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Introduction
Imagine running a simple regression in any statistical soft
ware of choice—but this time, you only get a point estimate 
of the regression coefficient. There is no standard error, no 
confidence interval, no P-value, and no diagnostics like the F- 
statistic or R2. Such limited software output would not be 
very useful: a point estimate alone, without any accompany
ing statistical inference, is inadequate for meaningful conclu
sions. Consequently, most statistical software currently 
provides, by default, additional information beyond the point 
estimate to support users in their interpretation. While cer
tain considerations may still be absent from current statistical 
software output (e.g. modeling assumptions), it is at least 
worth recognizing that significant efforts have already been 
made over the past decades.

In contrast, when the goal is causal inference, software out
put to support this goal has been largely absent. For instance, 
when reviewing widely used statistical software for causal in
ference, we found that none explicitly report the underlying 
causal assumptions, and indicative diagnostics to facilitate 
the assessment of these assumptions are rarely provided ei
ther. Yet, providing a causal effect estimate without reference 
to the causal assumptions is incomplete reporting of a result, 
similar to how reporting just a point estimate for statistical 
inference does not provide enough information to judge a 
claim. This is not merely an observation confined to software 
reporting; in fact, it is intrinsically linked to the widespread 
underreporting of causal analyses in empirical research. 
Many examples have been described in which explicit causal 
methods were employed, yet the corresponding causal 
assumptions were ignored or insufficiently discussed [1–3]. 
Even when assumptions were mentioned, diagnostics were 
frequently absent or inappropriately evaluated. For example, 
studies applying inverse probability treatment weighting of
ten do not inspect covariate balance or do so inappropriately 
[4, 5]. While there may undoubtedly be various explanations 
for this, the lack of support in software output is one likely 
contributing factor, which could be addressed effectively.

Providing information relevant for interpreting a causal ef
fect estimate directly in the reported output has the potential 
to improve the quality and transparency of applied causal in
ference. Our goal is therefore to initiate a dialogue about de
sirable conventions concerning the output obtained from 
software for causal inference, particularly regarding what in
formation should be reported to provide users the greatest 
support. In our opinion, relevant causal information that 
software should additionally report on includes: (i) the causal 
estimand, (ii) results from estimators that rely on different 
modeling assumptions, and (iii) the corresponding causal 
assumptions alongside relevant diagnostics. We will discuss 
each component in detail, explaining why we believe that 
reporting on it contributes to safer causal inference. To guide 
this discussion, we have developed an R function that demon
strates one possible implementation of this. We have called 
this function CarefullyCausal and it is available at: 
https://github.com/mauricekorf/CarefullyCausal. Before pre
senting our suggestions, we will first review typical output 
generated by software for causal inference to outline cur
rent practices.

Review of software output in causal inference
Our review of popular causal inference functions in R, SPSS, 
STATA, and SAS revealed that the target estimand is gener
ally not reported or only broadly defined, only a single esti
mator is typically considered, none explicitly mention the 
causal assumptions in the output, and relevant diagnostics 
are rarely provided by default (Supplementary Table S1, 
Supplementary section A–C). For example, in R, when using 
the tmle package [6] for targeted maximum likelihood esti
mation, which explicitly estimates causal effects, it returns al
most exclusively information relevant to statistical inference. 
The only information relevant to causal inference is a label of 
the estimate and the range of the estimated propensity score. 
Although it labels the estimated effect as an additive treat
ment effect among the entire population (ATE), among the 
treated (ATT), or among the controls (ATC), it makes no 
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mention of the conditions under which we can interpret the 
estimated quantities as such, nor are any relevant diagnostics 
reported. As another example, the mediation package [7] 
used for causal mediation analyses reinforces the general ob
servation that no information relevant to causal inference 
other than the effect estimates is provided. However, on a 
positive note, it does offer an option to do sensitivity analyses 
for the existence of unobserved pre-treatment covariates, al
though no active call or mention of this is provided in the de
fault output. Another encouraging aspect was identified in 
the ivreg package [8], used for instrumental variable regres
sion, as it reports diagnostic tests by default (e.g. “weak 
instrument,” “Wu-Hausman,” and “Sargan”) along with 
their corresponding values. It remains, nevertheless, an ex
ception rather than the rule, and apart from reporting those 
diagnostics, no further causal inference-related information 
was provided.

These observations are not necessarily specific to R soft
ware, but are also, to the best of our knowledge, true of SPSS, 
STATA, and SAS. For instance, base SPSS does not offer an 
explicit interface for causal analyses, and thus a user is re
quired to follow interfaces designed for statistical inference 
only [9]. Since SPSS provides no support for explicit causal 
analyses, external macros have been developed for specific 
applications, such as the causal mediation macro by Valeri 
and VanderWeele [10]. However, despite these additions, the 
capabilities remain constrained by SPSS’s design, with causal 
analysis output limited to effect estimates. In contrast to 
SPSS, base STATA does offer a point-and-click interface for 
causal analyses. While this interface improves user intuitive
ness for conducting causal analyses, it still omits the underly
ing causal assumptions both in the pre-analysis interface and 
the reported output. Moreover, although users can select in 
the interface whether to estimate the ATE, ATT, or potential- 
outcome means, no estimand is specified in the output, nor 
are diagnostics provided [11]. Similar to STATA, SAS pro
vides functions specifically designed for causal analyses, 
encompassing not only treatment effect estimation but also 
the construction of causal graphs with features such as identi
fying valid adjustment sets. However, despite the range of 
available causal functionalities, the software’s reported out
put remains primarily oriented toward statistical inference. 
While some functions label estimates as ATE or ATT and 
provide access to diagnostic tools, the output does not sys
tematically report the underlying causal assumptions, the 
specification of the estimand, estimates obtained from multi
ple estimators, or the contextual information necessary for 
interpreting the diagnostics [12].

Although we have primarily highlighted the general lack of 
support in software when estimating causal effects, we also 
wish to emphasize that there are exceptions, such as the 
DoWhy library [13], although it is designed for Python. In 
fact, we do not assert that there are no exemplary cases; 
rather, our point is that such examples are exceptions, not 
the rule, while we believe that this is something that should 
be encouraged. We pose there is an opportunity to advance 
the quality of applied causal inference through software by 
making it easier to do the right thing and making it harder to 
make mistakes [14].

Software output of a causal analysis
Determining which information to include in the reported 
output requires balancing the need for sufficient detail with 
maintaining clarity and conciseness, while also accounting 
for software limitations. Considering this, we believe the fol
lowing information to be both important and feasible to inte
grate: (i) the causal estimand, (ii) results from different 
estimators that rely on different modeling assumptions, and 
(iii) the causal assumptions alongside diagnostics. To demon
strate one possible way how this might be integrated in soft
ware, we present an example function, CarefullyCausal, 
and apply it to the NHEFS data [15, 16], where we hypothet
ically evaluate the effect of quitting smoking (qsmk) on 
weight change between 1982 and 1971 (wt82_71) while 
adjusting for a specified set of variables (see Supplementary 
section D for details). We start by executing the following 
minimal call in R: 

Output <- CarefullyCausal(wt82_71 � qsmk þ
race þ sex þ education þ smokeintensity þ
smokeyrs þ wt71 þ exercise þ active þ age, data 
¼ df, exposure ¼ "qsmk", family ¼ "gaussian")

The causal estimand
An estimand is a precise description of the target quantity 
that would answer the research question and should be de
cided on before the analysis, as it guides the study design, es
timator selection, and informs whether the research question 
has been adequately answered. There are many available 
resources to help define an estimand (e.g. [17–20]), yet, even 
in the reporting of randomized trials, estimands remain for 
the most part poorly defined [21, 22].

Statistical software is designed to implement estimators and 
typically does not mention an estimand. This could be because, 
having chosen an estimator, it is assumed that the user is aware 
of their estimand. This could also be because many aspects of 
an estimand, particularly causal ones, cannot be inferred from 
the information provided to an estimator function. For exam
ple, the target population, duration and timing of exposure, the 
precise definition of the exposure, and the follow-up period [21] 
are among many aspects of the estimand that cannot be implied 
from the inputs to the estimator. However, some information 
about an estimand can still be inferred. If a user chooses a func
tion that explicitly estimates a causal effect, this choice implies 
that the user is targeting a causal estimand. The user must di
rectly input and therefore make explicit the outcome, exposure 
variable, and adjustment set. The choice of estimator will also 
imply an effect measure. Even if this information should already 
be known to the user, reporting even these aspects of an esti
mand in the software’s output can serve as a useful reminder of 
the estimand being targeted, particularly the fact that the esti
mand contains counterfactual quantities. Stating the causal esti
mand clearly may alleviate some confusion between predictive 
and causal questions observed in the literature [23]. This re
minder may also help alleviate some of the taboo around using 
causal language in research questions [24], and it might prevent 
the use of associational language for the research question when 
the goal is clearly causal, such as is the case with the use of 
TMLE or mediation analyses [25, 26].
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In short, we argue that reporting the causal estimand in soft
ware output can be of added value. In CarefullyCausal, 
this is reported on the first line of output and is inferred from a 
user’s input arguments, including the outcome of interest, the 
exposure variable, causal contrast, and adjustment set, as illus
trated below. 

Estimand: Average Treatment Effect
E[wt82_71̂ qsmk¼1] - E[wt82_71̂ qsmk¼0]

Adjustment set: race, sex, education, smokein
tensity, smokeyrs, wt71, exercise, active, age
�Please see output at $Estimand_interpretation  
for details

Results under different modeling assumptions
An estimator is the process used to get an estimate of the esti
mand from data. Different estimators can be used for similar 
causal estimands (e.g. standardization, g-estimation, inverse 
probability of treatment weighting), each relying on different 
modeling assumptions. In most statistical software functions, 
only a single estimator is implemented.

There are benefits to using more than one estimator to an
swer the same causal question. When the estimates from dif
ferent estimators targeting the same estimand differ by an 
important amount, it is an indication that the assumptions 
for at least one estimator are violated. When such differences 
are observed between estimators, the user should investigate 
potential reasons for these disagreements. Of course, lack of 
substantial differences is no guarantee that the estimates are 
unbiased or that all models are well-specified, although it 
may sometimes be argued that the bias resulting from model 
misspecification is unlikely to be of the same magnitude and 
direction for all models [15]. By providing estimates that rely 
on different modeling assumptions, a more informed judg
ment can be formed as compared to when using a sin
gle estimator.

Therefore, we recommend that causal software, when pos
sible, include estimates from multiple estimators that rely on 
different modeling assumptions. As an example, in 
CarefullyCausal, we have integrated the following esti
mators: outcome regression, inverse probability of treatment 
weighting, two different standardization approaches, and tar
geted maximum likelihood estimation. Given the different 
estimators, CarefullyCausal outputs a single table with 
the estimate of the average treatment effect from each estima
tor as well as the relevant information for statistical infer
ence, such as the standard error, confidence interval, as well 
as S-values [27, 28] and P-values. The table of estimates does 
not include coefficients for the adjustment variables, which 
may help users avoid the Table 2 fallacy [29].
Treatment effect:

Reference exposure level: 0

Please evaluate whether the difference be
tween the lowest estimate: 3.3183 and highest: 
3.4482 is of substance, given the nature of the 
data. If so, evaluate the different modeling 
assumptions underlying each estimator.

Causal assumptions and diagnostics
Causal studies inevitably target unobservable quantities (e.g. 
counterfactuals), and therefore we must always make untest
able causal assumptions to draw causal conclusions from 
data. When the causal assumptions are not explicitly 
addressed in a study, a reader may be tempted to draw much 
stronger conclusions than is warranted. Some causal assump
tions are almost always reported, e.g. no uncontrolled con
founding, while others are less often mentioned, e.g. 
positivity and consistency [1, 30]. Confronting the user with 
these assumptions helps minimize the possibility that the user 
reports their results without at least having considered and 
mentioned the causal assumptions required. After all, causal 
assumptions are the cornerstone on which causal inference 
relies, not simply an afterthought to be mentioned in the dis
cussion after the analysis is done.

Accordingly, we suggest that causal software report the 
causal assumptions in the output. As an illustration, in 
CarefullyCausal, we print the causal assumptions imme
diately, by default, below the table of estimates so that the 
user is reminded that any causal interpretation given to the 
table of estimates requires those assumptions to be satisfied 
[15]. Rather than print a generic version of the assumptions, 
we apply the assumptions to the user’s context. We use sim
ply stated versions of the assumptions tailored to the user’s 
analysis by replacing words such as “exposure” and 
“outcome” with the corresponding input variable names in 
the analysis. In addition to printing the assumptions below 
the estimates, in the saved output from the function, there are 
more detailed explanations provided, including a paragraph 
that contains all assumptions together (again, tailored to the 
variables in the analysis). This paragraph is a good starting 
point for a paragraph stating the assumptions in the methods 
section of the user’s report/manuscript. Shown below is an 
example of the output generated by CarefullyCausal:

To interpret these effects as causal, the following key 
assumptions must be satisfied: 

[1] Conditional exchangeability requires that 
adjusting for "race, sex, education, smokeinten
sity, smokeyrs, wt71, exercise, active, age" is 
sufficientto eliminate all confounding and se
lection bias between "qsmk" and "wt82_71." See 
the covariate balance table ($Assumptions 
$exchangeability$covariate_balance) in the 

Estimate Std. error P-value S-value 95% CI, lower 95% CI, upper

qsmk1 outcome regression 3.381 0.441 0.000 44.858 2.517 4.246
qsmk1 IPTW 3.318 0.494 0.000 35.198 2.351 4.286
qsmk1 S-standardization 3.381 0.426 0.000 Inf 2.599 4.268
qsmk1 T-standardization 3.448 0.474 0.000 Inf 2.514 4.371
qsmk1 TMLE 3.370 0.494 0.000 Inf 2.401 4.339
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saved output and the corresponding explanations 
($Assumptions$exchangeability$explanation).

[2] Positivity: is satisfied when both exposed 
and unexposed individuals are observed within 
every stratum of variables adjusted for (race, 
sex, education, smokeintensity, smokeyrs, wt71, 
exercise, active, age). This can be evaluated 
using the propensity plots saved in the output at 
$Assumptions$positivity$plots (or identically 
use the ps.plot() function), the table below 
($Assumptions$positivity$ps_table) and the 
corresponding explanation at $Assumptions 
$positivity$explanation.
Note: PS¼propensity score

PS range for 1
observed exposure: 0 0.0338, 0.6520
observed exposure: 1 0.0685, 0.7709

[3] Consistency: implies that exposure 
’qsmk’ must be sufficiently well-defined so 
that any variation within the definition of 
the exposure would notresult in a different 
outcome. See $Assumption$consistency for a 
more in-depth explanation and examples.

[4] No Interference: assumes that the 
exposure“qsmk” applied to one unit does not 
affect the outcome of other units.

[5] No measurement error: assumes that all vari
ables were measured without substantial error, 
such that no substantial measurement bias is 
present. See $Assumptions$no_measurement_ 
error for a further discussion.

[6] Well-specified models: assumes that any 
models used are well-specified meaning that 
they include all relevant non-linearities 
and/or statistical interactions.

To further support the assessment of the respective 
assumptions, CarefullyCausal provides indicative diag
nostics for the causal assumptions when possible with accom
panying explanations to help with interpretation. These 
include balance plots, balance tables, propensity score sum
mary tables, and propensity score plots. Directly providing 
relevant diagnostics not only helps those less familiar with in
terpretation but also aims to enhance reporting of diagnostics 
in general, as it is reasonably common that studies do not re
port any diagnostics related to the assumptions or that it is 
reported incorrectly [1, 4, 5].

Discussion
Statistical software has a role to play in the adoption of 
causal inference. Much as statistical software provides sup
port to the user for correct statistical inference, it can also 
provide support for correct causal inference. We propose that 
support for applied causal inference should involve expand
ing the reported output to include: (i) the causal estimand, (ii) 
results from different estimators that rely on distinct model
ing assumptions, and (iii) the causal assumptions alongside 
relevant diagnostics. We have demonstrated one possible 

implementation of this approach through our developed R 
function, CarefullyCausal. We want to emphasize, how
ever, that this function is merely one possible implementation 
of our suggestions, with both the design and content open to 
discussion. For instance, while CarefullyCausal currently 
presents all output at once, a stepwise reporting approach 
might be more suitable. A two-step approach could first dis
play the estimand, assumptions, and relevant diagnostics, en
couraging the user to review these elements thoroughly 
before showing the statistical output. Alternatively, users 
could be required to pre-specify a primary estimator to miti
gate post-hoc cherry-picking when multiple estimates are pre
sented, though this may come at the cost of transparency in 
detecting bias arising from misspecification of the nuisance 
model. Such design considerations, along with determining 
what information would be most helpful to users, are worth 
investigating further.

On a higher level, the aim is to promote more comprehen
sive reporting of causal results in empirical research. The 
ideas discussed would ideally be integrated into both existing 
and new functions, packages, or software, each possibly 
adopting its own approach for implementing these ideas. 
However, we would be remiss to ignore the possibility that 
providing more causal information in software output could 
potentially disincentivize users from properly pursuing causal 
inference education because they can use the output as a 
crutch. For instance, we tailor the output and assumptions to 
the user’s context, but that also makes it easier to simply 
copy into a manuscript without properly understanding or 
considering the plausibility of the causal assumptions. This 
phenomenon also occurs with statistical inference [31, 32]. 
Such uncritical use would hopefully be caught by co-authors, 
at the peer review stage, or by an astute reader. It could be ar
gued that, even in the worst-case scenario where a user would 
uncritically copy and paste the causal assumptions into their 
manuscript, this is still an improvement over a manuscript 
that does not include the causal assumptions at all. Even if 
the ultimate goal is to get researchers to discuss and scrutinize 
their assumptions, simply mentioning all assumptions is a 
step in the right direction.

There may also be a challenge of self-selection, as those 
users who are already aware that their question is causal 
would be more likely to use functions specifically designed 
for causal inference, including CarefullyCausal. The real 
challenge is reaching researchers who know their actual aim 
is causal but do not know how to address this appropriately, 
or even researchers who are trying to answer causal questions 
but are not aware of it because they have been trained to only 
use associational language. Unfortunately, there is no easy so
lution for this, except that the more statistical software 
includes information about causal inference, the more often 
researchers will be exposed to carefully thinking through the 
estimand, estimators, and assumptions in causal inference.

In summary, we hope to initiate a conversation about the 
role of software in causal inference. We have developed a 
function to demonstrate one possible form this could take: 
CarefullyCausal. Using such a function could enhance 
applied causal inference by not only making it more accessi
ble and more careful but also by promoting transparency 
through increased reporting of assumptions. Including causal 
inference information in software output should by no means 
act as a substitute for existing resources for learning and us
ing causal inference, but as a complement. The point is to 
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question the current causal inference output conventions, re
gardless of the software used, and to show how providing 
more information on causal inference in statistical output 
may help make causal inference safer. We encourage current 
software designers and maintainers to reconsider the role of 
causal inference in their output, as it can lower the barriers to 
careful causal inference in applied research.
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