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Molecular interpretation of nonclassical gas dynamics of dense vapors
under the van der Waals model
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The van der Waals polytropic gas model is used to investigate the role of attractive and repulsive
intermolecular forces and the influence of molecular complexity on the possible nonclassical gas
dynamic behavior of vapors near the liquid-vapor saturation curve. The decrease of the sound speed
upon isothermal compression is due to the well-known action of the van der Waals attractive forces
and this effect is shown here to be comparatively larger for more complex molecules with a large
number of active vibrational modes; for these fluids isentropic flows are in fact almost isothermal.
Contributions to the speed of sound resulting from intermolecular forces and the role of molecular
complexity are analyzed in details for both isothermal and isentropic transformations. Results of the
exact solution to the problem of a finite pressure perturbation traveling in a still fluid are presented
in three exemplary cases: ideal gas, dense gas and nonclassical gas behavior. A classification scheme
of fluids based on the possibility of exhibiting different gas dynamic behaviors is also proposed.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2196095�
I. INTRODUCTION

The theoretical and numerical study of nonclassical gas
dynamics is an active research field. Recent advancements
�see, e.g., Menikoff and Plhor,1 Cramer,2 and Kluwick3 for
reviews� sparked some new attempts to experimentally
verify the most dramatic of the predicted unconventional gas
dynamic phenomena in a single-phase dense vapor, namely
the existence of rarefaction shock waves �see, e.g., Refs.
4–7�. A wealth of literature also reports analytical and nu-
merical results regarding many different unconventional gas
dynamic effects. Nozzle and simple geometries are treated in
Refs. 8–12. Shock tube flows are treated, e.g., in Refs.
13–15. Two-dimensional flows exhibiting nonclassical ef-
fects through turbine cascades were simulated in Refs.
16–18.

As a preliminary introduction to the present study, the
basic elements of the theory of shock formation in a nonideal
compressible gas are briefly recalled, see, e.g., Hayes19 and
Thompson.20 Figure 1 illustrates the propagation of a
compression-rarefaction simple wave in a compressible me-
dium. Denoting by w the �local� speed of propagation of a
weak pressure disturbance, one has w=u+c, being u the lo-
cal fluid velocity and c the local speed of sound defined as

c2 � − v2� �P

�v
�

s
,

where v and s are the specific volume and entropy, respec-
tively, and P is the pressure. From the theory of characteris-
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tics, see, e.g., Ref. 21, along each characteristic curve C− the
Riemann invariant R−=u−F, with

F = F�P; s̄� = �
Pref

P v��; s̄�
c��; s̄�

d� , �1�

is constant and therefore du=dF in the whole flow field.
Substituting du=dF= �v /c�dP from �1� and dc
= ��c /�P�sdP=−�v /c�2��c /�v�sdP in dw=du+dc, yields22

dw = 	v
c

−
v2

c2� �c

�v
�

s

dP =

v
c

�dP , �2�

where � is the fundamental derivative of gas dynamics23 de-
fined as

� � 1 −
v
c
� �c

�v
�

s
. �3�

Equation �2� shows that compression waves �dP�0� steepen
�dw�0� to form a compression shock only if ��0. This is
indeed the case for a perfect or polytropic ideal gas, i.e., an
ideal gas with constant isochoric specific heat. For an ideal
gas �= ��+1� /2=const�1, where �=cP /cv�1 is the ratio
of the �constant� isobaric and isochoric specific heats cP and
cv, respectively. Conversely, rarefaction waves �dP�0�
eventually form a rarefaction shock only if ��0. In the spe-
cial case �=0, dw�0 across both compression and rarefac-
tion waves, and the wave profile propagates in time with no
distortions. These cases are summarized in Table I and
sketched in Fig. 2.

Nonclassical wavefields can therefore occur only pro-
vided that the fundamental derivative of gas dynamics � be-
comes negative. In addition, situations more complex than

those depicted in Fig. 2 are possible, with � changing sign
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ense or copyright; see http://pof.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.2196095
http://dx.doi.org/10.1063/1.2196095
http://dx.doi.org/10.1063/1.2196095


056101-2 P. Colonna and A. Guardone Phys. Fluids 18, 056101 �2006�

Downlo
during the flow evolution, thus leading to a wealth of differ-
ent gas dynamic flow fields, including mixed nonclassical
waves, split shocks and double sonic shocks, as reviewed,
e.g., by Menikoff and Plhor.1 A detailed description of wave
propagation in vapors exhibiting both positive and negative
� regions, including the effects of viscosity and thermal con-
ductivity, is given by Cramer and Kluwick.25

Although experimental evidence of nonclassical gas dy-
namics in two-phase vapor/liquid26–30 or solid/solid31 sys-
tems has been documented in the past decades, no experi-
mental proof of nonclassical phenomena in the vapor phase
is currently available, with the only exception of the experi-
ment of Borisov et al.5 in 1983, see also Kutateladze et al.32

Yet the interpretation of the results presented in Refs. 5 and
32 has been challenged by Cramer,33 Thompson,29 Fergason
et al.34,35 and the observed wavefield is now believed to be
related to both critical point and two-phase nonclassical ef-
fects.

Fluids that are believed to exhibit a negative � region in
the vapor phase are also known as BZT vapors from Bethe,
Zel’dovich, and Thompson who pioneered the subject of
nonclassical gas dynamics theory.20,36,37

Many authors employed various equations of state with
different levels of complexity and accuracy to demonstrate
that, for some high molecular weight fluids, there exists a
region at high reduced temperature and pressure close to
saturation in which � becomes negative, see, e.g., Refs. 22,
33, and 38–40. Examples are given by the fluids selected for
experimental scrutiny of rarefaction shocks in the vapor
phase and include hydrocarbons, per-fluorocarbons,34,35 and
more recently siloxanes.12,39,41 In the cited references it is
noted that, by substituting the definition of the speed of
sound into �3�, one also has

FIG. 1. Propagation of a right-running one-dimensional compression-
rarefaction profile. Initial conditions at time t=0 �dark gray� in the x-P plane
and representative characteristic lines of the C+ and C− in the x-t plane.
Shading �light gray� in the x-t plane indicates the nonuniform flow region.

TABLE I. The classical and nonclassical wave character for different values
of the fundamental derivative of gas dynamics �, see, e.g., Ref. 24.

��0 dP�0 ⇒ dw�0 Compression shock

dP�0 ⇒ dw�0 Rarefaction �isentropic� wave

�=0 dP�0 ⇒ dw=0 Stationary wave profiles

��0 dP�0 ⇒ dw�0 Compression �isentropic� wave

dP�0 ⇒ dw�0 Rarefaction shock
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� =
v3

2c2� �2P

�v2 �
s
,

and therefore � is negative if the isentropes in the volume-
pressure plane are concave down. This situation is reversed
with respect to the well know ideal polytropic gas case, as
shown in Fig. 3 where the region of negative � and
��2P /�v2�s is illustrated for cv /R=50.

The argument usually presented to provide a physical
explanation to the possibility of observing nonclassical gas
dynamic behavior in the vapor phase is as follows. In a re-
gion close to the liquid-vapor critical point and for volumes
higher than the critical one, the isotherm in the v-P plane
presents a downward curvature �see, e.g., the critical iso-
therm in Fig. 3�. In fluids with high isochoric specific heat,
an isentropic transformation is almost isothermal, since from
thermodynamics one has

FIG. 2. Evolution of a compression-rarefaction profile for ��0 �left�, �
=0 �center� and ��0 �right�, from Ref. 20. Dotted lines indicate character-
istic lines belonging to the C+ family in the x-t plane. Pressure P is the gauge
pressure with respect to pressure P0; the fluid velocity is zero where
P= P0.

FIG. 3. The negative � region �BZT region� in the reduced pressure-reduced
specific volume thermodynamic plane for a polytropic van der Waals fluid
with cv /R=50. Several isentropes are also indicated as dashed lines and they
highlight that the BZT region corresponds to the region in which they are

2 2
curved downward, i.e., �� P /�v �s�0.
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� �T

�v
�

s
= −

T

cv
� �P

�T
�

v
.

Therefore, the higher the cv, the more the isentropes will
approach the isotherms, to eventually coincide with the latter
in the limit cv→�. The negative curvature of the isentropic
curves is therefore as that of the isotherms. This explanation
is termed in the following as the thermodynamic or phenom-
enological interpretation. In Refs. 22 and 40, the thermody-
namic explanation is extended to include other macroscopic
properties, such as different models for a temperature-
dependent cv, the critical compressibility factor Zc, the
Reidel parameter �, and the acentric factor 	, in addition to
the constant isochoric heat capacity considered in earlier
works.

In the present study, the attention is shifted from the
thermodynamic viewpoint to the molecular or microscopic
one, to elaborate an explanation directly in terms of the basic
molecular characteristics, including vibrational degrees of
freedom and intermolecular attractive/repulsive forces. To
this purpose, the simple van der Waals gas model, which is
characterized by a direct relation between the equation of
state parameters and the molecular features, is used to eluci-
date the physical mechanism acting at molecular level that is
responsible for the inversion of the gas dynamic behavior in
compressible flows of high molecular weight fluids.

To conclude the introduction to shock wave formation in
nonclassical flowfields, it should be noted that across a
�right-running� rarefaction wave the fluid velocity always de-
creases �du= �v /c�dP�0� due to the action of the negative
pressure difference across the wave; from �3�, for � to be
negative and a rarefaction shock wave to be eventually
formed �dw�0�, the speed of sound is therefore required to
increase. In particular, dc� �du�. Note that in a perfect gas, c
always decreases across a rarefaction wave. A nontrivial re-
sult from the thermodynamic theory of BZT vapors is that
three different situations can possibly occur in the vapor
phase.20 In the classical regime and for ��1, the speed of
sound decreases across isentropic rarefactive processes and
the well-known ideal gas dynamic behavior of compression
shocks and isentropic rarefaction wave is encountered. For
��0, nonclassical rarefaction shocks or isentropic compres-
sion wave are predicted. In between, therefore for 0���1,
there exists an intermediate region in which only classical
gas dynamic phenomena are possible, but the speed of sound
dependence on the density is reversed with respect to that of
an ideal gas. In Table II, the relation between the sound

TABLE II. Relation between the fundamental derivative of gas dynamics �
and the speed of sound derivative along the isentropes, with corresponding
classifications of the gas dynamic flow field �Ref. 20�. The conditions
��c /�v�s�0, which can be verified only in flows of nonideal gases, is nec-
essary but not sufficient for nonclassical flow fields to be possible.

��1 ��c /�v�s�0 Classical �ideal gas� behavior

0���1 0� ��c /�v�s�c /v Classical �nonideal gas� behavior

��0 ��c /�v�s�c /v Nonclassical behavior
speed derivative and � is summarized.

aded 26 Aug 2010 to 131.180.130.114. Redistribution subject to AIP lic
Not surprisingly, the peculiar behavior of the speed of
sound in a real gas plays a major role in the determination of
its nonclassical gas dynamic character. The first part of this
work is therefore devoted to the study of the speed of sound
in the vapor phase and to investigate the relation of the speed
of sound and of its derivative with respect to density with
parameters describing molecular features. To this purpose,
isothermal transformations are first considered because the
role of molecular parameters can easily be put into evidence.
The limiting case of molecules with a very large number of
available degrees of freedom provides the bridge connecting
isothermal to isentropic transformations. Finally, some rel-
evant behaviors with respect to the propagation of finite per-
turbations are classified and the corresponding analytical so-
lutions are presented. A classification of vapors based on the
possibility of displaying some or all the possible gas dy-
namic behaviors is also proposed.

II. THE POLYTROPIC VAN DER WAALS MODEL
AND MOLECULAR CHARACTERISTICS

The pressure and internal energy equations of state
�EOS� as originally stated by van der Waals are

P�T,v� =
RT

v − b
−

a

v2 , �4�

e�T,v� = cvT −
a

v
. �5�

In the above equations R, R=R /M, is the gas constant, with
M as the molecular weight and R=8.314 J / �mol K� univer-
sal gas constant, a is a gas-dependent parameter related to
long range attractive intermolecular forces, b is related to
short range repulsive intermolecular forces, and cv is the iso-
choric specific heat, which is constant under the polytropic
assumption considered here. Note that in the case of the van
der Waals EOS cv���e /�T�v is a function of the temperature
only and therefore, for asymptotic consistency with the dilute
gas conditions, the function cv=cv�T� is the same in the ideal
gas state and in dense states.

By imposing the stability conditions at the critical point,
i.e., ��P /�v�T=0 and ��2P /�v2�T=0, the fluid-dependent pa-
rameters a and b in the equations of state can be expressed in
terms of the gas constant R and the critical pressure Pc and
temperature Tc as follows:

a =
27

64

R2Tc
2

Pc
, b =

1

8

RTc

Pc
. �6�

The van der Waals equation of state can be rigorously de-
rived using a statistical mechanics approach from an inter-
molecular potential having in fact a repulsive and an attrac-
tive contribution �see, e.g., Ref. 42�.

The polytropic assumption implies that cv is constant.
The correctness of such an approximation in the evaluation
of thermodynamic properties of dense gases has been already
discussed in Refs. 22 and 40. This approximation is justified
in the present study, given the small range of temperatures in
which � is negative. As a quantitative example, if one con-

siders a rarefaction shock occurring in a PP10 �Pf-
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perhydrofluorene, C13F22� flow entirely enclosed in the nega-
tive � region, the corresponding temperature decrease is of
about 3 K.43 According to the simplified nonpolytropic
model considered in Ref. 43, this causes a change of about
0.23% in the value of the specific heat.

Attractive forces, repulsive forces, and heat capacity are
related in a complicated way to molecular complexity. Table
III shows the values of a and b and 
=R /cv�Tc�, for several
fluids listed in order of increasing molecular weight. The
coefficients a and b provide a measure of the strength of
intermolecular forces per unit mass and therefore their value
depends on the molecular weight. To appreciate the relation
between molecular complexity and attractive and repulsive
forces acting on a single molecule, the following coefficient
per unit mole

A = a · M2 and B = b · M ,

must be considered: values of A and B are also reported in
Table III. From the table it is therefore apparent that the
heavier the molecule, the greater attractive and repulsive in-
termolecular forces tend to be. Note that the increase in the
molecular weight M more than overcome the increase of
intermolecular forces �A and B� acting on each molecule and
therefore the mass-specific van der Waals parameters a
=A /M and b /M are found to decrease with increasing mo-
lecular weight.

For the following treatment it is useful to consider the
van der Waals equation of state in the nondimensional form

Pr�Tr,vr� =
8Tr

3vr − 1
−

3

vr
2 . �7�

In the above equation Pr, Tr and vr are, respectively, the
reduced pressure, temperature, and specific volume,

TABLE III. Molecular weight M, critical pressure Pc and temperature Tc, di
active degrees of freedom N=2/
=2cv /R, van der Waals coefficients A and

Fluid
M

�g/mol�
Pc

�bar�
Tc

�K� 
 N

H2 2.02 13.0 33.2 0.4329 4.6

He 4.00 2.3 5.2 0.6671 3.0

CH4 16.04 46.1 190.6 0.3309 6.0

H2O 18.02 220.6 647.1 0.2908 3.9

N2 28.01 34.0 126.2 0.3862 5.2

O2 32.00 50.4 154.6 0.4121 4.9

CO2 44.01 73.8 304.2 0.2855 7.0

Toluene 92.14 39.9 591.8 0.0452 44.3

Octane 114.20 24.3 568.8 0.0273 73.3

Decane 142.29 20.6 617.7 0.0205 97.5

Dodecane 170.34 17.7 658.2 0.0164 121.6

D4 296.62 13.3 586.5 0.0157 127.6

PP5 462.00 17.1 565.2 0.0156 128.5

PP10 574.00 15.8 632.2 0.0128 156.2
defined as
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Tr =
T

Tc
, Pr =

P

Pc
and vr =

v
vc

, �8�

with vc specific volume at the critical point. Correspond-
ingly, the dimensionless EOS parameters a and b read

ar =
a

Pcvc
2 = 3 and br =

b

vc
=

1

3
. �9�

Under the van der Waals approximation therefore the attrac-
tive and repulsive force parameters in the reduced form do
not depend on the fluid under consideration.

The compatible equation for the internal energy in terms
of reduced variables reads

er�Tr,vr� =
8

3

Tr



−

3

vr
, �10�

where er=e / �Pcvc� and 
=R /cv. Therefore, the complete
polytropic van der Waals model in reduced form depends
only on the value of the dimensionless reciprocal specific
heat 
.

The value of 
 is related to the number N of active
degrees of freedom of a molecule. Considering only the
translational, rotational and vibrational degrees of freedom,
the number Navail. of available degrees of freedom is a linear
function of the number of atoms Q constituting the molecule,
namely, Navail.=6Q−5−�, with �=−2,0 ,1 for monatomic,
linear polyatomic and nonlinear polyatomic molecules, re-
spectively. At a given temperature, N can be lower than
Navail., i.e., not all the available modes are activated, see, e.g.,
Ref. 44.

According to the energy equipartition principle,44 at a
given temperature, each fully activated degree of freedom
contributes R /2 to the overall value of the isochoric specific

onless reciprocal specific heat 
=R /cv evaluated at the critical temperature,
er unit mole� and a and b �per unit mass� for several fluids.

A
�Pa m6/mol2�

B
�105 m3/mol�

a
�Pa m6/105 kg2�

b
�m3/kg�

0.025 2.65 605.9 1313.9

0.003 2.35 21.4 587.4

0.230 4.30 89.3 267.9

0.554 3.05 170.5 169.1

0.137 3.86 17.4 137.7

0.138 3.19 13.5 99.6

0.366 4.28 18.9 97.3

2.558 15.40 30.1 167.3

3.886 24.35 29.8 213.0

5.388 31.09 26.7 219.0

7.127 38.59 24.6 226.9

7.531 45.76 8.6 154.5

5.455 34.40 2.5 74.3

7.394 41.68 2.2 72.5
mensi
B �p
heat, so that cv=NR / �2M� or, from the definition of 
,
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 =
2

N
.

It is worthwhile pointing out that, because at a given tem-
perature vibrational degrees of freedom can be partially ac-
tivated, N can also assume noninteger values. Moreover, 

does not depend on the molecular weight M but only on the
number of active degrees of freedom of the molecules,
namely, on the complexity of the molecule.

The above discussion leads us to define molecular com-
plexity as the number of the active degrees of freedom of a
molecule. For a polytropic van der Waals fluid, N �or 
� is
the only parameter that is available to distinguish among
different substances. The classification of BZT fluids using
the molecular complexity N, instead of the value of cv or M
as it is standard practice in the literature, is introduced here
in view of the use of more complex gas models that include
additional molecular parameters to represent the thermody-
namic behavior.

It is important to observe from Table III that the molecu-
lar weight is directly related to the molecular complexity for
fluids belonging to the same class. However, lighter mol-
ecules can be more complex than heavier molecules, when-
ever they are formed by a larger number of atoms. Consider,
e.g., methane �CH4, M =16.04 g/mol� and molecular oxygen
�O2, M =32.00 g/mol�. The number of atoms and hence
Navail. is higher for methane, though its molecular weight is
lower; correspondingly, the value of N for CH4 is higher than
that for molecular oxygen. The same reasoning can be ap-
plied to PP10 and D4, two fluids taken into consideration for
the experimental demonstration of BZT effects: PP10 has
almost twice the molecular weight of D4 but the two mol-
ecules have almost the same degree of complexity leading to
almost the same value of N.

III. SPEED OF SOUND IN THE VAPOR PHASE

The expression for the speed of sound as a function of
the temperature and the specific volume can be obtained
from its definition c2�s ,v��−v2��P /�v�s and from the van
der Waals model �4� as

c2�T,v� = �1 +
2

N
�RT	 v

v − b

2

−
2a

v
. �11�

In order to study the influence of molecular characteristics, it
is convenient to express c as the sum of the contributions
from the ideal gas sound speed and of terms related to the
effects of �both� van der Waals forces, namely

c2 = cideal
2 + 
crep

2 + 
cattr
2 ,

where the contributions of the ideal gas term and of the two
van der Waals corrections accounting for repulsive and at-
tractive forces are

cideal
2 �T� � �1 +

2 �RT � 0,

N
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crep
2 �T,v� � �1 +

2

N
�RTb

2v − b

�v − b�2

= cideal
2 �T�b

2v − b

�v − b�2 � 0, �12�


cattr
2 �v� � −

2a

v
� 0.

From the expressions above it can be noted that, differently
from the dilute gas model, in which the sound speed is a
function of the temperature only, the sound speed depends
also on the specific volume if attractive and repulsive inter-
molecular forces are accounted for. The relative magnitude
of the contributions to the dimensional speed of sound in Eq.
�12� is illustrated in Fig. 4.

In particular, the different contributions to the value of c
can be discussed as follows:

Ideal gas contribution: From the viewpoint of the kinetic
theory of gases, cideal

2 �T� in Eq. �12� is related to the molecu-
lar interaction associated with elastic collisions. Their effect
increases with temperature because the average molecular
speed scales with �T, and it is independent of v, in accor-
dance with the ideal gas assumption of dimensionless �point-
wise� molecules. Thus, cideal

2 �T� is constant along isotherms.
Influence of repulsive forces (b): From �12�, the repul-

sive forces connected with the presence of the constant b are
seen to contribute positively to c2: at a given temperature and
specific volume the speed of sound calculated by taking into
account repulsive forces is higher with respect to that based
on the ideal gas assumption. Moreover, as the specific vol-
ume tends to the molecular volume, this contribution tends to
infinity. The limiting case vr→br= 1

3 , corresponds to the situ-
ation of highest possible density, namely, no further com-

FIG. 4. Dimensionless speed of sound along the critical isotherm as a func-
tion of the reduced specific volume for the van der Waals gas and for the
ideal gas for N=50. The dense gas contributions to the speed of sound as in
relation �12� are also shown.
pression is possible. The compressibility of the substance is

ense or copyright; see http://pof.aip.org/about/rights_and_permissions



056101-6 P. Colonna and A. Guardone Phys. Fluids 18, 056101 �2006�

Downlo
therefore zero and, correspondingly, the sound speed goes to
infinity.

Influence of attractive forces (a): Attractive long range
forces increase the compressibility of a fluid and therefore
the speed of sound of a substance under the influence of
attractive forces is lower than that of an ideal gas in the same
thermodynamic state, see Eq. �12�. As expected, the com-
pression of a number of molecules is made easier if they are
interacting attractively.

Relation between molecular complexity
and the sound speed value

To analyze the influence of molecular complexity, it is
more convenient to recast the expression �12� for the speed
of sound in nondimensional form, namely,

cr
2 =

8

3
�1 +

2

N
�	 3vr

3vr − 1

2

−
6

vr
� 0, �13�

where cr
2=c2 /�Pcvc. The contributions stemming from the

ideal gas behavior and the repulsive and attractive intermo-
lecular forces read

cr,ideal
2 �Tr� =

8

3
�1 +

2

N
�Tr � 0,


cr,rep
2 �Tr,vr� = cideal

2 �Tr,vr�
6vr − 1

�3vr − 1�2 � 0, �14�


cr,attr
2 �vr� = −

6

vr
� 0.

The relations above allow to compare the properties of dif-
ferent substances at the same reduced conditions. The ideal
gas and repulsive forces contributions include the factor 1
+2/N which reduces with increasing molecular complexity.
The above is not surprising, since the ideal and repulsive
contributions are connected with the internal energy of the
translational modes, namely, to the average molecular speed
squared; the more complex the molecule is, the more vibra-
tional modes are available to store the energy, at the ex-
penses of the translational terms. In other words, the energy
transfer associated with the density perturbation is partly ab-
sorbed by the molecules, so that the more complex the mol-
ecule is, the greater is its capacity to absorb energy and the
less energy is transferred to the translational modes which
are responsible for sound propagation.

Figure 5 is useful to compare the influence of molecular
complexity on the value of the sound speed for different
fluids. In reduced terms the value of cr along the critical
isotherm inversely depends on molecular complexity and for
more complex molecules the decrease of c with decreasing
specific volume before critical conditions is seen to be stron-
ger. Figure 6 shows that the same holds also for the dimen-
sional quantities. In this respect, note that the reducing factor

for the speed of sound is �Pcvc or �8RTc /3 and that, at least
for fluids belonging to the same family, both R and Tc usu-
ally increase with the molecular weight or complexity, see

Table III. Correspondingly, the speed of sound at the same
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reduced conditions is lower for more complex molecules. It
is worthwhile recalling that the polytropic van der Waals
model fails to give an accurate representation of the thermo-
dynamic properties in the dense vapor region but neverthe-
less the picture portrays faithfully the qualitative influence of
molecular complexity on the sound speed.

IV. SPEED OF SOUND ALONG ISOTHERMAL
TRANSFORMATIONS

The existence of nonclassical gas dynamic phenomena is
related to the dependence of the speed of sound c on the
specific volume and not on the absolute value of the speed of
sound itself. The analysis of the derivative of c is now per-
formed in two steps. First, isothermal transformations are

FIG. 5. Dimensionless speed of sound along the critical isotherm for fluids
selected from Table III.

FIG. 6. Speed of sound along the critical isotherm for fluids selected from

Table III, cf. Fig. 5.
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considered, for simplicity and to establish a direct connection
with basic thermodynamic principles. Then, in the next sec-
tion, isentropic compressions and expansions are addressed.

The variation of sound speed with the specific volume
along the critical isotherm and the relative importance of the
contributing terms are shown in Fig. 4 for a fluid with N
=50. The ideal gas contribution to the dimensionless speed
of sound is constant and equal to 2.77. At vr=3 for example,
the repulsive forces contribute an additional 0.74, while the
contribution of attractive forces is negative and equal to −2;
the dimensionless van der Waals speed of sound at vr=3 is
therefore equal to 1.51, i.e., almost half of the corresponding
ideal-gas value. In the dense gas region �1�vr�1.5� attrac-
tive forces dominate; at lower specific volumes, the increase
in the strength of the repulsive forces is more than compen-
sated by that of attractive ones and the speed of sound even-
tually decreases. For specific volumes lower than the critical
one, the opposite is true, and the sound speed increases with
decreasing specific volume. A minimum value for the speed
of sound is therefore attained at the critical point, where the
compressibility goes to infinity.

In order to further analyze the dependence of c on v, it is
useful to introduce the following dimensionless derivative


 � −
v
c
� �c

�v
�

T
. �15�

For a van der Waals fluid, a direct evaluation gives


�Tr,vr� = 6
vr

cr
2	�4 +

8

N
� Trvr

�3vr − 1�3 −
1

2vr
2
 . �16�

The state of minimum sound speed is obtained from the con-
dition 
=0.

FIG. 7. Dimensionless speed of sound along supercritical isotherms and
locus of the thermodynamic states in which ��c /�v�T=0 �
=0� for N=50.
For T�Tlim= �N / �N+2�� 27

8 Tc, the sound speed is a monotone decreasing
function of the specific volume. The saturation curve is also shown.
Figure 7 shows that, for supercritical temperatures, the
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minimum value is attained at specific volumes higher than
the critical value. More precisely, the higher the temperature,
the higher the specific volume for the minimum sound speed,
due to the higher value of the ideal gas and of the repulsive
force contributions, see relations �14�. Figure 8 shows sev-
eral iso-
 lines for a van der Waals fluid with N=50 and the
limiting isotherm Tlim= �N / �N+2�� 27

8 Tc above which no
minimum can be found. Figure 9 displays the loci of the

FIG. 8. Lines at constant 
 plane and the limiting isotherm Tlim= �N / �N
+2�� 27

8 Tc in the Pr-vr.

FIG. 9. Saturation curve and 
=0 curves for different values of the param-
eter N, ranging from N=3, corresponding to the lowest possible value of N
for monatomic gases, to the limit case, N→�, corresponding to the ideal-
ized situation of molecules with an infinite number of internal degrees of
freedom. In the regions where 
�0 the speed of sound decreases with

decreasing v along an isotherm, i.e., real vapor effects can manifest.
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minima of the speed of sound in the Pr-vr plane for several
values of N. Since the saturation curve is independent of N,
in Fig. 9 all possible van der Waals fluids are considered,
from the simplest monatomic gas �N=3� to the limiting case
of molecules with an infinite number of internal degrees of
freedom �N→��. For thermodynamic states above the 

=0 line, 
�0 and the speed of sound increases on isother-
mal compressions; inside the 
�0 region, the opposite is
true. Note that a region in which 
�0 exists for all possible
van der Waals fluids and that the size of the 
�0 region
increases with N.

As revealed by Eq. �16�, the magnitude of the speed of
sound variation with respect to the specific volume depends
heavily on molecular complexity: in the 
�0 region, the
greater N, the more negative is 
. In fact in a given reduced
thermodynamic state, the positive contribution of the first
term �4+8/N��Trvr / �3vr−1�3� decreases with N, while the
second term, 1/vr

2, remains constant. Moreover, the factor
6vr /cr

2 increases with decreasing N because cr
2 decreases

with N.
It can be deduced therefore that more complex mol-

ecules tend to have smaller absolute values for the speed of
sound in the same reduced state �see Sec. III�, but greater
variations of c with density. This is due to the combined and
mutual effect of repulsive and attractive forces together with
the influence of molecular complexity. It is this strong varia-
tion of the speed of sound with density, although only along
isentropic transformations, which determines the possibility
of nonclassical phenomena in the vapor phase.

V. SPEED OF SOUND ALONG ISENTROPIC
TRANSFORMATIONS

As outlined in the Introduction, the insights gained by
relating the sound speed along isothermal transformations to
molecular parameters can be extended to isentropic transfor-
mations. The bridge connecting isothermal and isentropic
transformations is represented by the N→� limit, namely,
the idealized case of a molecule with an infinite number of
degrees of freedom. For N→� isentropic transformation are
isothermal and therefore the explanations put forward in the
previous section hold also for isentropic transformations. In
fact, by recalling the thermodynamic identity

� �T

�v
�

s
= −

T

cv
� �P

�T
�

v
,

since thermodynamic stability implies cv�0 and ��P /�T�v
�0, the temperature is found always to decrease on isentro-
pic expansion and to increase on isentropic compression for
fluids with any finite value of N.

Beside the idealized case of molecules with an infinite
number of atoms, it is interesting here to consider substances
characterized by a high value of N, i.e., fluids made of com-
plex molecules such as D4 �octamethylcyclotetrasiloxane,
��CH3�2SiO�4� with N=127.4 or PP10 �Pf-perhydrofluorene,
C13F22� with N=156.3. In this case indeed along isentropic
transformations the temperature variation is very limited and
this allows us to extend the conceptual results established for

isothermal transformations in the preceding section.
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Similarly to the previous isothermal analysis, the contri-
butions of the ideal gas term and of the repulsive and attrac-
tive forces can be written as functions of the reduced specific
entropy sr and volume vr as

cr,ideal
2 �sr,vr� = 2K0,r

N + 2

N2

exp�2sr/N�
vr

2/N � 0,


cr,rep
2 �sr,vr� = cr,ideal

2 �sr,vr�	� 3vr

3vr − 1
�2+2/N

− 1
 � 0,

�17�


cr,attr
2 �vr� = −

6

vr
� 0,

where sr=s /R is the reduced entropy and K0,r is a constant.
Note that the repulsive forces contribution is always positive,
since vr�b /vc=1/3 and N�0. The sign of the three contri-
butions are unchanged, with the ideal term and repulsive
forces providing a positive contribution to the speed of sound
while the attractive term is always negative.

To investigate the effect of molecular parameters on the
variation of the sound speed along isentropes, the dimension-
less derivative

� � −
v
c
� �c

�v
�

s
�18�

can be analyzed. For a polytropic van der Waals gas the
above expression becomes

��Tr,vr� = − 54�1 +
2

N
� Trvr

�3vr − 1�3� 1

N
+

1

3vr
� +

6

vr
,

�19�

which is expressed here as a function of the reduced tem-
perature Tr and the specific volume vr to facilitate the com-
parison with its isothermal counterpart 
.

If ��0, the sound speed decreases on isentropic com-
pression, a necessary but not sufficient condition for nonclas-
sical gas dynamic phenomena to occur. Following
Thompson,24 the �=0 locus is indicated hereinafter as the
acoustic line; in fact, through isentropic compressions/
expansions occurring along the �=0 line the speed of sound
remains constant as in the acoustic approximation.

In the idealized case of N→�, ��
, and the ��0
region in Fig. 10 is coincident with the 
�0 region in Fig.
9. The difference between the 
�0 and ��0 regions aug-
ments as N is decreased, as shown in Fig. 10.

The possibility for the sound speed to decrease on iso-
thermal compression is related to the action of intermolecu-
lar attractive forces, with the molecular motion �ideal gas
contribution� and the contribution of repulsive forces acting
in the opposite direction. Both the ideal gas and repulsive
terms are linearly increasing functions of the temperature �cf.
Eq. �17��. Across isothermal compressions or expansions, the
ideal gas contribution to the speed of sound remains con-
stant, whereas in isentropic transformations the cideal

2 term in
Eq. �17� varies, since the specific volume varies. In particu-

2
lar, cideal increases on compressions and decreases on
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expansion. Note that cideal
2 appears also in the expression of

the repulsive term 
crep
2 ; correspondingly, changes in 
crep

2

are amplified by the temperature difference across the wave
in contrast with isothermal transformations. For a given fluid
and thermodynamic state therefore � is always greater
than 
.

Figure 11 shows that there exists a minimum value of N
allowing for the existence of a ��0 region in the vapor
phase. Vapors allowing for ��0 regions are defined as high
molecular complexity �HMC� fluids in the following, to un-

FIG. 10. 
=0 and �=0 �acoustic line� loci for two different values of the
molecular complexity N. As N→�, the two curves become one and the
same curve.

FIG. 11. Acoustic line ��=0� for different values of molecular complexity
N. The minimum value of NHWM=7.57, for which a region of negative �

exists is also indicated.
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derline the fact that a necessary condition for � to be nega-
tive in the vapor phase is that the fluid molecules must be
complex, i.e., the values of N must be high �N�NHMC


7.57�. This value has been found by Kluwick,45 who also
showed a nonmonotone dependence of the speed of sound in
isentropic expansions through nozzle for fluids with N
�NHMC
7.57. From Table III, for example, toluene and oc-
tane, together with heavier substances, are HMC fluids under
the van der Waals model.

Nonclassical gas dynamics phenomena occur if the wave
speed decreases across an isentropic compression wave. This
happens if the reduction in the speed of sound is greater than
the increase of the fluid velocity past the wave, i.e., −dc
�du. ��0 is a more restrictive condition with respect to
��0. In fact, from the definition of the fundamental deriva-
tive of gas dynamics �3�

� = � − 1

and therefore ���, 
. For a given fluid, i.e., for a given
value of the parameter N, the ��0 region is therefore
smaller than the ��0, as depicted in Fig. 12.

The ��0 region, in which nonclassical gas dynamics
phenomena are possible, is largest for N→�; for smaller
values of N, the size of the ��0 region reduces, as shown in
Fig. 13. For N=NBZT
33.33, the �=0 line is tangent to the
saturation curve; for N�NBZT, nonclassical gas dynamic be-
havior is forbidden, at least in the vapor phase.

The expression of the fundamental derivative of gas dy-

FIG. 12. Acoustic line ��=0, i.e., �=1� and �=0 locus for a van der Waals
fluid with N=50.
namics for a van der Waals fluid,
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��Tr,vr� =

�1 +
1

N
��1 +

2

N
� 3Trvr

�3vr − 1�3 −
1

vr
3

�1 +
2

N
� Tr

�3vr − 1�2 −
2

3

1

vr
3

,

is reported here for completeness.
As a final remark, the isothermal approximation of a van

der Waals fluids turns out to be indeed very favorable as far
as nonclassical characteristics are concerned, since it corre-
sponds to the idealized situation N→�. The isothermal van
der Waals model can be therefore assumed to feature a sim-
plified system of equations, namely the P system.46 It fol-
lows that the P system for the isothermal van der Waals gas
can be used to study analytical or numerical solutions exhib-
iting nonclassical features in a conveniently simplified con-
text. In one spatial dimension, the P system is in fact consti-
tuted by only two equations �whereas the full Euler equation
system has three� and allows for the formation of acoustic
waves only, with no contact surfaces.

VI. VAPORS CLASSIFICATION AND WAVE
PROPAGATION

The theoretical developments shown in the preceding
sections lead to identify three possible gas dynamic behav-
iors in isentropic flows for van der Waals fluids depending on
the derivative of the speed of sound with respect to the den-
sity. More precisely, these different gas dynamic behavior are
associated with three different thermodynamic regions which
are delimited by the isolines �=1, namely, �=0, and �=0.
Although the ��1 region exists for all fluids, the 1��
�0 and ��0 regions exist in the vapor phase only provided
that the fluid is complex enough under a molecular point of
view. More precisely, fluids with N�NHMC
7.57 allow for

FIG. 13. Dependence of the �=0 curve on N. For N�NBZT, the ��0
region is entirely embedded in the region of liquid-vapor equilibrium.
a 1���0 region in the vapor phase whereas fluids charac-
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terized by N�NBZT
33.33 exhibit both the 1���0 and
��0 regions, in addition to the ��1 that exists for all van
der Waals fluids.

Therefore, a classification of fluids �or fluid vapors� can
be based on the possibility for a certain fluid to display all
three thermodynamic regions, with associated peculiar gas
dynamic behaviors, or two or only one. Within the van der
Waals approximation, this is solely determined by the mo-
lecular complexity N. The proposed classification is as fol-
lows:

Low molecular complexity (LMC) vapors: Regardless of
the value of N, all van der Waals vapors allow for the speed
of sound to decrease on isothermal compression, in a region
located near the liquid-vapor saturation curve. If N�NHMC


7.57 however the speed of sound can only increase on
isentropic compression and decrease on isentropic expansion
therefore it changes its value as the wave speed �see Sec. I�.

High molecular complexity (HMC) vapors: Vapors char-
acterized by N�NHMC
7.57, such as, for example, toluene
�cf. Table III� display a thermodynamic region in which the
speed of sound decreases on isentropic compressions and
increases on expansions. The wave speed changes as in the
classical case, that is, increases on compressions and de-
creases on rarefaction, because the modulus of the difference
in the speed of sound across the wave, which is opposite in
sign to that of the fluid velocity, is lower than that of the fluid
velocity itself.

Bethe-Zel’dovich-Thompson (BZT) vapors: If N�NBZT


33.33, there exists a region near the liquid-vapor saturation
curve, where gas dynamic behavior is reversed with respect
to the usual behavior encountered in the gas dynamics, viz.
gas dynamics of perfect gases. For example, due to the
strong decrease in the speed of sound across a compression
wave, which is higher in modulus than the increase in the
fluid velocity, the wave speed reduces across compression
and increases across rarefaction; compression waves spread
as isentropic compression fans and rarefaction waves steepen
to form rarefaction shocks.

The three fluid families are summarized in Table IV.
Note that, even though the information provided by the use
of the van der Waals model is not quantitatively accurate, the
qualitative conclusions can be held as general.

As an illustration of these concepts, the propagation of a
rarefaction wave for three exemplary case is now considered.
The model fluid is D4 �N=127.6�NBZT� which allows for all
possible situations, namely, the LMC, HMC, and BZT be-
havior under the van der Waal model. They can be observed

TABLE IV. Classification of fluid vapors based on the existence of thermo-
dynamic regions characterized by different behaviors of the speed of sound
on isentropic transformations. For polytropic van der Waals fluids the only
molecular parameter which determines the fluid class is the molecular com-
plexity given by the number of active degrees of freedom N.

Low molecular complexity �LMC� vapors 3�N�NHMC

High molecular complexity �HMC� vapors NHMC�N�NBZT

Bethe-Zel’dovich-Thompson �BZT� vapors N�NBZT
by suitably selecting the initial and final states across the
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rarefaction wave. These are summarized in Fig. 14, where
three different rarefaction waves, namely, A -B, C -D, and
E -F, are shown, together with the saturation curve and the
�=1 and �=0 boundaries. In all cases a rarefaction wave
moves from left to right: the fluid on the right of the pertur-
bation is still �states A, C, and E�, while the perturbation puts
the fluid �states B, D, and F� into motion in the opposite
direction.

Figure 15 shows the solution for the right-running A -B
wave in terms of the pressure P, the fluid velocity u, the

FIG. 14. Exemplary cases of an expansion wave traveling from left to right
in a still van der Waals fluid �D4, N=127.6�. Thermodynamic states in the
Pr-vr plane relative to the cases presented in Figs. 15–17. Unperturbed states
are indicated with A, C, and E states past the expansion are indicated with B,
D, and F.

FIG. 15. LMC behavior: isentropic expansion with states belonging to the
��1 region �cf. Fig. 14�. The sound speed c slightly decreases past the
perturbation therefore the wave speed w also decreases. The velocity of the
fluid u and the pressure P are also shown as a function of the spatial

coordinate.
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sound speed c, and the wave speed w=u+c profiles. Since
��1, classical LMC behavior is observed, which is qualita-
tive coincident with that of an ideal polytropic gas, with all
the considered variables decreasing across the rarefaction
wave.

The exact solution to the traveling wave problem has
been computed as follows. The Euler equations for com-
pressible nonviscous fluids are first written in the following
advection form:36

�w

�t
+ A�w�

�w

�x
= 0, �20�

with

w = �v

u

s
� and A�w� =�

u − v 0

v� �P

�v
�

s
u v� �P

�s
�

v

0 0 u
� ,

�21�

for the primitive variables specific volume v, fluid velocity u,
and specific entropy s. The continuous solution across a rar-
efaction wave from state w0= �v0 ,u0 ,s0�T, state A here, is
obtained by determining the integral curves47 of the hyper-
bolic system �20�, namely, the curves tangent in any state
point to the vector field of the eigenvector of A�w� associated
with the considered wave. In the case under consideration,
the rarefaction wave A−B is a 3-wave and the associated
eigenvalue and right eigenvector are ��w�=u+c�s ,v� and
r�w�= �v ,−c�s ,v� ,0�T, respectively. The integral curve w���
of the 3-wave is therefore obtained as the solution of the
following system of ODE:

dw

d�
=

r�w�
r�w� · ���w�

=
r�w�

c�s,v���s,v�
, �22�

with �= �� /�v ,� /�u ,� /�s�T, under the condition ��w����=�
and the initial condition w��0�=w0, with �0=��w0�=u0

+c�s0 ,v0�, which immediately gives s=s0 and reduces to the
two following systems of ODE:

dv
d�

=
v

c�s0,v���s0,v�
with v��0� = v0,

du

d�
= −

1

��s0,v�
with u��0� = u0 .

The first equation is separable and can be solved by simple
quadrature to give the following implicit definition of the
solution v���,

��v� = u0 + c�s0,v0� + �
v0

v c�s0,��
�

��s0,��d� . �23�

Substituting now the function v��� in the ODE for the fluid
velocity u and eliminating the variable � by introducing the

48
change of variable �→v��� immediately gives
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u�v� = u0 − �
v0

v c�s0,��
�

d� . �24�

In accordance with the isentropic character of the transfor-
mation, the pressure along the rarefaction wave is then com-
puted as

P�v� = �P0 +
a

v0
2��v0 − b

v − b
�1+2/N

−
a

v2 ,

with p0= P�s0 ,v0�. The solution procedure outlined above re-
quires numerical quadrature to evaluate the integral in Eqs.
�23� and �24�. Adaptive numerical quadrature has been used
here to obtain a relative accuracy lower than 10−9.

The sound speed along the rarefaction wave is easily
obtained by differentiating with respect to � the relation
c���=c�s0 ,v����, namely,

dc

d�
= � �c

�v
�

s

dv
d�

= −
��s0,v���� − 1

��s0,v����
,

and therefore, substituting again �→v���,

dc

dv
= −

��s0,v� − 1

��s0,v�
. �25�

The relation above clearly shows that the speed of sound
decreases along the rarefaction wave provided that ��1,
namely, in the LMC regime.

Conversely, if 0���1, the speed of sound increases
along the rarefaction wave. This is indeed the case of the
wave C -D, with both states past the perturbation �D� and
before the perturbation �C� located in the 0���1 region
�cf. Fig. 14�. From Fig. 16, it can be noted that the gas
dynamic behavior is still classical �wD�wC� and the rarefac-
tion wave is a continuous isentropic wave; however the
speed of sound decreases across the expansion.

Classical fluid dynamics is reversed in case both the un-

FIG. 16. HMC behavior: isentropic expansion with states enclosed in the
region where 0���1 �cf. Fig. 14�. The sound speed increases across the
expansion but still the wave speed w decreases.
perturbed state �E� and the state past the expansion �F� are
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within the negative � region �cf. Fig. 14�. In this case a
rarefaction shock wave is formed and the solution procedure
outlined above no longer applies. Instead, the Rankine-
Hugoniot jump conditions, namely,

���u� = ��� ,

���u2 + P�s,v�� = ����u� ,

�	�u�h�s,v� +
1

2
u2�
 = ����e +

1

2
�u2� ,

with ��·�= �·�1− �·�0, � shock speed and h�s ,v�=e�s ,v�
+vP�s ,v� specific enthalpy, are to be solved to find the post-
shock state 1 �state F here� from the unperturbed state 0
�state E�. A one-parameter family of solutions is spanned by
varying the shock speed �. The latter is computed so as to
have the desired postshock density �1 �namely, �A�. Figure
17 shows that across the rarefaction shock E−F the increase
of the speed of sound across the expansion is so accentuated
to more than overcome the decrease of the fluid velocity
resulting in the wave speed to increase across the shock
wave.

More complicated situations can occur when the initial
and final states are located in different thermodynamic re-
gions, say a rarefaction wave from state A to state F. In this
cases, mixed waves can possibly occurs, including double
sonic shocks as described in Ref. 49. At the �=0 boundary,
the characteristic field associated with acoustic disturbances
becomes linearly degenerate, r�w� ·���w�=0 in Eq. �22�,
and the technique presented here no longer applies. The so-
lution to this kind of flows requires to resort to the well-

FIG. 17. BZT or nonclassical gas dynamic behavior: the unperturbed state
and the state past the perturbation are both inside the negative � region �cf.
Fig. 14�. The speed of sound has such an increase across the perturbation
that also the wave speed increases and therefore an expansion shock is
formed. Also the fluid pressure and velocity are discontinuous across the
dissipative ��s�0� expansion.
known fully nonlinear theory described, e.g., in Refs. 1 and

ense or copyright; see http://pof.aip.org/about/rights_and_permissions



056101-13 Molecular interpretation of nonclassical gas dynamics Phys. Fluids 18, 056101 �2006�

Downlo
3, which accounts for the possibility of a wave to cross the
�=0 boundary, but is outside the scope of the present
analysis.

VII. CONCLUSION

In this paper the van der Waals’ representation of mo-
lecular interaction in a vapor is used to explore the relation
between molecular characteristics and nonclassical gas dy-
namic phenomena. The influence of attractive forces, repul-
sive forces, and molecular complexity �defined as the num-
ber of available of molecular degrees of freedom� on the
speed of sound is thoroughly analyzed.

Isothermal transformations allow for a direct insight into
the role of the mentioned molecular characteristics. In case
of complex molecules, isentropic transformations are almost
isothermal, therefore the isothermal results can be extrapo-
lated to isentropic flow processes. Gases made of complex
molecules have a lower speed of sound and its variation in
isentropic transformations in the dense gas region is more
accentuated due to the greater role of attraction forces in
reducing its value with decreasing density. For these gases
therefore it exists a thermodynamic region in which, for in-
stance, the sound speed in an expansion increases more than
the velocity of the fluid, allowing for the formation of expan-
sion shocks. A few representative cases of the exact solution
of flow field generated by a perturbation traveling in a still
fluid are presented to illustrate the influence of all possible
variations of the sound speed with density.

Admittedly, the van der Waals model is not accurate for
dense gas vapors and it overestimates the value of �, the
parameter whose negative values herald the nonclassical be-
havior. More complex equations of state are currently used to
investigate nonclassical gas dynamics phenomena in connec-
tion with accurate quantitative empirical data. The use of
more sophisticated molecular models would in principle al-
low for an analysis of the influence of other molecular char-
acteristics like polarity, acentricity, etc., on nonclassical gas
dynamic behavior.

It is very important to notice that the thermal stability of
complex molecules in practical applications very much limits
the existence of thermodynamic states toward high tempera-
tures. As an example the thermal stability limit of D4 in
stainless steel has been measured to be above 340 °C and
possibly as high as 400 °C if appropriately purified, de-
gassed and dehydrated.50 Because the critical temperature of
D4 is 313.35 °C, its maximum reduced temperature is 1.15,
which clearly shows that the region without a minimum in
the sound speed �Tr� �N / �N+2�� 27

8 �3.32 or T�1675 °C
for D4� can never exist whenever the molecule is a complex
organic compound.
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