
uniformly located in this reservoir, as shown in Fig.5.1. The details of this system is
described in Tab.5.1.

5.1.2 Description of reduced model procedure

We manually generate 1000 Gaussian-distributed log-permeability. These 1000 log-
permeability fields are used to form the global parameter covariance matric and
local parameter covariance matrices for each subdomain. One of these realizations
is considered to be the truth. In this numerical experiments, 95% global principal
components analysis (PCA) patterns are retained for global parameterization which
result in Ng=48 global PCA patterns. The log-permeability fields are also locally
parameterized with retaining 95% local PCA patterns in each subdomain. The total
number of local PCA coefficients N; = 2321 1;=275. The maximum number of local
PCA coefficients among all subdomains is 15. We divide the entire domain into 20
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TABLE 5.1: Experiment settings using MRST

Description Value

Dimension 40x120x1

Number of wells 6 producers, 7 injectors
Fluid density 1014 kg/m?®, 859 kg /m®
Fluid viscosity 0.4 mP-s,2 mP-s

Initial pressure 25 MPa

Initial saturation S,=0.80, S;,=0.20
Connate water saturation  Sy,=0.20

Residual oil saturation S0r=0.20

Corey exponent, oil 4.0

Corey exponent, water 4.0

Injection rate 200m3/d

BHP 20MPa

History production time 10 year

Prediction time 15 year

Timestep 0.1 year

Measurement timestep 0.2 year

rectangle subdomains (4 subdomains in x direction and 5 subdomains in y direction)
which is also considered to be the base-case.

Finally, 2200 snapshots are collected for pressure and saturation separately. For
each subdomain, two separate eigenvalue problems for pressure and saturation are

solved using POD.

FIGURE 5.1: The illustration of domain decomposition in the 2-D syn-
thetic model for scenario S1
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5.2 Error Modelling for the ROM of Benchmark SAIGUP Model

In the error modeling, pressure, saturation and permeability matrices are normal-
ized and combined into one. The normalized pressure

Pnorm = P = Puin

log-permeability
Unorm — L= Unint
Upax — U

and saturation ’
arctan(S) — arctan(Sin)

arctan(Syax) — arctan(S)

The first error model is based on LASSO. The number of samples is 4800*100*1000,
and the training result looks rather promising:

Snorm =

Trace Plot of coefficients fit by Lasso
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FIGURE 5.2: The fitting process of LASSO model
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FIGURE 5.3: The MSE of LASSO model

The success of LASSO training indicates the weak nonlinearity of this case . The
statistical results shows that the error distribution follows similar pattern as previous
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case. Therefore, the following error model inherits most hyperparameters as the
MLP NN in Chapter 4, and is based on an optimized two layer MLP system.
The hyperparameters are selected as follows in Tab.5.2:

TABLE 5.2: The hyperparameters in the error model

Description Value

Size of samples 2160 or 2880 or 3600
Number of samples 1000

Training set 70%

Validation set 15%

Test set 15%

Loss function Mean squared error

Training algorithm  conjugate gradient
Number of layers 2

Neurons per layer 1000

Time step 255090

The size of this field is larger than the previous case, leading to a huge computing
time. Therefore, the global domain is divided into 20 subdomains, each of which is
of the size 10*24 pixels. The subdomain’s size is the same as that in the domain de-
composition procedure during the POD-RBF order reduction. Since the ROM train-
ing for each subdomain was based on itself and its 4 neighbour subdomains (on the
corners it is trained with two neighbours, and on the edges it is trained with 3 neigh-
bours), the data of the central subdomain is closely related with its neighbours, so is
the error of the ventral subdomain. Thus the error model will follow the same op-
eration as in the MOR, taking five subdomains into the training for the input data,
and one subdomain for the output data, as shown in Fig.5.4.

40 mme

FIGURE 5.4: The domain decomposition in the 2-D synthetic model
for scenario S1, the black lines mark the neighbour subdomains and
the white lines mark the central subdomain

Without loss of generality, we select the marked subdomain in Fig.5.4 to illustrate
the training results of the linear regression and least MSE of the test result. The re-
gression values R measure the correlation between outputs and targets. An R value
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approaches to 1 means a close relationship, and to 0 means a random relationship.
Finally the data has been denormalized to the original scale.

TABLE 5.3: The training result of the MLP error model

Data type pressure saturation
Least MSE in T1=25 1878402649  1.5738x107°
Least MSE in T2=50 1599857444  1.0006x10~5
Least MSE in T3=90 1962749974 1.7559x1075
Regression of all in T1=25 0.97266 0.92758
Regression of all in T2=50  0.958497 0.97352
Regression of all in T3=90 0.996338 0.97613

The linear correlation between the target and prediction is very high, indicating
successful experiment. This is the result from the domain decomposition and sepa-
rate training of subdomains. For smaller domains, the features are easier to be more
completely captured; and for each subdomain, only related neighbour elements are
taken in for training, this excludes the negative impact of unrelated data. What's
more, the well locations in this case is not as special as the case in Chapter 4, and
there is no large area error offset, so the effect of the sparsity is weaker than the

previous case.
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In order to observe the result, the predicted error matrices are added onto the
reduced order matrices as a strengthening, and then compared with the full order
model by parameter estimation. Taking time step 90 and permeability condition 995
(the permeability conditions are created randomly, hence this numbering is mean-
ingless) as an example, we present the full order models, the reduced order models
and the fortified ROMs of pressure and saturation in Fig.5.5 to Fig.5.10.

20 40 60 a0 100 120

FIGURE 5.5: The saturation HFM in the 2-D synthetic model for sce-
nario S1 at time step 90 in the permeability case 995

FIGURE 5.6: The saturation ROM in the 2-D synthetic model for sce-
nario S1 at time step 90 in the permeability case 995
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FIGURE 5.7: The fortified saturation ROM in the 2-D synthetic model
for scenario S1 at time step 90 in the permeability case 995
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FIGURE 5.8: The pressure HFM in the 2-D synthetic model for sce-
nario S1 at time step 90 in the permeability case 995
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FIGURE 5.9: The pressure ROM in the 2-D synthetic model for sce-
nario S1 at time step 90 in the permeability case 995
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FIGURE 5.10: The fortified pressure ROM in the 2-D synthetic model
for scenario S1 at time step 90 in the permeability case 995
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Next, a parameter estimation through least square method is adapted to estimate
the accuracy of the error model. In the function of least square method

min{] = 1/2)"(x; — )2} 6.1)

j=1

x; is the observation at step i, it is obtained by adding a normally distributed noise
to the HFM model. y;=v;, v; symbols the ROM model. Or y; is the fortified ROM at
step 1, y;=0; + ¢, e stands for the error model at this step. As shown in Tab.5.4 is an
example of the parameters of the same model as the previous example:

TABLE 5.4: Polynomial parameters

Description Value

Model ROM Fortified ROM
Case pressure x) 1.9%10°  1.1%10°

Case pressure x; 0.88 0.92

Case pressure regression 0.86286  0.9096

Case saturation x? 0.02 0.013

Case saturation x/ 0.96 0.97

i

Case saturation regression  0.86956  0.92068

The parameter estimation has shown that, the fortified ROM is more closely re-
lated to the observation data, compared with the original ROM, which has proven
the usability of the error model in this case. More comparisons are made in the next
section.

5.3 Comparison and Discussion

There are several conclusions that can be conjectured. One is that subdomain MLP
training would be more precise than the rest methods in our experiments. It is
stronger on collecting features, and less effected by unrelated data. Compared with
RNN, its weakness is on processing sequences such as time series. However, al-
though the input data contains the phenomenon of time evolution, the permeability-
dependent changings we attempt to predict is not a time varying problem, thus MLP
is appropriate and sufficient here. For the two layer MLP, more neurons could di-
rectly lead to better result, from this perspective we would select as many neurons
as possible. However, in deeper NN, this may lead to overfitting, thus a careful
selection of hyperparameter would be required, but this is not the main focus of our
work. The application case study with the bechmark SAIGUP model in this is still
highly simplified and weak nonlinear, so both the LASSO error model and MLP er-
ror model could achieve good result, and the hyperparameter can be inherit from
the case in Chapter 4.

However, MLP is a little out of date now, and people have put more focus on
Convolutional neural network (CNN) for image training problems. This works as
classification, it takes an input image, process it and classify it under certain cat-
egories. It can be combined with RNN so there will be both outstanding ability to
recognize the features and to learn the connection in a series to form stronger predic-
tion. Previous work has also presented a random forest classification combined with
LASSO for regression[6]and achieved significant progress. An interesting direction
to continue the work in this thesis would be combining MLP with RNN.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis has developed and compared the error models for surrogate model in oil
reservoir simulation based on LASSO, LSTM, traditional RNN and fully connected
NN.

The full order model is built by MRST toolbox, and the reduced order model is
built by a subdomain POD-RBF algorithm. The quantities of interest are saturation
and pressure, while the controls are time and permeability. The objective is to predict
the saturation and pressure of the next time step under a new permeability condi-
tion, so both controls have to be considered. Permeability values are distributed on
every grid of the field, and keep as constants through out the time. The prediction
bases on the observation from previous time step, therefore the input of the training
is the saturation or the pressure from time step n, and the target is the saturation or
the pressure of time step n + 1.

The very first procedure is to preprocess the data. Having collected the HFM and
ROM data, we calculate the error by making differences of the HFM and ROM val-
ues. Next, the pressure values and the log-permeability values are normallized, and
saturation values are transformed and normallized for better training performance.
Here, the saturation values are processed by an arctan function additionally, because
statistics have shown that saturation values are distributed in a dense Gaussian dis-
tribution area, which means that 95% of the values are within two times standard
deviation, while most of them are approximate 0. But on the few well locations
are their surroundings, the error can be extremely large in this scale. In the process
of training, it is probable that these rare larger values are penalized and the small
values are overlooked in the current scale. Therefore, we added a trigonometric
function to balance the values.

For LASSO and LSTM systems, the data is ready for training after above proce-
dure. But for RNN and MLP training, there are more options to further process the
data. As RNN and MLP training takes in the values of all permeability conditions at
one time step for each training, and the data show obvious patterns with the ongo-
ing time steps, we could adjust the data according to its current time step. It is not
hard to find that the errors always start from the well location, and spread generally
to fully fill the whole field. This is because in the MOR procedure, the next step data
comes from the previous iterations, and the error accumulates as the number of the
iteration increases, until it reaches the largest at the last time step.

However, the errors are rather small in the early time steps, leaving large ar-
eas in blank. One obvious action would be cutting off these blanks. The explicit
area and shape depends on the exact time step, and can be universalized in sev-
eral different time sections. Permeability also have unneglectable influence on the
spreading speed of saturation error. Physically, permeability means the ability of
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a material (such as rocks) to transmit fluids, the larger it is, the faster fluids travel.
Since saturation relates closely to the oil and water travel speeds, it is highly affected
by local permeability. Therefore, a natural idea is to ‘cut off” the unrelated perme-
ability conditions from the training set. This can be operated by clustering the data
into multiple groups based on the permeability values. The permeability values on
one field is randomly generated according to Gaussian distribution. For this sake,
a k-means clustering is adapted on the permeability values. A suggested number
of groups for 1000 samples is 3. Although precise division could better describe the
permeability’s feature, the size of the training set should be large enough for better
training, thus the number of clusters should not be to large. It is often the case in sta-
tistical methods that the sample number and the precision are linearly related when
it is not overfitted.

The second procedure is to build error models, while the first one is based on
LASSO. For both experiment and application cases, LASSO has achieved surpris-
ingly nice results by reducing the mean square error of the test set to 107°. As a
linear regression, the explanation for such result would be that the error values are
showing weak non-linearity, and since LASSO training takes the whole data set into
training at once, its number of parameter is the largest. The error is defined as the
difference between HFM and ROM data, and ROM data is linear. Through a simple
inference, we would discover that the HFM values show weak non-linearity. And
the origin for this phenomenon is likely to be the highly simplification of the gov-
erning equation.

The second training method is LSTM, a type of RNN that keeps short term mem-
ory for long time. During the training, samples of continuous time steps under one
permeability condition are taken into one batch. The results are quite mediocre,
partly because the sample number is as small as less than 200, also because in our
case RNN feed forward is doing a one to one mapping for vectors, and when there
are dropouts, previous feature information is lost. What’s more, as the previous re-
sults presented, when the time interval equals to 1, it gives better prediction than
when it is 2. When the time interval is 2, there are 500 iterations for one epoch, only
half times of when the time interval is 1, and the time dependence of data is not so
strong as to ignore the influence of under-fitting. The best linear regression of test
data in LSTM has reached 0.82974 for pressure, and 0.61893 for saturation, this is far
less than that in MLP. The lost of features and under-fitting could be the main cause.

In our case, feature loss happens to all RNN training with information loss be-
tween layers. Therefore, a fully connected MLP is taken as replacement. For this
case, we take samples at one time step from different permeability conditions into
a training. Through this, the data behaviour of a new permeability at current time
step could be predicted. It has achieved the best result among all the other mod-
els, because the total inheritance of the previous states is actually necessary for such
prediction. In the experiments in Chapter 4, the linear regression between target
and prediction data has reached 0.97133 for pressure, and 0.93126 for saturation. In
Chapter 5, a domain decomposition is operated on the data set. The whole domain
was divided into twenty subdomains, as same as that in the domain decomposi-
tion procedure during the POD-RBF order reduction. The error model took five
subdomains into the training as the input data, and one central subdomain as the
output data. It was first adapted to fasten the computation, but since the domain de-
composition eliminated the effect of unrelated data, and the changes in subdomains
are easier to capture than the global domain, this helped to achieve high accuracy.
During the training of MLP error model, the linear regression between target and
prediction has reached up to 0.996338 for saturation, and 0.97613 for pressure. After
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the fortification for the POD-RBF model, the linear regression of pressure data has
been improved from 0.86956 to 0.9096, while for saturation data the improvement
was 0.86286 to 0.92068.

Although the error model is proved to be feasible on predicting errors under
different controls (this is permeability in our case, but could also be other values
such as bottom hole pressure), when it comes to predict the error of a new control
under a new time step, the solution in this thesis has to be improved.

6.2 Possible improvement in Future Works

One possible improvement would be combining MLP with LSTM, or convolutional
neural network (CNN) with LSTM. CNN has been developed for long time, and is
popular in image processing field. Considering its advantage on image classification
(that it has sparse connectivity and shared weight to reduce the parameter number
and save computation), We suggest a CNN classification combining with an LSTM
regression for similar problems.






49

Bibliography

[1] Havard Devold. Oil and gas production handbook: An introduction to oil and gas
production, transport, refining and petrochemical industry. Edition 3.0, ABB Oil and
Gas 2013.

[2] Yonggiang Chena, Quan Xiea, Ahmad Saria, Patrick V. Bradyc and Ali Saeedi.
Oil/water/rock wettability: Influencing factors and implications for low salinity water
flooding in carbonate reservoirs. Fuel 215 (2018) 171177.

[3] Dean Olive, Albert Reynolds and Ning Liu. Inverse Theory for Petroleum Reservoir
Characterization and History Matching. Cambridge University Press.

[4] T. Heijn, SPE, R. Markovinovi, Delft University of Technology (DUT), and J.D.
Jansen, SPE, DUT and Shell International Exploration and Production (SIEP). Gen-
eration of Low-Order Reservoir Models Using System-Theoretical Concepts. SPE Reser-
voir Simulation Symposium, 35 February 2003.

[5] Cong Xiao, Olwijn Leeuwenburgh, Hai Xiang Lin, Arnold Heemink. An Effi-
cient Non-intrusive Subdomain POD-TPWL Algorithm for Reservoir History Matching.
Computational Geosciences, 26 November 2018.

[6] Sumeet Trehan. Surrogate Modeling For Subsurface Flow: A New Reduced-order
Model And Error Estimation Procedures. Ph.D. thesis, Stanford University 2016.

[7] Sumeet Trehan, Louis J. Durlofsky. Trajectory piecewise quadratic reduced-order
model for subsurface flow, with application to PDE-constrained optimization. Journal
of Computational Physics 326 (2016) 446473.

[8] Jincong He. Enhanced Linearized Reduced-order Models For Subsurface Flow Simula-
tion. Master thesis, Stanford University 2010.

[9] M.A. Cardoso and L.J. Durlofsky. Linearized reduced-order models for subsurface flow
simulation. Journal of Computational Physics 229 (2010) 681700.

[10] Jan Dirk Jansen and Louis J. Durlofsky. Use of reduced-order models in well control
optimization. Optim Eng (2017) 18:105132.

[11] Sumeet Trehan, Kevin Carlberg and Louis J. Durlofsky. Error modeling for surro-
gates of dynamical systems using machine learning. Int.J. Numer. Meth. Engng 2016;
00:1-32.

[12] Alexander L] Forrester, Andras Sébester and Andy ] Keane. Multi-fidelity opti-
mization via surrogate modeling. Proc. R. Soc. A (2007) 463, 32513269.

[13] Micha Jerzy Rewienski. A Trajectory Piecewise-Linear Approach to Model Order
Reduction of Nonlinear Dynamical Systems. Ph.D. thesis, Technical University of
Gdansk, Poland, 1998.



50 BIBLIOGRAPHY

[14] M. Herrmann. A parallel Eulerian interface tracking/Lagrangian point particle multi-
scale coupling procedure. Journal of Computational Physics 229 (2010) 745759.

[15] Christoph J. Mack, Peter ]J. Schmid. A preconditioned Krylov technique for global
hydrodynamic stability analysis of large-scale compressible flows. Journal of Computa-
tional Physics 229 (2010) 541560.

[16] David J Lucia, Paul I King, and Philip S Beran. Reduced order modeling of a two-
dimensional flow with moving shocks.. Computers and Fluids, 32(7):917938, 2003.

[17] Qifeng Liao And Karen Willcox. A Domain Decomposition Approach For Uncer-
tainty Analysis. SIAM J. SCI. COMPUT.Vol. 37, No. 1, pp. A103A133.

[18] Jeremie Bruyelle and Dominique Guerillot. Neural networks and their derivatives
for history matching and reservoir optimization problems. Computational Geosciences,
18(3-4):549, 2014.

[19] Phani P Chinchapatnam, K Djidjeli, and Prasanth B Nair. Domain decomposition
for time-dependent problems using radial based meshless methods. Numerical Methods
for Partial Differential Equations, 23(1):3859, 2007.

[20] G. Lin, A.M. Tartakovsky, D.M. Tartakovsky . Uncertainty quantification via ran-
dom domain decomposition and probabilistic collocation on sparse grids. Journal of Com-
putational Physics 229 (2010) 69957012.

[21] Janusz S Przemieniecki. Matrix structural analysis of substructures. AIAA Journal,
1(1):138147, 1963.

[22] Xin Bian, Zhen Li, and George Em Karniadakis. Multi-resolution flow simulations
by smoothed particle hydrodynamics via domain decomposition. Journal of Computa-
tional Physics, 297:132155,2015.

[23] Q. Deng, V. Ginting, B. McCaskill, P. Torsu. A locally conservative stabilized contin-
uous Galerkin finite element method for two-phase flow in poroelastic subsurfaces. Jour-
nal of Computational Physics 347 (2017) 7898.

[24] Jaehun Leea and Maenghyo Cho. An interpolation-based parametric reduced order
model combined with component mode synthesis. Comput. Methods Appl. Mech. En-
grg. 319 (2017) 258286.

[25] Mickaél Duval, Jean-Charles Passieux, Michel Salaiin and Stéphane Guinard.
Non-intrusive Coupling: Recent Advances and Scalable Nonlinear Domain Decomposi-
tion. Arch Computat Methods Eng (2016) 23:1738.

[26] Knut-Andreas Lie. An Introduction to Reservoir Simulation Using MATLAB. SIN-
TEF ICT, Departement of Applied Mathematics, Oslo, Norway:.

[27] Oddvar Lia, Henning Omre, Hakon Tjelmeland, Lars Holden and Thore Ege-
land. Uncertainties in Reservoir Production Forecasts. AAPG Bulletin, V.81, No.5(May
1997),P.775-802.

[28] Zhong Y. Wan, Pantelis R. Vlachas, Petros Koumoutsakos, Themistoklis P. Sap-
sis. Data-assisted reduced-order modeling of extreme events in complex dynamical sys-
tems. 1 Department of Mechanical Engineering, Massachusetts Institute of Tech-
nology, Cambridge, MA, USA 2 Chair of Computational Science, ETH Zurich,
Zurich, Switzerland.



BIBLIOGRAPHY 51

[29] Paul D. Arendt and Daniel W. Apley and Wei Chen. Improving Identifiability in
Model Calibration Using Multiple Responses. Wei Chen, MD-11-1367, 1.

[30] Sepp Hochreiter. Long Short-term Memory. Article in Neural Computationt De-
cember 1997.

[31] Tracey B, Duraisamy K, Alonso ]J. Application of supervised learning to quantify
uncertainties in turbulence and combustion modeling. 51st AIAA Aerospace Sciences
Meeting, vol. 259, 2013.

[32] Weatheritt ], Sandberg R. A novel evolutionary algorithm applied to algebraic mod-
ifications of the RANS stress-strain relationship. Journal of Computational Physics
2016; 325:22-37.

[33] Duraisamy K, Zhang Z], Singh AP. New approaches in turbulence and transition
modeling using data driven techniques. 53rd AIAA Aerospace Sciences Meeting 2015;
doi:10.2514/6.2015-1284.

[34] Arvind T. Mohan* and Datta V. Gaitonde. A Deep Learning based Approach to
Reduced Order Modeling for Turbulent Flow Control using LSTM Neural Networks.

Mechanical and Aerospace Engineering, The Ohio State University, Columbus,
OH.

[35] Thomas Fischer and Christopher Krauss. Deep learning with long short-term mem-
ory networks for financial market predictions. European Journal of Operational Re-
search, Volume 270, Issue 2, 16 October 2018, Pages 654-669.

[36] Saimadhu Polamuri. How Random Forest Algorithm Works in Machine Learning.
https://dataaspirant.com/2017/05/22/random-forest-algorithm-machine-learing/

[37] Botros N Hanna, Nam T. Dinh, Robert W. Youngblood and Igor A. Bolotnov.
Coarse-Grid Computational Fluid Dynamic (CG-CFD) Error Prediction using Machine
Learning. Journal of Fluids Engineering 2017.

[38] Botros N Hanna, Nam T. Dinh, Robert W. Youngblood and Igor A. Bolotnov.
LASSO: A feature selection technique in predictive modeling for machine learning. Ad-

vances in Computer Applications (ICACA), IEEE International Conference, 24-24
Oct.2016.

[39] Martin Drohmann And Kevin Carlberg. The Romes Method For Statistical Model-
ing Of Reduced-order-model Error. JUQ. December 2014.

[40] Trevor Hastie and Robert Tibshirani and Jerome Friedman. The Elements of Sta-
tistical Learning. Second Edition, Springer.

[41] Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani. An Intro-
duction to Statistical Learning. Springer.



	Abstract
	Acknowledgements
	Introduction
	Research problem
	Data source
	Objective
	Outline of this thesis

	Introduction to the Surrogate Model
	Construction of the Physical Based Model
	Construction of the Surrogate Model

	Statistical Methodology
	LASSO
	Recurrent Neural Network
	Long Short-Term Memory

	Error Modelling 
	Data Acquisition
	Error Prediction
	Error Prediction Based on LASSO
	Error Prediction Based on LSTM
	Error Prediction Based on RNN

	Performance Evaluation
	Model Optimization
	Transformation
	Domain Cropping
	Data clustering


	Case Study: Applying Error Models to SAIGUP benchmark case
	Application to Benchmark SAIGUP Model
	Description of model settings
	Description of reduced model procedure

	Error Modelling for the ROM of Benchmark SAIGUP Model
	Comparison and Discussion

	Conclusions and Future Work
	Conclusions
	Possible improvement in Future Works


